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Timo Schmid ∗ and Nikos Tzavidis †

Institute of Statistics and Econometrics, Freie Universität Berlin,
Germany∗ and Southampton Statistical Sciences Research Institute,

University of Southampton, UK †

Small area models typically depend on the validity of model as-
sumptions. For example, a commonly used version of the Empirical
Best Predictor relies on the Gaussian assumptions of the error terms
of the linear mixed model, a feature rarely observed in applications
with real data. The present paper proposes to tackle the potential
lack of validity of the model assumptions by using data-driven scaled
transformations as opposed to ad-hoc chosen transformations. Dif-
ferent types of transformations are explored, the estimation of the
transformation parameters is studied in detail under a linear mixed
model and transformations are used in small area prediction of lin-
ear and non-linear parameters. The use of scaled transformations is
crucial as it allows for fitting the linear mixed model with standard
software and hence it simplifies the work of the data analyst. Mean
squared error estimation that accounts for the uncertainty due to the
estimation of the transformation parameters is explored using para-
metric and semi-parametric (wild) bootstrap. The proposed methods
are illustrated using real survey and census data for estimating in-
come deprivation parameters for municipalities in the Mexican state
of Guerrero. Extensive simulation studies and the results from the
application show that using carefully selected, data driven transfor-
mations can improve small area estimation.

1. Introduction. Model-based methods for small area estimation (SAE)
are now widely used in practice for producing reliable estimates of linear and
non-linear indicators for areas/domains with small sample sizes. Examples of
indicators that are estimated by using model-based methods include poverty
(income deprivation) and inequality measures such as the head count ratio,
the poverty gap and the Gini coefficient. Two popular small area methods
in this case are the empirical best predictor (EBP), proposed by Molina and
Rao [1] and the World Bank method, proposed by Elbers et al. [2]. Both ap-
proaches are based on the use of unit-level linear mixed regression models.

Keywords and phrases: Small area estimation, linear mixed regression model, MSE es-
timation, data-driven transformations, poverty mapping, maximum likelihood theory.
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Although estimation of complex indicators can be also implemented with
area-level models [3, 4], we pay particular attention to unit-level models in
this paper. Focusing on the EBP method, we note that the corresponding
theory only exists under specific distributions. In the original paper, Molina
and Rao [1] assumed that the error terms of the linear mixed regression
model follow a Gaussian distribution. Molina and Rao [5] noted that, if the
model error terms significantly deviate from normality, the EBP estimator
can be biased. What are the options available to the data analyst when the
normality assumptions are not met? A first option is to formulate the EBP
under alternative and more flexible parametric assumptions. Graf et al. [6]
study an EBP method under the generalized beta distribution of the second
kind (GB2), whereas Diallo and Rao [7] propose the use of skewed-normal
distributions in applications with income data. One complication with using
the EBP under alternative parametric distributions is that new tools for
estimation must be developed and training for the data analyst is needed.
In addition, misspecification of the model assumptions is still possible. The
second option when the Gaussian assumptions are not satisfied is to use a
methodology that minimizes the use of parametric assumptions. Weiden-
hammer et al. [8] recently proposed a method that aims at estimating the
quantiles of the empirical distribution function of the data. The estimation
of the quantiles is facilitated by a nested error regression model using the
asymmetric Laplace distribution for the unit-level error terms as a working
assumption. The estimation of the random effects can be made completely
non-parametric by using a discrete mixture proposed by Marino et al. [9].
However, this method does not necessarily lead to an empirical best predic-
tor, while implementation also requires the development of new estimation
and inference tools. A third option, and the one we study in this paper, is
to find an appropriate transformation such that the model assumptions (in
this paper the Gaussian assumptions of the EBP method) hold. The aim
is to find transformations that (a) are data-driven and optimal according
to some criterion and (b) can be implemented by using standard software.
To the best of our knowledge, the use and choice of transformations has
not been studied extensively or it has been studied in fairly ad-hoc manner.
Elbers et al. [2] and Molina and Rao [1] suggested the use of logarithmic-
type transformations for income data. However, is such a transformation the
most appropriate choice? Can alternative transformations offer improved es-
timation? In order to answer these research questions, the paper investigates
data-driven transformations for small area estimation.

The choice of transformations when modelling income-type outcomes - as
is the case with poverty mapping applications - presents different challenges.



EBP UNDER DIFFERENT TYPES OF TRANSFORMATIONS 3

Transformations should be suitable for dealing with unimodal, leptokurtic
and positively skewed data that may include zero and negative values. Be-
sides the logarithmic transformation and its modifications (e.g. the log-shift
transformation) a popular family of data-driven transformations that in-
cludes the logarithmic one as a special case is the Box-Cox [10] family. Since
the Box-Cox transformation is not defined for negative values, when negative
values are present, the data must be shifted to the positive range. Another
difficulty with the use of the Box-Cox transformation is the truncation on
the transformation parameter described later in Section 4. A solution to
this problem can be offered by the use of the dual power transformation.
Although very rich literature on the use of transformations exists see for ex-
ample, Manly [11], John and Draper [12], Bickel and Doksum [13] and Yeo
and Johnson [14], among others. In this paper we focus on three types of
transformations, namely log-shift, Box-Cox and dual power transformations.

In addition to selecting the type of transformation, estimating the trans-
formation parameter adds another layer of complexity. To the best of our
knowledge the use of transformations in recent applications of small area es-
timation has employed visual residual diagnostics for finding a suitable trans-
formation parameter. In this paper we propose a structured, data-driven
approach for estimating the transformation parameter. In particular, we
introduce maximum likelihood and residual maximum likelihood methods
for estimating the transformation parameter under a linear mixed regres-
sion model. Alternative estimation approaches based on the minimization
of distances [15, 16] and on the minimization of the skewness [17] are also
discussed. The use of scaled transformations such that standard software
can be employed for estimation and inference is another important aspect
of what we propose in this paper.

We study how the performance of the EBP method is affected by depar-
tures from normality and how data-driven transformations can assist with
improving the validity of the model assumptions and estimation. Emphasis
is given to the estimation of poverty and inequality indicators due to their
important socio-economic relevance and policy impact. We further study
whether the impact of departures from Gaussian assumptions is different
depending on the target of estimation. For example, departures from nor-
mality may have less impact on estimates of median income compared to
estimates of the Gini coefficient. The estimation for the latter indicator heav-
ily depends on the entire distribution of the data. A parametric bootstrap for
mean squared error (MSE) estimation under transformation is studied and a
wild-type bootstrap that may offer protection in the presence of departures
from the Gaussian assumptions after transformations is also proposed.
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The paper is structured as follows. The details of the EBP approach are
introduced in Section 2. Section 3 presents the survey data we use in this
paper and makes the case, via the use of residual diagnostics, for using trans-
formations. In Section 4 a number of possible transformations are introduced
and extended for their use with model-based SAE methods under a linear
mixed regression model. This section includes the theoretical details about
the choice of an appropriate scale and estimation of the transformation pa-
rameter. MSE estimation is discussed in Section 5. The proposed methods
are applied to data from Guerrero in Mexico for estimating a range of depri-
vation and inequality indicators and corresponding estimates of uncertainty
in Section 6. In Section 7 the proposed methods are further evaluated via
the use of model-based simulation under realistic scenarios for income data.
Section 8 summarizes the main findings and outlines further research.

2. Empirical best prediction with applications for estimating
poverty and inequality. Let U denote a finite population of size N parti-
tioned into D areas or domains (representing the small areas) U1, U2, . . . , UD
of sizes N1, . . . , ND, where i = 1, . . . , D refers to the ith area. Let yij be the
target variable defined for the jth individual belonging to the ith area, with
j = 1, . . . , Ni. Denote by X = (x1, . . . ,xp)

T the design matrix containing
p explanatory variables and define by s as the set of sample units, with si
the in-sample units in area i and by r be the set of non-sampled units, with
ri the out-of-sample units in area i. Let ni denote the sample size in area i
with n =

∑D
i=1 ni. Hence, we define by yi a vector with population elements

of the target outcome for area i partitioned as yTi =
(
yTis,y

T
ir

)
, where yis

and yir denote the sample elements s and the out-of-sample elements r in
area i respectively. Let us now describe in more detail the EBP approach
by Molina and Rao [1], which is the methodology we focus on in this paper.
Under this approach census predictions of the target outcome are generated
by using the conditional predictive distribution of the out-of-sample data
given the sample data. The point of departure is the standard parametric
unit-level linear mixed regression model, which is also known as the unit-
level nested error regression model and for simplicity, is called in this paper
as the linear mixed regression model. This is defined by Battese et al. [18]
as:

yij = xTijβ + ui + eij , ui
iid∼ N(0, σ2

u) and eij
iid∼ N(0, σ2

e),(2.1)

where ui, the area-specific random effects, and eij , the unit-level errors, are
assumed to be independent. Assuming normality for the unit-level error and
the area random effects, the conditional distribution of the out-of-sample
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data given the sample data are also normal. A Monte Carlo approach is
used to obtain a numerically efficient approximation to the expected value
of this conditional distribution as follows:

1. Use the sample data to obtain θ̂
T

= (β̂, σ̂2
u, σ̂

2
e) and γ̂i = σ̂2

u

σ̂2
u+

σ̂2e
ni

.

2. For l = 1, . . . , L:

(a) Generate v
(l)
i

iid∼ N
(
0, σ̂2

u(1− γ̂i)
)

and e
(l)
ij

iid∼ N
(
0, σ̂2

e

)
and obtain

a pseudo-population of the target variable by:

yij
(l) = xTijβ̂ + ûi + v

(l)
i + e

(l)
ij ,

where the predicted random effect ûi is defined as ûi = E(ui|yis).
(b) Calculate the indicator of interest I

(l)
i in each area.

3. Finally, take the mean over the L Monte Carlo runs in each area to
obtain a point estimate of the indicator of interest:

ÎEBPi =
1

L

L∑
l=1

I
(l)
i .

As is common in real applications, some areas are out-of-sample. For those
areas, we cannot estimate a random effect, and hence the corresponding
random effect is set equal to zero. Synthetic values of the outcome for the
out-of-sample areas are then generated under the linear mixed regression
model as follows:

yij
(l) = xTijβ̂ + u

(l)
i + e

(l)
ij ,

with u
(l)
i

iid∼ N
(
0, σ̂2

u

)
and e

(l)
ij

iid∼ N
(
0, σ̂2

e

)
. Finally, a parametric bootstrap

- under the assumed model - is used for the MSE estimation. This is dis-
cussed in some detail in Section 5. As we mentioned in Section 1, the EBP
method is applicable only by making specific parametric assumptions about
the distribution of the error terms of the linear mixed regression model that
allow the conditional distribution yr|ys to be obtained. From the point of
view of the analyst, the easiest (but not the only option) is to assume nor-
mality since standard software for fitting the linear mixed regression model
is available in this case. However, in applications, which involve modelling
an income-type outcome, assuming normality is unrealistic. In this paper we
use such an outcome for estimating indicators such as the head count ratio
[19], the income quintile share ratio [20] and the Gini coefficient [21]. If our
primary concern is to develop a methodology that can easily be used in prac-
tice, finding appropriate data transformations to normality is of paramount
importance.
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3. The Guerrero case study: Data source and initial analysis.
In this section, we describe the data sources used in the application and
provide a motivation for the use of transformations.

The data used in this paper come from Mexico, which has one of the
largest economies in Latin America and is still among the most unequal
countries in the world, according to the World Bank. For tailored policies
against deprivation, it is necessary to know a detailed description of the
spatial distribution of inequality and income deprivation. According to the
general social development law in Mexico, the National Institute of Statis-
tics and Geography (INEGI) has to provide measures at the national, state
and municipal-level. For carrying out the analysis in this paper, the sta-
tistical and geographical information was provided by INEGI through the
Household Income and Expenditure Survey (ENIGH) 2010 and the National
Population and Housing Census of 2010. Looking in more detail at the data
available and their geographic coverage, Mexico is divided into 32 federal en-
tities (states). The state Guerrero has been considered by the World Bank
to be one of the entities that mostly contributes to inequality in Mexico, pre-
senting a high inequality in human development. Additionally, according to
the United Nations Development Programme (UNDP), this region presents
one of the highest rates of poverty and lack of infrastructural development.
Guerrero is made up of 81 administrative divisions, known as municipalities.
From the 81 municipalities in Guerrero, only 40 are in-sample, leaving the
other 41 out-of-sample. Furthermore, there are 1611 households in the 40
in-sample municipalities. Table 1 shows a summary of the sample sizes for
these municipalities, in which the maximum sample size in a municipality is
511, whereby the minimum is only 9 and the median is 24 households.

Table 1
Sample sizes of the municipalities available in survey data

Min. 1st Qu. Median Mean 3rd Qu. Max.

Sample 9.00 17.00 24.00 40.27 36.00 511.00

The survey and census data include a large number of socio-demographic
variables, which are common and are measured similarly in both data sources.
The total household per capita income from work, denoted by hciw is an
example of a variable which is available in the survey but not in the census.
the variable hciw is used in this paper as the variable that best approximates
the living standard in households in Guerrero. Therefore, the working model
used in this paper defines as the outcome variable, hciw, which is measured
in Mexican pesos. Available socio-demographic variables of the households
are utilized as explanatory variables. The underlying linear mixed regres-
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sion model (2.1) of the EBP is characterized by having two levels, in which
households are grouped by municipalities. The variables available in the sur-
vey and census data, which are identified by using the Bayesian information
criterion (BIC) as good predictors of hciw, are described in Table 2.

Table 2
Description of the explanatory variables used in the working model

Determinant Variable

Occupation 1) Indicator if the head of household and the spouse are employed
2) Type of household occupation
3) Total number of employees older than 14 years in a household
4) Percentage of employees older than 14 years in a household

Sources of income 5) Indicator of a household receiving remittances
Socioeconomic level 6) Availability of assets in the household

7) Total number of goods in the household
Education 8) Average standardized years of schooling (by age and sex)

within the household relative to the population

The next step after the identification of a possible set of covariates is
assessing the predictive power of the model. Nakagawa and Schielzeth [22]
propose the use of two coefficients of determination suitable for generalized
mixed-effects regression models: (a) the marginal R2

m, which is a measure
for the variance explained by fixed effects and (b) the conditional R2

c , which
measures the variance explained by both, the fixed and random effects. With-
out using any transformation, these measures are both around 34% and the
corresponding intraclass correlation (ICC) under the model is 0.02.

In order to explore the validity of the Gaussian assumptions underlying
the linear mixed regression model, it is appropriate to perform normality
tests and some residual diagnostics. The p-values of the Shapiro-Wilk (S-W)
test statistic are equal to 2.2 ·10−16 for the household-level and 0.002 for the
municipal-level. These results indicate that the null hypothesis of normality
for both terms has to be rejected. Additionally, Figure 1 presents the Normal
probability quantile-quantile (Q-Q) plots for household-level and municipal-
level residuals. As expected, in the case of using the non-transformed hciw
variable, the shape of the Q-Q plots is clearly different from what would be
expected under normality. In addition, the analysis of skewness and kurtosis
for both error terms is also informative. The skewness and kurtosis for a
Normal distribution are equal to zero and three, respectively. The results
for the skewness and kurtosis on the household-level are equal to 7.980 and
110.700, and on the municipal-level equal to 1.298 and 5.596. These results
indicate severe departures from Gaussian assumptions when modelling the
non-transformed income data.

As mentioned before, one solution to tackling this problem is based on
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Fig 1. Q-Q plots of the household- and municipal-level error terms

using transformations before opting for applying more complex methodolo-
gies. The challenge in this case is finding an appropriate transformation for
the data, such that the normality assumptions of the underlying model are
met.

4. Use of transformations. As previously seen in Sections 2 and 3,
the EBP method relies on strong distributional assumptions, which are
hardly fulfilled in applications with income data. To ensure normality, it
is very common to use a one-to-one transformation T (yij) = y∗ij of the
target variable y [23]. The application of the natural logarithmic transfor-
mation, which is a popular choice for income data, leads in many cases
from highly right-skewed to more symmetric distributions. This is the most
frequently used transformation in different research fields for dealing with
non-normality due to its simplicity and because no additional training for
users is required. However, can an alternative transformation with data-
driven transformation parameter λ, Tλ(yij) = y∗ij(λ), possibly offer small
area estimates with improved precision?
The structure of the Section is as follows: Firstly, in Section 4.1 we intro-
duce briefly the EBP approach with data-driven transformations. Secondly,
in Section 4.2 we propose likelihood-based approaches for estimating the
adaptive transformation parameter in general and discuss three particular
subcases - namely log-shift, Box-Cox and dual power transformations - in de-
tail. Thirdly, in Section 4.3 we discuss alternative approaches for estimating
the transformation parameter.
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4.1. EBP approach under transformations. In order to apply the EBP
method by using transformations, the linear mixed regression model given
in 2.1 is re-defined as follows:

y∗ij(λ) = xTijβ + ui + eij , ui
iid∼ N

(
0, σ2

u

)
and eij

iid∼ N
(
0, σ2

e

)
.(4.1)

Consequently, the EBP approach under transformations can be re-written
as follows:

1. Select a transformation and obtain Tλ(yij) = y∗ij(λ).

2. Use the transformed sample data to obtain θ̂
T

=
(
β̂, σ̂2

u, σ̂
2
e

)
and cal-

culate the weighting factors, γ̂i = σ̂2
u

σ̂2
u+

σ̂2e
ni

.

3. For l = 1, . . . , L:

(a) Generate v
(l)
i

iid∼ N
(
0, σ̂2

u(1− γ̂i)
)

and e
(l)
ij

iid∼ N
(
0, σ̂2

e

)
and obtain

a pseudo-population of the target variable by:

yij
∗(l) = xTijβ̂ + ûi + v

(l)
i + e

(l)
ij .

(b) Back-transform yij
∗(l) to the original scale y

(l)

ij = T−1
λ

(
y∗

(l)

ij

)
.

(c) Calculate the indicator of interest I
(l)
i in each area.

4. Finally, take the mean over the L Monte Carlo generations in each
region to obtain an approximation of the indicator of interest:

ÎEBPi =
1

L

L∑
l=1

I
(l)
i .

4.2. Likelihood-based approach for estimating λ. For the estimation of
the transformation parameter λ, the linear mixed regression model defined
in 4.1 is used. Assume that the transformed vectors y∗i are independent and
normally distributed for some unknown λ as follows:

y∗i (λ) ∼ N(µi,Vi) for i = 1, . . . , D,

where
µi = Xiβ and Vi = σ2

u1Ni1
′
Ni + σ2

eINi ,

with 1Ni a column vector of ones of size Ni and INi the Ni × Ni identity
matrix, the vector of unknown model parameters is θT = (β, σ2

u, σ
2
e , λ). The
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log-likelihood function under the model is defined as follows:

lML(y∗, λ|θ) = −n
2

log(2π)− 1

2

D∑
i=1

log|V i|

− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂].

The log-likelihood function in relation to the original observations is ob-
tained by multiplying the normal density by J(λ,y), the Jacobian of the

transformation from yi to y∗i (λ). The Jacobian is defined as
∏D
i=1

∏n
j=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣
and is incorporated as follows:

lML(y, λ|θ) = −n
2

log(2π)− 1

2

D∑
i=1

log|V i|

− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂] J(λ,y).

The maximization of lML(θ) produces maximum likelihood (ML) estimates
of the unknown parameters θ. However, in the theory of linear mixed re-
gression models, when interest focuses on accurate estimators of the vari-
ance components, restricted maximum likelihood (REML) theory is recom-
mended [24]. The REML function, in which the maximum possible number
of linear independent contrasts is n−p [25], does not depend on β is defined
as follows:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
D∑
i=1

XT
i Xi

∣∣∣∣∣− 1

2

D∑
i=1

log|V i|

− 1

2
log

∣∣∣∣∣
D∑
i=1

XT
i V
−1
i Xi

∣∣∣∣∣
− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂] J(λ,y).(4.2)

To take advantage of procedures for estimating λ already computationally
implemented we convert a transformation in a so-called, scaled transforma-

tion by
y∗ij(λ)

J(λ,y)
1
n

= z∗ij(λ). The scaled transformations are conditioned on the
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Jacobian, which is equal to 1. Therefore, the residual log-likelihood function
in terms of the original observations is that of the linear mixed regression
model:

lREML(z∗, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
D∑
i=1

XT
i Xi

∣∣∣∣∣− 1

2

D∑
i=1

log|V i|

− 1

2
log
∣∣∣ D∑
i=1

XT
i V
−1
i Xi

∣∣∣
− 1

2

D∑
i=1

[z∗i (λ)−Xiβ̂]TV −1
i [z∗i (λ)−Xiβ̂].

Although the theory is applicable to data-driven transformations in general,
we focus on three types of transformations, namely log-shift, Box-Cox and
dual power transformations as particular subcases. The first data-driven
transformation is called log-shift [26]. It is extending the logarithmic function
by including the transformation parameter λ as follows:

y∗ij(λ) = log(yij + λ).

When λ = 0, a logarithmic transformation is obtained. The second type is
the Box-Cox [10] transformation, which is defined by:

y∗ij(λ) =

{
(yij+s)

λ−1
λ if λ 6= 0,

log(yij + s) if λ = 0,

where s denotes a fixed parameter such that yij + s > 0 to enable the use of
the Box-Cox transformation. When λ = 0, the logarithmic transformation
is then a special case of this family and if λ = 1, the data are only shifted.
One difficulty with the Box-Cox type transformations is the long-standing
truncation, i.e. y∗ij(λ) is bounded, from below by 1

λ if λ > 0 and from above

by −1
λ if λ < 0. This is the key motivation for the third type of transforma-

tion. The dual power transformation introduced by Yang [27] is defined as
follows:

y∗ij(λ) =

{
(yij+s)

λ−(yij+s)
−λ

2λ if λ > 0,

log(yij + s) if λ = 0,

where s is defined as in the case of Box-Cox transformations.
The corresponding Jacobian used in Equation 4.2 and scaled versions

of the log-shift, Box-Cox and dual power transformations are presented in
Table 3. For more details we refer to the proofs in Appendix A.
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Table 3
Jacobian and scaled data-driven transformations for log-shift, Box-Cox and dual

Transformation Jacobian J Scaled transformation z∗ij(λ)

Log-Shift
∏D
i=1

∏n
j=1 y

−1
ij J

−1
n log(yij + λ)

Box-Cox
∏D
i=1

∏n
j=1 y

λ−1
ij

J
−1
n

(yij+s)
λ−1

λ
, if λ 6= 0

J
−1
n log(yij + s), if λ = 0

Dual
∏D
i=1(

∏n
j=1 y

λ−1
ij +y−λ−1

ij )
2

J
−1
n

(yij+s)
λ−(yij+s)

−λ

2λ
if λ 6= 0

J
−1
n log(yij + s) if λ = 0

4.3. Alternative approaches for estimating λ. According to [28] and [29],
different considerations about the likelihood-based method for estimating
the transformation parameter might be taken into account. Firstly, the ML
and REML approaches introduced in Subsection 4.2 rely on parametric as-
sumptions that may be influenced by outliers in the data. Secondly, the
selected transformation needs to be differentiable in order to guarantee the
existence of the Jacobian J of the transformation. A non-parametric alter-
native for estimating λ is to focus directly on optimizing the form of the
distribution of the error terms, for instance, by three- and four-moment
optimization strategies and by estimators based on divergence optimization.

As the kurtosis and skewness are crucial features for defining the shape
of a normal distribution, a proximity measure may be minimized in order to
achieve residuals whose skewness or kurtosis is as close as possible to zero
and three, respectively. In general, skewness is considered more disturbing
than kurtosis. Therefore, minimizing skewness is an approach already con-
sidered in literature in linear models [30]. In the context of linear mixed
regression models, an additional problem arises as there are two indepen-
dent error terms to be considered. We propose a pooled skewness approach
ensuring by a weight w that the larger the error term variance is, the more
importance will have its skewness in the optimization. Let Seλ and Suλ be
the skewness and σ2

eλ
and σ2

uλ
be the variance of the unit-level error terms

eij and the random area-specific effects ui of the linear mixed regression
model, respectively. In this case, the index λ is incorporated to emphasize
that the skewness and variances depend on the transformation parameter.
The functional form of the estimation criteria is defined as follows:
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λ̂skew = argmin
λ

|Seλ |,

λ̂poolskew = argmin
λ

(
w|Seλ |+ (1− w)|Suλ |

)
,

where w =
σ̂2
eλ

σ̂2
uλ

+ σ̂2
eλ

.

However, only considering skewness may ignore other properties of the
distribution. Hence, a measure describing the distance between two distri-
bution functions as a total might be another alternative. Two additional
measures are the Kolmogorov-Smirnov (KS) [16] and the Cramér-von Mises
(CvM) [15] distances:

λ̂KS = argmin
λ

sup |Fn(·)− Φ(·)|,

λ̂CvM = argmin
λ

∫ ∞
−∞

[Fn(·)− Φ(·)]2 φ(·),

where Fn(·) is the empirical cumulative distribution function estimated by
using the normalized residuals, Φ(·) is the distribution function of a stan-
dard normal distribution and φ(·) its density. A generalization to a pooled
measure as done for the skewness is applicable. The impact of alternative
estimation approaches for λ will be compared in a model-based simulation
study in Section 7.3.

5. MSE estimation under transformations. Molina and Rao [1]
have already pointed out that the estimation of MSE is a challenging prob-
lem in the case of the EBP. They propose a parametric bootstrap proce-
dure for the MSE estimation following the approach by González-Manteiga
et al. [31]. In this section we propose two bootstrap schemes for estimating
the MSE of the proposed transformed small area estimator we presented
in Section 4. These bootstrap MSE estimators are extended to capture the
additional uncertainty due to the estimation of the transformation parame-
ter λ. The difference between the bootstrap schemes is the mechanism used
for generating the bootstrap population. In particular, the first bootstrap
approach generates parametrically bootstrap realisations of the random ef-
fects and error terms. In contrast, the second one is a semi-parametric wild
bootstrap which protects against departures from the assumptions of the
regression model in particular, those of the unit-level error term.

The steps of the proposed parametric bootstrap are as follows:
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1. For b = 1, ..., B

(a) Using the sample estimates β̂, σ̂2
u, σ̂

2
e , λ̂ from the transformed data

T (yij) = y∗ij , generate u
(b)
i

iid∼ N
(
0, σ̂2

u

)
and e

(b)
ij

iid∼ N
(
0, σ̂2

e

)
and

simulate a bootstrap super-population yij
∗(b) = xTijβ̂+u

(b)
i +e

(b)
ij .

(b) Back-transform yij
∗(b) to the original scale y

(b)

ij = T−1
λ

(
y∗

(b)

ij

)
and

compute the population value of the indicator of interest Ii,b.

(c) Extract the bootstrap sample in yij
(b) and perform the EBP

method, as described in Section 4.1. Note, as the back-transformed
sample data are used, the transformation parameter λ is re-estimated
in each bootstrap replication b.

(d) Obtain ÎEBPi,b .

2. M̂SE
(
ÎEBPi

)
= B−1

∑B
b=1

(
ÎEBPi,b − Ii,b

)2
.

As mentioned before, the proposed parametric bootstrap accounts for the
additional uncertainty due to the estimation of the transformation param-
eter. Although the use of an optimal transformation reduces the deviation
from normality, there may still be small departures from normality, espe-
cially in the tails of the distributions of the unit-level error term affecting
the MSE estimation based on the parametric bootstrap proposed above. To
overcome this problem, we introduce a semi-parametric bootstrap approach
which relies on a normality assumptions of the random effects, but gener-
ates the unit-level error terms by a non-parametric approach. In particular,
the semi-parametric bootstrap extends the theory of wild bootstrap [32, 33]
to linear mixed regression models. The proposed wild bootstrap scheme is
described below:

1. Use the sample estimates β̂, σ̂2
u, σ̂

2
e , λ̂ from the transformed data T (yij) =

y∗ij .

2. Calculate the sample residuals by êij = yij − xTijβ̂ − ûi.
3. Scale and center the residuals according to σ̂e, which are denoted by
ε̂ij .

4. For b = 1, ..., B

(a) Generate u
(b)
i

iid∼ N(0, σ̂2
u).

(b) Calculate the linear predictor η
(b)
ij by η

(b)
ij = xTijβ̂ + u

(b)
i .

(c) Match the population η
(b)
ij and the sample η̂k = xTijβ̂+ ûi (k ∈ n)

by

min
k∈n

∣∣η(b)
ij − η̂k

∣∣
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and define k̃ as the corresponding index.

(d) Generate weights w from a distribution satisfying the conditions
in Feng et al. [34] where w is a simple two-point mass distribution
with probabilities 0.5 at w = 1 and w = −1, respectively.

(e) Calculate the bootstrap population as y
∗(b)
ij = xTijβ̂+u

(b)
i +wk|ε̂

(b)

k̃
|.

(f) Transform yij
∗(b) to original scale and compute the population

value Ii,b.

(g) Extract the bootstrap sample in yij
(b) and perform the EBP

method, as described in Section 4.

(h) Obtain ÎEBPi,b .

5. M̂SEwild

(
ÎEBPi

)
= B−1

∑B
b=1

(
ÎEBPi,b − Ii,b

)2
.

As the residuals are generated by a non-parametric approach, we expect that
the proposed wild bootstrap protects against departures from normality of
the unit-level error term. We will compare the performance of both MSE
estimators in a model-based simulation study in Section 7.

6. The Guerrero case study: Application of data-driven trans-
formations. In this section, the benefits of using the proposed EBP ap-
proach with data-driven transformation for the estimation of deprivation
and inequality indicators are illustrated in an application using the data
from the ENIGH survey 2010 and the National Population and Housing
Census 2010 introduced in Section 3. The aim is to estimate the head count
ratio (HCR) and the poverty gap (PGAP) introduced by Foster et al. [19] as
well as the income quintile share ratio (QSR) [20] for the 81 municipalities
in Guerrero.

Before we focus on the state of Guerrero, we shortly illustrate the need
for data-driven transformations in states in Mexico. Figure 2 represents the
estimated data-driven Box-Cox transformation parameters (by REML) for
each state in Mexico. These estimates vary between 0.13 and 0.37, showing
the adaptive feature of data-driven transformations for each state in Mex-
ico. Furthermore, we observe that a fixed logarithmic transformation is not
suitable for any of the states.

6.1. Model checking and residual diagnostics. We already observed in
Section 3 that the model assumptions of the linear mixed regression model
are not met. We now discuss the use of the proposed data-driven transfor-
mations to adapt the underlying model. In particular, we focus on the three
data-driven transformations presented in Section 4.2, denoted by Log-Shift,
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Fig 2. Estimated transformation parameters of the Box-Cox transformation in the different
states of Mexico

Box-Cox and Dual power transformations and their comparison to (a) a
model that use a logarithmic transformation (Log) and (b) a model that
uses the untransformed income variable (No).

To start with, Figure 3 provides a graphical representation of the REML
maximization for the transformation parameter λ for log-shift, Box-Cox and
dual power transformations. In this case the optimal λs are approximately
equal to 68.16, 0.26 and 0.30, respectively (cf. Table 4). In order to analyze
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Fig 3. Optimal transformation parameter λs for the log-shift, Box-Cox and dual power
transformations

whether the use of the transformations improves the predictive power of
the model, Table 4 reports the percentage of variability explained for each
model and its corresponding ICC. As the ICC is larger than 0 in all cases,
the use of a linear mixed regression model seems to be appropriate. Using
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the untransformed hciw data in the underlying model of EBP leads to a
marginal (R2

m) and conditional (R2
c) coefficients of determination of 0.33

and 0.35, respectively. The use of a logarithmic transformation improves the
predictive power of the model in terms of the conditional R2

c but it loses
in terms of marginal R2

m. However, it can clearly be noted that the use of
data-driven transformations increases the predictive power of the model.

Table 4
R2
m, R2

c , λs, and ICC for the working model under the different transformations

R2
m R2

c λ ICC

No 0.331 0.346 - 0.023
Log 0.263 0.416 - 0.207
Log-Shift 0.419 0.517 68.159 0.169
Box-Cox 0.439 0.517 0.263 0.140
Dual 0.443 0.517 0.304 0.132

Since the estimation of a linear mixed regression model and the EBP
method depend on distributional assumptions, a detailed analysis of the
Gaussian assumptions of the working models corresponding to each trans-
formation is carried out. The results summarizing the skewness, kurtosis
and S-W normality tests are presented in Table 5 and the Q-Q plots are
presented in Figure 4. It should be noted, that at municipal-level, all three
data-driven transformations perform similarly and yield good approxima-
tions to the normal distribution. In contrast, the household-level residuals
show clear departures from normality, especially under the model with a
fixed logarithmic transformation and without a transformation. The picture
considerably improves for the data-driven transformations. The log-shift,
Box-Cox and dual power transformations lead on average to very similar
results in terms of skewness and kurtosis, with only small differences. We
note that the log-shift transformation performs slightly better in terms of
kurtosis, but not in terms of skewness compared to the Box-Cox and dual
power transformation. These findings can also be supported by the Q-Q
plots displayed in Figure 4. The data-driven transformations lead to sim-
ilar Q-Q plots with more symmetrical and less extreme tails compared to
the fixed log transformation. We observe only minor differences between
the three data-driven transformations. For instance, it seems that the Box-
Cox and dual transformations slightly suffer from some outliers on the right
tail for the household-level residuals. Overall, it appears that the proposed
data-driven transformations improve the predictive power of the model and
clearly give better approximations to the underlying model assumptions of
the linear mixed regression model compared to using a fixed logarithmic
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transformation.

Table 5
Skewness, kurtosis and values of the S-W p-values for the municipal- and household-level

error terms of the working models for EBP under the different transformations

Household-level residuals Municipal-level residuals

Transformation Skewness Kurtosis p-value Skewness Kurtosis p-value

No 7.981 110.697 0.000 1.298 5.596 0.002
Log −1.480 6.653 0.000 −0.576 2.336 0.025
Log-Shift −0.346 3.895 0.000 −0.057 1.969 0.226
Box-Cox −0.118 5.311 0.000 −0.023 2.181 0.484
Dual −0.024 5.809 0.000 −0.005 2.242 0.627
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Fig 4. Q-Q-plots for the Pearson household-level (upper panels) and municipal-level (lower
panels) residuals of the working model for EBP under the different transformations

6.2. Deprivation and inequality indicators for municipalities in Guerrero.
Based on the analysis in Section 6.1, estimates for the deprivation and in-
equality indicators presented in Section 2 are calculated by using the EBP
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method under the three data-driven transformations and the fixed logarith-
mic transformation. MSE estimation is implemented with the wild bootstrap
we introduced in Section 5 with B = 500 bootstrap replications.

Table 6 shows summaries over municipalities of point estimates and root
MSEs (RMSEs) under the different transformations. We observe that the
estimates based on the EBP with data-driven transformations are more effi-
cient (in terms of RMSE) than the corresponding estimates based on a fixed
logarithmic transformation. It appears that transformations suggested by
the model checking and residual diagnostics lead to more efficient estimates.
The effect is especially pronounced for indicators that rely on the tail of the
distribution like the QSR. Note that we report in the application a modi-
fied QSR calculated as the ratio of total income received by the 40% of the
households with the highest income divided by the total income received
by the 40% of the households with the lowest income. Furthermore, the
use of data-driven transformations also has an effect on the point estimates
of the indicators. Especially for the HCR and PGAP, the three data-driven
transformations result in very similar results, which are different to the EBP
estimates under the model that uses the logarithmic transformation.

Table 6
Summaries of point estimates and corresponding RMSEs over municipalities in Guerrero

Point Estimation HCR PGAP QSR

Transformation Mean Median Mean Median Mean Median

Log 0.64 0.66 0.46 0.47 56.03 54.64
Log-Shift 0.56 0.59 0.35 0.36 18.06 15.83
Box-Cox 0.55 0.57 0.37 0.38 23.53 22.71
Dual 0.54 0.57 0.37 0.38 27.79 25.11

RMSE HCR PGAP QSR

Transformation Mean Median Mean Median Mean Median

Log 0.12 0.12 0.11 0.13 90.96 86.23
Log-Shift 0.10 0.11 0.09 0.09 8.73 5.92
Box-Cox 0.10 0.10 0.09 0.09 7.03 6.11
Dual 0.09 0.10 0.09 0.09 7.71 6.55

Having assessed the estimates from a statistical perspective, we investi-
gate the results in the context of spatial distribution of poverty and inequal-
ity in the state Guerrero. Figure 5 presents the point estimates of HCR,
PGAP and QSR at municipal-level. As the point estimates based on the
three data-driven transformations are almost identical, we only show here
the results for the EBP with log-shift transformation. We observe clearly
regional differences between the municipalities. Having a closer look to the
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coastal area in the south-west of Guerrero, where the largest city of Guerrero,
Acapulco, is located, we observe lower levels of poverty (HCR and PGAP)
and inequality (QSR) compared to other parts of the state. The coastline
to the Pacific Ocean is wealthier due to several tourist destinations like
Acapulco, Ixtapa and Zihuatanejo. In contrast, there is also a clear hotspot
in the eastern part of the state Guerrero (e.g. municipalities: Metlatnoc,
Malinaltepec and Atlixtac) with high poverty and inequality rates. These
municipalities are the home of ethnic groups indigenous and most of them
live in isolated mountain areas.
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Fig 5. Maps of the HCR, PGAP and QSR in Guerrero for the EBP method under the
log-shift transformation at municipal-level

7. Model-based simulation study. In this section, we present results
from a model-based simulation study in order to evaluate the performance
of the EBP method under data-driven transformations presented in Sec-
tion 4. The objective of the simulation study is fourfold: Firstly, we analyze
the behaviour of the data-driven transformation parameter under four dif-
ferent distributions in Section 7.1. Secondly, we investigate the ability of
the proposed EBP method under data-driven transformations to account
for different shapes of distributions in Section 7.2, and hence provide more
precise small area estimates than the EBP with a fixed logarithmic or with-
out a transformation. Thirdly, we discuss the performance of the proposed
MSE estimators introduced in Section 5. Finally, the sensitivity of the pro-
posed methodology in relation to the estimation method for the data-driven
transformation parameter is assessed in Section 7.3.

We generate finite populations U of size N = 10000, partitioned into
D = 50 areas U1, U2, . . . , UD of sizes Ni = 200. The samples are selected
by a stratified random sampling with strata defined by the 50 small areas.
This leads to a sample size of n =

∑D
i=1 ni = 921 whereby the area-specific

sample sizes ni vary between 8 and 29. Four scenarios, denoted by Normal,
Log-scale, Pareto and GB2, are considered. Details about the data gener-
ating mechanisms of the different scenarios are provided in Table 7. Under
scenario Normal, data are generated by using Normal distributions for the
random effects and error terms - using untransformed data should be ap-
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propriate. In contrast, the second scenario Log-scale generates data under
a log-normal distribution such that a fixed logarithmic transformation is
suitable. Scenarios Pareto and GB2 are settings where the data are right-
skewed, like in the case of income distributions. Each setting was repeated
independently M = 500 times. We focus on the three data-driven trans-
formations presented in Section 4.2, namely log-shift, Box-Cox and dual
power transformations, compared to a fixed logarithmic transformation and
without a transformation.

Table 7
Model-based simulation settings for the analysis of the MSE

Scenario Model xij zij µi ui eij

Normal 4500− 400xij + ui + eij N(µi, 3) - U [−3, 3] N
(
0, 5002

)
N(0, 10002)

Log-scale exp(10− xij − 0.5zij + ui + eij) N(µi, 2) N(0, 1) U [2, 3] N
(
0, 0.42

)
N(0, 0.82)

Pareto 12000− 400xij + ui + eij − ē N(µi, 7.5) - U [−3, 3] N
(
0, 5002

) √
2Pareto(3, 20002)

GB2 8000− 400xij + ui + eij − ē N(µi, 5) - U [−1, 1] N
(
0, 5002

)
GB2(2.5, 1700, 18, 1.46)

7.1. Behaviour of the data-driven transformation parameters. Before we
assess the performance of the EBP under different data-driven transforma-
tions in Section 7.2, we have a first look to the behaviour of the estimated
transformation parameters in Figure 6. In particular, the figure shows the
box-plots of the estimated transformation parameters λ for log-shift, Box-
Cox and dual power transformations (over M = 500 replications) for the
four settings presented in Table 7. The data-driven transformation param-
eters are estimated by REML introduced in Section 4.2. To start with, in
the Normal setting, the parameters of the Box-Cox and dual power trans-
formations tend to one indicating that no transformation is needed. In the
Log-scale scenario, the data was generated in such a way that normality
may be achieved by applying the logarithmic transformation. As expected,
the log-shift transformation parameters tend to zero, for which the log-shift
transformation is equivalent to the logarithmic transformation. The same be-
haviour can be observed for the Box-Cox and dual power transformations,
as the estimated transformation parameters are close to zero, corresponding
to using the logarithmic transformation. For the other two scenarios (Pareto
and GB2 ), the data-driven parameters lie between 0.25 and 0.5, so neither
using a logarithmic transformation or no transformation seems to be ap-
propriate. Note, the log-shift transformation parameter has only a natural
interpretation for λ = 0 as the shift-parameter depends on the scale of the
data.

Overall, the results indicate that the data-driven transformations behave
as expected in the four scenarios and adapt to the different shape of the
distributions.
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Fig 6. Estimated transformation parameters for the log-shift, Box-Cox and dual power
transformations under the different settings.

7.2. Performance of the EBP under data-driven transformations. In this
section, we evaluate the performance of the proposed EBP method under
data-driven transformations compared to a fixed logarithmic and without
a transformation. Afterwards, we assess the performance of the introduced
MSE estimators.

Five estimators of small area population indicators are evaluated. These
are the EBP without transformation introduced in Section 2 and the EBP
with a fixed logarithmic transformation. Furthermore, we analyze the EBP
with three data-driven transformations (log-shift, Box-Cox and dual power
transformations). For estimating the EBPs and the corresponding MSE es-
timates, the parameters L and B are set to 100 and 500, respectively. The
choice is justifiable, as Molina and Rao [1] suggest that a choice around 50
gives fairly accurate results. The following quality measures, over Monte-
Carlo replications M , are used to assess the performance of a small area
estimator in area i:

RMSE
(
Îmethod

)
=

[
1

M

M∑
m=1

(
Î

method(m)
i − I(m)

i

)2
]1/2

,

Bias
(
Îmethod

)
=

1

M

M∑
m=1

(
Î

method(m)
i − I(m)

i

)
,

where Îmethod
i denotes an estimated indicator in area i based on any of the

five methods discussed above and Ii denotes the corresponding true value in
area i. To be precise, we evaluate three different indicators Ii (HCR, PGAP
and QSR) which tackle different parts of the distribution. The indicators
HCR and PGAP depend on a poverty line t which is equal to 0.6 times the
median of the target variable. In contrast, the QSR depends on the lower
and upper 20% of the estimated distribution and is sensitive to the tails.
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Table 8
Summaries of estimated RMSEs and Bias over the model-based settings

Indicator HCR PGAP QSR

Estimator Median Mean Median Mean Median Mean

Normal

RMSE No 0.0338 0.0357 0.0136 0.0154 0.3259 1.2765
Log-Shift 0.0344 0.0363 0.0155 0.0175 0.3898 0.6710
Box-Cox 0.0343 0.0358 0.0134 0.0156 0.3348 1.1178
Dual 0.0343 0.0358 0.0134 0.0156 0.3346 0.5797

BIAS No 0.0000 0.0007 0.0002 0.0009 0.0049 0.0899
Log-Shift 0.0029 0.0039 -0.0067 -0.0076 -0.1000 -0.2190
Box-Cox 0.0016 0.0027 -0.0021 -0.0025 -0.0396 -0.0807
Dual 0.0016 0.0027 -0.0021 -0.0024 -0.0458 -0.1193

Log-Scale

RMSE Log 0.0583 0.0605 0.0358 0.0367 4.9100 4.8969
Log-Shift 0.0583 0.0605 0.0358 0.0367 4.9024 4.8985
Box-Cox 0.0581 0.0604 0.0358 0.0367 4.9731 4.9717
Dual 0.0584 0.0605 0.0359 0.0367 4.9025 4.9093

BIAS Log -0.0011 -0.0009 -0.0007 -0.0003 0.0394 0.1143
Log-Shift -0.0020 -0.0017 -0.0011 -0.0007 -0.0873 -0.0072
Box-Cox -0.0009 -0.0006 -0.0008 -0.0004 0.1499 0.2106
Dual -0.0024 -0.0021 -0.0009 -0.0005 -0.1610 -0.0992

GB2

RMSE No 0.0650 0.0656 0.0552 0.0552 17.7364 32.0686
Log 0.0912 0.0908 0.0272 0.0270 1.8979 1.9002
Log-Shift 0.0418 0.0415 0.0127 0.0132 0.4286 0.4411
Box-Cox 0.0471 0.0469 0.0136 0.0139 0.4708 0.4753
Dual 0.0472 0.0470 0.0137 0.0140 0.4715 0.4760

BIAS No 0.0471 0.0477 0.0481 0.0479 1.8355 2.0825
Log 0.0746 0.0747 0.0169 0.0169 1.4718 1.4692
Log-Shift 0.0176 0.0179 -0.0008 -0.0013 0.0546 0.0523
Box-Cox 0.0274 0.0274 0.0035 0.0031 0.1780 0.1721
Dual 0.0275 0.0274 0.0037 0.0034 0.1800 0.1747

Pareto

RMSE No 0.0448 0.0444 0.0622 0.0613 1.6814 3.6057
Log 0.0304 0.0306 0.0082 0.0084 0.3887 0.3994
Log-Shift 0.0185 0.0196 0.0060 0.0063 0.1661 0.1779
Box-Cox 0.0192 0.0202 0.0059 0.0062 0.1786 0.1901
Dual 0.0192 0.0203 0.0059 0.0062 0.1782 0.1902

BIAS No 0.0277 0.0287 0.0166 0.0160 0.3173 0.3132
Log 0.0086 0.0081 -0.0030 -0.0037 0.2068 0.2034
Log-Shift 0.0003 -0.0001 -0.0034 -0.0041 0.0305 0.0300
Box-Cox 0.0030 0.0026 -0.0031 -0.0037 0.0525 0.0530
Dual 0.0030 0.0027 -0.0031 -0.0037 0.0522 0.0530
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Table 9
Performance of MSE estimators in model-based simulations: EBP with Box-Cox

transformation

Indicator HCR PGAP QSR

Estimator Median Mean Median Mean Median Mean

Normal

rel. RMSE[%] Parametric 8.30 9.22 9.15 9.47 15.25 21.23
Wild 14.57 14.77 14.21 14.61 17.46 20.93

rel. Bias[%] Parametric 6.64 7.27 -1.17 -0.12 -7.72 -12.61
Wild 8.05 8.04 2.17 3.23 -1.01 -1.46

Log-Scale

rel. RMSE[%] Parametric 11.14 12.00 19.19 19.57 19.10 19.75
Wild 16.82 17.00 22.70 22.95 25.34 25.62

rel. Bias[%] Parametric 6.10 6.29 5.70 6.36 7.91 7.92
Wild 7.69 7.82 7.34 7.39 6.58 6.78

GB2

rel. RMSE[%] Parametric 21.71 21.86 20.89 20.57 43.75 43.58
Wild 19.01 19.39 14.76 15.12 26.21 27.23

rel. Bias[%] Parametric -20.04 -19.74 -16.88 -15.92 -42.90 -42.74
Wild -14.59 -14.64 -5.45 -5.75 -21.72 -22.53

Pareto

rel. RMSE[%] Parametric 11.31 12.60 35.60 34.78 50.04 51.63
Wild 26.18 28.44 23.58 26.04 28.60 33.40

rel. Bias[%] Parametric 2.43 3.38 -33.82 -31.16 -49.51 -51.06
Wild 19.21 21.37 -8.28 -3.28 -23.02 -26.79

Table 8 presents the results split by the four scenarios. The table presents
median and mean values of RMSE and bias over small area. Under the Nor-
mal scenario the EBP without transformation is the gold standard. How-
ever, the EBP with data-driven transformations (log-shift, Box-Cox and
dual power) perform similar in terms of RMSE and bias. It can be observed
that all estimators are almost unbiased in the Normal scenario. The same
picture holds in the Log-scale scenario where the EBP with a logarithmic
transformation is the gold standard. Again, it seems the EBP with data-
driven transformations perform more or less on the same level in terms of
RMSE and bias for all three indicators. The results confirm our expectations
that the EBP with data-driven transformations adapt to the shape of the
underlying distributions in the Normal and Log-scale settings and perform
similarly compared to the EBP with optimal transformation. Under GB2
and Pareto scenarios we notice that the EBP with fixed transformations
(either a logarithmic or without a transformation) is inferior to the EBP
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with data-driven transformations in terms of RMSE and Bias for all three
indicators. The differences are especially pronounced for the QSR which is
very sensitive to the tails of the distribution, whereas the HCR and PGAP
only depend on the lower quantiles. Furthermore, the estimates based on
data-driven transformations are almost unbiased or reveal only a small bias
for the three indicators. A closer look at the data-driven transformations
might indicate that EBP with a log-shift transformation perform somewhat
better compared to the EBP with Box-Cox and dual power transformations
in these particular settings. Overall, it seems that the proposed EBP method
with data-driven transformations account for different shapes of distribu-
tions, and hence provide more precise small area estimates than the EBP
with a fixed logarithmic or without a transformation in the four particular
settings.

We now turn to the performance of the different MSE estimators. We
denote by parametric and wild the proposed parametric bootstrap and pro-
posed semi-parametric wild bootstrap respectively. The aim of this part is
twofold: Firstly, we assess the performance of the two proposed MSE estima-
tors introduced in Section 5. Secondly, we investigate the potential feature
of the wild bootstrap to protect against departures from the assumptions of
the unit-level error term. Starting with the first aim, Table 9 reports the re-
sults for the two MSE estimators and presents the mean and median values
of relative RMSE and relative Bias for the EBP with Box-Cox transforma-
tion. We treat the empirical MSE (over Monte-Carlo replications) as the true
MSE. The corresponding results for the EBP with a log-shift transformation
and dual power transformation are available on request from the authors.
We note that, on average, the proposed parametric and wild bootstrap ap-
proaches for the EBP with a Box-Cox transformation are almost unbiased
for the HCR and PGAP in the Normal and Log-scale settings. However,
the parametric bootstrap schemes shows some underestimation (in terms of
rel. Bias) for QSR. Overall, it seems that both bootstrap approaches lead to
reasonable results, provided the population model is correct. Under the GB2
and Pareto settings, both bootstraps show a negative bias, especially for the
QSR. Nevertheless, the wild bootstrap provides reasonable results for HCR
and PGAP and reduces the underestimation for QSR. The results indicate
that even small departures from the model assumptions can have an adverse
effect on MSE estimation based on the parametric bootstrap of non-linear
indicators, computation of which depends on the entire target distribution
like QSR. In contrast, the wild bootstrap protects somehow against small
departures from the model assumptions of the unit-level error term and pro-
vides more conservative results than the parametric bootstrap scheme in the
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simulation study presented here.

7.3. Impact of alternative estimation methods for λ. In Section 4.3 we
proposed non-parametric alternatives to the REML method in order to ob-
tain data-driven transformation parameters. Here, we briefly discuss the im-
pact of five estimation methods. These are the REML approach introduced
in Section 4.2, the minimization of the skewness (Skew) and the pooled skew-
ness (poolSkew), and the distance-based criteria Kolomogorov-Smirnon (KS )
and the Cramér-von Mises (CvM ) defined in Section 4.3. In our particular
simulation scenarios, introduced in Table 7, we observed that the resulting
point and MSE estimates are only marginally influenced by the estimation
method of the transformation parameter. The five methods estimate pa-
rameters close to the theoretically correct ones, in the scenarios those are
known. For instance, in the Log-scale scenario, the estimated transformation
parameters under the different estimation methods are shown in Figure 7.
We observe that the five methods result in similar estimates for the trans-
formation parameter λ, but the REML method, discussed in detail before,
tends to have a smaller variability. Table 10 shows the mean and median
values of the estimated transformation parameters. From this, it becomes
clear that all estimation methods result on average into parameters that are
very close to the theoretically correct ones in this particular scenario.
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Fig 7. Box-plots of estimated transformation parameters for the log-scale scenario using
different estimation methods

8. Conclusions and future research directions. In this paper, we
proposed data-driven transformations for small area estimation. In particu-
lar, we introduced the EBP approach with data-driven transformations in
general and proposed a likelihood-based approach for estimating the adap-
tive transformation parameter. The scaled transformations are conditional
on the Jacobian, such that standard software procedures for estimating the



EBP UNDER DIFFERENT TYPES OF TRANSFORMATIONS 27

Table 10
Mean and median of estimated transformation parameters under the log-scale scenario

using different estimation methods

Log-Shift Box-Cox Dual

Mean Median Mean Median Mean Median

poolSkew 9.381 0.000 -0.002 -0.002 0.016 0.000
Skew 9.381 0.000 -0.002 -0.002 0.015 0.000

KS 23.906 10.816 -0.003 -0.003 0.009 -0.001
CvM 11.954 0.211 -0.004 -0.005 0.025 0.001

REML 3.349 0.000 -0.002 -0.001 0.021 0.000

optimal transformation parameter can be used. Although the theory is in-
troduced for data-driven transformations in general, we additionally discuss
three subcases (log-shift, Box-Cox and dual power transformations). As the
likelihood-based approaches are based on parametric assumptions, we also
propose non-parametric alternatives for estimating the adaptive transforma-
tion parameter. Model-based simulations demonstrate the ability of the pro-
posed EBP method with data-driven transformations to account for different
shapes of distributions and, hence, provide more efficient results compared
to using a fixed logarithmic transformation. Although the paper focuses on
the EBP as a specific small area estimator, the proposed data-driven trans-
formations are applicable to other small area estimators, for example the
ELL [2].

However, even if the optimal data-driven transformation of the data has
been found, there may still be departures from model assumptions. Such
departures can affect the quality of the small area estimates and can impact
the quality of the precision estimates - in terms of MSE - based on the use of
a parametric bootstrap. Therefore, we also proposed a semi-parametric wild
bootstrap that (a) protects against departures from model assumptions in
particular, those of the unit-level error term and (b) captures the additional
uncertainty coming from the estimation of the data-driven transformation
parameter. Finally, we demonstrated the need for data-driven transforma-
tions in an application based on data from the state Guerrero in Mexico by
estimating poverty and inequality indicators for 81 municipalities.

Further research should investigate additional transformation families, es-
pecially multi-parameter families. As different indicators might me more sen-
sitive to different parts of the distributions (center or tails), this may allow
for a better control of higher moments, like the kurtosis, and could lead to po-
tentially more efficient results. Additionally, further research could compare
the parametric and non-parametric methods for estimating the data-driven
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transformation parameter in more detail. As likelihood-based approaches
might be influenced by outliers in data, it would be interesting to inves-
tigate the robust estimation methods proposed by [35] and to study the
influence of outliers and their effect after deletion in the context of trans-
formations following [36, 37]. Finally, we discussed one possible approach
to accounting for departures from normality in the EBP method proposed
by Molina and Rao [1]. Alternative approaches formulate the EBP under
more flexible parametric assumptions [6, 7] or use methodology that min-
imises the use of parametric assumptions [8]. A detailed comparison of the
different approaches under realistic settings is an open research problem.

APPENDIX A: LIKELIHOOD DERIVATION OF THE
TRANSFORMATIONS

We derive the Jacobian and the corresponding scaled data-driven trans-
formations presented in Table 3 for the log-shift, Box-Cox, and dual power
transformations, as outlined below.

A.1. Log-Shift transformation. Let J(λ,y) be the Jacobian of the
log-shift transformation presented in Section 4 from yi to y∗i (λ), defined as:

J(λ,y) =
D∏
i=1

n∏
j=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣
=

D∏
i=1

n∏
j=1

(yij + λ)−1.

Therefore, the log-likelihood function given in 4.2 is re-defined as:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
D∑
i=1

XT
i Xi

∣∣∣∣∣− 1

2

D∑
i=1

log|V i|

− 1

2
log

∣∣∣∣∣
D∑
i=1

XT
i V
−1
i Xi

∣∣∣∣∣
− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂]

×n(−1) log

(
D∏
i=1

ni∏
j=1

yij+λ

) 1
n

.
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Taking the definition of the geometric mean of a variable:

ȳ =

(
D∏
i=1

ni∏
j=1

yij

) 1
n

.

In case of using the log-shift transformation, ȳ is denoted by:

ȳ =

(
D∏
i=1

ni∏
j=1

yij + λ

) 1
n

.

The log-likelihood function presented is re-written as follows:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log

∣∣∣∣∣
D∑
i=1

XT
i Xi

∣∣∣∣∣− 1

2

D∑
i=1

log|V i|

− 1

2
log

∣∣∣∣∣
D∑
i=1

XT
i V
−1
i Xi

∣∣∣∣∣
− 1

2

D∑
i=1

[y∗i (λ)−Xiβ̂]TV −1
i [y∗i (λ)−Xiβ̂]

×n(−1) log(ȳ).

In order to obtain the scaled log-shift transformation, z∗ij(λ), the denom-

inator of the term
y∗ij(λ)

J(λ,y)1/n
is given as:

1/J(λ,y)
1
n =

[{(
D∏
i=1

ni∏
j=1

yij

) 1
n
}n ] 1

n

= ȳ.

Therefore, the scaled log-shift transformation is defined as follows:

z∗ij(λ) = ȳ log(yij + λ)

for yij > 0.
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A.2. Box-Cox transformation. Let J(λ,y) be the Jacobian of the
Box-Cox transformation presented in Section 4 from yi to y∗i (λ), defined as:

J(λ,y) =

D∏
i=1

n∏
j=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣
=

D∏
i=1

n∏
j=1

yλ−1
ij .

Therefore, the log-likelihood function given in 4.2 is re-defined as:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1
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.

Taking the definition of the geometric mean of a variable:

ȳ =

(
D∏
i=1

ni∏
j=1

yij

) 1
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.

The log-likelihood function presented is re-written as follows:

lREML(y, λ|θ) = −n− p
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In order to obtain the scaled transformation of the Box-Cox family, z∗ij(λ),

the denominator of the term
y∗ij(λ)

J(λ,y)1/n
is given as:

1/J(λ,y)
1
n =

[{(
D∏
i=1

ni∏
j=1

yij

) 1
n
}−n(λ−1) ] 1

n

= ȳ−(λ−1).

Therefore, the scaled Box-Cox transformation is defined as follows:

z∗ij(λ) =

{
yλij−1

ȳλ−1λ
if λ 6= 0,

ȳ log(yij) if λ = 0.

for yij > 0. Including the shift parameter s, the scaled Box-Cox transforma-
tion would be written as:

z∗ij(λ) =

{
(yij+s)

λ−1

ȳλ−1λ
, λ 6= 0,

ȳ log(yij + s), λ = 0,

whereby the geometrical mean of the scaled Box-Cox transformation is de-
fined as:

ȳ =

D∏
i=1

n∏
j=1

(yij + s)
1
n

A.3. Dual power transformation. Let J(λ,y) be the Jacobian of
the dual power transformation from yi to y∗i (λ), defined as:

J(λ,y) =
D∏
i=1

n∏
j=1

∣∣∣∣∣dy∗ij(λ)

dyij

∣∣∣∣∣
=

∏D
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(∏n
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ij + y−λ−1

ij

)
2

,

In case of using the dual transformation, ȳ is denoted by:
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) 1
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) 1
n

if λ = 0.
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In case λ = 0, the derivation below is equivalent to the second case of the
Box-Cox (λ = 0). In case λ > 0 the log-likelihood function can be defined
as:

lREML(y, λ|θ) = −n− p
2

log(2π) +
1

2
log
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× n

2
log
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) 1
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.

Taking the term in the denominator of the dual transformation, it holds:

1/J(λ,y)1/n =

[[(∏D
i=1

∏ni
j=1 y

λ−1
ij + y−λ−1

ij

2

)1/n]−n] 1
n

= 2ȳ−1

Therefore, incorporating the fixed parameter s, the scaled dual power
transformation is defined as follows:

z∗ij(λ) =

{
2ȳ−1 (yij+s)

λ−(yij+s)
−λ

2λ if λ > 0;

ȳ−1 log(yij + s) if λ = 0.
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[22] S. Nakagawa and H. Schielzeth. A general and simple method for obtaining r2 from
generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2):
133–142, 2013.

[23] H. Thoni. Transformation of variables used in the analysis of experimental and
observational data: A review. Journal of the American Statistical Association, 64
(327):1099, 1969.

[24] G. Verbeke and G. Molenberghs. Linear mixed models for longitudinal data, volume 1.
Springer Series in Statistics, 2000.

[25] D. A. Harville. Bayesian inference for variance components using only error contrasts.
Biometrika, 61(2):383–385, 1974.

[26] Q. Feng, J. Hannig, and J. S. Marron. A note on automatic data transformation.
Stat, 2016.

[27] Z. Yang. A modified family of power transformations. Economics Letters, 92:14–19,



34 N. ROJAS-PERILLA, S. PANNIER, T. SCHMID AND N. TZAVIDIS

2006.
[28] D. V. Hinkley. On power transformations to symmetry. Biometrika, 62:101–111,

1975.
[29] R. Sakia. The box-cox transformation technique: A review. Journal of the Royal

Statistical Society: Series D, 41(2):169–178, 1992.
[30] P. Royston and P. C. Lambert. Flexible parametric survival analysis using Stata:

Beyond the Cox model. StataCorp LP, 2011.
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