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Abstract: Many interesting rare events in molecular systems, like ligand association, protein folding
or conformational changes, occur on timescales that often are not accessible by direct numerical
simulation. Therefore, rare event approximation approaches like interface sampling, Markov state
model building, or advanced reaction coordinate-based free energy estimation have attracted huge
attention recently. In this article we analyze the reliability of such approaches. How precise is an
estimate of long relaxation timescales of molecular systems resulting from various forms of rare event
approximation methods? Our results give a theoretical answer to this question by relating it with
the transfer operator approach to molecular dynamics. By doing so we also allow for understanding
deep connections between the different approaches.
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1. Introduction

The problem of accurate estimation of long relaxation timescales associated with rare events in
molecular dynamics like ligand association, protein folding, or conformational changes has attracted
a lot of attention recently. Often, these timescales are not accessible by direct numerical simulation.
Therefore, different discrete coarse graining approaches for their approximation, like Markov state
model (MSM) building [1,2] or time-lagged independent component analysis (TiCA) [3,4] have been
introduced and successfully applied to various molecular systems [5,6]. These approaches are based on
finite-dimensional Galerkin discretization [1] or variational approximation [7,8] of the transfer operator
of the molecular dynamics process [9]. In several theoretical studies the approximation error of these
numerical techniques regarding the longest relaxation timescales has been analyzed resulting in error
estimates in terms of the dominant eigenvalues of the transfer operator [3,9]. In this article we first
show how to obtain similar error estimates when replacing the transfer operator by the infinitesimal
generator [10] associated with it. Furthermore, the analysis exhibits that the different approaches
are deeply connected, that is, in the end they lead to an identical numerical problem. In addition
to the different discrete coarse graining approaches, the literature contains various alternative
reaction coordinate sampling approaches aiming at approximation of very long relaxation processes.
In these sampling approaches, one assumes that the effective dynamical behavior of the systems
on long timescales can be described by a relatively low dimensional object given by some reaction
coordinates. Various advanced methods such as umbrella sampling [11,12], metadynamics [13,14],
blue moon sampling [15], the adaptive biasing force method [16], or temperature-accelerated molecular
dynamics (TAMD) [17], as well as trajectory-based techniques like milestoning [18], transition interface
sampling [19], or forward flux sampling [20] may serve as some examples. These methods result
in free energy barriers, transition rates, or first mean passage times for the rare events of interest;
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they are complemented by several approaches to the effective dynamics of the reaction coordinate
space [21–23] that allow for significantly faster simulation of these rare events [24–26] including details
of the underlying molecular mechanisms. Surprisingly, our analytic tools, originally developed for
discrete coarse graining approaches, can also be utilized for evaluating the approximation quality
of reaction coordinate sampling approaches to the effective dynamics. We derive an explicit error
estimate for the longest timescale resulting from the choice of specific reaction coordinates.

However, estimating the approximation quality is not the only way of utilizing the analytical
insights presented in this article. We also demonstrate how the new techniques for simulation of the
effective dynamics can be used for efficient MSM building or TiCA applications.

Mathematically, the article is based on the analysis of the dominant timescales of reversible and
ergodic diffusion processes in energy landscapes. The leading eigenvalues of the transfer operator
(or, equivalently, the infinitesimal generator) and the corresponding eigenfunctions characterize
the dynamical behavior of the process on long timescales [9,27]. Firstly, in several articles the
approximation error with respect to these leading eigenvalues under discretization of the transfer
operator has been discussed, cf. [3,7,8,28–30]. Following this work, we characterize the approximation
quality for the (low-lying) eigenvalues of the infinitesimal generator. This permits us to study the
connection between the effective dynamics considered in [23] and Galerkin discretization schemes for
the transfer operator. Secondly, following the work [7,8], we study the variational approach for the
infinitesimal generator. In fact, we will see that this approach leads to the same generalized matrix
eigenproblem as the one resulting from Galerkin discretization. Thirdly, numerical issues related to
the estimation of the coefficient matrices by means of the effective dynamics are discussed.

The paper is organized as follows. In Section 2, we introduce the various operators associated
to the reversible diffusion processes and discuss the relation between eigenvalues and relaxation
timescales. Next, in Section 3, we study the Galerkin discretization of generators/transfer operators for
solving the eigenproblem and show that previous results can be extended to reaction coordinate
subspaces. In Section 4, the variational approach to the approximation of the eigenproblem is
considered and its relations to the Galerkin approach are worked out in detail. Then, in Section 5,
we discuss numerical issues related to estimating the discretization matrices by means of simulating
the effective dynamics for given reaction coordinates; the performance of this approach is studied
numerically in Section 6. Finally, conclusions and some further remarks are given in Section 7.
After being familiar with the facts in Section 2, readers who are more interested in numerical algorithmic
aspects rather than detailed mathematical analysis can skip Sections 3 and 4 and refer to Sections 5
and 6 on first reading.

2. Diffusion Process and the Associated Operators

We consider a diffusion process given by the stochastic differential equation (SDE)

dxs = −∇V(xs)ds +
√

2β−1dws , s ≥ 0 ,

x0 = x ,
(1)

where xs ∈ Rn, parameter β > 0 is related to the inverse of system’s temperature, and ws is an
n-dimensional Brownian motion. V : Rn → R is a potential function which is assumed to be smooth
and bounded from below. The results presented subsequently can be extended to more general
reversible diffusion processes with a state-dependent noise intensity matrix, cf. [23]. However, for
the sake of simplicity of presentation we restrict our considerations to the specific case (1) typically
studied in molecular dynamics.

The infinitesimal generator of the dynamics (1) is given by,

L = −∇V · ∇+
1
β

∆ . (2)
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It is known that, under mild conditions on V, the solution process (xs)s≥0 of (1) is ergodic [31],
and its unique invariant measure π is given by π(dx) = ρ(x)dx where,

ρ(x) =
1
Z

e−βV(x) , with Z =
∫
Rn

e−βV(x)dx . (3)

We introduce the Hilbert space H = L2(Rn, π), which is endowed with the inner product,

〈 f , g〉π =
∫
Rn

f (x) g(x)ρ(x) dx , ∀ f , g ∈ H , (4)

and the norm | f |π =
√
〈 f , f 〉π , ∀ f ∈ H. The domain of the operator L will be denoted as D(L) ⊂ H.

It is also known that the process (xs)s≥0 is a reversible process and that L is a self-adjoint operator
with respect to the inner product (4). Whenever the potential V grows to infinity fast enough at infinity,
its spectrum is discrete [9]. Let λi ∈ C and ϕi ∈ D(L) be the eigenvalues and the corresponding
(normalized) eigenfunctions of −L, that is, the solutions of the eigenproblem,

−L f = λ f (5)

in H, or in weak form,

−〈L f , g〉π = λ〈 f , g〉π , ∀ g ∈ H . (6)

Due to the self-adjointness of L and the fact that,

〈−L f , f 〉π =
1
β

∫
Rn
|∇ f (x)|2ρ(x)dx ≥ 0 , ∀ f ∈ H , (7)

we can assume that λi ∈ R with,

0 = λ0 < λ1 ≤ · · · ≤ λk ≤ · · · , (8)

with ϕ0 ≡ 1.
Given s ≥ 0, we define the operator Ts : H → H by,

(Ts f )(x) = E
(

f (xs) | x0 = x
)

, f ∈ H , (9)

where E denotes the expectation taken with respect to the paths of (1) under the initial condition that
x0 = x. It is well-known that u(s, x) = Ts f (x) is the solution of the Kolmogorov backward equation

d
ds

u(s, ·) = Lu(s, ·), u(0, ·) = f , (10)

that is, the operators Ts, s ≥ 0 form a one-parameter semigroup whose infinitesimal generator is L, and
therefore they are self-adjoint in H as well. Because of Equation (10), the formal expression Ts = esL is
often used in the literature. Similarly to (8), we also know that the eigenvalues of Ts are given by,

1 = e−λ0s > e−λ1s ≥ · · · > 0 , (11)

with the same eigenfunctions ϕi, i = 0, 1, · · · .
In the following we introduce another operator called the transfer operator, which has been

extensively considered in the literature, to investigate the metastability of molecular systems and to
build Markov state models (MSM) [1,6,9]. A lag time τ > 0 is fixed, with p(x, · ; τ) being the transition
density function of the process (1) starting from x ∈ Rn, i.e., p(x, y ; τ) describes the probability density
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of starting from state x at time s = 0 and arriving at y ∈ Rn after time τ. For a bounded and continuous
function u ∈ H, the transfer operator Tτ : H → H is defined by [1,27,32],

(Tτu)(y) =
1

ρ(y)

∫
Rn

p(x, y; τ)u(x)ρ(x)dx , y ∈ Rn . (12)

From (12), it follows immediately that,

〈Tτu, f 〉π =
∫
Rn

∫
Rn

p(x, y; τ) f (y)dy u(x)ρ(x)dx

=
∫
Rn

[
E
(

f (xτ) | x0 = x
)]

u(x)ρ(x)dx

=〈u, Tτ f 〉π = 〈Tτu, f 〉π , ∀ f ∈ H ,

which then implies Tτ = Tτ , i.e., the transfer operator Tτ coincides with the operator Tτ , a member
within the semigroup (Ts)s≥0. Denote the eigenvalues of Tτ as µi, i ≥ 0, such that,

1 = µ0 > µ1 ≥ · · · > 0 . (13)

Then from the discussions above and the eigenvalues of Ts in (11), we can conclude that µi = e−λiτ

and the corresponding eigenfunctions are the same as the eigenfunctions ϕi of the infinitesimal
generator L. These eigenvalues and eigenfunctions encode crucial timescale information of the
dynamical system. Specifically, the relaxation timescales ti of the dynamics (1) are given by [10],

ti = λ−1
i , i = 1, 2, . . . .

This means that the dominant relaxation timescales of the dynamics (1) can be obtained by
computing the dominant eigenvalues of Tτ (or, equivalently, Tτ , L), cf. [10,27].

3. Galerkin Approximation of the Eigenvalues of the Generator

In this section, we study the Galerkin method for computing the eigenvalues of the infinitesimal
generator L. While Galerkin discretization of the transfer operator has been studied to some extent [9],
results on the associated infinitesimal generator are rather sparse.

3.1. Some General Results

To introduce the Galerkin method, let H0 be a Hilbert subspace of H containing the constant
function, and let P denote the orthogonal projection operator from H to H0, which satisfies P2 = P and,

〈P f , g〉π = 〈 f , g〉π , ∀ f ∈ H, g ∈ H0 . (14)

The Galerkin method aims at approximating the solution of (6) in the subspace H0. Specifically,
we want to find f ∈ H0, such that,

−〈L f , g〉π = κ〈 f , g〉π , ∀ g ∈ H0 , (15)

for some constant κ ≥ 0. Using the property (14), we know that problem (15) is equivalent to the
eigenproblem for the operator −PL on the subspace H0, i.e.,

−PL f = κ f . (16)
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It is straightforward to verify that−PL is a self-adjoint operator on H0. Similarly to (8), let ζi ∈ H0

be the orthonormal eigenfunctions of the operator −PL corresponding to eigenvalues κi, where,

0 = κ0 < κ1 ≤ κ2 ≤ · · · , (17)

and ζ0 ≡ 1. When H0 is an infinite dimensional subspace, we assume κi → +∞ as i→ +∞.
In the following, we want to study the condition under which the eigenvalues of the projected

generator PL are reliable approximations of the eigenvalues of the full generator L. The following
approximation result was obtained in [23] and we include its proof for completeness:

Theorem 1. For i ≥ 0, let ϕi and ζi be the orthonormal eigenfunctions of the operators −L and −PL
corresponding to the eigenvalues λi and κi, respectively. We have,

λi ≤ κi ≤ λi +
1
β

∫
Rn

∣∣∇(ϕi − ζi)(x)
∣∣2ρ(x)dx . (18)

Proof. From (15), we have κi = −〈Lζi, ζi〉π . Define the subspace Ei+1 = span{ζ0, . . . , ζi} for i ≥ 0.
It follows from the orthogonality of the functions ζi that Ei+1 is an (i + 1)-dimensional subspace of H.
Using (17) it is direct to verify that,

κi = max
f∈Ei+1,| f |π=1

〈−L f , f 〉π . (19)

Applying the min–max theorem to the eigenvalues of the operator −L, we conclude,

κi = max
f∈Ei+1,| f |π=1

〈−L f , f 〉π ≥ min
E′i+1

max
f∈E′i+1,| f |π=1

〈−L f , f 〉π = λi , (20)

where E′i+1 goes over all (i + 1)-dimensional subspaces of H. For the upper bound, we can
compute that,

〈−L(ϕi − ζi), (ϕi − ζi)〉π
=〈−Lϕi, ϕi〉π + 2〈Lϕi, ζi〉π + 〈−Lζi, ζi〉π
=λi − 2λi〈ϕi, ζi〉π + κi

=κi − λi + 2λi
(
1− 〈ϕi, ζi〉π

)
≥ κi − λi ,

where we have used the fact that 〈ϕi, ζi〉π ≤ |ϕi|π |ζi|π = 1. The conclusion follows from (7).

Previous studies on the Galerkin approximation of the dominant eigenvalues of the transfer
operator have shown that the approximation error of eigenvalues can be reliably bounded by means of
the projection errors of the corresponding eigenfunctions [28–30]. Next we will derive a similar result
for the generator L. To this end, we introduce the orthogonal projection P⊥ from H to the complement
subspace H⊥0 of H0, that is, P⊥ = I− P. We have

Theorem 2. Let ϕ be a normalized eigenfunction of the operator −L corresponding to the eigenvalue λ.
Define constants,

δ1 = |LP⊥ϕ|π , δ2 = |P⊥ϕ|π ≤ 1 , (21)

and suppose that 0 < δ2 < 1. Then there is an eigenvalue κi of the operator −PL, such that,

|κi − λ| ≤ δ1

(1− δ2
2)

1
2

. (22)



Entropy 2017, 19, 367 6 of 20

Proof. Since δ2 = |P⊥ϕ|π =
(
1 − |Pϕ|2π

) 1
2 < 1, we have |Pϕ| > 0. Let Pϕ =

+∞
∑

i=0
ωiζi, where

ωi = 〈ϕ, ζi〉π , and the summation consists of finite terms when H0 is a finite dimensional subspace.
For all g ∈ H0, we can compute,

〈PLP⊥ϕ, g〉π = 〈PL(ϕ− Pϕ), g〉π

=〈PLϕ, g〉π − 〈PL
( +∞

∑
i=0

ωiζi

)
, g〉π

=− 〈λPϕ, g〉π + 〈
+∞

∑
i=0

ωiκiζi, g〉π = 〈
+∞

∑
i=0

ωi(κi − λ)ζi, g〉π ,

which implies PLP⊥ϕ =
+∞
∑

i=0
ωi(κi − λ)ζi, and,

|PLP⊥ϕ|2π =
+∞

∑
i=0

ω2
i |κi − λ|2 ≥

(
min

i
|κi − λ|2

) +∞

∑
i=0

ω2
i = min

i
|κi − λ|2|Pϕ|2π .

Therefore we have,

min
i
|κi − λ| ≤ |PLP⊥ϕ|π

|Pϕ|π
≤ |LP⊥ϕ|π(

1− |P⊥ϕ|2π
) 1

2
=

δ1

(1− δ2
2)

1
2

. (23)

Remark 1. Notice that our error bound above relies on both constants δ1 and δ2, while the error bound in [30]
for the transfer operator only depends on one constant, the projection error δ2. This difference is due to the fact
that the generator L is an unbounded operator while the transfer operator is bounded.

3.2. Finite Dimensional Subspaces

In applications, it is often assumed that H0 is spanned by finitely many basis functions.
In particular, this is the situation when constructing MSMs based on indicator functions of partition
sets [30] or based on core sets [10].

Let H0 be the finite dimensional space H0 = span{ψ1, ψ2, · · · , ψN}, where ψi ∈ H are the basis
functions, and consider the eigenproblem (15). As a direct application of Theorem 1 and Theorem 2,
we have,

Corollary 1. For Galerkin approximation of the eigenproblem (15) using the finite-dimensional ansatz space
H0, the following three statements are valid:

1. Write f =
N
∑

i=1
ωiψi ∈ H0 and let X = (ω1, ω2, · · · , ωN)

T ∈ RN . Then problem (15) is equivalent to the

generalized matrix eigenproblem,

CX = λSX , (24)

where C, S are N × N matrices whose entries are given by,

Cll′ = 〈−Lψl , ψl′〉π , Sll′ = 〈ψl , ψl′〉π , 1 ≤ l, l′ ≤ N , (25)

2. Let 0 = κ0 ≤ κ1 ≤ · · · ≤ κk be the (k + 1) smallest eigenvalues of problem (24) and,

Xi = (Xi1, Xi2, · · · , XiN)
T , 0 ≤ i ≤ k ,
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be the orthonormal eigenvector corresponding to κi such that XT
i SXi = 1. Define ζi =

N
∑

l=1
Xilψl , then

we have,

λi ≤ κi ≤ λi +
1
β

∫
Rn
|∇(ϕi − ζi)(x)|2ρ(x) dx , 0 ≤ i ≤ k , (26)

where λi, ϕi are the eigenvalues and the eigenfunctions of the operator −L, respectively.
3. Let P be the orthogonal projection operator from H to H0, and ϕ be an eigenfunction of the operator −L

corresponding to the eigenvalue λ. Define constants,

δ1 = |LP⊥ϕ|π , δ2 = |P⊥ϕ|π ,

and suppose that δ2 < 1. Then there is an eigenvalue κi of problem (24) such that,

|κi − λ| ≤ δ1

(1− δ2
2)

1
2

. (27)

3.3. Infinite Dimensional Subspace: Effective Dynamics

In this subsection, we discuss Galerkin approximations based on infinite-dimensional ansatz
spaces; these cases appear when studying the effective dynamics given by a so-called reaction
coordinate, cf. [23]. In order to explain the relation between Galerkin approximation and effective
dynamics, let us first recall some definitions and results regarding the effective dynamics. For more
details, readers are referred to [21,23,33] for related work.

Let ξ : Rn → Rm be a reaction coordinate function, m ≥ 1. For any function f ∈ H and x ∈ Rn,
we define,

P f (x) =
1

Q(z)

∫
Rn

ρ(x′) f (x′)δ
(
ξ(x′)− z

)
dx′ , (28)

where z = ξ(x) ∈ Rm, δ(·) denotes the delta function, and Q(z) =
∫
Rn ρ(x′)δ

(
ξ(x′) − z

)
dx′ is a

normalization factor satisfying
∫
Rm Q(z)dz = 1. Define the probability measure ν on Rm given by

ν(dz) = Q(z) dz for z ∈ Rm and consider the Hilbert space H̃ = L2(Rm, ν). H̃ induces a (infinite
dimensional) linear subspace of H, namely,

H0 =
{

f
∣∣∣ f ∈ H, f = f̃ ◦ ξ, for some f̃ ∈ H̃

}
⊂ H , (29)

and (28) clearly implies that P f ∈ H0.
Let f̃ ∈ H̃ satisfy P f = f̃ ◦ ξ. Then, using (28), we can verify that P2 = P and,

〈 f , h〉π = 〈P f , h〉π = 〈 f̃ , h̃〉ν , ∀ h = h̃ ◦ ξ ∈ H0 . (30)

Therefore, the mapping P : H → H0 actually is the orthogonal projection operator from H to the
subspace H0. For f ∈ H, z ∈ Rm, in the following we will also write P f (z) instead of f̃ (z), where
f̃ ∈ H̃ such that P f = f̃ ◦ ξ. The effective dynamics of the dynamics (1) for the reaction coordinate ξ is
defined on Rm and satisfies the SDE,

dzs = b̃(zs) ds +
√

2β−1σ̃(zs) dws , (31)
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where zs ∈ Rm, ws is a Brownian motion on Rm, and the coefficients b̃ : Rm → Rm, σ̃ : Rm → Rm×m

are given by,

b̃l(z) =P(Lξl)(z) = P
(
−∇V · ∇ξl +

1
β

∆ξl

)
(z) ,

ãll′(z) =(σ̃σ̃T)ll′(z) = P
( n

∑
i=1

∂ξl
∂xi

∂ξl′

∂xi

)
(z) ,

(32)

for ∀z ∈ Rm, 1 ≤ l, l′ ≤ m. The infinitesimal generator of the process governed by (31) is given by,

L̃ =
m

∑
l=1

b̃l
∂

∂zl
+

1
β

m

∑
l,l′=1

ãll′
∂2

∂zl∂zl′
, (33)

which is a self-adjoint operator on space H̃ with discrete spectrum under appropriate conditions on ξ.
We consider the eigenproblem,

−L̃ f̃ = λ̃ f̃ , f̃ ∈ H̃ , (34)

and let ϕ̃i ∈ H̃ be the orthonormal eigenfunctions of the operator−L̃ corresponding to the eigenvalues
λ̃i, where,

0 = λ̃0 < λ̃1 ≤ λ̃2 ≤ · · · . (35)

Applying Theorems 1 and 2, we have the following result.

Corollary 2. For the eigenproblem (34) associated with the effective dynamics, the following three statements
are valid:

1. For f = f̃ ◦ ξ ∈ H0 where f̃ ∈ H̃, we have,

PL f =
(
L̃ f̃
)
◦ ξ . (36)

2. Let ϕi and ϕ̃i be the normalized eigenfunctions of the operators −L and −L̃ corresponding to eigenvalues
λi and λ̃i, respectively. We have,

λi ≤ λ̃i ≤ λi +
1
β

∫
Rn

∣∣∇(ϕi − ϕ̃i ◦ ξ)(x)
∣∣2ρ(x) dx . (37)

3. Let ϕ be the normalized eigenfunction of the operator−L corresponding to the eigenvalue λ. Define constants,

δ1 = |LP⊥ϕ|π , δ2 = |P⊥ϕ|π ,

and suppose δ2 < 1. Then there is an eigenvalue λ̃i of the problem (34), such that,

|λ̃i − λ| ≤ δ1

(1− δ2
2)

1
2

. (38)

Proof. The proof of the first assertion can be found in [23]. Using (30) and (36), we can derive,

−〈PL(ϕ̃i ◦ ξ), f 〉π = −〈
(
L̃ϕ̃i

)
◦ ξ, f 〉π = −〈L̃ϕ̃i, f̃ 〉ν = λ̃i〈ϕ̃i ◦ ξ, f 〉π , ∀ f = f̃ ◦ ξ ∈ H0 , (39)

i.e., λ̃i and ϕ̃i ◦ ξ are the eigenvalues and eigenfunctions of the projected operator−PL on the subspace
H0, respectively. Furthermore, 〈ϕ̃i ◦ ξ, ϕ̃i ◦ ξ〉π = 〈ϕ̃i, ϕ̃i〉ν = 1, i.e., ϕ̃i ◦ ξ is normalized. Therefore,
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the second assertion is implied by Theorem 1. The third assertion follows from Theorem 2 in the
same way.

Remark 2. As an interesting conclusion of the first assertion, we can conclude that, on the infinitesimal subspace
H0 defined in (29), the projected operator −PL is essentially described by another differential operator L̃, which
is defined in the Hilbert space H̃ and coincides with the infinitesimal generator of the effective dynamics on Rm.

4. Variational Approach to Generator Eigenproblem

In this section, we study the variational approach to approximate the eigenvalues and eigenfunctions
of the operator −L. This approach has been considered in [4,7,8] to study the related eigenproblem
of the transfer operator. Its main idea is to approximate the dominant eigenvalues of a self-adjoint
transfer operator via an appropriate form of the Rayleigh variational principle instead via Galerkin
discretization [7]. Herein, we present a similar approach to the low-lying generator eigenvalues.

4.1. Variational Principle

The main object of the variational approach is the following functional F : D(L)⊕(k+1) → R, that
acts on k + 1 functions from D(L).

Given arbitrary constants ωi > 0, 0 ≤ i ≤ k, we define the functional,

F( f0, f1, · · · , fk) =
k

∑
i=0

ωi〈−L fi, fi〉π , fi ∈ D(L) . (40)

Clearly, for the (normalized) leading eigenfunctions ϕi of L, we have,

F(ϕ0, ϕ1, · · · , ϕk) =
k

∑
i=0

ωiλi,

where λi are the corresponding eigenvalues. The main workhorse of the variational principle is the
following lower and upper bound:

Theorem 3 (Variational principle). Let ωi, i = 0, 1, . . . , k be a decreasing sequence of positive real numbers,
i.e., ω0 > ω1 > · · · > ωk > 0. For any orthonormal family of functions fi ∈ D(L), i = 0, 1, . . . , k, we have,

F(ϕ0, ϕ1, · · · , ϕk) ≤ F( f0, f1, · · · , fk) ≤ F(ϕ0, ϕ1, · · · , ϕk) +F( f0 − ϕ0, f1 − ϕ1, · · · , fk − ϕk) , (41)

or more explicitly,

k

∑
i=0

ωiλi ≤
k

∑
i=0

ωi〈−L fi, fi〉π ≤
k

∑
i=0

ωiλi +
k

∑
i=0

ωi〈−L( fi − ϕi), ( fi − ϕi)〉π . (42)

In order to prove this variational principle we need the following simple lemma:

Lemma 1. Suppose k > 0, and let (αi)i=0,1,...,k and (ωi)i=0,1,...,k be two ordered sequences of real numbers
such that,

α0 ≤ α1 ≤ · · · ≤ αk, ω0 ≥ ω1 ≥ · · · ≥ ωk .

Then, for any permutation (ω′i)i=0,1,...,k of the sequence (ωi)i=0,1,...,k, we have,

k

∑
i=0

αiω
′
i ≥

k

∑
i=0

αiωi . (43)
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Proof. The proof of Theorem 3 is given in two steps:

1. For the lower bound, we consider the optimization problem,

min
fi
F( f0, f1, · · · , fk) = min

fi

k

∑
i=0

ωi〈−L fi, fi〉π ,

subject to 〈 fi, fj〉π = δij , 0 ≤ i, j ≤ k .

(44)

Next, we introduce the Lagrange multipliers λij for 0 ≤ i ≤ j ≤ k, and consider the
auxiliary functional,

k

∑
i=0

ωi〈−L fi, fi〉π −
k

∑
i=0

k

∑
j=i

λij
(
〈 fi, fj〉π − δij

)
. (45)

Applying calculus of variation, we conclude that the minimizer of (44) satisfies,

− 2ωiL fi −
k

∑
j=i

λij fj −
i

∑
j=0

λji fj = 0 , ∀ 0 ≤ i ≤ k ,

〈 fi, fj〉π = δij , 0 ≤ i, j ≤ k .

(46)

Multiplying fj for some i < j ≤ k in the first equation of (46) and integrating, we obtain
λij = −2ωi〈L fi, fj〉π. In the same way we could also obtain λij = −2ωj〈L fj, fi〉π. Using the fact
that L is self-adjoint and ωi > ωj for i < j, we conclude that,

λij = 〈L fi, fj〉π = 0 , ∀ 0 ≤ i < j ≤ k , (47)

and (46) reduces to an eigenproblem,

−L fi =
λii
ωi

fi , 0 ≤ i ≤ k . (48)

Therefore, the minimizer of (44) is given by the orthonormal eigenfunctions. Applying Lemma 1,
we can further conclude that the lower bound is obtained when fi = ϕi, with value,

k

∑
i=0

ωi〈−Lϕi, ϕi〉π =
k

∑
i=0

ωiλi . (49)

2. For the upper bound, similarly to the proof of Theorem 1, direct computation gives,

k

∑
i=0

ωi〈−L( fi − ϕi), ( fi − ϕi)〉π

=
k

∑
i=0

ωi〈−L fi, fi〉π −
k

∑
i=0

ωiλi + 2
k

∑
i=0

ωiλi
(
1− 〈 fi, ϕi〉π

)
≥

k

∑
i=0

ωi〈−L fi, fi〉π −
k

∑
i=0

ωiλi ,

where we have used the fact that −Lϕi = λi ϕi and 〈 fi, ϕi〉π ≤ | fi|π|ϕi|π = 1, since both fi, ϕi are
normalized functions.
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4.2. Optimization Problem

The variational principle of Theorem 3 allows for approximation of the low-lying eigenvalues
of the generator. In order to turn it into an algorithm, we again introduce N basis functions ψ1, · · · ,
ψN ∈ D(L). We want to approximate the first k + 1 eigenvalues λi, as well as the eigenfunctions
ϕi, 0 ≤ i ≤ k by approximating the eigenfunctions using linear combinations of the basis functions.
That is, we consider the functions,

fi =
N

∑
l=1

xilψl, (50)

where xil are real-valued coefficients to be determined, 0 ≤ i ≤ k, 1 ≤ l ≤ N. Inspired by Theorem 3,
we wish to determine the coefficients xil by solving the optimization problem,

min
{xil}
F( f0, f1, · · · , fk) = min

{xil}

k

∑
i=0

ωi〈−L fi, fi〉π , fi =
N

∑
l=1

xilψl ,

subject to 〈 fi, fj〉π = δij , 0 ≤ i, j ≤ k .

(51)

Recalling the matrices C, S defined in (25) and defining the vectors Xi = (xi1, · · · , xiN)
T ∈ RN ,

0 ≤ i ≤ k, the optimization problem (51) can be reformulated as,

min
{xil}

k

∑
i=0

ωi

(
∑

1≤l,l′≤N
xilxil′Cll′

)
,

subject to ∑
1≤l,l′≤N

xilSll′xjl′ = δij , 0 ≤ i, j ≤ k ,
(52)

or, equivalently, in matrix form,

min
X0,X1,··· ,Xk

k

∑
i=0

ωiXT
i CXi ,

subject to XT
i SXj = δij , 0 ≤ i, j ≤ k .

(53)

Using a similar argument as in the proof of Theorem 3, we can obtain,

Theorem 4. The minimum of the optimization problem (51) is achieved by the functions fi as of (50) with the
coefficients from the first k + 1 eigenvectors Xi of the generalized matrix eigenproblem,

CX = λSX . (54)

It is supposed that the eigenvectors Xi of (54) are chosen such that XT
i SXj = δij and the corresponding

eigenvalues are κi for 0 ≤ i ≤ k, where κ0 ≤ κ1 ≤ · · · ≤ κk. Then, the minimum of (51) is,

k

∑
i=0

ωiXT
i CXi =

k

∑
i=0

ωiκi . (55)

Remark 3. Combining the above result with Subsection 3.2, we see that both the Galerkin method and the
variational approach lead to the same generalized matrix eigenproblem with an identical estimate for the
eigenvalue error.

5. Numerical Algorithms

In this section, we consider how the matrices C, S defined in (25), that is,

Cll′ = 〈−Lψl, ψl′〉π, Sll′ = 〈ψl, ψl′〉π , 1 ≤ l, l′ ≤ N (56)
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can be approximated from trajectories of the diffusion process. For the transfer operator this
problem has been studied in [4,7,8] using trajectories of the original diffusion process given by (1).
In contrast, we herein will consider trajectories of the effective dynamics (31) instead of the original
diffusion process.

5.1. Computing Coefficient Matrices Using Effective Dynamics

Similar to the setup in Subsection 3.3, we assume that a reaction coordinate function ξ : Rn → Rm,
as well as N basis functions ψl , 1 ≤ l ≤ N, are given. Furthermore, we suppose that the basis functions
ψl can be written as ψl = ψ̃l ◦ ξ for some functions ψ̃l ∈ H̃, i.e., ψl ∈ H0. In this case, it follows from the
first assertion of Corollary 2 and the relation (30) that,

Sll′ =〈ψl, ψl′〉π = 〈ψ̃l, ψ̃l′〉ν ,

Cll′ =〈−Lψl, ψl′〉π = 〈−Lψl, Pψl′〉π = 〈−PLψl, ψl′〉π
=〈−(L̃ψ̃l) ◦ ξ, ψl′〉π = 〈−L̃ψ̃l, ψ̃l′〉ν .

(57)

These equalities, though simple, are quite interesting, because they relate the entries of the
coefficient matrices C, S to the infinitesimal generator L̃ of the effective dynamics in (33). Since ν is the
unique invariant measure of the effective dynamics [23], we can apply the ergodic theorem and get,

Sll′ = lim
T→+∞

1
T

∫ T

0
ψ̃l(zs)ψ̃l′(zs)ds ≈ 1

M−M0

M

∑
i=M0+1

ψ̃l(zi∆t)ψ̃l′(zi∆t) , (58)

where zs denotes a realization of the effective dynamics (31), ∆t > 0 is the step size, M ∈ N is a large
integer, and only the parts of trajectories after time M0∆t are used for estimation.

For the matrix C, using (57), the definition of the infinitesimal generator L̃, as well as the ergodic
theorem, we can derive,

Cll′ =〈−L̃ψ̃l, ψ̃l′〉ν

=−
∫
Rm

lim
s→0

E
(
ψ̃l(zs)|z0 = z

)
− ψ̃l(z)

s
ψ̃l′(z) dν(z)

=− lim
s→0

∫
Rm

E
(
ψ̃l(zs)|z0 = z

)
− ψ̃l(z)

s
ψ̃l′(z) dν(z)

=− lim
s→0

E
[

ψ̃l(zs)− ψ̃l(z0)

s
ψ̃l′(z0)

∣∣∣ z0 ∼ ν

]
=− lim

s→0
lim

T→+∞

1
T

∫ T

0

ψ̃l(zt+s)− ψ̃l(zt)

s
ψ̃l′(zt) dt

=− lim
s→0

lim
T→+∞

1
T

∫ T

0

ψ̃l′(zt+s)− ψ̃l′(zt)

s
ψ̃l(zt) dt .

(59)

In the above, E denotes the mathematical expectation with respect to the effective dynamics zs,
and the last equality follows from the symmetry of the matrix C.

To compute Cll′ numerically, we further introduce a parameter τ � 1, and approximate (59) by,

Cll′ ≈−
1

2(M−M0)

[ M

∑
i=M0+1

ψ̃l(zi∆t+τ)− ψ̃l(zi∆t)

τ
ψ̃l′(zi∆t)

+
M

∑
i=M0+1

ψ̃l′(zi∆t+τ)− ψ̃l′(zi∆t)

τ
ψ̃l(zi∆t)

]

=− 1
2(M−M0)

M

∑
i=M0+1

ψ̃l(zi∆t+τ)ψ̃l′(zi∆t) + ψ̃l(zi∆t)ψ̃l′(zi∆t+τ)− 2ψ̃l(zi∆t)ψ̃l′(zi∆t)

τ
.

(60)
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Formulas (58) and (60) can be used to estimate the coefficient matrices C, S, provided that we can
obtain a long trajectory of the effective dynamics (31).

Remark 4. From the discussions in Section 2, we know that the eigenvalues of the transfer operator Tτ and
those of the operator −L satisfy the relation µi = e−λiτ, i ≥ 0. When the lag time τ is small, the approximation
µi ≈ 1− λiτ holds for the leading eigenvalues since λi is small. In fact, estimating the matrix C using the last
expression in (60), we will have C = S−C̄

τ , where the matrix C̄ is given by,

C̄ll′ =
1

2(M−M0)

M

∑
i=M0+1

[
ψ̃l(zi∆t+τ)ψ̃l′(zi∆t) + ψ̃l(zi∆t)ψ̃l′(zi∆t+τ)

]
. (61)

It is easy to observe that the eigenvalue estimations resulting from problem (54) are related to those of the
problem C̄X = µSX by µ = 1− λτ. Note that (61) is very similar to the estimator derived in [3] except for the
fact that here we use trajectories of the effective dynamics instead of the original dynamics. To summarize, when
the lag time τ is small, the above discussion implies that after solving the problem (54) we can approximate the
leading eigenvalues of the transfer operator by µi = 1− λiτ.

5.2. Algorithms for Simulating the Effective Dynamics

In order to utilize the above results we have to be able to efficiently compute (long) realizations of
the effective dynamics (31). In this subsection, we discuss two numerical algorithms for realizing this.

5.2.1. Algorithm 1

The first algorithm is based on the following formula for the coefficients b̃, ã given in (32):

b̃l(z) = lim
s→0+

E
(ξl(xs)− zl

s

∣∣∣ x0 ∼ µz

)
, 1 ≤ l ≤ m ,

ãll′(z) =
β

2
lim

s→0+
E
((ξl(xs)− zl

)(
ξl′(xs)− zl′

)
s

∣∣∣ x0 ∼ µz

)
, 1 ≤ l, l′ ≤ m ,

(62)

where xs is a realization of the original diffusive dynamics (1) and µz is the restriction of the invariant
measure π to the submanifold ξ−1(z) =

{
x ∈ Rn | ξ(x) = z

}
. We refer readers to [23] for more details.

In order to utilize this for simulation, we fix two parameters 0 < ∆s� ∆t and proceed as follows:

1. At step k ≥ 0, starting from x0 ∼ µz, generate N trajectories x(i)∆s of length ∆s of the (unconstrained)
full dynamics xs by discretizing (1). Compute the coefficients b̃, ã by,

b̃l =
1
N

N

∑
i=1

ξl(x
(i)
∆s)− zk∆t,l

∆s
,

ãll′ =
β

2

[ 1
N

N

∑
i=1

(
ξl(x

(i)
∆s)− zk∆t,l

)(
ξl′(x

(i)
∆s)− zk∆t,l′

)
∆s

− b̃l b̃l′∆s
]

,

(63)

where 1 ≤ l, l′ ≤ m.

2. Compute σ̃ from ã = σ̃σ̃T by matrix decomposition. Update z(k+1)∆t by,

z(k+1)∆t,l = zk∆t,l + b̃l∆t +

√
2∆t

β

m

∑
i=1

σ̃liη
(k)
i , 1 ≤ l ≤ m , (64)

where η
(k)
i are independent standard Gaussian variables, 1 ≤ i ≤ m.



Entropy 2017, 19, 367 14 of 20

In the above, zk∆t,l denotes the lth components of zk∆t ∈ Rm. The initial states x0 are sampled from
the probability measure µz; this can be achieved by using the numerical schemes proposed in [15,34,35],
which simulate the original dynamics (1) and then project the state onto the submanifold ξ−1(z).

5.2.2. Algorithm 2

The second algorithm is inspired by the TAMD method proposed in [17]. In the following we
provide a slightly different argument which motivates the method. The main idea is to consider the
extended dynamics,

dxs,i =−
∂V
∂xi

(xs)ds− κ
m

∑
j=1

(
ξ j(xs)− zs,j

)∂ξ j

∂xi
(xs) ds +

√
2β−1dws,i , 1 ≤ i ≤ n ,

dzs,l =κ
m

∑
k=1

(
ξk(xs)− zs,k

) n

∑
j=1

∂ξk
∂xj

(xs)
∂ξl
∂xj

(xs) ds +
√

2β−1
n

∑
j=1

∂ξl
∂xj

(xs) dw̄s,j , 1 ≤ l ≤ m ,
(65)

where κ is a large constant, ws, w̄s are independent Brownian motions on Rn, and xs,i denotes the
ith component of the state xs (similar notations for zs, ws, w̄s). Note that the invariant measure of the
dynamics (65) has a probability density,

ρκ(x, z) ∝ e−β
(

V(x)+ κ
2 |ξ(x)−z|2

)
, (x, z) ∈ Rn+m , (66)

with respect to the Lebesgue measure on the extended space Rn+m. If we choose (x, z) → z as the
reaction coordinate function of (65) and derive the effective dynamics following [21,23], we can obtain,

dzs =b̃(κ)(zs)ds +
√

2β−1σ̃(κ)(zs) dws , (67)

where ws is a Brownian motion on Rm, and,

b̃(κ)l (z) =κ
∫
Rn

m

∑
k=1

(
ξk(x)− zk

) n

∑
i=1

∂ξk
∂xi

(x)
∂ξl
∂xi

(x)ρκ(x, z) dx =
∫
Rn
Lξl(x)ρκ(x, z) dx

ã(κ)ll′ (z) =
(
σ̃(κ)(σ̃(κ))T)

ll′(z) =
∫
Rn

n

∑
i=1

∂ξl
∂xi

(x)
∂ξl′

∂xi
(x)ρκ(x, z) dx ,

(68)

for z ∈ Rm, 1 ≤ l, l′ ≤ m. Note that in (68), L is the generator given in (2) and integration by parts
has been used to derive the second expression for b̃(κ). It is not difficult to show that b̃(κ) → b̃ and
ã(κ) → ã, when κ → +∞. Therefore (67) is an approximation of the effective dynamics (31) when κ � 1.
For numerical simulations, we can express (68) as time averages,

b̃(κ)l (z) = lim
T→∞

κ

T

∫ T

0

m

∑
k=1

(
ξk(xs)− zk

) n

∑
i=1

∂ξl
∂xi

(xs)
∂ξk
∂xi

(xs) ds , 1 ≤ l ≤ m ,

ã(κ)ll′ (z) = lim
T→∞

1
T

∫ T

0

n

∑
i=1

∂ξl
∂xi

(xs)
∂ξl′

∂xi
(xs) ds , 1 ≤ l, l′ ≤ m ,

(69)

where xs satisfies the SDE (65) with fixed zs = z, i.e.,

dxs,i =−
∂V
∂xi

(xs) ds− κ
m

∑
j=1

(
ξ j(xs)− zj

)∂ξ j

∂xi
(xs) ds +

√
2β−1dws,i , 1 ≤ i ≤ n . (70)

The main steps of the algorithm can be summarized as follows:
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1. Denote z = zk∆t at step k ≥ 0. Simulate dynamics (70) for M steps with time step size ∆s. Compute
the coefficients,

b̃l =
κ

M−M0

M

∑
j=M0+1

m

∑
l′=1

(
ξl′(xj∆s)− zl′

) n

∑
i=1

∂ξl
∂xi

(xj∆s)
∂ξl′

∂xi
(xj∆s) , 1 ≤ l ≤ m ,

ãll′ =
1

M−M0

M

∑
j=M0+1

n

∑
i=1

∂ξl
∂xi

(xj∆s)
∂ξl′

∂xi
(xj∆s) , 1 ≤ l, l′ ≤ m .

(71)

2. Compute σ̃ from ã = σ̃σ̃T by matrix decomposition. Update the state z(k+1)∆t according to,

z(k+1)∆t,l = zk∆t,l + b̃l∆t +

√
2∆t

β

m

∑
i=1

σ̃liη
(k)
i , 1 ≤ l ≤ m , (72)

where η
(k)
i are independent standard Gaussian variables, 1 ≤ i ≤ m.

6. Illustrative Example

In order to illustrate the analysis and the performance of the numerical methods presented in the
previous sections, we study simple two-dimensional dynamics:

dxs,1 = −∂V(xs)

∂x1
ds +

√
2β−1dws,1 ,

dxs,2 = −∂V(xs)

∂x2
ds +

√
2β−1dws,2 ,

(73)

where β > 0, xs = (xs,1, xs,2) ∈ R2 and ws,1, ws,2 are two independent one-dimensional Brownian motions.
The potential V in dynamics (73) is defined as,

V(x) = V1(θ) +
1
ε

V2(r, θ) , (74)

where ε > 0,

V1(θ) =


[
1− 9

π2

(
θ− π

3
)2]2

θ > π
3 ,

3
5 −

2
5 cos 3θ −π

3 ≤ θ ≤ π
3 ,[

1− 9
π2

(
θ + π

3
)2]2

θ < −π
3 ,

V2(r, θ) =
(

r2 − 1− 1
1+ 4rθ2

)2
,

and (r, θ) is the polar coordinate of the state x = (x1, x2) satisfying,

x1 = r cos θ , x2 = r sin θ ,

θ ∈ [−π, π] , r ≥ 0 .
(75)

Under the polar coordinate, it is easy to see that the potential V contains three local minima at
linebreak θ = 0,± 2π

3 where the radius is determined by the relation r2 = 1 + 1
1+4rθ2 . Furthermore,

when parameter ε is small, one can expect that the dynamics (73) will be mainly confined in the
neighbourhood of the curve defined by the relation r2 = 1+ 1

1+4rθ2 , where the potential is relatively
flat. Profiles of the potentials V1 and V are displayed in Figure 1.
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Figure 1. (a) Function V1 as a function of angle θ; (b) Potential V defined in (74) with parameter
ε = 0.05.

The main purpose of this numerical experiment is to demonstrate that the leading eigenvalues
of the operator −L corresponding to dynamics (73) can be approximated with the help of its
effective dynamics, provided that the reaction coordinate function as well as the basis functions
are chosen appropriately.

We choose parameters β = 4.0 and ε = 0.05 in the following numerical experiment. In fact, for
this two-dimensional problem, it is possible to directly solve the eigenproblem (5) by discretizing the
operator L. First of all, we note that the generator can be written as L = eβV

β ∇(e
−βV∇). Defining the

operator D such that D f = e−
β
2 V f for a function f , it is straightforward to see that the operator

−LD = −DLD−1 has the same eigenvalues λi as −L and the corresponding eigenfunctions are given

by ϕDi = Dϕi = e−
β
2 V ϕi, where ϕi are the eigenfunctions of −L. Furthermore, LD is a self-adjoint

operator under the standard L2 inner product. Instead of −L, we will work with −LD and solve the
eigenproblem −LD f = λ f because the discretized matrix will be symmetric and the corresponding
eigenfunctions ϕDi decay rapidly.

Taking into account the profile of the potential V in Figure 1b, we truncate the whole space R2 into
a finite domain [−2, 2]× [−2, 2], which is then discretized using a 500× 500 uniform mesh, leading
to the cell resolution ∆x1 = ∆x2 = 4

500 = 0.008. For 1 ≤ i, j ≤ 500, let fi,j, Vi,j denote the values of the
functions f , V evaluated at state

(
− 2.0+ (i− 1

2 )∆x1,−2.0+ (j− 1
2 )∆x2

)
, respectively. Other notations

such as Vi± 1
2 ,j are defined in a similar way. Approximating −LD f = − 1

β e
β
2 V∇

(
e−βV∇(e

β
2 V f )

)
by the

centered finite difference scheme, we obtain,

−(LD f )i,j ≈
e

β
2 Vi,j

β

[
e
−βV

i− 1
2 ,j

∆x1

e
β
2 Vi,j fi,j − e

β
2 Vi−1,j fi−1,j

∆x1
− e
−βV

i+ 1
2 ,j

∆x1

e
β
2 Vi+1,j fi+1,j − e

β
2 Vi,j fi,j

∆x1

+
e
−βV

i,j− 1
2

∆x2

e
β
2 Vi,j fi,j − e

β
2 Vi,j−1 fi,j−1

∆x2
− e
−βV

i,j+ 1
2

∆x2

e
β
2 Vi,j+1 fi,j+1 − e

β
2 Vi,j fi,j

∆x2

]
,

(76)

for 1 < i, j < 500. For boundary cells, the Neumann condition is applied when the neighboring cells
are lying outside of the truncated domain. From (76), it can be observed that the resulting discretization
matrix is both symmetric and sparse. Solving the eigenvalues of this matrix (of order 250,000 ) using the
Krylov–Schur method through the numerical package SLEPc [36], we obtain the first four eigenvalues,

λ0 = 0.000 , λ1 = 0.010 , λ2 = 0.044 , λ3 = 1.458 , (77)

with relative residual errors smaller than 1.1× 10−6. The corresponding eigenvectors are shown
in Figure 2.
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Figure 2. Eigenfunctions ϕDi of operator −LD corresponding to the first four eigenvalues in (77).

With the above reference result at hand, we continue to study the approximation quality of the
effective dynamics with respect to the leading eigenvalues. For this purpose, we choose the reaction
coordinate function as ξ(x) = θ(x) ∈ [−π, π], i.e., our reaction coordinate is the angle of the polar
coordinate representation. Direct calculation shows that the coefficients b̃, σ̃ in (32) reduces to,

b̃(z) = P
(
−∇V · ∇θ

)
(z) , ã(z) = (σ̃σ̃T)(z) = P

( 1
r2

)
(z) , z ∈ [−π, π] . (78)

Discretizing the interval [−π, π] into 1000 subintervals and applying the projection scheme
proposed in [34] for each fixed z = −π + 2π j

1000 , 0 ≤ j ≤ 1000, we can compute the coefficients of the
effective dynamics; the resulting profiles are shown in Figure 3a,b. After these preparations, we can
generate trajectories of the effective dynamics by simulating the SDE (31) using standard time stepping
schemes. As shown in Figure 3c, the effective dynamics spend long times around values − 2π

3 , 0 and
2π
3 , which is accordance with the behavior of dynamics (73) as well as with the profile of the potential

V in Figure 1b. Since the effective dynamics is one-dimensional, we can also discretize its infinitesimal
generator L̃ in (33) and compute the eigenvalues of −L̃ which gives,

λ̃0 = 0.000 , λ̃1 = 0.012 , λ̃2 = 0.044 , λ̃3 = 2.068 .

Comparing to (77), we conclude that the eigenvalues λ0, λ1, λ2 of the original dynamics (73) are
quite well approximated by those of the effective dynamics.

As the final step of our experiment, we test the trajectory-based method proposed in Subsection 5.1.

First of all, we define basis functions ψ̃1(z) ≡ 1.0 and ψ̃i(z) = exp
(
− (z−ci)

2

2γ2
i

)
, 2 ≤ i ≤ 7, where,

ci =
{
− 2π

3
, −2π

3
, 0 , 0 ,

2π

3
,

2π

3

}
, ri =

{
0.4 , 0.7 , 0.4 , 0.7 , 0.4 , 0.7

}
.

That is, we have located two Gaussian-like basis functions with different radiuses
(0.4 and 0.7) at each of the three local minima θ = 0,± 2π

3 . The matrices S and C are then estimated
according to (58) and (60) by generating four long trajectories of the effective dynamics with time step
size ∆t = 5× 10−4, and parameters τ = 20∆t, M0 = 1000, M = 2× 107 are used for each trajectories.
Solving the generalized matrix eigenproblem CX = λSX, we obtain the leading eigenvalues,

λ̃0 = 0.000 , λ̃1 = 0.013 , λ̃2 = 0.045 , λ̃3 = 3.776 .

As before, we conclude that the eigenvalues λ0, λ1, λ2 of the original dynamics are relatively
well approximated.
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Figure 3. (a,b) Coefficients b̃ and σ̃ as given in (78). For each z = −π +
2π j
1000 , 0 ≤ j ≤ 1000,

the coefficients b̃(z), σ̃(z) are estimated by generating a trajectory of the constrained version of
dynamics (73) using the projection scheme proposed in [34] with the time step size 2 × 10−5,
and 3 × 106 steps are simulated; (c) A typical sample trajectory of the effective dynamics for
dynamics (73) with reaction coordinate function ξ(x) = θ(x).

7. Conclusions

In this work we have studied the approximation of eigenvalues and eigenfunctions of the
infinitesimal generator associated with the longest relaxation processes of diffusive processes in
energy landscapes. Following the previous studies on transfer operators, we consider the Galerkin
discretization method, the variational approach and the effective dynamics given by a low-dimensional
reaction coordinate for solving the eigenvalue problem in application to the generator. It turns out
that: (1) there are rather similar results for the approximation error of the three methods; and (2) the
first two methods lead to the same generalized matrix eigenproblem while the third can be used for
efficient estimation of the associated coefficient matrices.

Before we conclude, it is worth mentioning several issues which go beyond the scope of our current
work. Firstly, while we have assumed that the dynamics are driven by the gradient of a potential
function, we emphasize that the analysis in the current work can be directly applied to more general
reversible processes (see [23] for details). Secondly, for non-reversible dynamics, as, for example, for
Langevin dynamics, it is not immediately clear how the results in the current work can be applied.
However, the approach in [9] (Section 5.3), shows that the extended reversibility of Langevin dynamics
may well allow for a generalization of our results. Thirdly, for the numerical algorithms which are
briefly outlined in Section 5, both the numerical analysis and their applications to more complicated
systems need to be further investigated. Lastly, both the analysis and the algorithms in our current
work depend on the choice of the reaction coordinate function. Different choices will have different
approximation qualities of the eigenvalues/eigenfunctions of the system [21,23,37]. Algorithmic
identification of reaction coordinate functions for high-dimensional systems is a challenging problem
and has attracted considerable attention; most approaches utilize machine learning approaches [38],
while the relation between identification and effective dynamics has only been explored recently [39].
All of these issues are topics of ongoing research.
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