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Abstract

Nanoscopic metal fluorides are of current interest in surface chemistry, as well as in optics
and dentistry. Synthesized via the fluorolytic sol-gel procedure, they have shown to exhibit
high surface area and to act as Lewis acids, due to the presence of coordinatively unsaturated
cations on the surface. In this thesis, a variety of divalent metal fluorides, including zinc,
calcium, strontium and barium fluorides, are investigated in different directions. Starting
with zinc fluoride crystal, the bulk and surface structure of the rutile and CaCl2 modifi-
cations are examined by means of first principle calculations. The shape of the crystal in
vacuum is predicted using the Wulff construction. In a way towards the understanding of
the missing catalytic activity of sol-gel synthesized zinc fluoride nanomaterials compared to
magnesium fluoride, as it has been shown by our experimental partners, the Lewis acidity
of coordinatively unsaturated surface cations of rutile ZnF2 is investigated by modeling the
adsorption of carbon monoxide on the low-index surfaces. Adsorption energies are calculated
using density functional, Hartree-Fock and local Møller-Plesset perturbation theory (LMP2)
for the periodic systems. The results show that the strength of the adsorption, which is
a measure of the Lewis acidity, does not only depend on the number of missing coordina-
tion partners of the surface cations. Moreover, the reactivity of the surfaces is not uniquely
determined by the Lewis acidity of the cationic sites, but the surface composition and the
anions on the surface are of importance too. From a methodological perspective, DFT was
shown to be adequate for a good description of CO adsorption, performing well compared to
LMP2, while dispersion corrections on DFT strongly overestimate the adsorption energies.
The bulk and surface properties of group II metal fluorides CaF2, SrF2 and BaF2, in fluorite
crystal structure, are also studied in this work using periodic DFT calculations. Adsorption
of hydrogen fluoride on low-index MF2 (M = Ca, Sr, Ba) surfaces is modeled at different
coverages, using different computational methods. PBE and PBE0 are found to perform
similarly for the adsorption structures and energies, both predicting a chemisorption in most
cases with the adsorption strength increasing upon lowering coverage. Combining the quan-
tum chemical results with surface thermodynamics, the stability of different terminations
under temperature and pressure of hydrogen fluoride is analyzed. Using the Wulff construc-
tion, the shape of the crystals at finite conditions of temperature and hydrogen fluoride
pressure is derived. The outcomes of these investigations suggest that all three materials
expose clean surfaces at high temperature and surfaces covered with HF at low temperature.
The predicted shapes of CaF2 and SrF2 nanocrystals are in good agreement with TEM im-
ages of sol-gel synthesized nanocrystals at room temperature and high excess of hydrogen
fluoride.

7





Zusammenfassung

Nanoskopischen Metallfluoriden gilt aktuelles Interesse in der Oberflächenchemie, der Op-
tik und der Zahnmedizin. Dargestellt über die fluorolytische Sol-Gel-Synthese, weisen diese
große Oberflächen auf und agieren, auf Grund von koordinativ ungesättigten Oberflächenka-
tionen, als Lewis-Säuren. In dieser Arbeit werden eine Vielzahl divalenter Metallfluorid,
namentlich Zink-, Calcium-, Strontium- und Bariumfluorid, unter verschiedenen Gesicht-
spunkten untersucht. Zuerst werden die Kristall- und Oberflächenstrukturen der Rutil-
und CaCl2- Modifikationen des Zinkfluorids mittels first principle Berechnungen unter-
sucht. Die Vorhersage der Form des Kristalls im Vakuum erfolgt über die Methode der
Wulff-Konstruktion. Um die, im Vergleich zu Magnesiumfluorid, fehlende katalytische Ak-
tivität Sol-Gel synthetisierter Zinkfluorid-Nanomaterialien, wie von unseren experimentellen
Partnern demonstriert, zu verstehen, wird die Lewis-Azidität von koordinativ ungesättigten
Oberflächenkationen der Rutilstruktur des ZnF2 untersucht. Dafür wird die Adsorption
von Kohlenstoffmonoxid auf niedrig indizierten Oberflächen modelliert. Die Berechnung
der Adsorptionsenergien der periodischen Systeme erfolgt mittels der Dichtefunktionaltheo-
rie, des Hartree-Fock-Verfahrens, sowie der lokalen Møller-Plesset Störungstheorie (LMP2).
Die Ergebnisse zeigen, dass die Stärke der Adsorption, ein Maß für die Lewis-Azidität,
nicht ausschließlich von der Anzahl an fehlenden Koordinationspartnern der Oberflächen-
kationen abhängt. Überdies ist die Reaktivität der Oberflächen nicht eindeutig über die
Lewis-Azidität der kationischen Gitterplätze bestimmt, da auch die Zusammensetzung der
Oberfläche und die Oberflächenanionen von Bedeutung sind. Im Hinblick auf die verwende-
ten Methoden, kann durch den Vergleich mit LMP2 gezeigt werden, dass die Adsorption von
CO gut mit DFT beschrieben wird, während die Verwendung von DFT mit Dispersionsko-
rrekturen zu einer Überschätzung der Absorptionsenergien führt. Des Weiteren werden in
dieser Arbeit die Kristall- und Oberflächeneigenschaften der Gruppe II Metallfluoride CaF2,
SrF2 und BaF2, in der Fluorit-Kristallstruktur, mittels periodischer DFT-Rechnungen un-
tersucht. Die Adsorption von Fluorwasserstoff auf niedrig indizierten MF2 (M = Ca, Sr,
Ba) Oberflächen wird für verschiedene Bedeckungsgrade und mit unterschiedlichen DFT-
Methoden modelliert. PBE und PBE0 liefern ähnliche Ergebnisse bezüglich der Adsorp-
tionsstrukturen und -energien. Beide Methoden sagen für die meisten Fälle Chemisorption
vorher, wobei die Adsorptionsstärke bei abnehmenden Bedeckungsgraden zunimmt. Die
Kombination der quantenchemischen Resultate mit den Methoden der Oberflächenthermo-
dynamik erlaubt die Bestimmung der Stabilität verschieden terminierter Oberflächen in
Abhängigkeit der Temperatur und des Fluorwasserstoffdrucks. Mittels Wulff-Konstruktion
wird die Form der Kristalle bei endlicher Temperatur und endlichem Fluorwasserstoffdruck
ermittelt. Die Ergebnisse dieser Untersuchungen legen nahe, dass alle drei Materialien bei
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hohen Temperaturen freie Oberflächen und bei niedrigen Temperaturen mit HF bedeckte
Oberflächen aufweisen. Die vorhergesagten Formen der CaF2 und SrF2 Nanokristalle stim-
men gut mit den TEM Aufnahmen von Sol-Gel synthetisierten Nanokristallen bei Raumtem-
peratur und großem Fluorwasserstoff-Überschuss überein.
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1 Introduction

A highly investigated, fast developing and vastly advertised topic nowadays is “Nanomate-
rials”. This term is devoted to materials having a size range of 1 to 100 nm, at least in one
spatial dimension. The study of nanomaterials requires a basic understanding of chemistry
and physics, some knowledge of materials science and - because of many interesting appli-
cations - also of biology and medicine. The concept of nanotechnology was first introduced
by P. Feynman in 1959, in his famous speech “There’s plenty of room at the bottom” [1],
meaning that “the control of materials and their properties in the atomic scale comprised
a new frontier of opportunity in science and technology”. About 30 years later, Gleiter et
al. launched the systematic study of nanoscopic materials, introducing the terms “nanocrys-
talline” and “nanocrystal” [2]. Due to their size-dependent physical and chemical properties
[3], nanomaterials are spread over a wide range of applications in many areas of human
activity, particularly in electronics [4–7], optics [8, 9] and medicine [10–12]. An attractive
example of such materials are metal fluorides [13–15]. For a long period of time, the interest
in metal-based compounds was confined to oxides [16–18]. Only recently, a considerable
attention has been devoted to metal fluorides, especially after the development of the sol-gel
route to their synthesis [19]. Originally used for the synthesis of nanoscopic AlF3 [20–22]
and successfully applied to MgF2-based materials [23], the fluorolytic sol-gel synthesis has
been operated on many other fluorides [24], including ZnF2 [25] and the alkaline-earth fluo-
rides CaF2, SrF2 and BaF2 [26, 27]. In a sol-gel procedure (see Fig. 1.1), a metal precursor
reacts with hydrogen fluoride in a suitable organic solvent to form a transparent sol. After
a post-treatment the desired nanomaterial is obtained.

1.1 Synthesis and applications of metal fluoride nanocrystals

Due to their high surface area and moderate to high Lewis acidity, the sol-gel synthesized
aluminium fluoride and magnesium fluoride have revealed outstanding catalytic performance
with high activity as well as high selectivity for a broad range of chemical reactions [19, 29–
37], like for example the fluorination of 2-chloropyridine to 2-fluoropyridine [38]. They have
also shown excellent applicability in antireflective optical coatings [39], where metal fluorides

Figure 1.1: Pictorial representation of a sol-gel procedure [28].
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1 Introduction

based thin films of high mechanical resistance were obtained. Moreover, they are used as
inorganic components embedded in an organic polymer matrix to form composite materials
with new functionalities [40]. These advantageous properties offered a motivation and paved
the way towards the synthesis of further nanoscopic metal fluorides. Due to the similarity
between Zn and Mg in terms of electron configuration, coordination number and ionic radius
[41], ZnF2 was chosen as a primary research target and was prepared via the sol-gel synthesis
route [25]. This proceeds by the reaction of zinc acetate with hydrogen fluoride to form a col-
loidal suspension of solid nanoparticles. Upon aging and drying, the final product is formed.
The synthesis of ZnF2 is performed under both non-aqueous and aqueous conditions to test
the effect of water in the synthesis process. It was found out that the presence of water leads
to a higher fluorination degree in the prepared compounds, and therefore crystallization is
favoured. Partial hydroxylation of the surface, which occured in the synthesis of MgF2,
was not observed on ZnF2. The sol-gel prepared ZnF2 has a significantly high surface area
and the estimated average diameter of the sol particle is about 16 nm, which indicates its
nanoscopic nature. ZnF2 is predominantly a Lewis acidic solid with some weak Lewis basic
sites [25].
Several synthetic routes to nanoscopic alkaline earth metal fluorides were employed, namely
the reverse micelle method, solvothermal process, different precipitation methods, the mechan-
ochemical route and the sol-gel fluorination [42–55]. A mechanochemical synthesis of nanocrys-
talline CaF2, SrF2 and BaF2 has been described recently [54]. Using metal carbonates,
acetates or hydroxides as educts and ammonium fluoride as fluorinating agent, phase pure
nanocrystalline metal fluorides are formed by milling in a planetary mill. Moreover, simple
manual shaking reactions of ammonium fluoride with the metal hydroxides result in exclu-
sively crystalline metal fluorides. The nanocrystalline samples prepared via this method have
a size of about 10 nm and exhibit high fluorine ion conductivity. Alkaline earth fluorides
with high surface area and tunable surface properties are obtained in a fluorolytic sol-gel
synthesis. Rehmer et al. [26] reported the synthesis of nanoscopic CaF2 via the sol-gel pro-
cess to prepare antireflective CaF2-films by dip-coating. For this purpose, they used calcium
chloride as a precursor and reacted it with anhydrous hydrogen fluoride in ethanol. The
prepared CaF2-films exhibit an excellent optical performance as well as a good mechanical
stability, and show a small particle diameter in the range of 10 to 20 nm. An alternative
synthetic route starting with calcium lactate dissolved in a mixture of lactic acid and formic
acid and adding an aqueous solution of hydrogen fluoride, has been described also [56]. Sim-
ilar to CaF2, the reaction of strontium lactate with aqueous hydrogen fluoride results in
SrF2 nanocrystals. In both cases, the solid obtained possesses a high surface area and a
nanoscopic nature, with the size of the nanocrystals ranging between 5 and 20 nm. However,
in the case of CaF2 clearly a cubic shape of all nanocrystals is observed, whereas for SrF2

mostly spherical looking nanocrystals are obtained. Additionally, SrF2 nanoparticles were
synthesized also via the sol-gel route, using strontium acetate hemihydrate as precursor and
non-aqueous HF solution as fluorinating agent [27]. The resulting nanocrystals were found
to have a crystallite size below 10 nm, and crystal lattice planes of nano-SrF2 were observed
in a high-resolution transmission electron microscopic image, proving the crystallinity of the
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1.1 Synthesis and applications of metal fluoride nanocrystals

particles. For the synthesis of BaF2, barium methoxide is reacted with hydrogen fluoride
in methanol yielding a high surface area BaF2 nanocrystal [55]. Experiments on the char-
acterization of the acidity and the basicity of the prepared materials show the presence of
medium Brønsted acidic sites in calcium fluoride and strontium fluoride, whereas barium
fluoride possesses weak Lewis acidic sites and strong Lewis basic sites [57].
Sol-gel synthesized nanoscopic metal fluorides are characterized by exceptional properties,
like high surface area and high reactivity, which makes them very promising candidates in
heterogeneous catalysis. For example, alkaline earth fluorides catalyze the dehydrohalogena-
tion of chlorofluorobutanes, with BaF2 showing an interesting catalytic activity with high
selectivity for the dehydrochlorinationtion of 3-chloro-1,1,1,3-tetrafluorobutane [57]. ZnF2

combined with chiral diamine ligands has been found to exhibit a high catalytic activity for
the asymmetric allylation of acylhydrazono esters [58]. In addition to the catalytic proper-
ties, nanoscopic metal fluorides exhibit excellent optical properties which allow wide-ranging
applicability in the field of optics, mainly anti-reflective coatings, spectroscopy and laser ap-
plications. ZnF2 is one of the important optical materials which can exhibit different optical
properties upon doping. It presents a large anisotropy in its dielectric properties when doped
with lithium [59], which makes it a good candidate for optical device manufacturing. Another
attractive feature is an effective electroluminescense in rare-earth doped bulk crystals and
polycrystalline films of ZnF2, being therefore a promising compound for electroluminescent
device applications [60]. For example, ZnF2 thin films doped with trivalent rare-earth ions,
such as Ce, Nd, Sm, Eu and Er, show an electroluminescent emission from UV to blue regions
[61]. ZnF2 has also driven much interest in vacuum ultraviolet photo-electron spectroscopy
due to its wide band gap [62]. BaF2 is considered as the fastest luminescent material [63] and
is widely used for γ-ray and elementary particle detection [64]. By dissolving appropriate
impurities into its lattice, BaF2 exhibits superionic conductivity which makes it a promising
material for high-temperature batteries, chemical filters and sensors [65]. CaF2 and SrF2

are often used as chemical-resistant, weather-proof coating materials for high quality opti-
cal windows [26, 27, 39], due to their low refractive index and their low solubility in water
[66]. They are also used as ceramic laser materials because of their excellent mechanical and
optical properties [67]. Furthermore, divalent metal fluorides play a crucial role in dental
applications [68, 69], by preventing and controlling dental caries. Used as inorganic fillers in
dental composites, CaF2 and SrF2 improve the mechanical and chemical properties of dental
materials since they also act as fluoride-releasing materials, which is of high importance in
caries prevention.
Motivated by the outlined diversity in applications of the sol-gel prepared metal fluorides
and the versatile path to their synthesis, I aim in this project at developing a predictive
model for a group of metal fluorides, through investigating their structure, composition and
properties and understanding the relationship between them. The focus is on two different
systems: Zinc fluoride (ZnF2) in rutile structure and group II fluorides including calcium,
strontium and barium fluorides (CaF2, SrF2 and BaF2) in fluorite structure.
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1 Introduction

Figure 1.2: Bulk unit cells of (a) ZnF2 and (b) CaF2. Zinc atoms are represented as grey,
calcium as blue and fluorine as red spheres.

1.2 Bulk and surface characteristics

1.2.1 Nanostructured zinc fluoride

Zinc fluoride crystallizes in the tetragonal rutile structure with space group 136 (P42/mnm)
and two ZnF2 formula units in the conventional unit cell (see Fig. 1.2). In the bulk, each
zinc cation is surrounded by six fluorine anions in an octahedral arrangement, while each
anion is coordinated to three cations. So, an octahedron is formed by one zinc ion in the
center and six fluorine ions in the corners. The neighboring octahedra are connected to each
other through an edge-shared F anion. The lattice constants of rutile-type ZnF2 obtained
from X-ray powder diffraction are a = 4.703Å and c = 3.133Å, and the relative coordinate
of the fluorine ion is x(F) = 0.305 [70].
Pressure induced phase transitions occuring in solids are of great importance since they affect
the structural and electronic properties of the material. A ZnF2 crystal undergoes a phase
transition from the rutile-type to the CaCl2-type structure at a pressure of about 4.5GPa,
and to the PdF2-type for pressures above 6.5GPa [71]. The rutile and the CaCl2 structures
are very similar, in terms of bulk properties and surface energies, besides the fact that they
belong to different lattice systems, tetragonal and orthorhombic [72].
It is well known that the surface acid-base properties of metal fluorides influence their po-
tential as heterogeneous catalysts. Indeed, acidic fluorides with high surface area are very
promising candidates in heterogeneous catalysis, and thus, knowing the Lewis acidity of
the surface cations is crucial for understanding the catalytic performance of the material.
Compared to the structurally similar MgF2, ZnF2 has the same type of unsaturated surface
cations, being slightly weaker in both acidity and basicity. However, in contrast to the large
catalytic activity of MgF2 based materials, ZnF2 did not show any catalytic potential for
the dismutation reaction of chlorofluoromethanes. In this context, a question arises: Is this
lack of catalytic activity mainly related to a different structure of ZnF2 crystallites or to a
lower activity of surface sites?
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1.2 Bulk and surface characteristics

1.2.2 Group II metal fluorides

The bulk and surface properties of alkaline earth fluorides CaF2, SrF2 and BaF2 are widely
investigated in experimental as well as in theoretical studies [73–77]. These materials are
highly ionic insulators which crystallize in the cubic fluorite structure of space group 225
(Fm3̄m). The unit cell consists of three ions, one cation chosen as origin, and two anions
placed at ±(1/4, 1/4, 1/4). Each cation is surrounded by 8 equidistant anions situated at
the corners of a cube, with the cubes edge-connected in a face centered cubic array, and each
anion has 4 neighboring cations arranged in a regular tetrahedron [78] (see Fig. 1.2). Data
from X-ray powder diffraction estimates the lattice constant to be 5.46, 5.80 and 6.20Å for
CaF2, SrF2 and BaF2, respectively [79–83].
Synchroton-radiation studies of CaF2 at high pressures show that a phase transition from
the fluorite to the orthorhombic PbCl2-type structure occurs at about 9.5GPa [84]. Tight
binding linear muffin tin orbital calculations confirm that the group II fluorides CaF2, SrF2

and BaF2 undergo a phase transition to the orthorhombic structure at transition pressures
of 9.1, 7.0 and 2.84GPa, respectively [85, 86]. In the case of BaF2, a second phase transition
is induced for a pressure as high as 12.8GPa, where the orthorhombic PbCl2-type structure
transforms into a hexagonal Ni2In-type structure. Upon compression, the three materials
are predicted to undergo insulator to metal transition at metallization pressures of nearly
210, 91 and 33GPa for CaF2, SrF2 and BaF2, respectively [85, 86].
The electronic structure of the materials under study has been extensively investigated and
reported in a number of publications. Experimental studies based on vacuum-ultraviolet
spectroscopy estimate the indirect band gaps of CaF2, SrF2 and BaF2 to be 11.18, 10.60 and
10.00eV, respectively [87]. Kanchana et al. [85, 86] have shown, in a DFT study using the
LDA functional, that calcium, strontium and barium fluorides are wide band gap insulators
with the gap occuring between the “p” like valence band of the fluorine and the “sd” like
conduction band of the metal. They reported indirect band gap values of 7.24, 7.5 and
7.033eV for CaF2, SrF2 and BaF2, respectively. In another work based on DFT calculations
using the hybrid B3PW functional [88, 89], the calculated band gap was 10.68eV for CaF2

and 11.30eV for BaF2, in a very good agreement with the experimental values. It has also
been shown that the charge density between atoms in the bulk crystal is very small reflecting
the high ionic nature of the metal-fluorine chemical bonding.
The natural cleavage plane of a MF2 (M = Ca, Sr or Ba) crystal is the (111) surface, which
consists of planes of metal ions in a hexagonal array with a layer of fluoride ions both above
and below. The (111) surface is thus terminated with fluoride ions and just below the surface
are seven-fold coordinated metal ions [90]. The energy required to create this surface is 0.45
J/m2 for CaF2 [91]. There exist two other low index surfaces of higher surface energy, the
(110) and the (100) surfaces. The three surfaces were investigated in this thesis, with the help
of periodic slab calculations. I analyze in detail the surface structure and calculate surface
energies which give insights about the stability and allow a prediction of the nanocrystal
shape.
The reactivity of calcium fluoride surfaces has been experimentally investigated by several
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research groups, mainly through water vapor adsorption experiments. An early study using
the infrared technique [92] shows that water is chemisorbed on the CaF2 surface and the
adsorbed water molecules are strongly bound to each other. In the same study, it has been
shown that the surface of BaF2 is not able to bind adsorbed water molecules and adsorption
of water vapor on this surface is brought by a physisorption process. De Leeuw et al. [93]
published a theoretical study dealing with the adsorption of water and methanoic acid on
the (111) surface. Their DFT calculations within the generalized-gradient approximation
show that the most stable configuration of water on the (111) surface is an associative
adsorption without any dissociation of the water molecules to form a hydroxylated surface.
The calculated hydration energies and their decrease with increasing coverage suggest the
difficulty of accomodating a full monolayer of water molecules, due to the small lattice spacing
of calcium, and indicate the presence of repulsive interactions between the adsorbates. The
same trends were observed for the adsorption of methanoic acid which adsorbs by its oxygen
to two calcium atoms forming a bridge between them. The adsorption of methanoic acid
was found to be energetically more favorable compared to water adsorption. In this work, I
study the adsorption of hydrogen fluoride molecules on the low-index surfaces (111), (110)
and (100) of MF2 at different coverages. I evaluate the adsorption structures and energies
which give valuable information about the strength of the interaction between the surface and
the adsorbate. This is of importance for the formation of the nanomaterial since hydrogen
fluoride is a reactant in the synthetic route.

1.3 Quantum chemical modeling of metal fluorides

Solids can be modelled in quantum mechanics using two different approaches: embedded
clusters and periodic models. The embedded clusters scheme consists of dividing the bulk
system into two parts: a small finite fragment (cluster) which is explicitly treated in quantum
chemical calculations, and the surrounding bulk, which is often neglected. This approach
is usually used for modeling non periodic solids. The periodic model allows a structural
description of the system by a small part of it, the unit cell, which features a translational
symmetry. The periodic approach has been employed in modeling the bulk crystals and the
surfaces in this thesis and is therefore explained in detail in the next chapter.
The process of adsorbing small molecules on the surfaces of crystalline solids is recognized
as a powerful tool for the characterization of surface properties, such as Lewis acidity. This
is of great importance in many fields of surface science, mainly in surface catalytic reactions.
Depending on the strength of the interaction between the surface and the adsorbate, adsorp-
tion is classified into two types: chemisorption in which the molecular electronic structure
of the adsorbent is perturbed and chemical bonds are formed with the substrate, and ph-
ysisorption which retains the electronic structure of the molecule with some small distortion.
The latter case is governed by weak dispersion interactions which are caused by interactions
in the fluctuating polarizations of surface and adsorbate [94]. To treat these interactions,
it is necessary to account for electron correlation. While Hartree-Fock theory lacks electron
correlation, modern wave-function based post-HF methods include electron correlation and
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are successfully applicable to small sized systems, but are difficult to apply on extended
systems.
Density functional theory is widely used for the description of adsorption processes on sur-
faces [95, 96], due to the compromise between accuracy and computational cost. However,
standard density functionals often fail to correctly describe electron correlation and therefore
dispersion effects [97–101]. Especially for systems where weak interactions are important,
DFT with standard functionals does not yield the desired accuracy. A variety of attempts
to account for this inadequacy has been proposed [102–109]. Dispersion correction schemes
based on empirical approaches have been introduced by Grimme [108, 109], and successfully
applied to adsorption systems [110–113]. Based on sophisticated calculations with the use
of approximations, the Grimme corrections improve very efficiently on the accuracy. They
are implemented in quantum chemical codes for molecules as well as for solids and are there-
fore widely used. In this thesis, I apply the Grimme corrections (D2 and D3) to the DFT
calculations of adsorption interactions, and thus, I discuss the method in detail in the next
chapter.
A number of wave function-based methods has been put forward to accurately determine
the correlation contributions. These comprise configuration interaction [114], coupled clus-
ter schemes [115] and Møller-Plesset perturbation theory (MPn) of order n [116], which
are very productive for small systems, but become nearly impractical for extended systems
due to their exponential scaling with the system size [117]. To remedy this problem and
reduce the computational cost, approaches based on a localized orbital representation are
employed. The so-called local ansatz originally introduced by Stollhoff and Fulde relies
on excitations out of non-orthogonal localized orbitals [118–120]. Later, Pulay and Saebo
[121–123] employed localized orthogonal orbitals to represent the occupied HF manifold and
non-orthogonal projected atomic orbitals (PAOs) to describe the virtual space. This scheme
was applied by Werner and Schütz to molecular systems and was implemented in the MOL-
PRO program [124, 125]. Pisani et al. [126, 127] extended the use of the local approach
to solids, which was implemented in the CRYSCOR code [127, 128]. A slightly different
scheme, called the method of increments (MoI), was proposed by Stoll for extended systems
[129–132]. Relying on clusters, the electron correlation energy obtained from the MoI con-
sists of a many-body expansion, in a way that allows the truncation of the virtual space. It
has been shown recently that periodic local second-order Møller-Plesset perturbation theory
(LMP2) is sufficient for an accurate description of metal fluorides [133], yielding very good
results in comparison with the MoI using CCSD(T). Therefore, in this thesis, I employed
the periodic LMP2 theory to study adsorption of CO on ZnF2 surfaces (see Paper P2).

1.3.1 Predictive modelling of the crystal shapes

It is well known that chemical reactions are strongly influenced by temperature and pressure.
The later are not included in ab initio calculations and therefore all calculated physical
properties are only valid at T = 0K and p = 0atm. However, ab initio calculations can be
combined with thermodynamics to include the effects of temperature and pressure. This
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combination, referred to as ab initio surface thermodynamics, is employed to link results
from quantum chemical calculations to macroscopic properties and predict the stability of
different surfaces under realistic conditions. The method was established and applied to
metals and metal oxides in contact with an oxygen gas phase [134–136]. A good agreement
with experimental findings was achieved for ruthenium and palladium metals as well as their
corresponding oxides [134, 136, 137]. Later, with the development of the fluorolytic sol-gel
synthesis, surface thermodynamics were employed to predict the stability of AlF3 [138] and
MgF2 surfaces in a mixed HF/H2O environment [139].
Ab intio surface thermodynamics have the advantage of providing an insight in the formation
of the surfaces at a relatively low computational cost. The procedure is as follows: given
a set of quantum chemically calculated structures, their thermodynamic stability can be
evaluated over a broad range of temperature and pressure conditions, through calculating
the Gibbs surface energy. Based on that, I employed surface thermodynamics in the present
work to model the influence of the temperature and the pressure of HF on the stability of low
index MF2 surfaces and therefore predict the morphology of the nanocrystals under different
conditions.
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In 1900, Max Planck developed a theory, the so-called blackbody radiation, to study the
light emitted by heated solids. His work was considered to mark the beginning of quantum
mechanics [140]. After about 25 years, Heisenberg, Born and Jordan [141] had developed
a complete and consistent theory of quantum mechanics, called matrix mechanics. A few
months later, Erwin Schrödinger introduced the concept of the wave function and the equa-
tion governing its change with time to describe the state of a system in quantum mechanics
[142]. The time-dependent Schrödinger equation is written as

i
∂

∂t
Ψ(x, t) = ĤΨ(x, t), (2.1)

where Ψ(x, t) represents the wave function that contains all possible information about a
quantum system. It is a function of time t and of space coordinates x of all quantum me-
chanically described particles in the system. Ĥ is the Hamiltonian that corresponds to the
total energy of the system, which is conserved.
Because of its complexity, the Schrödinger equation could not be solved, for systems exceed-
ing two particles, unless approximations are introduced. As a first approximation, the time-
and the spatial-dependence of the wave function are separated, and only the spatial part is
treated: this is referred to as stationary states that are described by the time-independent
Schrödinger equation. In addition, relativistic effects are either neglected or treated within
the pseudopotential approach. A further simplification of the problem was introduced by
Born and Oppenheimer in 1927 [143], who suggested that, since the electrons move much
faster than the nuclei, the latter can be regarded as fixed while the electrons carry out their
motions.
Applying the aforementioned approximations, the problem reduces to solving the non-relativistic,
time-independent, electronic Schrödinger equation:

ĤelΨel = EelΨel, (2.2)

where Ĥel is the electronic Hamiltonian that acts on the electronic wave function Ψel to give
the electronic energy Eel, and it takes the form, in atomic units:

Ĥel = −1
2

N∑
i=1
∇2
i −

N∑
i=1

M∑
A=1

ZA
riA

+
N∑
i=1

N∑
j>i

1
rij
. (2.3)

The first term in Eq. 2.3 describes the kinetic energy of the electrons and the other two
terms denote the electrostatic interaction between electrons and nuclei and among electrons
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respectively. N is the number of electrons, M is the number of nuclei, rij is the distance
between electrons i and j and riA is the distance between electron i and nucleus A.
In this work, the electronic Schrödinger equation is considered and thus, for simplicity, the
indices ”el” are removed.

2.1 Hartree Fock

Although the aforementioned approximations are frequently used in quantum chemical cal-
culations, the electron-electron repulsion term remains an obstacle for a direct solution of
the Schrödinger equation. In the Hartree-Fock scheme [144], the N -electron wave function
is approximated by an antisymmetrized product of N one-electron wave functions χi(xi)
that obeys the Pauli exclusion principle. This product is usually referred to as a Slater
determinant [145]

Ψ(x1, x2, ..., xN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) · · · χn(x1)

χ1(x2) χ2(x2) · · · χn(x2)
...

... . . . ...

χ1(xN ) χ2(xN ) · · · χN (xN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.4)

The one-electron functions χi(xi) are called spin orbitals and are composed of a spatial
orbital ψi(~r) and one of the two spin functions, α(s) or β(s).

χi(x) = ψi(~r)
{
α(s)

β(s)
(2.5)

Following the variational principle, the best Slater determinant ΨHF is the one that yields
the lowest energy and this is expressed as

E0 ≤ EHF = 〈ΨHF|Ĥ|ΨHF〉 = min
Ψ
〈Ψ|Ĥ|Ψ〉, (2.6)

where Ψ is a trial wave function that gives the ground state energy E0.
The differential equations for finding the optimal spin orbitals are called the Hartree-Fock
equations [146, 147] and take the form

f̂ |χi〉 = εi|χi〉, (2.7)

where εi are the eigenvalues of the Fock operator f̂ and have the physical interpretation of
orbital energies. The Fock operator f̂ is an effective one-electron operator defined as

f̂ = −1
2∇

2
i −

M∑
A=1

ZA
riA

+ νHF(xi). (2.8)
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The so-called effective Hartree-Fock potential νHF(xi) is the average repulsive potential ex-
perienced by electron i due to the remaining N-1 electrons. It has explicitly the two com-
ponents:

νHF(xi) =
∑
b

(Ĵb(xi)− K̂b(xi)). (2.9)

The first term in Eq. 2.9 is the Coulomb operator which represents the potential that the
electron i in spin orbital χa experiences due to the average charge distribution of another
electron in spin orbital χb. When operating on a spin orbital χa(x1), it is defined by

Ĵb(x1)χa(x1) =
∫
χ∗b(x2) 1

r12
χb(x2)dx2χa(x1). (2.10)

The second term is the exchange contribution to the HF potential. The exchange operator
K̂ acting on a spin orbital χa(x1) is expressed as

K̂b(x1)χa(x1) =
∫
χ∗b(x2) 1

r12
χa(x2)dx2χb(x1). (2.11)

Since the Fock operator depends through the HF potential on the spin orbitals, Eq. 2.7 is
not a regular eigenvalue equation that can be solved in a closed form. Rather, it has to be
solved iteratively, using the so-called self-consistent field (SCF) procedure [148]. In brief,
this technique consists of starting with a ”guessed” set of spin orbitals, which are used to
solve the HF equations. The resulting new set of orbitals is then used in the next iteration
and so on until convergence and self-consistency are achieved.
The Hartree-Fock SCF problem is usually solved through the introduction of a finite set of
atomic orbitals to expand the unknown molecular orbitals:

ψi(~r) =
K∑
µ=1

Cµiφµ(~r), (2.12)

with the coefficients Cµi being the only unknowns. The result of this linear expansion is a
matrix equation, known as the Roothan-Hall equation [149, 150]

FC = εSC, (2.13)

where C is a square matrix containing the expansion coefficients and ε is a diagonal matrix
of the orbital energies. S is the overlap matrix and F is the Fock matrix, which are hermitian
matrices with their elements defined as:

Sµν =
∫
φ∗µ(r1)φν(r1)dr1, (2.14)

Fµν =
∫
φ∗µ(r1)f(r1)φν(r1)dr1. (2.15)
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2.2 Correlation energy

As seen in the previous section, the Hartree Fock theory is a successful approximation in
many cases since it reduces the many-body wave function problem to a set of one-body
wave function and therefore minimizes the computational effort. However, the Hartree-Fock
SCF wave function treats the interactions between electrons only in an average way and
does not take into account the instantaneous interactions between electrons. The energy
contribution due to the correlated motions of the electrons is crucial in some cases, where
high accuracy is required. It is called correlation energy and is defined as the difference
between the nonrelativistic exact energy Enonrel and the Hartree-Fock energy EHF

Ecorr = Enonrel − EHF. (2.16)

A variety of computational schemes to determine the correlation contributions accurately
and efficiently has been devised during the years. Most of them rely on the HF results and
are thus known as post-HF methods.

2.2.1 The CI wave function

A conceptually simple, but computationally demanding approach is the configuration inter-
action (CI) which, in principle, provides an exact solution of the many-electron problem [114].
The basic idea of this method is to expand the exact wave function in a linear combination
of N-electron trial functions (Slater determinants) and use the variational principle to find
the expansion coefficients. This allows the calculation of the exact energies of the ground
and excited states within the Born-Oppenheimer approximation. If all possible excited de-
terminants are considered, we talk about a full CI calculation and the exact many-electron
wave function takes the form:

|Φ〉 = c0|Ψ0〉+
∑
ar

cra|Ψr
a〉+

∑
a<b
r<s

crsab|Ψrs
ab〉+

∑
a<b<c
r<s<t

crstabc|Ψrst
abc〉+ · · · , (2.17)

where a, b, c, ... refer to the occupied and r, s, t, ... to the unoccupied spin orbitals. Ψ0 is
the HF ground state Slater determinant and Ψr

a, Ψrs
ab and Ψrst

abc define a singly, doubly and
triply excited determinants, respectively.
Another approach which deals with the electron correlation is the perturbation theory which
was applied in this work and will be discussed in detail in the next section.

2.2.2 Perturbation theory

Rayleigh and Schrödinger [151] established an approach in which they introduced a pertur-
bation term to the Hamiltonian. In this approach, the total Hamiltonian is composed of two
parts: a zeroth-order part for which we know the eigenfunctions and eigenvalues, and a per-
turbation part. In the following, we derive the energy expressions of Rayleigh-Schrödinger
(RS) perturbation theory following the procedure by Szabo and Ostlund [114].
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The eigenvalue problem we wish to solve is expressed by

Ĥ|Φi〉 = (Ĥ0 + λĤ ′)|Φi〉 = Ei|Φi〉, (2.18)

where Ĥ0 is the unperturbed Hamiltonian of known eigenfunctions Φ(0)
i and eigenvalues E(0)

i ,
Ĥ ′ is the perturbed Hamiltonian and λ is an ordering parameter which controls the order of
the perturbation.
The eigenfunctions and the eigenvalues of Eq. 2.18 are expanded in power series in λ:

Φi = Φ(0)
i + λΦ(1)

i + λ2Φ(2)
i + · · · , (2.19)

Ei = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · · . (2.20)

The wave function of Ĥ0 is considered to be normalized (〈Φ(0)
i |Φ

(0)
i 〉 = 1), and the wave

function of the total Hamiltonian Ĥ must obey the intermediate normalization such as:

〈Φ(0)
i |Φi〉 = 1. (2.21)

Substituting Eq. 2.19 into Eq. 2.21 gives:

〈Φ(0)
i |Φ

(0)
i 〉+ λ〈Φ(0)

i |Φ
(1)
i 〉+ λ2〈Φ(0)

i |Φ
(2)
i 〉+ · · · = 1. (2.22)

Eq. 2.22 holds for all values of λ, therefore:

〈Φ(0)
i |Φ

(1)
i 〉 = 0, 〈Φ(0)

i |Φ
(2)
i 〉 = 0, · · · (2.23)

Substitution of equations 2.19 and 2.20 into Eq. 2.18 results in:

(Ĥ0 + λĤ ′)(|Φ(0)
i 〉+ λ|Φ(1)

i 〉+ λ2|Φ(2)
i 〉+ · · · ) =

(E(0)
i + λE

(1)
i + λ2E

(2)
i + · · · )(|Φ(0)

i 〉+ λ|Φ(1)
i 〉+ λ2|Φ(2)

i 〉+ · · · ).
(2.24)

Equating coefficients of λn, we have:

Ĥ0|Φ(0)
i 〉 = E

(0)
i |Φ

(0)
i 〉, (2.25)

Ĥ0|Φ(1)
i 〉+ Ĥ ′|Φ(0)

i 〉 = E
(0)
i |Φ

(1)
i 〉+ E

(1)
i |Φ

(0)
i 〉, (2.26)

Ĥ0|Φ(2)
i 〉+ Ĥ ′|Φ(1)

i 〉 = E
(0)
i |Φ

(2)
i 〉+ E

(1)
i |Φ

(1)
i 〉+ E

(2)
i |Φ

(0)
i 〉 (2.27)

Using the orthogonality relation (Eq. 2.23) and multiplying each of the above equations by
〈Φ0

i |, the following expressions of the n-th order energies are obtained:

E
(0)
i = 〈Φ(0)

i |Ĥ0|Φ(0)
i 〉 (2.28)

E
(1)
i = 〈Φ(0)

i |Ĥ ′|Φ
(0)
i 〉 (2.29)

E
(2)
i = 〈Φ(0)

i |Ĥ ′|Φ
(1)
i 〉 (2.30)
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To determine the second-order correction of the energy E
(2)
i , the first-order corrected wave

function |Φ(1)
i 〉 is expanded in terms of the eigenfunctions of Ĥ0:

|Φ(1)
i 〉 =

∑
n

cn|Φ(0)
n 〉 (2.31)

with cn = 〈Φ(0)
n |Φ(1)

i 〉 and ci = 0. Multiplying Eq. 2.26 by 〈Φ(0)
n | and taking into account

the orthogonality of the zeroth-order wave functions, we get for n 6= i:

(E(0)
i − E(0)

n )〈Φ(0)
n |Φ(1)

i 〉 = 〈Φ(0)
n |Ĥ ′|Φ(0)

i 〉, (2.32)

hence |Φ(1)
i 〉 is expressed as:

|Φ(1)
i 〉 =

∑
n 6=i

〈Φ(0)
n |Ĥ ′|Φ(0)

i 〉
E

(0)
i − E

(0)
n

|Φ(0)
n 〉 (2.33)

Therefore, substituting Eq. 2.33 into Eq. 2.30 results in the desired expression of the second-
order energy:

E
(2)
i =

∑
n6=i

| 〈Φ(0)
n |Ĥ ′|Φ(0)

i 〉 |2

E
(0)
i − E

(0)
n

(2.34)

The correlation energy can be obtained using RS perturbation theory, where Ĥ0 is the
Hartree-Fock Hamiltonian:

Ĥ0 =
∑
i

f(i), (2.35)

and the electron correlation represents the perturbation part:

Ĥ ′ =
∑
ij

1
rij
−
∑
i

νHF(i) (2.36)

This improvement of the HF theory is known as Møller-Plesset (MP) perturbation theory
[116]. The Hartree-Fock energy is the sum of the zeroth and first-order perturbation energies:

E0 = E
(0)
0 + E

(1)
0 =

∑
a

εa + 〈Φ(0)|
∑
i<j

1
rij
|Φ(0)〉 − 〈Φ(0)|

∑
i

νHF(i)|Φ(0)〉 (2.37)

Therefore, second-order perturbation theory is applied to determine the electron correlation.
The second-order energy required in MP theory is derived from Eq. 2.34 and is expressed
as:

E
(2)
0 =

∑
a<b
r<s

| 〈ab|rs〉 − 〈ab|sr〉 |2
εa + εb − εr − εs

(2.38)

where a and b represent the occupied spin orbitals, r and s represent the virtual spin orbitals
and εa, εb, εr and εs are the orbital energies.
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2.3 Density functional theory

2.3.1 The Hohenberg-Kohn theorems

Density functional theory (DFT) constitutes a powerful tool for predicting the ground state
properties of a system, with the electron density being the key quantity. It dates back to the
work of Thomas and Fermi in 1927, who applied a quantum statistical model on the electron
density [152, 153]. However, DFT became a vastly popular theory only from the time that
Hohenberg and Kohn established their two theorems in 1964 [154].
The electron density represents the probability of finding an electron within the volume
element d−→r1 but with arbitrary spin and it is defined as:

ρ(−→r1) = N

∫
· · ·
∫
|Ψ(x1, x2, · · · , xN )|2ds1dx2 · · · dxN . (2.39)

In the first Hohenberg-Kohn theorem, the electron density ρ(−→r ) defines an external potential
uniquely up to a constant. This implies that the ground state energy is a functional of the
ground state electron density and it can be written as

E[ρ] = Ene[ρ] + T [ρ] + Eee[ρ] (2.40)

Ene defines the potential energy due to the nuclei-electron attraction and it can be expressed
through the external potential from the nuclei as:

Ene[ρ] =
∫
ρ(~r)νext(~r)d~r (2.41)

T is the kinetic energy of the electrons and Eee the electron-electron repulsion.
The second Hohenberg-Kohn theorem states that the energy obtained from the functional
expressed in Eq. 2.40 is higher for any trial density ρt than the true ground state energy E0.

E0 ≤ E[ρt] (2.42)

In this theorem, the variational principle is applied on the electron density.
Using the Hohenberg-Kohn theorems, we are in principle able to determine the ground state
energy of the system. However, the major challenge remains to find explicit expressions for
the two functionals T [ρ] and Eee[ρ] given in Eq. 2.40.

2.3.2 The Kohn-Sham approach

The concept introduced by Kohn and Sham [155], a year after the contribution of Hohenberg
and Kohn, marked the real breakthrough in modern DFT. Their approach considers a system
of non-interacting electrons described by a set of orbitals φi(~r) whose resulting density is
exactly equal to the density of the interacting system:

ρ(~r) =
N∑
i

φ2
i (~r) = ρ0(~r). (2.43)
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The Hamiltonian of the non-interacting system includes an effective potential νeff(~r) :

ĤKS = −1
2

N∑
i=1
∇2
i +

N∑
i=1

νeff(~r), (2.44)

and its exact wave function is represented by a Slater determinant of the Kohn-Sham spin
orbitals φi(r) which are solutions of the Kohn-Sham equation:

f̂KSφi(~r) = (−1
2∇

2
i + νeff(~r))φi(~r) = εiφi(~r). (2.45)

The electronic energy of the real interacting system is expressed as:

E[ρ] = Ene[ρ] + Ts[ρ] + J [ρ] + EXC[ρ]

=
∫
ρ(~r)νext(~r)d~r + Ts[ρ] + 1

2

∫∫
ρ(~r1)ρ(~r2)

~r12
d~r1d~r2 + EXC[ρ], (2.46)

where Ts[ρ] is the kinetic energy of the non-interacting system, J [ρ] is the classical electro-
static energy between two densities ρ(~r1) and ρ(~r2) and EXC[ρ] is the so-called exchange-
correlation energy defined as:

EXC[ρ] = (T [ρ]− TS[ρ]) + (Eee[ρ]− J [ρ]) = TC[ρ] + Encl[ρ] (2.47)

A part of EXC[ρ] is TC[ρ], the difference between the true kinetic energy T [ρ] and the kinetic
energy of the non-interacting system TS[ρ]. The term Encl[ρ] refers to the non-classical
electrostatic contributions comprising the effects of self-interaction correction, exchange and
correlation.
The kinetic energy of the non-interacting reference system can be expressed as:

TS = −1
2

N∑
i

〈φi|∇2|φi〉. (2.48)

Using Eq. 2.48 and the dependence on the orbitals shown in Eq. 2.43, the expression of the
electronic energy becomes:

E[ρ] =−
N∑
i

∫ M∑
A

ZA
r1A
|φi(~r1)|2d~r1 −

1
2

N∑
i

〈φi|∇2|φi〉+

1
2

N∑
i

N∑
j

∫∫
|φi(~r1)|2 1

r12
|φj(~r2)|2d~r1d~r2 + EXC[ρ]. (2.49)

In principle, the Kohn-Sham approach is exact and Eq. 2.49 would lead to the exact energy
if an explicit form of the exchange-correlation energy EXC[ρ] was known. Unfortunately, it
is not the case and approximations have to be introduced in applications.
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2.3.3 Exchange-correlation functionals

The first approximation to the exchange-correlation functional is the so-called local density
approximation (LDA) [156–158] which represents the bedrock of almost all further approxi-
mations. This approach is based on the uniform electron gas model, in which ”electrons are
considered to move on a positive background charge distribution such that the total ensemble
is electrically neutral”. The assumption followed in the LDA is to write EXC in the following
form:

ELDA
XC [ρ] =

∫
ρ(r)εXC[ρ]d~r, (2.50)

where εXC[ρ] represents the exchange-correlation energy per particle of the homogeneous
electron gas and it can be further written as the sum of the exchange and correlation con-
tributions:

εXC[ρ] = εX[ρ] + εC[ρ]. (2.51)

While the exchange part can be analytically calculated through the Slater exchange func-
tional, there exist no explicit expression for the correlation part. However, it has been
provided by Ceperley and Alder [159] highly accurate quantum Monte Carlo simulations,
which were later used by Vosko, Wilk and Nusair in interpolation schemes to develop ana-
lytical expressions of εC, generating the most widely used correlation functional VWN [158].
Unfortunately, LDA is not the best choice for most applications in chemistry since it does not
account for the inhomogeneity effects of the electron density on exchange and correlation.
Therefore, the generalized gradient approximation (GGA) was applied to improve on LDA.
In a GGA functional, a dependence on the gradients of the electron density is added and the
expression of the exchange-correlation functional becomes:

EGGA
XC [ρ] =

∫
ρ(~r)εXC[ρ,∇ρ]d~r. (2.52)

A variety of GGA functionals has been put forward, some of which are based on semi-
empirical parameters such as the PW91 functional [160], while others are derived from first
principles like the implementation of Perdew, Burke and Ernzerhof (PBE) [161].
A more recent approach to deal with the exchange-correlation functional is offered by the
hybrid functionals in which the exact Hartree-Fock exchange is mixed with LDA and GGA
exchange functionals; the correlation part is defined by mixing LDA and GGA correlation.
The most widely used hybrid functional is B3LYP which mixes exact exchange Eexact

X with
exchange from LDA and the Becke 88 functional [162], and combines the VWN correlation
functional with the GGA functional by Lee, Yang and Parr [163] according to the following
equation:

EB3LYP
XC = (1− a− b)EDirac

X + aEHF
X + bEB88

X + (1− c)EVWN
C + cELYP

C (2.53)

with the parameter values a = 0.20, b = 0.72 and c = 0.81 giving good fits to experimental
molecular atomization energies. B3LYP has been applied in this thesis, in addition to the
earlier hybrid functional B3PW which treats the exchange contribution like in the case of
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B3LYP but mixes VWN correlation with the PW91 functional [164] to describe the correla-
tion part.

2.3.4 Dispersion correction for DFT

Electron correlation effects are known to be responsible of the so-called dispersion inter-
actions, which are the attractive interactions arising from quantum-induced instantaneous
multipoles in molecules. The former constitute a part of the van der Waals forces which
include also the electrostatic and induction interactions.
The London dispersion interaction between two species A and B can be expressed as:

Edisp ≈ −
3IAp IBp

2(IAp + IBp )
αAαB

r6 (2.54)

where IAp , IBp denote the ionization energies and αA , αB the polarizabilities of species A
and B.
Dispersion interactions play a significant role in understanding the chemistry of large systems
and therefore inclusion of these interactions in chemical calculations leads to high accurate
results. Despite the fact that density functional theory has become the method of choice
for electronic structure calculations, standard density functionals usually fail to describe
the long-range dispersion interactions correctly. A dispersion correction to the conventional
density functionals was initially proposed by Yang [165] and later developped by Grimme
[108]. This approach, usually termed as DFT-D, is based on an atom pairwise additive
treatment of the dispersion energy and it is known with many different variants.
The DFT-D2 approach adds a semi-empirical dispersion potential to the Kohn-Sham DFT
energy, taking the following explicit form:

ED2
disp = −s6

n−1∑
i=1

n∑
j=i+1

C
[6]
ij

r6
ij

fdmp(rij) (2.55)

In this modification, the dispersion coefficients C [6]
ij are summed over interatomic distances

rij , modulated by a damping function fdmp(rij) that determines the range of the dispersion
correction. s6 is a global scaling factor that is optimized to be unique to each density
functional.
A refined modification, named as DFT-D3 [109], was presented by Grimme in 2010 seeking
to improve on the accuracy of DFT-D2 and including less empiricism. Here, an additional
r−8 term, as well as three-body terms, are incorporated in the dispersion energy and the C [6]

ij

coefficients are adjusted such that they become environment dependent. The three-body
dispersion contribution calculated with D3 is expressed as:

E(3) =
∑
ABC

fdmp(r̄ABC)C
[9]
ABC(3 cos θa cos θb cos θc + 1)

(rABrBCrCA)3 , (2.56)
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2.4 Crystalline solids and periodic boundary conditions

where θa, θb and θc represent the angles of the triangle formed by rAB, rBC and rCA, the
geometrical mean of which is expressed by r̄ABC. The C [9] coefficient is approximated by
applying the geometric average of the two-body coefficients C [6]:

C
[9]
ABC = −

√
C

[6]
ABC

[6]
BCC

[6]
CA. (2.57)

In order to avoid near singularities for small distances, the use of damping functions is crucial.
Several varieties of damping exist, including the zero-damping:

f
D3(0)
dmp,n(rij) =

[
1 + 6

(
rij

sr,nr0,ij

)−αn]−1

, (2.58)

and the so-called Becke-Johnson damping which is the generally preferred style of DFT-D3
and takes the form:

f
D3(BJ)
dmp,n (rij) =

rnij
rnij + (α1r0,ij + α2)n . (2.59)

2.4 Crystalline solids and periodic boundary conditions

2.4.1 The Schrödinger equation for solids

A crystalline solid is defined as an infinite periodic arrangement of atoms in three-dimensional
space generated by a set of translation vectors

~T = n1~a1 + n2~a2 + n3~a3 (2.60)

where ai are the basis vectors that characterize a primitive unit cell and ni are integer
numbers including zero. In other words, crystalline systems feature a translational symmetry
that corresponds to the set of vectors ~T defining the so-called direct lattice. Besides the
latter, it is crucial to consider also the reciprocal lattice in the study of periodic systems. In
reciprocal space, a crystalline solid is characterized by the reciprocal lattice vector ~K which
is expressed, like in the case of direct lattice, as a linear combination of reciprocal lattice
basis vectors ~bi:

~K = m1~b1 +m2~b2 +m3~b3 (2.61)

m1, m2 and m3 are integer values that represent a family of lattice planes orthogonal to each
reciprocal vector ~k with integers m1, m2, m3, and they are denoted by the so-called Miller
indices [166]. The reciprocal lattice basis vectors ~bi are related to the direct lattice basis
vectors ~ai by:

~ai~bj = 2πδij (2.62)

The reciprocal lattice vectors should obey

ei
~K·~T = 1 (2.63)
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showing that two vectors ~k and ~k′ are equivalent if they differ only by a lattice vector
~K. Therefore, for the description of a crystalline system, only ~k-vectors within a restricted
region, known as the first Brillouin zone [167], have to be considered.
As a general consequence of translation symmetry of the crystals, Bloch’s theorem [168] is
applied:

T̂Φ(~r, ~k) = Φ(~r + ~T, ~k) = ei
~k·~TΦ(~r, ~k) (2.64)

where T̂ is a translation operator that corresponds to the direct lattice vector ~T. The
eigenfunctions of the crystal Hamiltonian Φ(~r, ~k) are called Bloch functions and they can
be written as the product of a plane wave of vector ~k within the first Brillouin zone and a
periodic function u having the same periodicity of the direct lattice:

Φ(~r, ~k) = ei
~k·~ru(~r, ~k) (2.65)

To solve the Schrödinger equation of crystalline systems, the periodic boundary conditions
and the self-consistent field approximation discussed in section 2.1 are employed. The single-
particle wave functions, called crystalline wave functions, are expressed as linear combina-
tions of Bloch functions [169–172]:

ψi(~r, ~k) =
∑
µ

cµi(~k)Φ(~r, ~k) (2.66)

where cµi(~k) represent the coefficients which can be calculated by solving iteratively the
coupled set of matrix equations in a similar procedure as that for non-periodic systems:

F (~k)C(~k) = S(~k)C(~k)E(~k) (2.67)

Bloch functions are in turn expanded in a set of basis functions, following two different
approaches that are both implemented in quantum chemical codes for periodic systems.
The first type of basis functions, referred to as plane waves, is a symmetry-adapted wave
function satisfying the periodic boundary conditions. This type is the natural choice for
periodic functions. However, a high number of plane waves is required for the description of
the wave function in the core region [173].
The other type is called atomic orbitals, which have the advantage of a consistent description
of valence and core electrons. The Bloch functions are here constructed from the linear
combination of these orbitals (LCAO) as [174]:

Φi(~r, ~k) = 1√
N

∑
~T

ei
~k·~Tφi(~r−~rA − ~T) (2.68)

with N the normalization, i the atomic orbital in the unit cell and φi an atomic orbital
centered in the atomic position rA of the reference cell. Atomic orbitals have the advantage
of an accurate description of core and valence electrons, and an effective use in correlation
methods through the localization of Bloch functions formed from these orbitals. In this
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2.4 Crystalline solids and periodic boundary conditions

work, I applied the LCAO approach for the DFT and Hartree-Fock calculations using the
CRYSTAL09 software package [175, 176].

2.4.2 Local MP2 for periodic systems

The computational cost of electron correlation methods is high and increases dramatically
with the size of the system. In the MP2 method, the scaling of the computational effort is
O(N5), where N is the relative measure of the system size. This scaling becomes O(N6)
for MP3 and CCSD, and reaches O(N7) for MP4 and CCSD(T). Such high costs prohibit
the use of these canonical correlation methods for the calculation of large systems. For the
sake of reducing the computational cost, canonical orbitals are replaced by localized orbitals,
following a unitary localization procedure [177]. The local MP2 method originally proposed
by Saebo and Pulay [121–123] is one of the most successful attempts to deal with the high
scaling wall of electron-correlation methods. Instead of using Bloch orbitals that extend over
the entire crystalline system, localized molecular orbitals (LMOs) within a certain spatial
region are employed to span the occupied manifold. The virtual space is well-localized and
truncated into an excitation domain, where only virtual orbitals lying in a spatial vicinity of
the corresponding occupied ones are considered. In the last few years, the LMP2 approach
was combined with integral-direct techniques leading to a linear scaling of the computational
effort [178].
The periodic local MP2 scheme [126, 128] is applied for the calculation of adsorption energies
throughout this work, as implemented in the CRYSCOR code [127, 128]. The latter is
based on the localized crystalline orbitals which are obtained from the localization of the
canonical Bloch functions produced by CRYSTAL [179, 180], following the Boys localization
procedure [179, 181]. These orbitals are called Wannier functions [182] and are used to
span the occupied space. The virtual space is described with a set of nonorthogonal local
functions, referred to as projected atomic orbitals, which are generated by projecting out the
occupied space directly from the atomic orbitals, keeping their orthogonality to the Wannier
functions [121].
The MP2 energy per unit cell is expressed as:

ELMP2
ij =

∑
a,b in[i,j]

Kij
ab(2T ij

ab − T
ij
ba) (2.69)

where K denote the electron repulsion integrals and T the corresponding excitation ampli-
tudes. The labels (i , j) represent pairs of Wannier functions (WFs), in which Wannier
function i is in the reference cell while j spans in principle the whole space. (a , b) are pairs
of virtual projected atomic orbitals. Electron pairs are treated hierarchically depending on
the minimum distance between the two correlated WFs and are thus classified into strong,
weak and distant. The strong and weak pairs are usually treated in CRYSCOR as a unique
set, that of close-by pairs, within the periodic density fitting technique [183]. For the treat-
ment of distant pairs, the multipolar approximation [184] is used. Very distant pairs are
completely neglected.
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Figure 2.1: Thermodynamic treatment of interfaces. (a) The interface as a boundary sep-
arating two homogeneous bulk phases, according to the Gibbs model. (b)
The interface as a distinct inhomogeneous phase, according to the Guggenheim
model.

2.5 Surface thermodynamics

2.5.1 The surface energy of a solid in gas environment

The spontaneity of processes at constant pressure and temperature is achieved by the mini-
mization of a thermodynamic potential, called the Gibbs energy G [185]. For a closed system,
G is defined as:

G = U − TS + PV (2.70)

with U denoting the internal energy, T the temperature, S the entropy, P the pressure and
V the volume.
For an open system composed of different phases j and components i, in which the particles
are allowed to exchange between phases, the expression of the change in the Gibbs free energy
as function of temperature and pressure is:

dG = −
∑
j

SjdT +
∑
j

V jdP +
∑
j

∑
i

µjidn
j
i . (2.71)

where µji denotes the chemical potential of the chemical component i, and it is consequently
expressed as:

µi =
(
∂G

∂ni

)
P,T

. (2.72)

At constant temperature and pressure, Eq. 2.71 becomes:(
dG
)
T,P

=
∑
j

∑
i

µjidn
j
i . (2.73)

For a system in thermodynamic equilibrium, the Gibbs free energy is at its minimum, that
is dG = 0. Applying this condition to a system composed of two phases a and b, it follows
that: ∑

i

µai dn
a
i +

∑
i

µbidn
b
i = 0. (2.74)

The aforementioned discussions concern the bulk phases of a system, and do not deal with
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the interface between the phases. The thermodynamics of interfaces can be treated in two
different approaches, illustrated in Fig. 2.1. The first one dates back to 1878 and was pro-
posed by Gibbs [186] who regarded the interface as a mathematical surface separating two
homogeneous bulk phases. All measurements, according to Gibbs, are referred to a hypo-
thetical reference state consisting of two homogeneous phases meeting at an abrupt dividing
surface. The second approach, introduced by Guggenheim [187], treats the interface as a
distinct inhomogeneous phase of well-defined volume and material content, the boundaries
of which are trapped inside the adjacent bulk phases.
Following the Guggenheim model, the total Gibbs energy of a system composed of two phases
a and b separated by an interface phase s is written as:

Gtot = Ga +Gs +Gb. (2.75)

Since the interface is, according to Guggenheim, a distinct phase of specific area, its Gibbs
energy is defined with respect to its area A. Hence, the surface energy γ per area unit is
expressed as:

γ = 1
A

(
Gtot −Ga −Gb

)
. (2.76)

Considering a system composed of a solid in contact with a gas phase. This is regarded as

Figure 2.2: Surface in thermodynamic equilibrium with a surrounding gas phase and the
underlying bulk phase.

a finite slab which is a part of the infinite solid, and on the surface of the slab are adsorbed
the gas molecules (see Fig. 2.2). From a thermodynamic point of view, the system consists
of three phases, the bulk solid, the surface and the gas phase, all being in thermodynamic
equilibrium. The Gibbs energy of the adsorbates can be expressed through the chemical
potential, Gads = ∑

i n
ads
i µads

i , which implies a temperature and pressure dependence of
the adsorbates’ Gibbs energy. Therefore, the surface energy is temperature- and pressure-
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dependent and is written as:

γ = 1
2A
(
Gslab − nbulkµbulk −

∑
i

nads
i µads

i

)
. (2.77)

Gslab is the Gibbs energy of a slab composed of nbulk formula units and µbulk the Gibbs
energy per formula unit in bulk. The factor 1/2 accounts for the fact that the slab is sym-
metric and has an upper and a lower surfaces.
Up to now, the formalism described is completely based on the Gibbs free energies of the
system. Nevertheless, when first principles calculations are combined to surface thermody-
namics, the vibrational contributions to the total energy are notably small compared to the
electronic energy and are therefore neglected. That allows for employing pure electronic
energy values for the solid terms instead of using Gslab and Gbulk.

2.5.2 Wulff construction

According to the Gibbs thermodynamic principle, a system attains equilibrium by minimizing
its Gibbs free energy. If the system consists of two phases in contact with each other,
equilibrium is obtained when the free energy of the interface is a minimum. In the case of
crystalline solids, a surface is characterized by integer Miller indices and the surface energy
depends on its orientation, the ideal shape of the crystal in equilibrium is then determined
by the minimal surface energy. These concepts were first discussed by J. W. Gibbs in
his fundamental work “On the Equilibrium of Heterogeneous Substances” where he shows
the role of the anisotropic surface energy in the determination of the shape of a crystal in
equilibrium [188]. He also discusses the complexities of crystal growth in large systems.
In 1901, G. Wulff reported his results on classical experiments on crystal growth [189] and
concluded, after determining the growth rate of different faces, that the surface free energies
play a crucial role in the crystal growth progress and in determining the orientation of
molecules in the crystals. His findings include the famous Wulff’s theorem stating that “the
minimum surface energy of a polyhedron at constant volume is reached when the distance of
its surfaces from a given point is proportional to the surface tension of these surfaces” [189].
The equilibrium shape of a crystal can be graphically determined following a procedure called
Wulff construction, as shown in Fig. 2.3. In brief, this is achieved by drawing vectors from
a chosen origin with a length proportional to the surface energy. Planes normal to these
vectors are then drawn. The inner envelope of these planes forms the ideal shape of the
crystal in equilibrium state.
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Figure 2.3: Two-dimensional representation of the Wulff construction [190]. The red vector
corresponds to a polar plot of the surface energy, the blue lines represent the
Wulff planes and the inner envelope in blue corresponds to the equilibrium
shape of the crystal.
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The computational parameters and models applied in this work have been introduced in
Papers P1-P4. This chapter supplies additional information on some technical details and
includes also results for test calculations that are not published. In section 3.1, compu-
tational specifications, as an extension to the computational parameters described in the
corresponding publications, are discussed. The surface modelling within the periodic scheme
is described in section 3.2, including data for the energy convergence with slab thickness.
The calculations and approximations required for surface thermodynamics are introduced in
section 3.3.

3.1 Computational specifications

If not mentioned otherwise, periodic DFT and HF calculations were performed using the
CRYSTAL09/13 [175, 176] quantum chemical package. The latter employs Gaussian-type
basis functions localized on atoms for the expansion of the crystalline orbitals. Unfortu-
nately, atomic basis functions suffer from the so-called basis set superposition error (BSSE)
[191, 192] which is of importance in solid state calculations. The BSSE arises from the incon-
sistent treatment of the basis set for a system and its separate components, since the wave
function of a component is expanded in much less basis functions than the wave function
of the whole system. A possible way to correct for the BSSE is the use of the counterpoise
correction (CP) scheme [193], in which the system and the components are described with
a basis set of equal size. The correction is then achieved by introducing ghost functions, i.e.
basis functions which have neither electrons nor nuclear charges. The CP scheme has been
applied in the present work to account for the BSSE.
To reduce the computational effort of the calculations, only valence electrons were treated
explicitly while pseudo potentials were used for the description of the core region. The group
II metal atoms Ca, Sr and Ba were described by scalar-relativistic energy-consistent pseu-
dopotentials [194] that simulate their inactive [Ne], [Ar]3d10 and [Kr]4d10 cores, respectively,
and a corresponding cc-pVDZ basis set was employed [195]. The Zn atom was described by
effective core potential of same quality treating explicitly 20 valence electrons [196], with a
corresponding valence triple-zeta basis set augmented by an f polarization function (expo-
nent 3.22) [72].
Periodic local MP2 calculations were performed with the CRYSCOR09 code [127, 128], which
employs localized symmetry adapted Wannier functions (WF) for the description of the oc-
cupied HF manifold and nonorthogonal projected atomic orbitals for representing the virtual
space. First, a HF calculation is performed with CRYSTAL09 [175, 176], followed by a prop-
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Table 3.1: Surface energies γ (in J/m2) for the five low-index surfaces of ZnF2 at different
slab thicknesses.

(hkl) Nb of ZnF2 units Nb of layers γ

(110) 10 15 0.48
12 18 0.45

(100) 10 30 0.51
12 36 0.48

(101) 10 15 0.57
12 18 0.55

(001) 10 10 0.72
12 12 0.71

(111) 9 17 0.85
11 21 0.83

erties calculation which generates localized symmetrized WFs. The latter are then used by
a CRYSCOR09 calculation to compute the correlation energy. In the localization step, only
valence electrons were considered, adopting the scheme in Refs [179, 197] as implemented in
the CRYSTAL09 program.

3.2 The slab model

Surfaces were modelled by slabs that are cut from the three-dimensional bulk crystal along
a Miller index plane, in the directions of which the slab is periodic, while it is finite in the
direction perpendicular to the surface. Atoms at the surface of the generated slab possess
lower coordination compared to the bulk and are therefore accessible for molecules which
come into contact with the material. In the search of stoechiometric symmetric slabs yielding
a converged surface energy and converged Mulliken charges at a reasonable computational
cost, I have tested different terminations and thicknesses of the slabs. The number of atomic
layers differ from one slab to another, due to a different composition of the layers. The latter
are defined with respect to the z-coordinate: atoms having the same z-coordinate constitute
one layer in the slab. The convergence of the surface energy with slab thickness for low-index
ZnF2 surfaces is listed in table 3.1. I used slabs of 10 ZnF2 units for all surfaces, except for
the (111) surface for which 9 ZnF2 units were used to keep up the symmetry of the slab. For
the (001) slab, 10 ZnF2 units correspond to 10 stoechiometric atomic layers, whereas slab
(100) consists of 30 atomic layers with sequence F-Zn-F and slabs (110) and (101) consist of
18 atomic layers with sequences F-(Zn,Zn,F,F)-F and (F,F)-(Zn,Zn)-(F,F), respectively.

The energy convergence with slab thickness has also been tested for MF2 (M = Ca, Sr
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Table 3.2: Surface energies γ (J/m2) for the three stable surfaces of CaF2, SrF2 and BaF2
at different slab thicknesses.

CaF2 SrF2 BaF2

(hkl) Nb of layers γ (hkl) Nb of layers γ (hkl) Nb of layers γ

(111) 6 0.470 (111) 6 0.451 (111) 6 0.386
9 0.472 9 0.454 9 0.388
12 0.472 12 0.454 12 0.388

(110) 5 0.723 (110) 5 0.681 (110) 5 0.572
6 0.714 6 0.675 6 0.568
7 0.718 7 0.677 7 0.569

(100) 13 0.944 (100) 13 0.981 (100) 13 0.860
15 0.955 15 0.984 15 0.859
17 0.951 17 0.985 17 0.859

and Ba) surfaces, and the results are given in table 3.2. Surface energies were calculated for
different numbers of atomic layers in each slab. For the (111) slab, 2 MF2 units, correspond-
ing to 6 atomic layers, were enough to yield a converged surface energy. Convergence was
achieved for 6 and 7 formula units in the case of slabs (110) and (100), respectively. In the
former case, the slab consists of 6 atomic layers where each atom constitutes one layer. In
the latter case, the slab of 7 MF2 units corresponds to 15 atomic layers with sequence(F,F)-
M-(F,F). Here, a reconstruction was necessary to maintain stoechiometry, and it was done
by removing two F− anions, one from the top and one from the bottom of the slab.
The surface energy of a stoechiometric symmetric slab was calculated as:

Esurf = 1
2A(Eslab − nEbulk) (3.1)

with n the number of formula units in the slab, Eslab the total energy of the relaxed slab,
Ebulk the total energy per bulk unit cell and A the area of the slab unit cell. The 1

2 is
necessary to account for the upper and the lower surface in a two dimensional slab.
Adsorption was modelled by placing the diatomic molecule above the coordinatively unsat-
urated surface cations at a distance of about 2.5 Å, relaxing the nuclear coordinates of the
slabs and the adsorbates and keeping the lattice constants, already optimized for the bulk,
fixed. To model the 50 % and the 25 % coverages, larger surface unit cells were constructed,
trying to maximize the distance between the adsorbates. A variety of starting configura-
tions were tested for each adsorption system leading to different minima, and only the most
stable structure was considered. Basis set superposition error correction was only applied
for the energy at the minimum. For calculating the adsorption energy, several calculations
had to be done: first, a structure optimization calculation for the whole periodic system
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slab+adsorbant yielding the energy at the minimum E(s + ads), two single point calcula-
tions to evaluate the BSSE corrected energies E(s + GFads) of surface and E(ads + GFs) of
adsorbant layer, at the minimum structure, two single point calculations for the energy of
each component (slab or adsorbant) in the adsorption structure but isolated from the other
component and two structure optimization calculations for the minimum energy of each free
component, the latter four calculations leading to the relaxation energies of the slab ∆Erel (s)
and the adsorbate ∆Erel (ads). For the latter, the relaxation energy is calculated for one free
molecule and multiplied by the number N of adsorbates in the surface unit cell. Hence, the
adsorption energy per molecule was obtained as:

Eads = 1
N

[E (s + ads)− E (s + GFads)− E (ads + GFs)−∆Erel (s)−N∆Erel (ads)] . (3.2)

3.3 Surface thermodynamics

The chemical potential is expressed through thermodynamic equations of the Gibbs energy,
but it has to be referred to the quantum chemical energy of the species it is applied for:

µi(pi, T ) = Ei,electr. + ∆µp
0

i (T ) + kT ln pi
p0 . (3.3)

The first term in Eq. 3.3 refers to the electronic energy of species i, which is equivalent to
the Gibbs energy at 0 K, neglecting the energy change due to vibrations and rotations. The
third term is the pressure dependence of the chemical potential. The second term contains
all temperature dependent free energy contributions, and it is calculated, based on standard
enthalpy and entropy values at p0 = 1atm, as:

∆µ0→T = (H◦298.15 −H◦0 ) + (H◦ −H◦298.15)− S◦T. (3.4)

The terms of Eq. 3.4 are obtained from tabulated values for thermodynamics listed in the
NIST database [198]. The first term is necessary since the data are referred to the standard
temperature. It is evaluated by summation over the vibrational levels of the ground electronic
state of the gas and is given as a constant value specific for the considered gas [199]. The
second and third terms are expressed in the form of polynomials, after fitting to experimental
values:

H◦ −H◦298.15 = At+ Bt2

2 + Ct3

3 + Dt4

4 − E

t
+ F −H, (3.5)

S◦ = A ln t+Bt+ Ct2

2 + Dt3

3 − E

2t2 +G. (3.6)

In equations 3.5 and 3.6, t is an expression of temperature in Kelvin, t = T [K]
1000 , and the

factors A to H are values yielding H◦−H◦298.15 in kJ/mol and S◦ in J/molK. The values, for
the HF gas, used to calculate ∆µp

0

i (T ) in this work are given in table 3.3.
Using Eq. 3.3 for the expression of the chemical potential and following the considerations
described in section 2.5, the surface energy γ for the system MF2/HF at finite temperature

52



3.3 Surface thermodynamics

and pressure is calculated via:

γ(T, pHF) = 1
2A

(
EDFT

slab −NME
DFT
bulk −NHFµHF

)
. (3.7)

Table 3.3: A - H values for HF gas used to calculate ∆µp
0

i (T ). The quantity H◦298.15 −H◦0
is in kJ/mol.

A (Jmol−1K−1) 30.11693
B (Jmol−1K−2) -3.246613
C (Jmol−1K−3) 2.868116
D (Jmol−1K−4) -1.243874
E (kJKmol−1) -0.024861
F (kJmol−1) -281.4912
G (Jmol−1K−1) 210.9226
H (kJmol−1) -272.5462
H◦298.15 −H◦0 8.599
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4 Publications

The following chapter includes the scientific papers published in the framework of this dis-
sertation. Two of these publications are concerned with investigations on zinc fluoride nano-
materials and are denoted by P1 and P2. The other two publications, P3 and P4, discuss
the outcomes of the investigations on group II metal fluorides. For each publication, the
contributions by the individual authors are provided.
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Paper P1

“A computational Study of the Structure of Zinc Fluoride Surfaces”

Z. Kaawar and B. Paulus

AIP Conf. Proc., 1653, 020051 (2015)

DOI 10.1063/1.4914242
URL http://dx.doi.org/10.1063/1.4914242

Author contributions I did the first principle calculations to investigate the stability
and the shape of ZnF2 crystals in vacuum. Beate Paulus and I discussed the final results.
The manuscript was written by myself.
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Paper P2

“Theoretical investigations of the CO adsorption on ZnF2 surfaces”

Z. Kaawar, C. Müller and B. Paulus

Surface Science 656, 48-53 (2017)

DOI 10.1016/j.susc.2016.06.021
URL http://dx.doi.org/10.1016/j.susc.2016.06.021

Author contributions I performed the periodic calculations (CRYSTAL and CRYSCOR
calculations) to investigate the Lewis acidity of unsaturated surface cations of ZnF2. The
results were discussed by all the authors. The first version of the manuscript was written by
myself, and Carsten Müller contributed to the final version of the manuscript.
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Paper P3

“On the morphology of Group II Metal Fluoride Nanocrystals at Finite Temperature and
Partial Pressure of HF”

Z. Kaawar, S. Mahn, E. Kemnitz and B. Paulus

Molecules 22, 663 (2017)

DOI 10.3390/molecules22040663
URL https://doi.org/10.3390/molecules22040663

Author contributions All calculations were performed by myself. Stefan Mahn carried
out the experimental investigations, comprising the synthesis and characterization of the
nanoparticles. Erhard Kemnitz and Beate Paulus conducted the project for its entire du-
ration. The discussion of the results was a join effort of all the coauthors. Stefan Mahn
and I wrote the manuscript, with the main contributions done by myself. All authors added
contributions to the final version of the publication.
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4 Publications

Paper P4

“Adsorption of hydrogen fluoride on alkaline earth fluorides surfaces: a first-principles study”

Z. Kaawar and B. Paulus

will be submitted soon to “Journal of Fluorine Chemistry”

Author contributions I performed the periodic calculations to investigate the adsorp-
tion of hydrogen fluoride on alkaline earth fluorides surfaces. The discussion of the results
was done by both authors. I wrote the manuscript. Beate Paulus added contributions to
the final version of the publication.
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Adsorption of hydrogen fluoride on alkaline earth
fluoride surfaces: a first-principles study

Zeinab Kaawar∗, Beate Paulus∗

aInstitut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin,
Germany

Abstract

We have performed periodic calculations for the adsorption of hydrogen fluoride

on the three low index surfaces (111), (110) and (100) of alkaline earth metal

fluorides MF2 (M = Ca, Sr and Ba). Adsorption energies were calculated us-

ing the two density functionals PBE and PBE0, Hartree-Fock and dispersion

correction to PBE. We found that PBE and PBE0 yield similar adsorption en-

ergies, both predicting stronger adsorption than Hartree-Fock, and the largest

energies were calculated with PBE-D3 correction. Adsorption structures and

energies are discussed for different HF coverages, at the PBE level. The inter-

actions of HF with the surface fluorine anions, as well as the interactions among

the adsorbed HF molecules are found to play a crucial role in the adsorption

process.

Keywords: periodic calculations, HF adsorption, MF2 surfaces, hydrogen

bonds.

1. Introduction

Fluorite-type materials hold a special place in technologically promising com-

pounds. Among these, alkaline earth fluorides MF2 (M = Ca, Sr and Ba) are of

significant interest due to their exceptional properties which allow their applica-

bility in many fields ranging from optics [1–3], spectroscopy [4, 5], dentistry [6, 7]
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Email address: kaawarzeinab@zedat.fu-berlin.de (Zeinab Kaawar)
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to heterogeneous catalysis [8]. The need for such materials in industry urged

scientists to find a versatile path to their synthesis. A variety of synthetic ap-

proaches has been introduced for the preparation of MF2 nanoparticles, such as

solvothermal process, the reverse micelle method, different precipitation meth-

ods, the mechanochemical route and the fluorolytic sol-gel procedure [9–22].

The latter has proved to be effective and successful over a wide range of fluo-

rides [2, 3, 23–28], including CaF2, SrF2 and BaF2.

It has been shown that sol-gel synthesized MF2-based nanomaterials exhibit

high surface area and distinct acidic properties which allows them to perform as

heterogeneous catalysts for Lewis acid catalyzed reactions [29–38]. As an exam-

ple, high surface area BaF2 was found to catalyze dehydrochlorination reactions

of chlorofluorocarbons [8].

A number of theoretical studies exists for calcium, strontium and barium flu-

orides. The electronic band structure of these solids has been calculated by

means of tight binding linear muffin tin orbital method [39, 40], confirming

that the investigated materials are wide band gap insulators. Kanchana et al.

[39, 40] also calculated the transition pressures at which these fluorides undergo

phase transition from the fluorite to the orthorhombic PbCl2-type structure, as

well as metallization pressures where they undergo insulator to metal transition

upon compression. Concerning the surface structure of group II fluorides, the

reactivity of CaF2 has been investigated by de Leeuw et al. [41], using DFT

calculations with the LDA functional, where water and methanoic acid were

adsorbed on the (111) surface.

In our previous work [42], we have shown that the predicted shape of a MF2

crystal in vacuum is an octahedron, with (111) being the unique surface exposed.

We have also proved, with methods of ab initio surface thermodynamics, that

the shape of the crystals is strongly affected by the temperature and the pres-

sure of hydrogen fluoride, where other surfaces are also exposed. The aim of

this work is to investigate the interaction of hydrogen fluoride molecules with

the low-index surfaces of CaF2, SrF2 and BaF2, which is of relevance in the pro-

duction of the nanomaterials as hydrogen fluoride is a reactant in the synthetic
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procedure. For this purpose, we have studied the adsorption of HF on MF2

low index surfaces at various coverages, using different methods. We describe

first, in Section 2, the computational parameters and the approaches used in our

calculations. The performance of the different methods used in the calculation

of adsorption energies at full coverage is discussed in Section 3. In Section 4.1,

we discuss the adsorption structures optimized at the PBE level. We present

the entire set of adsorption energies calculated at full, half and 25 % coverages

using PBE in Section 4.2, where the effect of the HF-HF interaction on the

adsorption structures and energies is also discussed.

2. Computational details

2.1. Calculation of the adsorption energy

The adsorption energies reported in the following sections have been calcu-

lated according to:

Eads = 1
N

[E (s + ads) − E (s + GFads) − E (ads + GFs) − ∆Erel (s) − N∆Erel (ads)] .

Correction for the basis set superposition error (BSSE) within the counterpoise

scheme and the relaxation effects has been applied. The first term in the equa-

tion represents the energy of the periodic system comprising the slab and the

adsorbates and it is calculated at the relaxed structure. The second and third

terms E(s + GFads) and E(ads + GFs) refer to the BSSE corrected energies of

the slab and the adsorbant obtained by replacing the adsorbates and the slab,

respectively, by ghost functions. The BSSE corrected energies are computed

in two single point calculations at the optimized structure of the joint system.

∆Erel is the relaxation energy during adsorption and is calculated by substract-

ing the energy of the component (slab or adsorbate) in the adsorption structure

from the energy of its relaxed free structure. The relaxation energy of the ad-

sorbate is computed for one free molecule and multiplied by the number N of

adsorbates in the periodic surface unit cell.
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2.2. Computaional parameters

Periodic density functional theory calculations were carried out using the

CRYSTAL09 code [43, 44]. In a previous work [42], we have shown that the

PBE functional [45] performs reasonably well for the ground state bulk proper-

ties of CaF2, SrF2 and BaF2, overestimating the experimental lattice constant

at most by 0.7 %. This functional has also yielded surface energies for the nat-

ural cleavage plane (111) of the considered materials which were in very good

agreement with the experimental values. Therefore, in the present work, we op-

timize the adsorption structures of HF on MF2 surfaces at the PBE level. For

testing the performance of other methods for the adsorption energies, we per-

formed additional structure optimizations using the hybrid functional PBE0 and

Hartree-Fock, considering only the full coverage case. We also applied Grimme’s

scheme for dispersion correction on the PBE optimized structures, in a single

point calculation, using the DFT-D3 version [46], with the damping function of

Becke and Johnson [47].

Relying on earlier surface calculations [42], we employed stoechiometric sym-

metric slabs with a thickness of two, six and seven MF2 units for the (111),

(110) and (100) surfaces, respectively. We have tested different terminations of

the slabs, and only the ones in which a balanced charge distribution is achieved,

are stable. This was simulated for the (100) surface by removing one F− anion

from the top and one from the bottom of the slab resulting in the most sta-

ble termination for this surface. Adsorption was modelled by placing hydrogen

fluoride atop one surface cation, as start configuration (perpendicular to the

surface with the fluorine pointing down to the cation at a distance of 2.5Å. For

the optimizations of the slabs, the lattice constant optimized previously with

PBE is kept fixed and the nuclear coordinates of the symmetric slabs and the

adsorbates are relaxed.

The fluorine is described with a valence triple-zeta basis set augmented by a

d polarization function (exponent 0.7) [48], previously optimized for the MgF2

solid. The metal atoms are described by scalar relativistic energy-optimized

effective core potentials [49] leaving 10 valence electrons to be treated explic-
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itly, and a corresponding cc-pVDZ basis set optimized recently in our group for

fluorides was employed [50]. For the hydrogen atom, we used a VTZ basis set

from a an earlier study on HF adsorption on AlF3 surfaces [51]. The eigenvector

calculation is done using a Pack-Monkhorst grid of 8 k-points along each lattice

direction of the irreducible Brillouin zone. The density matrix is calculated for

a Gilat net of 16 k-points. The accuracy of bielectronic integrals is controlled

by cutoff parameters of 6, 6, 6, 12, 30 and an energy convergence criterion of

10−8 Hartree is used in the self-consistent field iterations.

3. Performance of different methods

In this section, we report the adsorption energy of HF on the three low in-

dex surfaces (111), (110) and (100) of calcium, strontium and barium fluorides

at full coverage, using different methods. We calculated adsorption energies at

the PBE, PBE0 and Hartree-Fock levels, with the structures optimized at each

level. The energies obtained using PBE were combined with D3 corrections,

in single point calculations. Adsorption structures optimized at the PBE0 and

Hartree-Fock levels are very similar to the ones optimized at the PBE level

which are thoroughly discussed in the next section. The results for the adsorp-

tion energies of the three investigated crystals are shown in Table 1. We report

negative values of the energies, indicating a stabilizing interaction. In the fol-

lowing, we compare the absolute values of the energies, so that an energy value

of e.g. -0.40eV is regarded as lower than the one of -0.51eV.

The performance of the different methods used is similar for all three materials.

The exchange-correlation functional PBE and the hybrid functional PBE0 yield

comparable adsorption energies in the case of CaF2 and SrF2, where the dis-

crepancy between both functionals is less than 3%. In the case of BaF2, PBE0

predicts somewhat weaker adsorption than PBE. Calculations using Hartree-

Fock result in 18-32% weaker adsorption compared to PBE. (This difference is

found to be 62% for the weak adsorption on the (110) surface of BaF2). Disper-

sion correction on PBE adds a contribution of 10-30% to the uncorrected result.
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Table 1: Adsorption energies (in eV) of HF per molecule on CaF2, SrF2 and BaF2 surfaces

at full coverage, calculated using different methods.

MF2 Surface PBE PBE+D3 PBE0 Hartree-Fock

CaF2

(111) -0.40 -0.51 -0.41 -0.27

(110) -0.69 -0.79 -0.68 -0.54

(100) -0.75 -0.89 -0.77 -0.60

SrF2

(111) -0.49 -0.59 -0.49 -0.35

(110) -0.76 -0.85 -0.74 -0.61

(100) -0.91 -1.03 -0.90 -0.75

BaF2

(111) -0.58 -0.67 -0.52 -0.41

(110) -0.26 -0.34 -0.18 -0.10

(100) -1.04 -1.15 -0.94 -0.82

The influence of both, dispersion and exact exchange, is weak for the adsorp-

tion of HF on MF2 surfaces. Even the correlation contributions are between 20

and 40% only comparing Hartree-Fock and PBE-D3 values. So, we can con-

clude that the main interaction is due to electrostatics, well captured with all

methods applied.

4. Adsorption of HF at different coverages

We have shown in the previous section that PBE and PBE0 perform similarly

for the description of the HF adsorption. Therefore, we use the less costly

exchange-correlation functional PBE to complete the set of our calculations.

So, we discuss in this section the adsorption of HF for three different coverages:

full, half and 25%. This allows a better understanding of the influence of the

HF-HF interaction on the adsorption structures and energies.
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4.1. Adsorption structures

PBE-optimized adsorption structures of HF on CaF2, SrF2 and BaF2 sur-

faces are shown in figures 1, 2 and 3, respectively. In all cases, the adsorbates

are oriented in such a way that the fluorine atom is placed above the coordina-

tively unsaturated metal ion, and the hydrogen of the adsorbate points towards

the surface forming a hydrogen bond with a surface fluorine atom. The dis-

tance between the adsorbate’s fluorine and the surface metal is in the range of

2.3-2.8Å depending on the surface and HF coverage (see Table 2). The distance

of the adsorbate’s hydrogen to its nearest surface fluorine varies between 1.2

and 1.6Å indicating the formation of strong hydrogen bonds, except for the full

coverage adsorption on the (110) surface of BaF2, where the hydrogen forms two

weaker hydrogen bonds with two equivalent surface fluorines with a distance of

2.3Å. The interatomic distance of HF increases due to adsorption, with respect

to the free HF, with the largest elongations calculated for the (100) surface of

all three crystals. Here, the HF molecule is elongated by 0.22Å and the hy-

drogen lies at equal distance, which is found to be 1.16Å, between the surface

fluorine and the adsorbate’s fluorine. For the full HF coverage on the (100)

surface of CaF2, the HF bond is elongated by 0.13Å and the distance between

the hydrogen and the surface fluorine is 1.27Å. For adsorption on surfaces (111)

and (110), the elongations of the HF bond vary between 0.01-0.13Å, depending

on the coverage. The presence of the adsorbates affects the structure of the

surfaces, where the surface ions are displaced from their original positions with

respect to the optimized clean surface. The displacements of the surface metal

cations and the fluorine anions in a direction perpendicular to the surface plane

are in the ranges of 0.007-0.09Å and 0.004-0.09Å, respectively. This effect is

mostly pronounced in the case of 25% coverage where a slight distortion of the

uppermost surface layer consisting of fluorine is observed. That is due to the

displacements of some surface fluorines outwards (towards the vacuum) and of

others inwards (towards the bulk). For example, in the case of 25% coverage

on the (111) surface, the surface fluorines forming a hydrogen bond with the

adsorbate’s hydrogen are displaced outwards by 0.33Å and the other fluorines
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Figure 1: Adsorption structures of HF on CaF2 surfaces at 100%, 50% and 25% coverages,

obtained using PBE. Calcium atoms are represented as blue, fluorine as red and hydrogen as

green spheres. The fluorines of the adsorbates are highlighted.

in the row are shifted inwards by 0.09Å, leading to a zig-zag form of the outer

layer. The Mulliken population analysis indicates that a charge transfer from

the surface to the adsorbate is occuring. The electron density increase on the

adsorbate varies between 0.07 and 0.3 a.u., and it increases with decreasing

coverage.

4.2. Adsorption energies

Adsorption energies calculated with PBE for CaF2, SrF2 and BaF2 sur-

faces are listed in Table 2. We observe a decrease in the adsorption energy

with increasing coverage (weaker binding), likely due to the repulsive interac-

tion between the adsorbates at higher coverage. The energy difference between

coverages strongly depends on the surface structure, i.e. the arrangement of
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Figure 2: Adsorption structures of HF on SrF2 surfaces at 100%, 50% and 25% coverages,

obtained using PBE. Strontium atoms are represented as blue, fluorine as red and hydrogen

as green spheres. The fluorines of the adsorbates are highlighted.

9



Figure 3: Adsorption structures of HF on BaF2 surfaces at 100%, 50% and 25% coverages,

obtained using PBE. Barium atoms are represented as blue, fluorine as red and hydrogen as

green spheres. The fluorines of the adsorbates are highlighted.
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the adsorption sites on the surface. For surface (111), the energy difference

between full and half coverages is about 0.1eV and a further decrease of the

coverage to 25% results in stronger adsorption by 0.1-0.14eV compared to half

coverage. Indeed, this surface has a square unit cell and thus, the adsorbates

are uniformely placed on the adsorption sites. However, at full coverage, the HF

molecules are adsorbed on the coordinatively unsaturated surface cations with

the distance separating the fluorine of an adsorbate and the hydrogen of an-

other neighbouring one being 3.14-3.76Å, which favors the interaction between

the adsorbing molecules and destabilizes the adsorption of a full monolayer of

HF on this surface. Half coverage is reached by removing the HF molecules in

the direction where they are closest to each other. At 25% coverage, every sec-

ond HF molecule in the other direction is removed, leading to a stabilization of

the adsorption structure and therefore a larger adsorption energy. Adsorption

energies on surface (110) are more affected by coverage than (111), presumably

due to the rectangular unit cell of this surface, which favors a denser arrange-

ment of adsorption sites in one periodic direction than the other. The energy

difference between coverages on this surface is most pronounced in the case of

BaF2, where the adsorption energy increases by 0.73eV upon lowering coverage

from full to half. The HF molecules adsorbed in full coverage form two hydro-

gen bonds with the surface, which implies a stronger interaction between the

hydrogens and the surface fluorines and thus a weaker adsorption on the surface

cations. At half coverage, this interaction is reduced and a stronger adsorption

occurs. For 25% coverage, the adsorption energy is slightly higher than that at

50%. The most significant effect of the coverage on the adsorption energies is

found for the (100) surface. The arrangement and orientation of the adsorbates

on the adsorption sites are found to play a significant role in the behaviour of

the adsorption energies. As already discussed in section 4.1, adsorption on this

surface results in large elongations of the intramolecular bond of HF, which

makes the hydrogen very close to the surface fluorine. At half coverage, a row

of HF molecules is removed leading to the minimization of the interaction be-

tween the hydrogen and the fluorines of the surfaces compared to full coverage.
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Table 2: Adsorption energies (in eV) of HF per molecule on CaF2, SrF2 and BaF2 surfaces at

100 %, 50 % and 25 % coverages, calculated using PBE. The distance between the metal ion

and the fluorine of the adsorbate, the intramolecular distance of HF and the distance between

the hydrogen and the surface fluorine are also given (in Å).

MF2 Surface Coverage (%) Eads [eV] dM−F [Å] dH−F [Å] dH−Fslab [Å]

CaF2 (111)

100 -0.40 2.48 0.98 1.56

50 -0.48 2.46 1.00 1.47

25 -0.62 2.34 1.03 1.33

(110)

100 -0.69 2.40 1.01 1.43

50 -0.90 2.30 1.07 1.27

25 -0.99 2.36 1.05 1.33

(100)

100 -0.75 2.31 1.07 1.27

50 -1.28 2.45 1.16 1.16

25 -1.34 2.40 1.16 1.16

SrF2 (111)

100 -0.49 2.61 0.99 1.54

50 -0.58 2.63 1.00 1.44

25 -0.67 2.56 1.02 1.37

(110)

100 -0.76 2.60 1.01 1.42

50 -0.88 2.49 1.07 1.27

25 -0.93 2.56 1.05 1.32

(100)

100 -0.91 2.44 1.15 1.16

50 -1.46 2.63 1.16 1.16

25 -1.42 2.55 1.16 1.16

BaF2 (111)

100 -0.58 2.78 0.99 1.50

50 -0.69 2.81 1.01 1.41

25 -0.80 2.81 1.02 1.37

(110)

100 -0.26 2.84 0.95 2.31

50 -0.99 2.76 1.05 1.32

25 -1.12 2.80 1.04 1.33

(100)

100 -1.04 2.82 1.15 1.16

50 -1.59 2.80 1.16 1.16

25 -1.69 2.77 1.16 1.16
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Indeed, the hydrogen is closer to the surface fluorine than in the full coverage

case which favors in principle the interaction between them. However, the HF

molecule is dissociated and the fluorine of the adsorbate is strongly bound to the

surface, leading to higher adsorption energies, by about 0.5eV, at half coverage.

The 25 % coverage case resembles the 50% one, showing only slightly higher

adsorption energies. In the case of adsorption on SrF2, the adsorption energy

at 25% coverage is slightly lower than that at 50% coverage.

Comparing the general trends of the adsorption energies on the three different

surfaces, the strongest adsorption is found to occur on the six-fold coordinated

metal cations of the least stable (100) surface, followed by the six-fold coordi-

nated cations of (110). The weakest adsorption takes place at the seven-fold

coordinated cations of (111), which is the most stable surface. A comparison

between the three investigated materials reveals, with exception of the full cover-

age case on the (110) surface, that adsorption on BaF2 surfaces is the strongest,

followed by SrF2 and CaF2 surfaces. This can be related to the electronegativity

of the metals. Calcium is more electronegative than strontium and barium, so

the Ca-F bond is less polar, which leads to a higher electron density on Ca2+

(compared to Sr2+ and Ba2+). As a result, adsorption on Ca2+ sites is weaker.

In general, the values of the adsorption energies vary between -0.4 and -1.7eV,

indicating a chemisorption on the surfaces in most of the cases.

5. Conclusion

We have investigated in this work the adsorption of hydrogen fluoride on

CaF2, SrF2 and BaF2 surfaces. We have used density functional theory with

PBE and PBE0, Hartree-Fock and dispersion correction (D3) on PBE to calcu-

late adsorption energies at full HF coverage. All methods applied catch the same

trends in the adsorption energies for all three investigated materials. In most

of the cases, comparable adsorption energies are obtained with the exchange-

correlation functional PBE and the hybrid functional PBE0, and a slightly

stronger adsorption is predicted with PBE-D3. This illustrates the weak ef-
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fect of dispersion and exact exchange on the adsorption of HF, which is mainly

governed by electrostatics. Using PBE, we have discussed the adsorption struc-

tures and energies at different coverages and found that adsorption becomes

stronger upon lowering coverage. That is presumably due to the effect of the

interactions among the adsorbates, and the strength of the interaction between

the hydrogen and the surface fluorines as well. In general, the calculated adsorp-

tion energies and structures indicate that the interaction of HF with surfaces is

brought by a chemisorption process.
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5 Summary

An increasing demand on size-controllable, highly active, large surface area nanomaterials
has emerged in the last decades. A search for such materials has become essential in hu-
man activity and industrialization, due to their widespread application in chemistry, physics
and biology. Nanostructured metal fluorides represent an important class of these techno-
logically promising materials, due to their optical and catalytic properties. The latter are
mainly related to the surface properties of the material, and thus, knowing the surface struc-
ture, stability and reactivity is crucial for understanding the functionality of the material.
The aim of this thesis was to gain deeper insights into the factors controlling the surface
properties of metal fluorides. For this purpose, a theoretical model for a set of divalent
metal fluorides was developed towards answering two principal questions: Which factors
contribute to the catalytic activity of nanoscopic metal fluorides, and how is the morphology
of the crystals affected by temperature and pressure. First, I investigated the structure and
properties of the considered materials with the use of quantum chemical methods. This was
done by calculating key properties, like bulk parameters, surface energies and adsorption
energies. Second, I predicted the morphology of the crystals under different synthetic con-
ditions, through modeling the influence of temperature and HF pressure on the stability of
metal fluoride surfaces. The end-point of these theoretical investigations was the validation
of the developed models by the experimental findings. The purpose of this chapter is to sum-
marize the main outcomes of these investigations that are published in four papers P1-P4.
Motivated by the interesting catalytic properties of the sol-gel synthesized MgF2 nanoma-
terial, I started my investigation with the structurally similar ZnF2 which has been also
synthesized in a fluorolytic sol-gel procedure [25]. In Paper P1, we performed periodic bulk
optimizations as a starting point of the calculations, and periodic slab optimizations to eval-
uate the surface energies and relative surface stabilities of ZnF2 low-index surfaces, using
density functional theory. Based on the calculated surface energies, the shape of a ZnF2

crystal has been predicted following the so-called Wulff procedure. In this first publication,
two different structures, the rutile and the CaCl2-type, were considered. We found that the
two structures have similar bulk parameters and surface stabilities, although they belong to
two different lattice systems, tetragonal and orthorhombic. The (110) was found to be the
most stable surface with the lowest surface energy. The surface area of a ZnF2 nanocrystal in
vacuum was found to expose the (101), (110) and (100) surfaces, without any contributions
of the (111) and (001) surfaces.

To understand the catalytic performance of the material, it is crucial to study the Lewis
acidity of its surface cations. Indeed, coordinatively unsaturated cations on the surfaces have
a lower number of binding neighbours compared to the coordination sphere in the bulk solid
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5 Summary

Figure 5.1: Low index ZnF2 surfaces. Zinc atoms are represented in grey and fluorine in
green. The coordination sphere around the surface cations is shown in brown.

and are thus electron-poor (Lewis acidic) sites. This results in a high catalytic activity of
the acidic material. The coordination sphere around the surface cations of the five low index
ZnF2 surfaces is shown in Fig. 5.1. The (110) and the (100) surfaces, which are the most
two stable surfaces, expose fivefold coordinated zinc ions, whereas the less stable (001) and
(111) surfaces expose fourfold coordinated cations. In the (101) surface, two types of unsat-
urated surface cations, one fourfold and one fivefold coordinated, are found. For evaluating
the Lewis acidity of the surface cations, these low index surfaces were characterized with
CO adsorption using periodic calculations at different levels of theory, the results of which
were discussed and published in Paper P2. Adsorption energies of CO were calculated using
B3LYP, dispersion correction to B3LYP (D2 and D3), Hartree-Fock and LMP2, for the sake
of comparing the performance of different methods. B3LYP was found to adequatly describe
the CO adsorption, performing well compared to LMP2, while dispersion corrections strongly
overestimate the adsorption energy. A general trend was observed for all the surfaces: the
adsorption energy increases with decreasing coverage. That is strongly influenced by the
interactions among the adsorbed CO molecules, which have shown to play an important role
in the adsorption process. In addition to the adsorption energies, we calculated vibrational
frequency shifts of the adsorbed CO molecules with respect to the free CO molecule, using
B3LYP. The results of the adsorption energies and frequency shifts, at full and half coverages,
are presented in table 5.1. As a powerful tool for the characterization of surface cations, the
adsorption of probe molecules such as CO leads to small changes in the electronic structure
of the adsorbed molecules, which can be manifested in shifts of the vibrational frequencies
measured in Infrared spectroscopy (IR). Guo et al. [25] studied the Lewis acidity of sol-gel
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Table 5.1: Adsorption energies (eV) and vibrational frequency shifts (in cm−1) of CO ad-
sorbed on ZnF2 surfaces, calculated at the B3LYP level. θ represents the cover-
age, and CN the coordination number of the surface cations.

Surface CN Eads [eV] Freq. shift [cm−1]
θ = 1.0 θ = 0.5 θ = 1.0 θ = 0.5

(110) 5 -0.23 -0.30 64 67

(100) 5 -0.14 -0.19 43 43

(101) 5,4 -0.13 -0.27 31 64

(001) 4 -0.21 -0.27 54 55

(111) 4 - -0.22 - 32

prepared ZnF2 by measuring in IR the vibrational frequencies of adsorbed carbon monoxide
molecules. They observed three distinct bands for the CO frequency mode and assigned
them to different coordinatively unsaturated Zn2+ cations. For small doses of CO, the band
with highest wave number was observed and the one with lowest wave number showed up
at very high pressure of CO. The calculated vibrational frequency shifts validate the exper-
imental findings: at low CO coverage, higher frequency shifts were calculated, indicating a
stronger adsorption. However, theoretical calculations predicted that cations on different
surfaces but having the same coordination number can have different Lewis acidity. That
deviates from the experimental suggestion that relates the Lewis acidity to the number of
missing coordination partners of the surface cation and assumes that, the less neighbors the
cation has, the higher is its Lewis acidity. It has also been suggested that less stable surfaces
expose generally cations of higher Lewis acidity. That was not fully supported by the results
of the calculations: the calculated adsorption energies and frequency shifts have shown some
deviations in the trend with respect to the order of stability of different surfaces.
Compared to MgF2, a similar system which was investigated in a previous analogous study

[200], ZnF2 shows comparable trends in the adsorption energy and frequency shifts of ad-
sorbed CO. This similarity was also confirmed experimentally [25], where the same types
of unsaturated surface cations were found in both strutures indicating a comparable Lewis
acidity. However, ZnF2 was found to be catalytically inactive for the dismutation reaction of
chlorofluoromethanes, in contrast to MgF2 which has revealed an excellent catalytic perfor-
mance. It is generally assumed that, the catalytic activity of a metal fluoride is somewhat
related to the Lewis acidity of the coordinatively unsaturated surface cations, which can be
evaluated from the adsorption energy and the frequency shift of a probe molecule on the
surface. Nonetheless, numerous factors are involved in the interactions of the surfaces with
the adsorbates, as well. The surface structure and composition and the surface anions can
be as important as the Lewis acidity of surface cations.
Towards a second direction, this work was aiming at predicting the morphology of metal flu-
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Table 5.2: Optimized lattice constant a (Å), bulk modulus B (GPa), cohesive energy Ecoh
(eV) and lattice energy Elat (eV) for CaF2, SrF2 and BaF2 calculated with
different methods. Experimental values are given for comparison.

B3LYP B3PW LDA PBE PWGGA Hartree-Fock Exp.

CaF2

a [Å] 5.50 5.47 5.33 5.50 5.49 5.51 5.46
B [GPa] 85.54 86.91 85.14 82.23 84.03 87.01 82.71
Ecoh [eV] -16.44 -16.34 -18.88 -16.88 -17.03 -13.94 -16.08
Elat [eV] -26.90 -26.71 -28.42 -26.89 -26.99 -26.83 -27.46

SrF2

a [Å] 5.85 5.81 5.67 5.84 5.83 5.87 5.80
B [GPa] 63.09 68.08 88.72 61.91 61.39 65.91 69
Ecoh [eV] -16.63 -16.51 -18.90 -17.01 -17.18 -14.30 -15.95
Elat [eV] -25.33 -25.20 -26.81 -25.35 -25.44 -25.30 -26.03

BaF2

a [Å] 6.26 6.22 6.06 6.24 6.23 6.31 6.20
B [GPa] 61.25 64.94 73.34 62.36 63.49 53.87 57
Ecoh [eV] -17.53 -17.38 -19.73 -17.90 -18.07 -15.10 -16.01
Elat [eV] -23.79 -23.73 -25.31 -23.90 -24.00 -23.66 -24.58

oride crystals at finite conditions of temperature and pressure. Due to the absence of good
catalytic properties for ZnF2-based nanomaterials, I switched my investigations to other
metal fluorides, namely CaF2, SrF2 and BaF2, which are synthesized by our experimental
partners in a sol-gel procedure [26, 27, 55]. These materials, of cubic fluorite structure,
have revealed outstanding properties and are therefore mainly useful in optics, catalysis and
dentistry [26, 27, 39, 57]. Starting with the bulk structure, I have recalled the ground state
bulk properties of MF2 (M = Ca, Sr and Ba) applying various DFT functionals. I calculated
the lattice parameter, the bulk modulus, the cohesive energy and the lattice energy of the
three systems. The results for the optimised bulk parameters obtained using Hartree-Fock
and five different DFT functionals are shown in table 5.2. The Hartree-Fock method as well
as all DFT functionals used were found to describe the bulk properties reasonably well. Best
agreement with experiment was achieved at the PBE level which overestimates the lattice
constant at most by 0.7% and underestimates the bulk modulus by 10% only (in the case of
BaF2, the bulk modulus is overestimated by 8%). The cohesive energy is slightly overesti-
mated by at most 11% and the lattice energy is underestimated by 3%. Hence, I used the
PBE functional in further calculations.
Surfaces in solids are usually created from the three-dimensionally bulk crystal by cutting

along the Miller indices, and they are therefore described by these cutting planes. For the
discussion of surface stabilities and the relative importance of different surfaces in a MF2

crystal, we performed, in Paper P3, periodic slab calculations for three low-index surfaces:
the (111) which is the natural cleavage plane of a fluorite structured crystal, the (110) and
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the (100) surfaces. Using the slab model described in Chapter 3, the surface energy of the
three mentioned surfaces was calculated with PBE for the materials under study. The (111)
surface was found to be the most stable, followed by (110) and (100), in agreement with
the experimental cleavage energies measured for the three considered materials [91, 201].
Due to the big energy difference between the (111) surface and the two other less stable
surfaces, the latter did not appear in the Wulff construction of a MF2 crystal; thus, only the
(111) surface was exposed and the predicted shape of a MF2 crystal in vacuum is an octa-
hedron. This is only valid for a crystal in vacuum, where no temperature and gas pressure
effects are included. However, MF2 nanocrystals are synthesized under standard conditions
of temperature and pressure, where they are in contact with a gaseous hydrogen fluoride
phase. Hence, it is sensible to investigate the influence of temperature and HF pressure on
the relative stability of low index MF2 surfaces and consequently predict the most stable
shapes of the nanocrystals at different synthetic conditions. To this end, we combined, in
Paper P3, density functional theory and ab initio surface thermodynamics to analyze the
stability of different surfaces and determine the presumable morphology of the crystals under
various temperatures and HF concentrations. Surface energies were obtained as a function
of the partial pressure of HF at four temperature conditions. For each material, the three
low index planes (111), (110) and (100) were considered, each of them as a plain surface
and covered with 100%, 50% and 25% HF. For the evaluation of surface energies of the HF
covered terminations, we had to perform periodic DFT calculations for the adsorption of HF
on the surfaces, at different coverages. We found that clean surfaces are most stable at very
low HF pressure, while surfaces covered with HF are stabilized with increasing the pressure
of HF. However, at high temperatures (T = 600K), even at a partial HF pressure as high
as 1atm, still clean surfaces are dominant and a much higher pressure would be required
to stabilize HF adsorption on the surfaces. Based on the surface energies of the different
planes, Wulff plots of MF2 crystals have been constructed for twelve sets of temperature and
pressure conditions. These include temperatures of 150, 300, 450 and 600K and HF pres-
sures of 10−10, 10−5, 1 and 10atm. Since at high temperatures clean surfaces are favored,
as previously discussed, the shape of the crystals is very weakly affected by the variation of
the HF pressure. This is not the case at low temperature, where adsorption structures are
stabilized, resulting in different crystal shapes upon varying the pressure of the gas phase.
The interpretations of the crystal shapes are discussed in detail for each metal fluoride in
Paper P3. In general, all three materials were found to expose clean surfaces at high temper-
ature and surfaces covered with HF at low temperature. In all cases, the (110) surface was
not exposed, the (111) surface occured in eight facets resulting in an octaheral shape of the
crystal whenever it is mainly exposed and the (100) surface, if mainly exposed, occured in
six facets which correspond to a cubic shape. At room temperature and high excess of HF,
CaF2 nanocrystals were found to have a cubic shape, while octahedral nanocrystals were
predicted for SrF2 and BaF2.
CaF2 and SrF2 nanocrystals have been synthesized at room temperature under large excess
of HF and characterized with transmission electron microscopy (TEM), by our experimental
collaborators. A distinct cubic shape was observed for CaF2 nanocrystals, in agreement with
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the theoretical prediction, whereas SrF2 nanocrystals showed a more spherical shape, which
can be idealized by the theoretical predicted octahedral shape. In general, the TEM images
obtained experimentally support the theoretical findings.
Evaluating the reactivity of metal fluorides is crucial for the understanding of their applica-
tion and use in surface science. Towards this direction, we aimed, in Paper P4, at thoroughly
discussing the energetic and structural properties of HF adsorption, which was modeled at
the PBE level and was used in the surface thermodynamics calculations of Paper P3. The
use and comparison of different coverages were essential for examining the effect of the in-
teractions among the adsorbed HF molecules on the adsorption structures and energies. In
addition to the PBE calculated structures and energies, Hartree-Fock, PBE0, and dispersion
corrected PBE calculations were performed in Paper P4, where the performance of the dif-
ferent methods was discussed. Adsorption structures were optimized at the Hartree-Fock,
PBE and PBE0 levels, resulting in similar structures, while no struture optimization was
performed at the DFT-D3 level. We found that the two DFT functionals used perform sim-
ilarly for the adsorption of HF on the surfaces, with the PBE functional yielding slightly
higher adsorption energies in most cases. Hartree-Fock was found to yield lower adsorption
energies, and the highest energy values were calculated with dispersion correction to PBE.
The PBE calculated adsorption energies were in the range of -0.4 to -1.7eV, implying a
chemisorption of hydrogen fluoride on the surfaces in most cases. This is also confirmed by
the optimized adsorption structures, in which the HF molecules were strongly bound to the
surface, forming hydrogen bonds with the surface fluorines. Upon lowering coverage from
full to half, the adsorption energies increase by up to 0.7eV. This increase is due to the
minimization of the destabilizing interaction between the adsorbates.
After having completed this comprehensive study on metal fluoride surfaces, an insight was
won in the aspects behind the catalytic activity of nanoscopic metal fluorides and the suitable
experimental conditions responsible of obtaining a desired shape of the nanomaterial. For a
more intuitive understanding of the lack in catalytic activity of ZnF2, the next step would
be the modeling of the defects in a ZnF2 crystal, since the latter possesses a high density of
them. A modeling within the periodic scheme is challenging, a cluster model would rather
be more convenient. In the latter, the innermost part of the system, which is called cluster,
contains the defect with a finite number of electrons and it is treated quantum mechanically.
The outer part of the cluster is described by a periodic array of point charges.
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[37] S. Wuttke, S. M. Coman, J. Kröhnert, F. C. Jentoft, E. Kemnitz, Catal. Today 2010,
152, 2–10.

[38] A. Astruc, C. Cochon, S. Dessources, S. Celerier, S. Brunet, Appl. Catal. A: General
2013, 453, 20–27.
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T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, S. J.
McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P. O’Neill, P. Palmieri, D. Peng,
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[172] J. M. André, J. Chem. Phys. 1969, 50, 1536.

[173] J. Hafner, J. Comput. Chem. 2008, 29, 2044–2078.

[174] V. R. Saunders, C. F. Feva, R. Dovesi, L. Salasco, C. Roetti, Mol. Phys. 1992, 77,
629–665.

153



Bibliography

[175] R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders, C. M. Zicovich-Wilson,
Z. Kristallogr. 2005, 220, 571–573.

[176] R. Dovesi, V. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale,
B. Civalleri, K. Doll, N. Harrison, I. Bush, P. D’Arco, M. Llunell, CRYSTAL09 User’s
Manual, University of Torino, Torino, 2010.

[177] S. Saebø, P. Pulay, Annu. Rev. Phys. Chem. 1993, 44, 213–236.
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