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Alpha-Synuclein (a-Syn) accumulation is considered a major risk factor for the development of synucleino-
pathies such as Parkinson’s disease (PD) and dementia with Lewy bodies. We have generated mice over-
expressing full-length human a-Syn fused to a membrane-targeting signal sequence under the control of the
mouse Thyl-promotor. Three separate lines (L56, L58 and L62) with similar gene expression levels, but con-
siderably heightened protein accumulation in L58 and L62, were established. In L62, there was widespread
labelling of a-Syn immunoreactivity in brain including spinal cord, basal forebrain, cortex and striatum.
Interestingly, there was no detectable a-Syn expression in dopaminergic neurones of the substantia nigra, but
strong human a-Syn reactivity in glutamatergic synapses. The human a-Syn accumulated during aging and
formed PK-resistant, thioflavin-binding aggregates. Mice displayed early onset bradykinesia and age progressive
motor deficits. Functional alterations within the striatum were confirmed: L62 showed normal basal dopamine
levels, but impaired dopamine release (upon amphetamine challenge) in the dorsal striatum measured by in vivo
brain dialysis at 9 months of age. This impairment was coincident with a reduced response to amphetamine in
the activity test. L62 further displayed greater sensitivity to low doses of the dopamine receptor 1 (D1) agonist
SKF81297 but reacted normally to the D2 agonist quinpirole in the open field. Since accumulation of a-Syn
aggregates in neurones and synapses and alterations in the dopaminergic tone are characteristics of PD, phe-
notypes reported for L62 present a good opportunity to further our understanding of motor dysfunction in PD
and Lewy body dementia.

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegen-
erative disease and the most common movement disorder in humans
[1,2]. The current treatments for PD are symptomatic and a disease
modifying therapy is not yet available [3]. PD is characterised by the
presence of intraneuronal Lewy bodies composed mainly of a-Synuclein
(a-Syn) aggregates and fibrils [4]. Moreover, multiplications and mu-
tations in the SNCA gene that encodes a-Syn are associated with

increased risk for PD [5-7]. Typically, PD is characterised by bradyki-
nesia, rigidity and tremor [8] caused by dopamine (DA) depletion as a
result of degeneration of dopaminergic neurones in the midbrain that
have their axonal projections to the striatum, the main basal ganglia
input structure [9]. Non-motor symptoms such as olfactory deficits,
cognitive deficits and mood disorders represent frequent co-morbidities
that may precede movement impairment [10-12].

a-Syn is highly expressed in the brain and to a lesser extent in a
variety of peripheral organs [13]. It is concentrated in presynaptic
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nerve terminals and involved in vesicle trafficking and release, possibly
through direct or indirect interactions with the SNARE complex
[4,14,15]. In disease conditions, oligomerised and aggregated a-Syn
cause synaptic toxicity and neuronal degeneration [16]. During disease
progression non-dopaminergic neurotransmitter systems can be af-
fected, including cholinergic, serotonergic, GABAergic and nora-
drenergic driven circuitries [17,18]. Although the underlying me-
chanisms are yet to be defined, proposed actions for a-Syn include the
promotion of oxidative stress, mitochondrial dysfunction and neuroin-
flammation or the disturbance of neurotransmission via its ability to
interact with synaptic vesicles or the dopamine transporter [4,15,19].
Since a-Syn is believed to induce neurotoxicity and PD, several a-Syn-
based mouse models have been created to capture PD-related features
[20-23]. Given the high prevalence of sporadic cases of PD, innovative
models that express human full length a-Syn are predicted to be more
physiologically relevant. One such model is presented here.

DA imbalance in the striatum is a critical neurochemical substrate
for basal ganglia dysfunction in PD [24,25]. Cortical control of the
GABAergic spiny projection neurones in the striatum is modulated by
DA through switching between movement promoting direct and sup-
pressing indirect pathways. Both pathways have anatomical con-
nectivity with the substantia nigra and express dopamine type 1 (D1)
and type 2 (D2) receptors, respectively [26,27]. Loss of substantia nigra
neurones depletes striatal DA and leads to a frank loss of spines and
asymmetric synapses in the indirect pathway [28]. As a corollary, there
is an imbalance between direct- and indirect-pathway causing the
Parkinsonian movement disorder [29,30].

Here, we report a set of transgenic mouse models overexpressing
full-length human a-Syn fused to a membrane-targeting signal sequence
under the control of the mouse Thyl-promotor (h-a-Syn). Transgenic
offspring from three different founder animals exhibited widespread h-
a-Syn expression in cortical and subcortical regions and the degree of
transgenic protein levels defined the severity of motor impairments;
L62 mouse had greatest levels of a-Syn expression, which accumulated
during ageing and formed PK-resistant, thioflavin-binding aggregates.
Release and turnover of dopamine were impaired in aged mice (9
months), but altered responsiveness to SKF81297 was already present
in young (3 months) mice despite the lack of transgene expression in
dopaminergic neurones. These data re-iterate two important functional
features of PD in our transgenic models and may provide a novel means
for understanding the emergence and progression of striatal dysfunc-
tion in PD.

2. Materials and methods
2.1. Transgenic mice

Transgenic mice were generated by GenOway (Lyon, France). The
F3.8 construct carrying a full-length h-a-Syn transgene was inserted
into a pTSC21k expression vector with the Thy1-promotor, according to
standard procedures (Fig. 1A). Notl linearised and purified transgenic
construct was microinjected into C57BL/6J wild-type (WT) male pro-
nucleus and fertilized oocytes were inseminated following standard
procedures. Founder mice were identified by Southern blot and PCR
screening from genomic DNA (forward and reverse primers were
ggatctcaagcectcaaggtaaatgg and tccacgccagcecagaatttatatge, respec-
tively; 1127 bp product) and independent homozygous transgenic lines
were generated from founder animals. All behavioural experiments
were conducted in accordance with the German Law for Animal Pro-
tection (Tierschutzgesetz) and the European Community Directive 63/
2010/EU.

Male and female homozygous transgenic and WT mice were housed
in small colonies in Macrolon type III (Techniplast, Brescia, Italy) cages
during experimentation. Three different lines from the same DNA
construct (h-a-SynL56, h-a-SynL58, h-a-SynL62 hereinafter termed
L56, L58 and L62) were maintained in climatised holding rooms (20 °C
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Fig. 1. Generation of transgenic mice expressing human a-Syn under the control of the
mouse Thyl-promotor. (A) Structure of the full-length h-a-Syn construct F3.8 (428 bp)
inserted into a Thyl expression cassette. (B) Three independent h-a-Syn transgenic lines
originated from independent founder mice, named L56, L58 and L62, expressed similar
levels of transgene mRNA. (C) Urea-extracted proteins from whole brain homogenate
analysed by Tris-tricine SDS-PAGE and immunoblotting confirmed abundance of h-a-Syn
(mAb 204) in all three transgenic lines but not in WT mice. Full-length bacterial h-a-Syn
was included as a positive control.

and 40% humidity) with a 12 h light/dark cycle (lights on at 6 am) with
food and water ad libitum. Details of genetic background, cohort sizes,
gender distribution, age profiles, behavioural test procedure and
pharmacological treatment of animals tested in each experiment are
summarised in Table 1; these are not sums as some animals were tested
in multiple protocols and brains were harvested from all animals. Ty-
pically, animals were derived from 3 to 4 litters and group housed
immediately following weaning in cohorts of 3-6 mice separated by
gender. Prior to experimentation, subjects were randomly assigned to
drug groups with some limitations. Animals in each cage received the
same drug and dose and were randomly tested throughout the day (9
am-4 pm with gender and transgenic line counterbalanced across the
day to avoid variation). The experimenter was not blind to the condi-
tion of the animal, but histological quantifications were done by an
experimenter blind to the genotype and drug condition.

From the initial characterisation, it became obvious that maximum
levels of h-a-Syn positive cells were attained no later than 6 months of
age. We therefore speculated that younger mice may be pre-sympto-
matic, especially when expressing h-a-Syn at low levels (such as L56
and 58) while cohorts aged 6 months or more could be categorised as
symptomatic.

2.2. Brain tissue harvest

Mice were euthanised by cervical dislocation, the top of the skull
was exposed and the overlying bone plates removed to allow harvest of
the brain in an intact state. For histological analyses, brains were fixed
overnight in neutral buffered formalin. For RNA measurements and
urea protein extraction, whole brains were snap frozen, while for
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Table 1
Cohort sizes used for behavioural and molecular assessment.

Behavioural Brain Research 339 (2018) 153-168

Genotype WT L56 L58 L62
Age Drugs Gender Young Old Young Old Young Old Young Old
3m 6-9m =12m 3m 6-9m =12m 3m 6-9m =12m 3m 6-9m =12m

Rotarod M+F 28 29 27 18 25 25 25 35
Open Field/Balance beam M+F 49 19 52 15 41 18 49 30
CatWalk M+F 20 30 13 30 15 29 32 29
a-synuclein positive cell numbers in midbrain M+F 3 3 3 27 39 45 28 42 32 26 37 69
HomeCage M 11 10 19 21
Elevated Plus Maze M 25 23
TH cell counts in SNpC M 8 8 7 6 6 7
TH, p-TH, DAT, VMAT IB in whole brain M 5-7 4 5-7 6
DA (including DOPAC and HVA) brain dialysis M 10(5) 8(3) 9 (5) 8 (3)
Amphetamine (AMPH) Saline M 9 8 10 8

AMPH 9 9 10 8
SKF 81297 (SKF) and Quinpirole (QUIN) Saline M 8 6

SKF/0.5 7 7

SKF/5 8 8

QUIN 7 8

Empty cells indicate that no measurements were performed. M = male; F = female; m = months. For details, see text.

enrichment of synaptic proteins and for thioflavin binding assays cor-
tical tissue was dissected and snap frozen.

2.3. RNA isolation, PCR and quantitative reverse transcriptase PCR (Q-RT-
PCR)

RNA was extracted from frozen whole brain tissue with the TRIzol®
reagent according to the manufacturer’s instructions (Invitrogen, USA)
and concentration was measured using a NanoDrop 1000 spectro-
photometer (ThermoFisher, USA). RNA (5 pug) was then treated with
DNAse (Turbo DNA-free kit, Applied Biosystems, USA), reverse tran-
scribed (iScript cDNA synthesis Kit, Bio-Rad, Germany) and the cDNA
diluted to a final concentration of 2 ng/uL. Q-RT-PCR was carried out
with Power SYBR Green (Applied Biosystems, USA). Relative mRNA
expression of transgenic h-a-Syn was quantified with the ACt method
normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(h-a-Syn forward primer: caaaaccaaggagggagtg, h-a-Syn reverse
primer: tcttctgggctactgetgte, 116 bp product; GAPDH forward primer:
aacgaccccttcattgac, GAPDH reverse primer: tccacgacatactcageac,
191 bp product). Ten mice of mixed genders per line were analysed at
the age of 2 months.

2.4. Protein extraction

Around 100 mg of crushed frozen whole brain tissue from 3 or 6-8
months old mice was used for preparation of urea soluble proteins.
Briefly, the tissue was incubated for 45 min at room temperature in
5 vol urea buffer (7 M urea, 2 M thiourea, 70 mM DTT, 25 mM Tris/
HCl, 50 mM KCl, 3 mM EDTA, 2.9 mM benzamidine and 2.1 uM leu-
peptin) and centrifuged at 16,000 x g and RT for 45 min. The super-
natant, containing urea soluble proteins, was used for analyses.

The Syn-Per Extraction Reagent (Thermo Fisher Scientific,
Waltham, USA) was used to extract synaptic proteins from 6 to 8
months old mice. Briefly, 1 ml ice cold Syn-Per-Reagent was added to
100 mg crushed cortical tissue and the homogenate centrifuged for
10 min at 4 °C and 2000 x g to remove cell debris. The supernatant was
further centrifuged for 20 min at 4 °C and 15,000 X g to obtain a cy-
tosolic fraction (supernatant) and a crude synaptic fraction (pellet
dissolved in 100 pl ice cold Syn-Per-Reagent). Both fractions were used
for analyses and were either digested with proteinase K (PK) prior to
immunoblotting.

For high-speed sequential extraction, the method of Brinkmann
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et al. (Brinkmann, MCP 2014) was used with minor modifications.
Briefly, 100 pg crushed cortical tissue derived from 6 to 8 months old
mice was incubated for 1 h at 4 °C in 500 pl 10 mM tris buffer (homo-
genate fraction H), and centrifuged for 1 h at 4 °C and 100,000 x g to
produce a supernatant (S1) and a pellet fraction. The pellet was solved
in 450 pl 10 mM tris-0.5% Triton-X-100, incubated for 1 h at 4 °C and
thereafter centrifuged for 1h at 4 °C and 100,000 X g to produce a
supernatant (S2) and a pellet fraction. The latter was again incubated
for 1 hat4 °Cin 450 ul 10 mM tris-2% Triton-X-100 and centrifuged for
1h at 4°C and 100,000 X g. The supernatant fraction S3 was retained
and the pellet fraction was incubated for 1 h at 12 °C in 450 pl 10 mM
tris-0.5% SDS and centrifuged for 1h at 12 °C and 100,000 X g The
resulting supernatant S4 was retained and the final pellet solved in one
volume 10 mM tris-0.5% SDS. All fractions were stored at —20 °C.

2.5. Protein K cleavage

Synaptic or cytosolic proteins (50 pug) were mixed with or without
1 pl PK (diluted 1:1000 in PBS, stock concentration of the enzyme was
20 pg/pul), incubated for 15 min at 37 °C and the reaction was stopped
by cooling down on ice.

2.6. Immunoblotting

For immunoblotting of urea soluble proteins, 25-ug protein extracts
were loaded on 10% Tricine-SDS-PAGE. The cathode buffer consisted of
100 mM Tris, 100 mM Tricine and 1% (w/v) SDS and the anode buffer
contained 100 mM Tris and 0.07% (v/v) HCL Following electrophor-
esis, proteins were transferred to PVDF membranes by semi-dry blotting
in 300 mM Tris, 6% (v/v) acetic acid at 4 °C following standard pro-
cedures [31]. Membranes were incubated with primary antibodies
against h-a-Syn (mAb 204 from Santa Cruz Biotechnology, diluted
1:200), tyrosine hydroxylase (TH, H-196 from Santa Cruz Bio-
technology; diluted 1:1000), vesicular monoamine transporter 2
(VMAT2, C-20 from Santa Cruz Biotechnology; diluted 1:500), dopa-
mine transporter (DAT) (AB1591 from MerckMillipore; diluted 1:500)
and phospho-serine 40 TH (#2791 from Cell Signaling Technology
USA; diluted 1:1000). Immunoblots were washed three times in PBS,
incubated in horseradish peroxidase-conjugated secondary antibodies
diluted 1:5000 (Dako, Denmark), washed again three times in PBS and
developed by chemiluminescence (GE Healthcare, USA). Human a-Syn
was measured in 3 months old mice, pSer40-TH, DAT and VMAT2 in
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6-8 old mice and TH in 6-8 and 12 month old mice. Primary and
secondary antibodies were diluted in 4% (w/v) BSA-TBS containing
0.2% (v/v) Tween-20.

For immunoblotting of synaptic and cytosolic proteins, 25-ug pro-
tein pre-treated with PK was loaded on 10% Tricine-SDS-PAGE and
transferred to PVDF membranes after electrophoresis. Membranes were
incubated with primary antibodies against h-a-Syn (mAb 204) or 8-
tubulin (#15115 from Cell Signaling Technology USA; diluted 1:5000)
and immunoblots were developed by chemiluminescence as described
above, after applying appropriate secondary antibodies.

2.7. Thioflavin binding assay

The binding assay was conducted in 96-well plates using the six
fractions derived from the sequential extraction described above.
Briefly, 50 pug protein extracts from each of the six fractions were in-
cubated with 100 pl aqueous Thioflavin T solution (10 uM) at RT in the
dark. The plate was covered with a lid and was well sealed with par-
afilm to avoid any volume change through evaporation and the fluor-
escence was measured after 4 h, 1, 2, 3, 4, 7 and 8 days. The excitation
wavelength was set to 485 nm, while the emmission signal was mea-
sured at 460 nm. Each sample was measured in duplicates.

2.8. Immunohistochemistry and cell counting

Formalin-fixed and paraffin-embedded brain tissue was cut into 5-
um thin coronal sections. For staining using peroxidase-based detection,
sections were deparaffinised, boiled in 10 mM citric buffer for antigen
retrieval and incubated in 0.3% (v/v) hydrogen peroxidase solution.
Sections were blocked for 20 min in blocking buffer (0.1% (w/v) BSA in
PBS), incubated in primary antibody diluted in blocking buffer for 1 h
at RT, followed by incubation with corresponding biotinylated sec-
ondary antibody diluted 1:100 in blocking buffer (Dako, Denmark).
Anti-h-a-Syn (mAb 204 from Santa Cruz Biotechnology (USA), diluted
1:100) and anti-TH (H-196 from Santa Cruz Biotechnology, diluted
1:100) were used. Sections were developed with diaminobenzidine
solution (Dako, Denmark), counterstained with Ehrlich haematoxylin
solution (Carl Roth, Germany), embedded in Neo-Mount® (Merck
Millipore, Germany) and images taken using a light microscope (Carl
Zeiss, Jena, Germany).

For immunofluorescence, sections were deparaffinised, boiled in
10 mM citric buffer, blocked for 1h in incubation buffer (5% (v/v)
normal goat serum in PBS containing 0.3% (v/v) Triton-X-100) and
incubated in primary antibody cocktails (mAb 204/TH; mAb 204/DAT;
mAb 204/synaptophysin or mAb 204/VGLUT1). Primary antibodies
against h-a-Syn (mAb 204 from Santa Cruz Biotechnology, diluted
1:100), TH (H-196 from Santa Cruz Biotechnology diluted 1:100), DAT
(AB1591P from Merck-Millipore (USA), diluted 1:500), synaptophysin
(#101002 from Synaptic Systems (Germany), diluted 1:1000) and
VGLUT1 (#135302 from Synaptic Systems, diluted 1:1000) were all
diluted in incubation buffer and were applied overnight at 4 °C. The
next day sections were incubated for 1.5 h in fluorochrome-conjugated
secondary antibodies (Alexa Fluor” 488-conjugated donkey anti-mouse
IgG and Alexa Fluor’ 568-conjugated goat anti-rabbit IgG, Life
Technologies, USA; both diluted 1:500 in incubation buffer), covered
with DAPI Gold Antifade Reagent (Cell Signaling Technology, MA,
USA) and examined using a microscope equipped for fluorescence (Carl
Zeiss, Germany). Counting of h-a-Syn-positive or TH-positive neurones
was performed manually for 3 consecutive brain sections at positions
relative to Bregma, as identified according to [32], and the mean value
for each animal was used in analyses. Cells immunoreactive for h-a-Syn
were counted for one entire brain hemisphere at Bregma
+3.80 + 0.25 mm. TH-positive dopaminergic neurones were identi-
fied in substantia nigra pars compacta (SNpC) at Bregma
—3.80 £ 0.25 mm.
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2.9. In vivo brain microdialysis

In general, the procedure established in Fadda et al., was applied
[33]. Mice were anaesthetised with Equithesin (0.52 ml/kg i.p.), placed
in a stereotaxic frame (David Kopf Instruments, Tujunga, CA) with the
skull horizontal, and small burr holes drilled unilaterally to harbour the
chronically implanted 2-mm long concentric microdialysis probe (AN
69AF, Hospal-Dasco, Italy, cut-off 40,000 kDa) at coordinates Bregma
AP + 1.2, L *= 1.5, V-3.5 [32] to extend into the dorsal striatum. The
probe was anchored to the skull with acrylic cement and mice were
allowed to recover for at least 24 h. For microdialysis, artificial cere-
brospinal fluid (CSF: 147 mM NacCl, 4 mM KCl, 1.5 mM CaCl,, pH 6-6.5)
was circulated through the probe at 2.5 pl/min and 50-uL samples were
collected every 20 min. Dopamine and metabolites were separated by
HPLC (ESA Coulochem II detector) with electrodes band pass filtering
between +400 mV (low-pass) and —180 mV (high pass) at 30 °C. The
mobile phase consisted of 50 mM sodium acetate, 0.073 mM Na,EDTA,
0.35 mM octenylsuccinic anhydride, 12% methanol, pH 4.21, flow rate
1.0 ml/min). Dopamine and its metabolites 3,4-dihydroxyphenylacetic
acid (DOPAC) and homovanillic acid (HVA) were measured.

2.10. Behavioural phenotyping

2.10.1. Open field test with and without drug treatment

The open field arena consisted of a 120 x 120 cm large grey
Perspex square with 40-cm high walls, placed 75 cm above the ground
and surrounding cues obscured by white curtains. Mice were released in
the centre of the arena and allowed to move freely for up to 30 min.
Ambulatory movement of the animals was recorded by an overhead
CCTV camera and the path of the animal recorded at 12 Hz was video
tracked and stored online as XY coordinates using EthoVision XT10
(Noldus IT, Wageningen, The Netherlands). From these coordinates, we
extracted the overall activity (distance moved) in each session.

For pharmacological studies, mice were placed in the centre of the
arena immediately after intraperitoneal injection of saline or drug and
locomotor activity was recorded for 30 min. Dugs included: 2 mg/kg
d-amphetamine sulphate (Lipomed, Weil am Rhein, Germany); 0.5 or
5mg/kg of D1 agonist ( * )-6-Chloro-2,3,4,5-tetrahydro-1-phenyl-1H-
3-benzazepine hydrobromide (SKF81297 from Tocris); 0.025 mg/kg of
D2 agonist quinpirole hydrochloride (Sigma-Aldrich, Gillingham, UK).
Since preliminary experiments with SKF81297 revealed that the beha-
vioural effect starts approximately 20 min after injection, the duration
of the experiment was prolonged to 60 min, according to the pharma-
cokinetic profile of the drug.

2.10.2. Home cage activity monitoring (conducted at the Berlin Mouse
Clinic for Neurology and Psychiatry, Berlin, Germany)

Male mice, aged 3 and 6 months, were anaesthetised with 1-3%
isoflurane and tagged subcutaneously with individual radio-frequency-
identification (RFID) transponders (planet-ID GmbH, Germany). Mice
were housed 4-6 per cage (type II-L) and allowed to acclimatise to the
testing room for one week. Cages were placed onto an RFID sensor plate
consisting of 2 X 4 RFID sensors positioned in a grid-like formation
(Activity Monitor, PhenoSys, Berlin, Germany). This apparatus identi-
fies the unique RFID tag of each mouse and tracks position and
movement over time (sampling rate 3 Hz). The X and Y coordinates
were continuously recorded for 48 h (weekend days, to avoid the pre-
sence of the experimenter) and written directly in csv format to the
hard drive of a PC. Values were extracted for each mouse individually
in hourly bins, pooled for day-night cycle and are presented as a mean
distance travelled during light and dark phase.

2.10.3. RotaRod

A 4-lane RotaRod system for rats was used (33700-R/A; Technical &
Scientific Equipment GmbH, Bad Homburg, Germany). Animals were
given a single trial of 10 min with a constant velocity of 6 rotations per
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minute (rpm). Mice were placed onto the rod at an initial speed of
1 rpm and the speed accelerated to maximum over 30 s. The trial was
ended when the animal fell off the rod or after 10 min and the time
sustained was noted as the dependent variable.

2.10.4. Gait analysis

A detailed analysis of the walking pattern of mice was performed
using the CatWalk (Noldus IT). The apparatus consisted of a
45 X 10 cm glass plate illuminated by a laterally positioned light
source. A camera was mounted to the underside of the glass plate to
observe footfalls as a change in brightness. Animals were released at
one end of the runway and 5 runs across the plate were monitored. Data
were recorded, stored and analysed using the Catwalk XT9 software
(Noldus IT). Numerous gait parameters were analysed including base of
support, swing, and regularity index (for details, see [34]).

2.10.5. Balance beam

The experiment was performed as described previously [35]. In
brief, 50-cm long wooden beams were positioned at an angle of 30°
inclination. Beams were square or round with a diameter of 28, 11 and
5 mm; a trial lasted up to 30 s and no prior training was administered.
The time to traverse the beam was recorded. If animals did not reach
the top end of the beam, the maximum time of 30 s was noted.

2.10.6. Elevated plus maze

The maze made of grey Perspex was placed 75 cm above the ground
and consisted of four arms, each 30 cm long and 5 cm wide, with two
open arms without walls and two enclosed arms surround by 15 cm
high walls. Mice were released in the centre of the maze and were al-
lowed to move freely for up to 10 min. The movement of the animals
was recorded by an overhead CCTV camera connected to a PC running
EthoVision XT10 (Noldus IT). XY coordinates of the animal were
tracked at a sampling rate of 12 Hz and converted into time spent in the
open versus enclosed arms.

2.11. Data analyses

Histological quantifications and behavioural data were expressed as
group mean (and standard error of the mean, S.E.M.). Statistical ana-
lyses were conducted using GraphPad Prism (version 6.00; GraphPad
Software Inc., La Jolla, CA, USA), confirmed as Gaussian (D’Agostino
and Pearson omnibus test) and analysed by parametric statistics (unless
stated otherwise) using factorial analysis of variance (ANOVA) and
appropriate post-hoc (t-test; Bonferroni corrected) two-tailed tests (for
details, see Results). The null hypothesis was accepted for a < 0.05
and only significant terms are given in the text.

3. Results
3.1. Generation of transgenic mice and h-a-Syn expression

Transgenic mice were generated by overexpressing full-length
human a-Syn fused to a membrane-targeting signal sequence under the
control of the mouse Thyl-promotor. Pronuclear injection of the con-
struct (Fig. 1A) resulted in 3 founders expressing the transgene.
Founder mice were back-crossed with C57BL/6J wild-type mice, the
colony expanded and homozygous independent transgenic lines L56,
L58 and L62 generated. Mice from all transgenic lines presented in good
health throughout the life span, and showed normal germline trans-
mission and mortality rates (data not shown). As depicted in Fig. 1B,
similar levels of h-a-Syn mRNA were expressed in all three lines
(F < 1.6). Furthermore, SDS-PAGE and immunoblotting revealed a
single specific h-a-Syn band at 15 kDa (Fig. 1C). Immunohistochemical
analysis confirmed neuronal localisation of h-a-Syn immunoreactivity
in all transgenic lines (Fig. 2A) but not in WT mice. As expected for the
Thyl-promotor, a widespread distribution of a-Syn was observed,
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including hippocampus, dentate gyrus, cortex, entorhinal cortex, sub-
stantia nigra pars reticulata (SNpR), olfactory bulb and spinal cord
(Fig. 2B). Comparative counting of cells in one hemisphere of 3 aver-
aged coronal midbrain sections (Bregma —3.80 + 0.25 mm) using the
monoclonal antibody mAb 204 showed a low level of h-a-Syn accu-
mulation in the brain of L56 mice at 3 months, which increased pro-
gressively from 6 to 12 months (F(2,104) = 24.58, p < 0.0001 for
main effect of age, Fig. 2C, see asterisks for post-hoc Bonferroni test;).
By comparison, L58 mice displayed moderate numbers of h-a-Syn in-
clusions and the number of midbrain neurones positive for h-a-Syn did
not progress with ageing (Fig. 2C). The greatest level of h-a-Syn la-
belling was observed in L62 in both cortical and subcortical regions
(Fig. 2B, a—d), but also in the olfactory bulb and spinal cord (Fig. 2B, e
and f). Intense labelling was evident in both cell bodies and dendrites
and, in tissue from older L62 mice, granular inclusions in cortical
neurones were observed (not shown). The greatest number of a-Syn-
positive cells was observed at 3 months whereas a significant decline
occurred between 6 and 12 months (F(3,227) = 11.00,p < 0.0001 for
main effect of age; see Fig. 2C for Bonferroni post-hoc tests) suggesting
neuronal loss.

3.2. Sensory-motor deficits are present in high-expressing h-a-Syn mice
(L58, L62)

Movement-related phenotypes were determined in a series of tests
on the three h-a-Syn lines at different ages. Tests included the rotating
rod with constant speed to determine the emergence of fatigue; the
open field for the assessment of movement initiation and ambulatory
activity; the CatWalk system for gait parameters; and the balance beam
task for sensory-motor coordination.

For the open field, normality of the data set was confirmed and
subtle differences were observed (Fig. 3A). At 3—4 months, all animals
walked for an average of 180-200 m during 30 min. The overall
ANOVA confirmed a genotype difference (F(3,187) = 5.9; p = 0.0008)
with significantly reduced ambulation in L62 relative to control
(Fig. 3A left panel asterisk). This phenotype became more severe in
older L62 subjects (F(3,78) = 8.1; p < 0.0001) and also emerged in
L58 (Fig. 3A, right panel, asterisks for Bonferroni corrected t-test).

Data were skewed for the RotaRod since a considerable number of
mice were able to stay on the rod for the maximum 10-min period.
Consequently, data were not normally distributed and were analysed
using Kruskal-Wallis followed by Dunn’s multiple comparison test.
Although we detected some differences in sustaining balance and pro-
gressively walking forward in the different genotypes at 3-4 months
(Fig. 3B; H = 15.1; p = 0.002), this was due to differences between the
three genotypes, rather than a difference from WT. At 6-8 months of
age, there was an overall difference (H = 23.2; p < 0.0001), with L58
reliably outperforming WT mice (Fig. 3B, asterisks).

Although several gait parameters were analysed from the CatWalk,
only the stride length of the fore paws was affected by transgene ex-
pression (Fig. 3C). At 3-4 months, no reliable difference between
controls and transgenic lines were observed although the overall
ANOVA returned s significant term between group (F(3,76) p = 0.028).
At 6-8 months, however, the overall difference between groups was
significant (F(3,114) = 10.2; p < 0.0001) confirming longer fore paw
strides in lines 56 and 62 (see asterisk in right panel for Bonferroni
corrected t-test).

In the balance beam coordination task, apart from the expected
main effect of beams (Fig. 4A, Fpeam(5,1090) = 194.4; p < 0.0001),
highly significant genotype differences emerged (Fig. 4A,
Fgenotype(3,208) = 20.6; p < 0.0001). L56 and L58 mice, aged 3-4
months, were outperforming WT control litters in all beams tested,
including square-shaped and round beams (Fig. 4A asterisk for Bon-
ferroni corrected t-tests), while no differences were seen between L62
and WT mice. At 6-8 months of age genotype related differences
emerged only for L62 compared to WT control mice (Fig. 4B,
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Fig. 2. Transgenic h-a-Syn is highly abundant and widely distributed in L62 mouse brain. (A) Human a-Syn immunohistochemistry (mAb 204) in midbrain sections of WT, L56, L58 and
L62 revealed abundant expression of h-a-Syn in transgenic mice only, as shown by representative micrographs of the hippocampus. (B) In L62, h-a-Syn inclusions were present in
different brain areas such as cortex (a), SNpR (b), dentate gyrus (c), entorhinal cortex (d), olfactory bulb (e) and in spinal cord (f). (C) Quantification of h-a-Syn positive cells (mAb 204)
counted in one hemisphere of 3 averaged coronal midbrain sections at Bregma level —3.80 = 0.25 mm for the three different transgenic lines. L62 shows the greatest number of cells

expressing the transgene and an age-dependent decrease in protein expression. Values are given as mean

§888: p < 0.0001 vs. 6 months. Scale bars, 100 pm.

Fgenotype(3,91) = 3.7; p < 0.0001), where L62 mice needed sig-
nificantly more time to climb the 5 mm square-shaped and 5 mm round
beams (Fig. 4B asterisk for Bonferroni corrected t-test).

Since mice of L62 appeared to be most affected in their voluntary
movement by the expression of high levels of h-a-Syn, we profiled their
activity in the social environment of the home cage (Fig. 5). Also, given
that we did not observe a gender bias in any of our previous data sets,
the further in-depth analysis concentrated on male mice. The long-term
recording for each mouse was extracted; the values averaged for each
genotype and plotted over a 24-h cycle. Cohorts showed typical circa-
dian rhythms with heightened nocturnal ambulatory activity and pre-
dominant sleep/quiescence during the day. Globally, young males were
more active and covered greater distances than old males during the
activity period (compare ordinate of Fig. 5A and B) and it was evident
that L62 mice were hypoactive during the night relative to controls
(genotype F(1,31) = 16.1.,p = 0.0003 for young and F(1,38) = 10.69,
p = 0.0023 for old male subjects). This was particularly obvious during
the beginning and the end of the night phase (interaction between
genotype and time: F(23,713) = 12.59, p < 0.0001 for young and F

+

S.E. Bonferroni post-test: *: p < 0.05 and ****: p < 0.0001 vs. 3 months,

(23,874) = 6.68,p < 0.0001 for old males; see asterisks in Fig. 5A and
B). From this activity pattern, it is apparent that male WT mice follow
the pattern that is typical for C57BL/6J males, i.e. there was an activity
peak during the early and late hours of the dark phase, respectively
[36,37]. These activity peaks are strongly reduced in L62 mice. No
differences were observed during the light phase.

Anxiety-related behaviours in the elevated plus maze (Fig. 5C-F)
revealed comparable performances between L62 and WT mice, as
shown for the time spent in open arms (Fig5C), time spent in centre
(Fig. 5D), number of entries into open arms (Fig. 5E) and total distance
moved (Fig. 5F).

The hypoactivity phenotype seen for L62 mice during the ex-
aminations in the open field and the home cage, as well as the normal
anxiety phenotype in the elevated plus maze strongly suggest that the
impairment in the motor activity in this transgenic line is not related to
novelty or stress-induced anxiety. Collectively, it appears that increased
levels of h-a-Syn lead to more severe impairments in motor activity and
coordination. As L62 presented with the most widespread h-a-Syn pa-
thology and most prominent motor phenotype compared to L56 and
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Fig. 3. Early-onset and age progressive motor deficits in L62 mice. (A)
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L58, the following functional analysis concentrated on this line.

3.3. Transgenic h-a-Syn is absent in dopaminergic but present in
glutamatergic synapses

To identify neuronal populations affected by h-a-Syn pathology,
immunofluorescence double labelling was performed in L62 brain
sections. The antibody mAb 204 for h-a-Syn was applied with either TH
(H-20) or DAT for dopaminergic neurones or VGLUT1 (#135302) for
glutamatergic neurones. Transgenic h-a-Syn was absent from TH-posi-
tive dopaminergic neurones of the SNpC and nigrostriatal projections of
the medial forebrain bundle, as well as from catecholaminergic neu-
rones of the locus coeruleus (Fig. 6A for h-SynL62 and Supplementary
Fig. 1A for h-SynL56/h-SynL58). H-a-Syn also did not co-localise with

DAT-positive dopaminergic terminals in the striatum (Fig. 6B), but h-a-
Syn was strongly expressed in synapses, e.g. motor cortex and striatum,
and h-a-Syn immunoreactivity clearly co-localised with the synaptic
marker synaptophysin (Fig. 6C). These synapses harbouring h-a-Syn are
glutamatergic as confirmed by co-staining with VGLUT1 (Fig. 6D).

3.4. Transgenic h-a-Syn accumulates during ageing, is resistant to PK-
cleavage and binds thioflavin

While the number of neurones with h-a-Syn inclusions in L62 mice
declined during ageing (Fig. 2C), a very prominent increase of h-a-syn
immunoreactivity was observed e.g. in cell bodies and nerve terminals
of the motor cortex (Fig. 7A) and in striatal terminals (Fig. 7B) of old
animals, suggesting an age dependent accumulation of the transgenic
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protein. Having established the presynaptic localisation of a-syn in the
motor cortex and striatum (Fig. 6C), crude synaptic fractions were
prepared from cortical lysates and digested with PK. Immunoblot
analysis revealed that h-a-syn is more abundant in synaptic compared
to cytosolic fractions of L62 mice and that h-a-syn per se is resistant to
enzymatic cleavage with PK, while B3-tubulin is not (Fig. 7C and D).
When cortical tissue was subjected to sequential high-speed extraction
using detergent and Thioflavin-binding was performed, it became ob-
vious that an increased signal of Thioflavin is seen in transgenic mice
only. Taken together these data indicate the build-up and progressive
accumulation of h-a-Syn aggregates in cortical somata and processes,
but in nerve endings only in the striatum.

3.5. Late decline of striatal DA release in L62 mice is independent of cell
loss in substantia nigra

Concomitant with the absence of h-a-Syn aggregates in dopami-
nergic neurones of the SNpC (Fig. 6A) we did not observe quantitative
changes in any of the dopaminergic markers at 6-8 months of age (TH,
pS40-TH, DAT and VMAT2, Fig. SA-E).

In vivo brain dialysis confirmed that basal extracellular levels of DA
were unchanged in transgenic mice at 3 and 9 months of age (Fig. 9A
and B, left panels). However, the release of DA and turnover rates of its
metabolites DOPAC and HVA were significantly reduced in 9 months
old transgenic mice after challenge with amphetamine (Fig. 9B, right
panel; genotype, time and interaction: F values > 2.3; p values < 0.03;
and Supplementary Fig. 2B and D), but there was no difference in re-
sponse to amphetamine in younger mice (see Fig. 9A right panel and
Supplementary Fig. 2A and C). To confirm this result in a behavioural

round shaped

160

paradigm, WT and L62 mice were challenged with 2 mg/kg ampheta-
mine at 3 and 6 months of age and their locomotor activity recorded in
the open field. At the age of 3 months, amphetamine significantly in-
creased the activity in WT and L62 mice (Fig. 9C; overall effect of
genotype and interaction, F values > 4.4; p values < 0.0001). As found
earlier, activity in the L62 saline cohort was lower than in WT saline
(F1,85) = 5.8; p = 0.028) and amphetamine-induced heightening of
activity was stronger in L62 (effect of treatment and interaction F va-
lues > 3.4; p values <0.03). At 6 months (Fig. 9D), there was an overall
significant  effect of  genotype/treatment  (F(3,174) = 104;
p < 0.0001), L62 were less active than controls (F(1,84) = 64;
p < 0.0001) and both genotypes responded with an increase in ac-
tivity to amphetamine injections (F values > 46; p values < 0.0001). In
contrast to younger mice, however, the activity of WT under amphe-
tamine was reliably higher than for L62 (F(1,90) = 61; p < 0.0001).
This is in agreement with reduced extracellular DA levels measured in
old L62 mice after amphetamine challenge (Fig. 9B).

Collectively, these results suggest a progressive change in striatal
dopaminergic neurotransmission over time in L62.

3.6. Altered dopaminergic receptor function precedes dopamine release
deficit in L62 mice

Since the hypersensitive response to amphetamine in younger L62
mice cannot be explained by altered DA release/reuptake (Fig. 9A), we
explored the possibility of alterations in dopamine receptor function.
Increased levels of dopamine may be more efficient if the levels or
sensitivity of D1/D2 receptors are differentially changed as a corollary
of h-a-Syn expression in glutamatergic terminals of the striatum.
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Fig. 5. Reduced motor activity in L62 persists
in a social environment and is not driven by
anxiety. Activity monitoring of group-housed
male mice in the home cage revealed that L62
mice are significantly less active than WT
during the active phase (lights off) at 3 months
(A) and 6 months (B) of age. (C-F) Anxiety
behaviour of 6 months old male mice showed
no genotype related differences for L62 mice
and WT litters during the elevated plus maze
testing. Values are given as mean *= S.E in
hourly bins as time of day. Bonferroni post-test:
* p < 0.05 *: p< 001 and ****:
p < 0.0001 vs. WT.
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Consequently, we systemically administered the D1 receptor agonist SKF81297 showed an overall significant increase of ambulation com-
SKF81297 and the D2 receptor agonist quinpirole prior to locomotor pared to saline-treated animals during the course of a 60-min trial

testing in the open field of 162 and WT mice, aged 3 months.

(saline vs. 5 mg/kg; Fig. 10A for WT F(1,14) = 9.94, p = 0.007 and

Mice of both genotypes injected with a high dose (5 mg/kg) of Fig. 10B for L62 F(1,12) = 31.75, p = 0.0001). Intriguingly, an effect
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of a low dose (0.5 mg/kg) of SKF81297 was only seen in L62 (F(1,11)
= 8.82; p = 0.013), but not WT control mice. Similarly, mice of both
genotypes showed more attempts to initiate high activity, which is
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Fig. 6. Glutamatergic but not dopaminergic neurones are affected by h-a-Syn inclusions
in L62 mice. (A) h-a-Syn inclusions (green) are absent from TH-positive neurones (red) of
the SNpC and the locus coeruleus, as well as from nigrostriatal projections of the medial
forebrain bundle, as shown by double label immunofluorescence of L62 midbrain sec-
tions. (B) Accordingly, DAT-positive synaptic terminals (red) in the striatum did not co-
localise with the transgene (green: h-a-Syn). (C) Co-localisation of a-syn and the synaptic
marker synaptophysin confirms the presynaptic accumulation of a-syn in cortical and
striatal synapses; the presynaptic co-localisation of both proteins is seen as yellow puncta
in the merged images. (D) In the striatum presynaptic a-syn is expressed in glutamatergic
synapses, shown by co-staining with the glutamatergic marker VGLUT1 (yellow puncta).
Scale bars: (A) 15 um for SNpC, 50 pm for locus coeruleus and 50 pm for medial forebrain
bundle, (B-D) 20 um. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

defined as movement at a speed of > 25 cm/s, but spent significantly
less time resting after injection of SKF81297 (Fig. 10C and D; main
effect of treatment: C and D: F values (2,38) > 14.76, p values <
0.0001). Again, only L62 mice receiving a low dose of SKF81297 were
significantly more active than saline-treated mice (Bonferroni’s post-
test: p < 0.05).

Low doses of quinpirole activate presynaptic D2 autoreceptors and
induce suppression of motor activity by reducing dopamine release
[38]. Accordingly, injection of 0.025 mg/kg quinpirole induced a de-
crease in activity in both genotypes (Fig. 10E; main effect of genotype/
treatment F(3,25) = 12.04; p < 0.0001 and interaction F(15,125)
= 2.92; p < 0.0005). The genotype effect seen in saline-treated ani-
mals during a 30-min trial was abolished in quinpirole-treated subjects
(genotype effect saline: F(1,12) = 4.77; p = 0.049; quinpirole: ns), but
the time course of the inhibition was different in WT compared to L62
(interaction F(5,65) = 2.85; p = 0.022). Furthermore, suppression of
activity by quinpirole, measured as immobility, was increased in both
WT and L62 to a similar extent (Fig. 10F; effect of treatment F(1,25)
= 31.31; p < 0.0001; see asterisks for Bonferroni’s post-test). Hence it
appears that L62 mice differ considerably from WT in their sensitivity
to dopaminergic receptor agonists acting through D1 receptors. By
contrast, responses to D2 agonists appear far less compromised. Thus,
the behavioural sensitisation to amphetamine could be caused by a
disproportion between D1/D2 receptor levels due to accumulation of h-
a-Syn in striatal glutamatergic terminals.

4. Discussion

Transgenic mice reported here show that overexpression of human
a-Syn is sufficient to induce formation of a-Syn inclusions in neurones
through self-aggregation as has been reported by others [20,22,39].
Such inclusions were absent from dopaminergic neurones in our
models. Since a-Syn was identified in cortical cell bodies and processes,
as well as in striatal terminals, we conclude that overexpression of h-a-
Syn induced modulation of non-dopaminergic neurotransmission in
fronto-striatal circuitry and that this is sufficient to change dopamine
release and induce bradykinesia, independent of Lewy body pathology
in SNpC. We were unable to obtain mice expressing truncated forms of
h-a-Syn protein (data not shown). Such truncated forms of h-a-Syn can,
however, induce aggregation in vitro [40] and in vivo when expressed in
dopaminergic neurones [41]. Mutations in the h-a-Syn gene, e.g. the
A53T or the A30P mutations, are not required to induce self-aggrega-
tion of the protein and it has been shown that such mutations only
enhance development and progression of a-Syn pathology [20,42]. In
humans, such mutations are associated with familiar PD, which account
for 10% of clinical PD cases only. Given the high prevalence of sporadic
PD [43], the overexpression of wild-type h-a-Syn is therefore a more
physiologically relevant means to mimic the clinical appearance of PD
[23] and our discussion here is focussed on a comparison of our mouse
lines with existing transgenic lines [44,45].

Heterogeneity about regional h-a-Syn may arise from the use of
different promotors of the transgene, which may exert variation in re-
gional expression. Others have confirmed the utility of the Thyl
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Fig. 7. h-a-Syn accumulates with increased age and forms aggregates, which bind thioflavin and are PK-resistent. (A) Immunohistology of L62 brain sections with the antibody mAb 204
in motor cortex (A) and striatal sections (B) indicates an age dependent increase in h-a-syn staining intensity. (C) h-a-Syn is more abundant in synaptic than in cytosolic fractions and is
resistant to cleavage with PK, while $-tubulin is not. (D) Thioflavin-binding of sequentially extracted proteins from the cortex revealed h-a-Syn to accumulate over time, measured as
higher thioflavin emission in L62 mice compared to WT litters, aged 4 months. **: p < 0.01 and ****: p < 0.0001 vs. WT.
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promotor in h-a-Syn models of PD. Importantly, a ten-fold increase in
h-a-Syn over endogenous synuclein levels caused reliable and persistent
pathology and behavioural dysfunction in young mice [22,46]. Our
three mouse models confirm the requirement of a higher number of
cells expressing h-a-Syn for the early emergence of endophenotypes of
PD. Despite similar gene expression profiles, the number of cells af-
fected by h-a-Syn pathology was indicative of behavioural outcome.
There was a progressive increase in the number of h-a-Syn-containing
cells during ageing of L56, whereas the number of affected cells was
maximal already at 3 months in both L58 and L62 mice. Since such
differences in pathology are not explained by variations in gene ex-
pression, it is likely that gene insertion and cell-related expression are
leading to these differences [47]. Nevertheless, pharmacological and
behavioural phenotypes were also age-related in these lines.

In L56 and L58 only few cortical motor neurones stained for h-a-Syn
inclusions, whereas prominent inclusions were detected in cortical and
spinal motor neurones in L62 and we found that the level of h-a-Syn
pathology determined the severity of the observed bradykinesia. L56
displayed a late onset, mild motor phenotype. By contrast, L62 mice
with dense h-a-Syn aggregation in e.g. cortical motor neurones showed
early onset motor deficits in open field, RotaRod, balance beam,
CatWalk and activity monitoring. These phenotypes occurred despite
the lack of significant dopaminergic alterations or the accumulation of
h-a-Syn in TH-positive neurones in the substantia nigra. This contrasts
with the line 61 model of the Chesselet group, which presents with
hyperactivity in the open field due to increased striatal DA [23], but
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0.25 mm) and (D and E) immunoblot analysis of midbrain lysates at different ages revealed similar numbers of dopaminergic neurones in L62 and WT at 6 and 12

which also lacks synuclein expression in the SNpC.

The overall pathology of cortical, brain stem and spinal neurones in
our model is consistent with observations of van der Putten and col-
leagues [20] as well as Delenclos and co-workers [48], where these
authors reported no or very low expression of Thyl-driven wild-type h-
a-Syn in the SNpC but severe cortical and spinal motor neurone pa-
thology [20]. In contrast, Rockenstein and colleagues reported accu-
mulation of ThyI-driven h-a-Syn in the SN and other subcortical nuclei
but not in the spinal cord of their line 61 model [22]. These latter
authors did not differentiate between SNpC and SNpR precluding a
direct comparison with more recent investigations of Thyl-directed a-
Syn models. We consider it likely that the discrepancy for a-Syn ex-
pression and accumulation pattern for these Thy1-driven wild-type h-a-
Syn models arises from the use of different expression cassettes, dif-
ferent sites of transgene integration or subtle differences in the anti-
bodies and protocols used.

None of the mouse lines described here accumulated h-a-Syn in
neurones of the SNpC. Moreover, synaptic markers for dopaminergic
cells in the striatum were normal in mice aged 6 months. This is con-
sistent with other Thyl models overexpressing wild-type h-a-Syn [22].
Although the onset of the activity of the Thyl promotor is not clearly
defined, we and others have been unable to detect loss of TH-positive
cells even at the age of > 12 months [22]. Yet, a progressive lowering
of amphetamine-induced dopamine release in striatum appeared in L62
between 3 and 9 months of age suggesting functional changes within
SNpC possibly due to expression of h-a-Syn at levels below the
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Fig. 9. L62 mice show a progressive decline of DA release. (A and B) DA measurements using in vivo brain dialysis performed in dorsal striatum of male WT and L62 mice. (A) At 3
months of age basal DA (left) and DA release following amphetamine administration (2 mg/kg: right) in L62 mice did not differ from WT. (B) At the age of 9 months, L62 mice displayed
lower DA release following amphetamine challenge, while basal DA levels remained unchanged. (C and D) Mice were given a single i.p. injection of 2 mg/kg amphetamine or 0.9% saline
and immediately placed in the open field arena after injection and ambulation measured for 30 min. Three months old WT and L62 mice walked significantly more in response to
amphetamine compared to saline and locomotor sensitization was significantly higher in transgenic L62 mice (C). The response to amphetamine of L62 mice was less pronounced
compared to WT at 6 months of age and L62 mice showed significantly less sensitization to amphetamine (D). Values are given as mean (S.E. omitted for clarity). *: p < 0.05.

detection threshold of our antibodies. This idea is further supported by
the reduced reaction to amphetamine in 6-month old animals (Fig. 9)
and is consistent with a lack of amphetamine-induced stereotypies in
other Thyl a-Syn mice [49]. It also confirms that an overall lowering of
dopamine release under behavioural or pharmacological challenges can
be observed in the absence of a-Syn inclusions in striatal input struc-
tures of dopaminergic origin in h-a-Syn mice. Finally, the lack of a-Syn
inclusions in TH-positive SNpC neurones was not correlated with the
magnitude of striatal dysfunction in response to pharmacological
treatment. This is in agreement with paraquat intoxication enhancing
the number of proteinase-K-resistant a-Syn aggregates in the substantia
nigra, while not worsening the behavioural deficits in these Thyl h-a-
Syn mice [50].

Nevertheless, the Thyl promotor is capable of driving h-a-Syn ex-
pression in TH-positive cells of the substantia nigra. This has been
confirmed using h-a-Syn containing the A53T mutation of familial
forms of PD [20]. These mice did develop ubiquitin-positive inclusions
in neurones suggesting Lewy body like a-Syn aggregates. Nevertheless,
it should be noted that such cases model a small number of PD patients
and not the overwhelming majority of idiopathic forms. That a strong
expression of wild-type h-a-Syn can be achieved in nigral TH-positive
cells using promotors for prion protein [21] or TH suggests that Thy1 is
specifically targeting non-dopaminergic pathways and our mouse
model therefore represents a slow onset form of synucleinopathy with
PD-like symptoms. It is reminiscent to the first a-Syn mouse developed
by Masliah and co-workers [39] using the platelet-derived growth
factor B promotor, which also did not lead to h-a-Syn expression in
SNpC. Striatal dopamine levels, however, were lowered in mice older
than 12 months of age [51], and this is in agreement with our ob-
servation in L62 mice that functional changes in the nigro-striatal
system can be achieved by low h-a-Syn expression in mice leading to

behavioural impairments.

It therefore appears that changes in dopamine release and dopamine
receptor sensitivity are driven by the predominant expression of h-a-
Syn in glutamatergic neurones of the cortex (and possibly thalamus —
not confirmed). Such endophenotypes of wild type h-a-Syn mice re-
present a state of pre-manifest PD [52,53], in which presynaptic mo-
bilisation of the reserve pool of neurotransmitter vesicles is compro-
mised [54,55]. a-Syn plays a critical role in this process as it is located
pre-synaptically and acts as a molecular chaperone interacting with
SNARE proteins to aid transmitter release and vesicle recycling [56].
These actions appear to be compromised by the A30P mutation in the
synuclein gene and are not specific for dopaminergic synapses. For
example, h-a-Syn mice expressing the transgene controlled by the
human a-Syn regulatory element presented with normal evoked mossy
fibre field EPSP (excitatory post-synaptic potential) slopes until a sti-
mulation current of 200 pA, above which there was a 20% lowering of
the EPSP [54]. Slices from these animals were also impaired in synaptic
plasticity (paired pulse facilitation; frequency facilitation) suggesting
that overexpression of h-a-Syn in glutamatergic neurones may lead to a
pre-manifest PD. Knock-out of murine a-Syn had the opposite effect,
hyperexcitability but also reduced plasticity. These results have been
recently confirmed for medium spiny neurones in the striatum of h-a-
Syn mice under control of Thyl promotor [57]. Whole cell patch clamp
recordings from spiny neurones in the dorsolateral striatum confirmed
significantly reduced spontaneous EPSCs in hemispheric sections from
h-a-Syn from 35 days of age onwards. Moreover, there was a 40%
lowering of evoked EPSCs in all stimulation intensities (0.3-1 mA) and
a similar reduction in N-methyl-p-aspartate (NMDA) receptor mediated
currents in h-a-Syn tissue [57]. These adaptations at cortico-striatal
synapses appear to occur prior to dopamine depletion and lead to subtle
preclinical phenotypes. Our L62 mice appear to reflect similar
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prodromal manifestations at 3 months of age when there is little evi-
dence for dopaminergic alterations at baseline or at challenge (Fig. 9),
but a progressive phenotype at 6-9 months of age when severe dopa-
mine depletion symptoms occur. The reduction in glutamatergic release
was coincident with hypersensitivity of post-synaptic D1, but not pre-
synaptic D2 receptors, thereby explaining the strong hyperactivity in
L62 mice. The clinical relevance and cellular mechanism for this
clinically relevant finding, however, requires further examination.

5. Conclusions

Collectively, we have shown that overexpression of h-a-Syn under
the Thy1 regulatory element promotes expression of h-a-Syn in multiple
neuronal subpopulations. Intriguingly, this did not include TH-positive
dopaminergic neurones, but glutamate containing principle cells in the
cortex with direct synaptic contacts to medium spiny neurons of the
striatum. Loading of glutamatergic cell bodies and processes with h-a-
Syn typically leads to a lowering in vesicular release and constitutes a
state of pre-manifest PD. Such a glutamatergic phenotype appears to
influence behaviours modulated by dopamine and after further ageing
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leads to more severe hypodopaminergic parkinsonian manifestations.
This time course offers a novel means for understanding the principle
mechanisms and putative treatment options for PD.
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