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Abstract: Vegetation productivity is an essential variable in ecosystem functioning. Vegetation
dynamics of dryland ecosystems are most strongly determined by water availability and consequently
by rainfall and there is a need to better understand how water limited ecosystems respond to altered
rainfall amounts and variability. This response is partly determined by the vegetation functional
response to rainfall (β) approximated by the unit change in annual vegetation productivity per unit
change in annual rainfall. Here, we show how this functional response from 1983 to 2011 is affected by
below and above average rainfall in two arid to semi-arid subtropical regions in West Africa (WA) and
South West Africa (SWA) differing in interannual variability of annual rainfall (higher in SWA, lower
in WA). We used a novel approach, shifting linear regression models (SLRs), to estimate gridded time
series of β. The SLRs ingest annual satellite based rainfall as the explanatory variable and annual
satellite-derived vegetation productivity proxies (NDVI) as the response variable. Gridded β values
form unimodal curves along gradients of mean annual precipitation in both regions. β is higher
in SWA during periods of below average rainfall (compared to above average) for mean annual
precipitation <600 mm. In WA, β is hardly affected by above or below average rainfall conditions.
Results suggest that this higher β variability in SWA is related to the higher rainfall variability in this
region. Vegetation type-specific β follows observed responses for each region along rainfall gradients
leading to region-specific responses for each vegetation type. We conclude that higher interannual
rainfall variability might favour a more dynamic vegetation response to rainfall. This in turn may
enhance the capability of vegetation productivity of arid and semi-arid regions to better cope with
periods of below average rainfall conditions.

Keywords: rainfall variability; dryland ecohydrology; ecosystem functioning; rainfall; vegetation
productivity; land degradation; drought; remote sensing

1. Introduction

The importance of rainfall and water availability for dryland vegetation functioning has long
been recognized and shown in numerous studies [1–4]. That is, strong interannual fluctuations in
rainfall amounts drive an analogous variability in vegetation dynamics from year to year [5].
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In particular, vegetation net productivity is a key variable in terrestrial ecosystem functioning [6],
as it represents the underlying driving force of all trophic ecosystem levels [7] and carbon budgets [8]
and thus connects plant-scale metabolic processes with ecosystem structure [9].

Drylands cover nearly 40% of the global terrestrial surface and make up a similar number of the
global terrestrial share of net primary production [10]. Thus, climate model predictions of globally
altered water availability in the upcoming century [11] make it necessary to enhance the understanding
of dryland vegetation response to rainfall and future changes thereof [12,13].

Vegetation response to rainfall (β) may be defined as any change in vegetation activity and,
consequently, production or cover over time with a corresponding change in rainfall over the same
time period for a given location [14,15]. The response is regularly estimated from linear models as
slope or linear coefficient ingesting rainfall as explanatory and vegetation productivity (or a proxy
thereof) as the response variable [3,6,16–20]. β thus translates water availability during a period of net
growth into any ecosystem or plant-specific functional response as a function of the integral of other
constraints potentially influencing plant growth [21]. β can be interpreted as the Water Use Efficiency
(WUE) (i.e., the ratio of net photosynthesis to transpiration) under preconditions that the ineffective
precipitation (runoff and soil evaporation) was accounted for leading to an intercept = 0. In this case,
β becomes a measure of WUE [5,22]. Deriving from WUE, the concept of Rain-Use Efficiency (RUE),
defined as the ratio of ANPP (aboveground net primary productivity) to annual precipitation [1] and
temporal changes therein was suggested as an integral measure for evaluating land degradation and
desertification. It has been widely used to assess non-precipitation related land degradation—or the
reverse—in global drylands [23–25]. As emphasized in [14,17,23], this may only yield reliable results
in cases where the intercept of the relationship between vegetation and water metrics used equals zero
(otherwise the β and efficiency will be different entities) which is seldom obtained by using satellite
based proxies of vegetation productivity such as annually summed NDVI (normalised difference
vegetation index) and annually summed precipitation.

Moreover, the basic assumption involved in the use of RUE is that vegetation productivity is
linearly related to precipitation in the absence of human-induced land degradation. If this assumption
of linearity does not hold, the normalization for precipitation variability in the spatial or temporal
domain does not apply and, consequently, the interpretation of changes in RUE as non-precipitation
related land degradation is not justified. Several studies have questioned this linearity or constant slope
to apply across drylands characterized by different plant functional types or hydrological conditions.
Along a gradient of mean annual precipitation (MAP) stretching across arid to semi-arid regions,
linear coefficients usually form a unimodal response curve [13,26–28] following a shift of the relative
importance of the factors limiting plant growth and, consequently, any response of vegetation to
rainfall [6]. In the arid-most parts (approximately 0–300 mm MAP) physiological constraints such as
adaptions of stomatal conductance to high vapour pressure deficit and low specific leaf area affect
the relative growth rate [29] and, consequently, limit the plant-specific β. Approaching the semi-arid
regions around 300–600 mm MAP, β increases towards a region-specific local maximum [1,6,27]
marking the transition zone from physiological to rather edaphic constraints on plant growth [3].
A rapid decrease in β is often observed after the peak ascribed to the increasingly limiting power of
nutrients and a decrease of the governing power of precipitation [6,30]. Moreover, local fire regimes
and land use practices increasingly shape vegetation dynamics [15,31,32].

There have been several attempts to model the effect of below and above average rainfall on
β using a space for time approach, e.g., [13,18]. Other studies have split time series of vegetation
productivity and rainfall into two separate periods a priori assuming differences in the prevailing
rainfall conditions, e.g., [33,34]. However, no attempt to describe any ecosystem-specific reaction
to above or below average rainfall conditions with respect to ecohydrological traits such as β has
been made on a regional scale based on gridded data. Additionally, there is evidence that greater
environmental heterogeneity (such as rainfall variability) affects the way ecosystems react with
changing resource availability [35,36]. Lázaro-Nogal et al. [37] found greater phenotypic plasticity
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being associated with higher rainfall variability in dryland plant communities which may in turn affect
the adaptability of net production to altered annual rainfall. Thus, it may be hypothesized that higher
rainfall variability promotes a more dynamic vegetation functional response to rainfall. Consequently,
integrating the unimodality framework with proxies for environmental heterogeneity over wet and
dry periods will help to reveal potential regional-scale vulnerabilities to changes in rainfall.

In this study, we present results from a novel approach to analyze the spatiotemporal relationship
between vegetation and rainfall in drylands providing a basis for predictions of future dryland
vegetation sensitivities to short- and long-term changes in rainfall. The approach involves shifting
linear regression models (SLR) producing a time series of linear slope coefficients based on gridded
time series of vegetation productivity proxies and rainfall estimates covering nearly three decades
(1983–2011). We explore the spatial response functions of β along gradients of MAP during relatively
dry and wet conditions for two dryland regions in subtropical Africa (West Africa, WA, and South West
Africa, SWA) characterized by distinctly different patterns of interannual variability of annual rainfall.

Specifically, (1) we test the importance of interannual rainfall variability on the response to changes
in below or above average rainfall conditions (dry or wet) assessed by the shape and amplitude of
the β curve over a MAP gradient for the two study regions; (2) We analyze β for the three major
vegetation types of African drylands (savannas, grass and crop type vegetation, and shrubs) to reveal
vegetation-specific differences.

2. Materials and Methods

2.1. Study Regions

The importance of rainfall amount and variability for vegetation response was assessed in two
major African dryland regions, namely South West Africa (SWA) and West Africa (WA) (Figure 1a,b).
The MAP gradients in these regions range from approximately 20 mm to >900 mm. However, only
regions with MAP <900 mm were considered as above this threshold rainfall increasingly loses its
predetermining influence on vegetation [15,38]. The SWA study region (Figure 1a) is characterized by
a southern-centric summer rainy season which lasts approximately from November to April with the
south-western parts experiencing significantly shorter seasons compared to the north-east. Vast areas
of this region are covered by shrub and savanna vegetation and only minor parts are characterized by
grassland (Figure 1c). The WA study region (Figure 1b) is characterized by a Northern hemisphere
summer precipitation regime receiving nearly all annual rainfall during the rainy period between
July and October. Large parts of this region are characterized by grassland or savanna vegetation
(Figure 1d). A more detailed description of the study regions can be found in the Appendix A.

2.2. Vegetation Productivity Proxies

Global Inventory Modelling and Mapping Studies normalized difference vegetation index
(GIMMS NDVI3g, 8 km spatial resolution, biweekly temporal resolution) [39] data were used to
derive annual proxies of vegetation productivity from 1983 to 2011. The NDVI is closely coupled to the
fraction of photosynthetically active radiation absorbed by vegetation (fAPAR) in dryland areas [40]
and has been shown to be closely linked to ecosystem scale carbon fixation [41] and, consequently, net
biomass production [42,43]. Particularly, the cyclic part of the greenness signal measured throughout
the growing season is most strongly coupled to vegetation productivity [44,45].

We used a phenological parameterization model [46] to derive the cyclic part of the annual
vegetation signal (Appendix B). We subsequently used this annual “cyclic fraction” as a proxy for
vegetation productivity. Due to the unitless character of the NDVI, we normalized annual productivity
proxies to z-scores as zi = (xi − µ)/σ where zi represents the z-score of the vegetation proxy value xi of
time step i of the time series and µ and σ are the time series mean and standard deviation, respectively,
for any given grid cell.
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Figure 1. Overview of the two study regions, (a) South West Africa (SWA) and (b) West Africa (WA). 
Insets are enlarged maps of the respective gradients of mean annual precipitation (MAP) derived 
from African Rainfall Climatology 2 (ARC2) data. White areas on the rainfall maps indicate areas, 
which were not considered as they were either masked as water bodies or had MAP values > 900 mm. 
(c–d) Vegetation types found in the South West African (SWA, (c)) and West African (WA, (d)) study 
regions derived from MODIS MCD12C1 Type 3 land cover data (2001–2011). White areas depict pixels 
excluded. Pixels have been nearest-neighbour-resampled to match the GIMMS spatial resolution. 

2.3. Rainfall Data 

Data of the African Rainfall Climatology version 2, (ARC2, 0.1° spatial resolution, available from 
1983 to present) [47] were obtained and bi-linearly resampled to match the GIMMS NDVI spatial 
resolution. The daily rainfall estimates were then summed annually, where one year in the WA region 
lasts from January to December (Northern hemisphere summer centric) and from August to July in 
the SWA region (southern hemisphere summer centric). In months where no ARC2 data were 
available, a monthly estimate from the Global Precipitation Climatology Project (GPCP) v2p2 product 
[48] was resampled to GIMMS NDVI resolution and scaled to monthly rainfall sums assuming a 
month of length 365/12 days. To maintain comparability, annual rainfall sums were transformed to 
z-scores following the procedure described for vegetation productivity proxies. 

To analyze β response functions along MAP gradients, we calculated pixelwise mean annual 
precipitation (MAP (mm)) and mean rainy season length (MSL (months)). A month was considered 
as belonging to the rainy season when it received more than 20 mm of rainfall. Although this is below 
the value often assumed for “effective rainfall”, e.g., [5,49], it is well in the range commonly used to 
differentiate between rainy and dry season [50]. To account for the variability of annual rainfall and 
season length, we computed the pixel-wise coefficient of variation from MAP (CVP) and MSL (CVS) 
as CV = σ/µ. 
  

Figure 1. Overview of the two study regions, (a) South West Africa (SWA) and (b) West Africa (WA).
Insets are enlarged maps of the respective gradients of mean annual precipitation (MAP) derived
from African Rainfall Climatology 2 (ARC2) data. White areas on the rainfall maps indicate areas,
which were not considered as they were either masked as water bodies or had MAP values > 900 mm.
(c–d) Vegetation types found in the South West African (SWA, (c)) and West African (WA, (d)) study
regions derived from MODIS MCD12C1 Type 3 land cover data (2001–2011). White areas depict pixels
excluded. Pixels have been nearest-neighbour-resampled to match the GIMMS spatial resolution.

2.3. Rainfall Data

Data of the African Rainfall Climatology version 2, (ARC2, 0.1◦ spatial resolution, available from
1983 to present) [47] were obtained and bi-linearly resampled to match the GIMMS NDVI spatial
resolution. The daily rainfall estimates were then summed annually, where one year in the WA region
lasts from January to December (Northern hemisphere summer centric) and from August to July in the
SWA region (southern hemisphere summer centric). In months where no ARC2 data were available,
a monthly estimate from the Global Precipitation Climatology Project (GPCP) v2p2 product [48] was
resampled to GIMMS NDVI resolution and scaled to monthly rainfall sums assuming a month of
length 365/12 days. To maintain comparability, annual rainfall sums were transformed to z-scores
following the procedure described for vegetation productivity proxies.

To analyze β response functions along MAP gradients, we calculated pixelwise mean annual
precipitation (MAP (mm)) and mean rainy season length (MSL (months)). A month was considered as
belonging to the rainy season when it received more than 20 mm of rainfall. Although this is below
the value often assumed for “effective rainfall”, e.g., [5,49], it is well in the range commonly used to
differentiate between rainy and dry season [50]. To account for the variability of annual rainfall and
season length, we computed the pixel-wise coefficient of variation from MAP (CVP) and MSL (CVS)
as CV = σ/µ.
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2.4. Land Cover Data

To determine the vegetation-type-specific response to rainfall we used Moderate-Resolution
Imaging Spectroradiometer (MODIS) MCD12C1 (0.05◦ spatial resolution, annual temporal resolution,
2001–2011) Type 3 (LAI/fAPAR) land cover data (nearest-neighbour resampled to match GIMMS NDVI
spatial resolution). This product provides land cover information and sub-pixel frequencies of each
class per grid cell. Information about long-term stable vegetation type was obtained as follows [51]:
The sub-pixel land cover frequency was obtained per pixel, land cover class and year. For each
year, each pixel was categorized into the land cover class with the highest sub-pixel frequency if the
frequency was above 80%. If it was below this threshold, the pixel was disregarded from further
analysis. We only considered land cover classes “Grasses/Cereal crops”, “Shrubs” and “Savanna” as
those classes comprise the vegetation types most frequently found in the study regions.

2.5. Shifting Linear Regression Models

To obtain estimates of vegetation response to rainfall we computed shifting linear regression
models (SLRs) and derived the linear slope coefficients β. The coefficients were obtained using ordinary
least square methods (OLS). The SLR is computed for a given set of years of the time series with
temporal window length L, where rainfall is the explanatory variable and the vegetation productivity
proxy is the response. In the next step, the window is shifted by one year and the model is recalculated
to derive a new linear coefficient (β). For a more detailed description of the SLR procedure see
Appendix C. For each grid cell, thus a time series of linear slope coefficients of length n + 1 − L was
obtained where n is length of the input data time series and L is the temporal window length over
which the SLRs are calculated. Typically, this length should at least span 5–10 years [13,52]. We used L
of length 11 years. It was consequently chosen to be long enough to capture the typical interannual
vegetation response to rainfall yet short enough to reflect the effects of dry and wet periods on β.

All pixels reporting negative slope values were omitted from further analysis as assumed to be a
product of poor data quality [27] or containing vegetation not controlled by rainfall. This amounted to
a removal of 16.8 per cent and 17.2 per cent of the pixels on average per model time step for WA and
SWA, respectively.

2.6. Spatial Analysis

All β coefficients were consequently assigned one of two classes; “dry” or “wet” representing the
above or below average rainfall during the respective model time step i. Thus, if MAPi > MAP for any
given grid cell that pixel for time step i was assigned the class “wet”, otherwise “dry”. All coefficients
were then averaged over 1 mm MAP steps and the classes dry and wet.

We used Generalized Additive Models (GAMs) [53,54] implemented in the R computing
environment [55] to derive smooth response curves with MAP as the explanatory variable and the
linear coefficients (averaged over 1 mm MAP steps) as the response. The models were parameterized
assuming normal error distributions and thus identity link functions.

In a next step, we analyzed differences in peak β with respect to absolute β values (βmax), MAP
position. For this, the upper 90th percentile of the fitted response curve of β (βmax) was extracted.
We further analyzed the specific β of the three main vegetation types found in the two study regions
(savanna, shrub and grass/cereal crop type vegetation) with respect to above and below average
rainfall. Figure 2 provides an overview of all processing steps involved.
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Figure 2. Flowchart of the data processing and analysis. MSL refers to mean season length, CVS is the 
coefficient of variation of season length, MAP represents mean annual precipitation, CFR refers to 
cyclic fraction, SLR abbreviates shifting linear regression models, β represents vegetation functional 
response to rainfall, dry/wet refer to below and above average rainfall conditions, respectively, GAM 
represents generalized additive models. The colouring scheme refers to the figure in which the 
respective analysis step is presented. 

3. Results 

An important difference in the rainfall variability regime exists between the two regions of South 
West Africa (SWA) and West Africa (WA) (Figure 3). Interannual variability of annual rainfall 
strongly increases with decreasing MAP (Figure 3a) for both regions. SWA generally experiences 
higher interannual variability of annual rainfall for any given MAP as compared to WA. However, 
the inverse pattern is observed for season length where WA generally is characterized by a higher 
interannual variability of the wet season length as compared to SWA (Figure 3b). 

 
Figure 3. Interannual variability of annual rainfall and rainy season length for the two regions of 
South West Africa (SWA) and West Africa (WA). (a) The coefficient of variation of annual rainfall 
(CVP), and (b) the interannual coefficient of variation of wet season length (CVS) are plotted as a 
function of mean annual precipitation (MAP) for both study regions. 

Figure 2. Flowchart of the data processing and analysis. MSL refers to mean season length, CVS is the
coefficient of variation of season length, MAP represents mean annual precipitation, CFR refers to cyclic
fraction, SLR abbreviates shifting linear regression models, β represents vegetation functional response
to rainfall, dry/wet refer to below and above average rainfall conditions, respectively, GAM represents
generalized additive models. The colouring scheme refers to the figure in which the respective analysis
step is presented.

3. Results

An important difference in the rainfall variability regime exists between the two regions of
South West Africa (SWA) and West Africa (WA) (Figure 3). Interannual variability of annual rainfall
strongly increases with decreasing MAP (Figure 3a) for both regions. SWA generally experiences
higher interannual variability of annual rainfall for any given MAP as compared to WA. However,
the inverse pattern is observed for season length where WA generally is characterized by a higher
interannual variability of the wet season length as compared to SWA (Figure 3b).
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Figure 3. Interannual variability of annual rainfall and rainy season length for the two regions of South
West Africa (SWA) and West Africa (WA). (a) The coefficient of variation of annual rainfall (CVP), and
(b) the interannual coefficient of variation of wet season length (CVS) are plotted as a function of mean
annual precipitation (MAP) for both study regions.
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The response functions of β along MAP gradients based on generalized additive models (GAMs,
Figure 4) exhibit unimodal shapes in both regions during dry and wet periods, although particular
inter-regional differences exist. All fitted models are significant (p < 0.001, Table 1) and the overall fit
as indicated by the R2 value is higher in the SWA region as compared to WA. Both regions have higher
model R2 during dry periods compared to wet periods (Table 1).
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Figure 4. Spatial profiles of vegetation response to rainfall (β) as a function of mean annual precipitation
(MAP) for the study regions (a) South West Africa (SWA) and (b) West Africa (WA). Fitted lines
represent generalized additive model (GAM) fits. (c) Characteristics of peak β values in SWA and
WA for a temporal window length of 11 years. Peak values βmax and the corresponding mean annual
precipitation (MAPβ-max). Colouring represents above and below average rainfall conditions over
which data have been aggregated. All data have been averaged over 1 mm MAP steps.

Table 1. Model summaries of the fitted generalized additive models (GAMs) with n referring to
the number of data points used to fit the models; p indicates the significance level derived from the
F-statistics of the fitted smoothing terms; EDF is the estimated degrees of freedom of the respective
GAM; R2 is the variability in β explained by MAP with respect to the fitted GAM. βmax corresponds to
mean peak β; MAPβ-max is the mean annual precipitation average of the peak position of β.

Region Clim. n p Edf R2 βmax MAPβ-max

SWA
Dry 893 <0.001 3.98 0.84 0.73 308.0
Wet 893 <0.001 3.98 0.68 0.58 303.0

WA
Dry 888 <0.001 3.91 0.67 0.44 543.5
Wet 888 <0.001 4.00 0.54 0.43 626.5

The curves in SWA (Figure 4a) show clearer unimodality for both, wet and dry periods, compared
to WA. Moreover, there is a stronger difference between the response curves of dry and wet conditions
in South West Africa. While β tends to be lower during wet periods for MAP < 600 mm this reverses
for higher MAP as indicated by the intersecting curves. The unimodal shape is less apparent in the
WA region (Figure 4b) resulting from a lower dynamic range and a broader peak in the shape of the
curve as compared to SWA. Generally, β values for a given MAP are equal or lower in WA than in
SWA and there is no consistent difference in the response curves of dry and wet periods in WA.
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Peak β values (βmax) in the SWA region are on average 34% higher compared to the WA region
(Table 1, Figure 4c). Differences between the regions account for the largest part of the total data
variability. Yet, when each region is considered separately, above or below average rainfall strongly
affects βmax in the SWA region compared to WA with peak β values decreasing 21% on average from
dry to wet. On the contrary, above or below average rainfall conditions have a small impact on βmax

in WA.
Inter-region differences in MAPβ-max values are even more pronounced with MAP values at β

peaks in WA being on average 48% higher compared to SWA (Table 1, Figure 4c). In SWA, MAPβ-max

values slightly decrease from dry to wet conditions. In WA, on the contrary, MAPβ-max decreases on
average 13% from dry to wet conditions.

Vegetation Type-Specific Response to Rainfall

The vegetation-specific response to rainfall (Figure 5) indicates that grass type vegetation shows no
significant difference between dry and wet periods irrespective of study region. Moreover, grass/crop
β is consistently lower in WA compared to SWA although this difference is small. In West Africa,
grass/crop type vegetation has the overall highest β of all vegetation types.
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the 95% confidence interval for the median. Non-overlapping notches indicate approximate 
significant difference in the median, whereas n equals the number of data points per class (n of wet 
periods = n of dry periods). 

Major vegetation types of the study regions were analyzed as a function of mean annual 
precipitation (MAP) (Figure 6). Vegetation types clearly differ in their ranges of MAP. Shrubs 
dominate for lower rainfall amounts around 250 mm/year. Grasses are mainly found around 400–500 
mm MAP and savanna vegetation dominates for MAP > 550 mm. The distribution of vegetation types 
is relatively similar between the two regions. However, grasses/crops cover a larger gradient in WA 
and Savanna is mainly found in higher MAP regions in WA as compared to SWA.  

Figure 5. Vegetation response to rainfall (β) for different vegetation types derived from MODIS
MCD12C1 Type 3 land cover data (2001–2011). Values are separated by below and above average
rainfall conditions (dry/wet) for South West Africa (SWA) and West Africa (WA). Boxes are bordered
by upper and lower quartiles and the median is indicated by the horizontal middle line. Whiskers
indicate ±1.5 interquartile ranges. Values above and below this threshold are plotted. Notches indicate
the 95% confidence interval for the median. Non-overlapping notches indicate approximate significant
difference in the median, whereas n equals the number of data points per class (n of wet periods = n of
dry periods).

For savanna type vegetation β values in WA are hardly different between wet and dry periods.
In SWA, β values are slightly higher during wet periods. The difference of savanna β to grass/crop
vegetation in this region is small compared to WA. In both regions, savanna vegetation has the overall
lowest β of all vegetation types.

In both regions, shrub type vegetation has a significantly higher β during dry periods compared
to wet periods. While shrubs have the overall highest β in SWA they range between grass/crop and
savanna type vegetation in WA. In accordance with the overall higher vegetation response to rainfall
in SWA, all vegetation types have higher β to in SWA compared to WA.

Major vegetation types of the study regions were analyzed as a function of mean annual
precipitation (MAP) (Figure 6). Vegetation types clearly differ in their ranges of MAP. Shrubs dominate
for lower rainfall amounts around 250 mm/year. Grasses are mainly found around 400–500 mm
MAP and savanna vegetation dominates for MAP > 550 mm. The distribution of vegetation types is
relatively similar between the two regions. However, grasses/crops cover a larger gradient in WA and
Savanna is mainly found in higher MAP regions in WA as compared to SWA.
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4. Discussion

This study shows how the differential regional-scale vegetation response to rainfall (β) varies
between two African dryland regions based on gridded satellite-derived vegetation productivity proxy
and rainfall data. We have shown that a shifting linear regression model can successfully be applied
to determine the local vegetation response to rainfall in dry and wet periods, respectively. Moreover,
we have demonstrated how the response can be regionalized as a function of mean annual precipitation
(MAP), changing water availability, interannual rainfall variability and vegetation type.

4.1. Vegetation Response to Rainfall Along MAP Gradients

Our results confirm that vegetation response to rainfall (β) follows the expected unimodality
along MAP [6] in both study regions. β is generally higher or at similar levels for any given MAP
in SWA compared to WA (Figure 4). Moreover, SWA shows a stronger difference between dry and
wet periods, has clearer unimodal shapes along the MAP gradient and possesses higher variability
along the MAP gradient. This agrees with the hypothesized higher β dynamics in regions with higher
interannual variability of annual rainfall [36,37], such as SWA (Figure 3a). In addition, this suggests
that a higher rain use efficiency, which has been observed during dry periods [18], might be particularly
favoured by greater rainfall variability.

GAM R2 values are higher during dry periods compared to wet periods (Table 1). This indicates
that during relatively dry conditions MAP is the main determinant of vegetation response to rainfall,
while during wetter periods other limitations such as nutrients [30] or land use and fire [38] might
become relatively strong factors. Moreover, higher GAM R2 values in SWA indicate that β in this
region is more strongly determined by MAP. A possible fact which might lead to this pattern is the
higher population density in WA compared to SWA [56]. More densely populated areas are likely to
be characterized by higher land use intensity which in turn might make MAP a slightly less important
determinant of β. Additionally, in regions with MAP < 500 mm, SWA is characterized by farm-based
livestock keeping whereas WA is characterized by (semi-) nomadic livestock keeping by pastoralists.
The latter may lead to spatially diverse effects on the vegetation making MAP a less strong determinant
of β.

There are small but apparent deviations of the actual data from the fitted curves such as in SWA
around 100 mm MAP during wet periods. Those deviations can be caused by local terrain effects that
can lead to higher (e.g., local depressions or valleys through water accumulation) or lower (e.g., ridges
through increased runoff) β values [57,58]. Moreover, differences in land use and land use intensity at
the local scale may cause deviations [59]. Consequently, β over MAP gradients should preferably be
considered over larger scales as in Figure 4. Those small deviations, however, are expected to have
minor effects on the overall pattern observed (Figure 4) as MAP is the main determinant of vegetation
dynamics along the MAP gradients considered in this study [32].
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The spatially differential response of vegetation to above or below average rainfall questions the
idea of a constant RUE in space and time. We consequently raise some concern about RUE as an integral
measure for evaluating land degradation and desertification in various semiarid and arid zones across
the globe [1,25,60,61]. Similarly, the more precautious suggestion of a unifying maximum RUE during
dry periods [18,19] is challenged by the current results. That is, some MAP regions in fact have notably
higher β during drier periods (SWA, MAP < 600 mm). However, vast areas of WA show a limited
difference between dry and wet periods or even higher β under wet conditions. This pattern of higher
β values during wet periods may point to a positive effect of increasing atmospheric CO2 on semi-arid
vegetation productivity being most evident during periods of above average precipitation [41,62].
This interpretation, however, implies as well that the degree to which an ecosystem responds to rising
CO2 levels may depend on the rainfall variability regime. The higher β curves during wet periods
for MAP >600 mm in SWA may point to the existence of a vegetation type-specific transition zone.
Below this value, SWA is characterized by grasses and shrubs whereas above savannas dominate the
landscape (Figure 6). Thus, given the savanna-specific β under wet and dry conditions (Figure 5),
higher β under wet conditions in SWA for MAP > 600 mm can be expected.

The phenology of plants in dry environments is closely related to the occurrence and timing of
wet seasons. Woody deciduous species, for example, regularly unfold their leaves already before the
first rains of a wet season [57] whereas herbaceous plants are triggered by and follow rainfall events
very closely with a short delay [63]. For either strategy, however, a consistently recurring rainy season
is important. Higher season length variability (Figure 3b, WA) may thus impede an optimal use of
water which may ultimately lead to overall lower β values as seen in WA.

Generally, variability of annual rainfall is suggested to have a strong effect on region-scale
differences in the vegetation response to rainfall during wet and dry periods. The within-region
expression is, however, suggested to be shaped by several other variables such as effects of topography,
land use, soil type, variability of wet season length (CVS) and rising atmospheric CO2 levels.

The ecosystems of the Sahel region covering WA have been reported to have recovered from
the severe 1970s and 1980s drought periods [34,42,44,64,65] (see description Appendix A). However,
considering the relatively low β during dry periods, it might be suggested that the adverse effects of
future dry periods on the vegetation in this region should not be underestimated. Contrastingly, the
relatively high β below 600 mm MAP in SWA during dry conditions suggests that vegetation in this
region is less vulnerable during dry periods. Above 600 mm, however, the savannas of SWA might be
expected to be relatively prone to drought periods (Figure 4).

We note that rainfall from previous years may well contribute to explaining the patterns of β
we have observed despite the fact that soil moisture of drylands returns to the same low level after
a long dry season regardless of the amount of rainfall during the previous rainy season. To which
degree rainfall from preceding years contributes to the response to rainfall of any given year, however,
depends on the annual/perennial composition and age structure of the vegetation in any given dryland
ecosystem. This is due to the fact that previous years’ growth indeed affects the growth of perennials
in any given year, which will in turn depend on the rainfall which fell during those previous years [66].
Further on, there are accumulating effects of increasingly favourable microclimatic, edaphic growing
conditions and amount of grass seeds in the topsoil during periods with higher rainfall. We thus
accept this influence of previous years’ rainfall as leading into any β observed and thus producing an
ecosystem-specific functional response to rainfall. An additional analysis (Appendix D), moreover,
confirmed that the SLR model only considering rainfall of the same year supersedes models accounting
for rainfall of previous years in most instances, spatially as well as temporally.

4.2. Dynamics of Peak Vegetation Response to Rainfall

The 90th percentile of fitted β values (βmax) were extracted for SWA and WA as a region-wide
characteristic feature to quantify differences in the peaks of vegetation response to rainfall and how
the peak correspond to mean annual precipitation.
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βmax is significantly higher in SWA than in WA (Figure 4c). It moreover significantly differs
between wet and dry episodes in SWA which does not apply for WA. Both can be expected from
the overall higher β in SWA (Figure 4a). It thus further supports the hypothesis that greater
rainfall variability (CVP, Figure 3a) may lead to a temporally more dynamic vegetation response
to rainfall [37,67]. MAPβ-max values (the positions of βmax on the rainfall gradients) are significantly
lower in SWA compared to WA (Figure 4c). This indicates that the transition zone from rather
physiological limitations to more edaphic constraints on β [3] is highly variable between regions.

Although soils certainly shape the vegetation response β to rainfall at the local scale [30], it is
clear from Figure 4 that they may have rather an “envelope function” (individual points in Figure 4a,b)
in shaping the boundaries of regional scale response to altered rainfall. If soils had a stronger effect,
we would not expect a distinct peak β along MAP as found in this study. Although the previously
mentioned explanations for the existence of a peak in β (physiological adaptions below the peak,
limiting nutrients above the peak [6]) certainly hold true, the MAP range of peak β should not be
considered stable within a region.

4.3. Vegetation Type-Specific Response to Rainfall

Only small differences in β were observed for grass/crop type vegetation and this vegetation
type showed minimal response to below or above average rainfall conditions irrespective of study
region. The reason for this is likely that grasses usually regrow their entire above ground biomass
annually with only limited possibility to adjust β to dry or wet periods.

Savanna vegetation in both regions shows little difference between wet and dry episodes with a
slight tendency towards higher β under wet conditions, particularly in SWA.

The higher β for shrubs in both regions during dry periods might be explained by the fact that
vegetation particularly in dry regions is able to increase water use efficiency during dry periods by
reducing nitrogen use efficiency and thus maintaining overall photosynthesis rates at similar levels [68].
However, the absence of higher β during dry periods for grass/crop type and savanna vegetation
leads to two possible conclusions. Firstly, whether or not a particular vegetation type has higher β and
consequently ecosystem scale water use efficiency during dry periods depends on the relative limiting
degree of rainfall and thus on the position along the MAP gradient. Savanna and grass type vegetation
are both found at considerably higher MAP values than shrubs in both regions (Figure 6). This might
lead to the assumption that the vegetation adaptability to dry periods is most strongly pronounced in
arid regions [37]. Secondly, how strongly β increases from wet to dry periods in arid regions depends
on the respective variability of annual rainfall with greater interannual variability promoting relatively
higher β during dry periods.

All vegetation types show overall higher β in SWA compared to WA. This further supports the
hypothesis that higher CVP might promote a more dynamic functional response to rainfall.

Arguably, response curves (Figure 4a,b) are modified by the local vegetation composition with its
distinct sensitivity to rainfall. However, MAP is a first order determinant of vegetation composition in
arid and semi-arid regions [57] and thus implicitly accounts for the vegetation-specific response
to rainfall. Hence, the differences of vegetation-specific β between regions must be a result of
physiological and structural adaptions to differing environmental heterogeneity rather than being
caused by different positions on the MAP gradient. This conclusion is further supported by the fact
that all vegetation types are found in approximately the same regions of MAP in both regions (Figure 6).
The distribution of the major vegetation types, however, indicates differences in the relative abundance
between regions (Figure 6). While WA is rather dominated by grass/crop type vegetation, SWA is
strongly dominated by savanna and shrub type vegetation. Thus, rainfall variability may have an
indirect effect on vegetation composition with higher CVP promoting shrub type vegetation whereas
lower CVP favours grass type vegetation [69].
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5. Conclusions

A novel approach of shifting linear regression models (SLRs) was used to derive satellite-based
time series of vegetation functional response to rainfall in two African subtropical dryland regions.

The results presented show a distinct difference between vegetation functional response to rainfall
(β) during dry and wet periods for the two semi-arid regions (South Western Africa (SWA) and Western
Africa (WA)). The results suggest that interannual variability of annual rainfall (higher in SWA) has
a strong influence on β (also higher in SWA). Thus, future studies addressing questions of water
availability in ecosystems should not only focus on overall water availability (mm/year) but should
as well account for changes in rainfall variability. As shown here, variability in both rainfall total
amounts and season length may be expected to affect regional-scale dryland ecosystem dynamics and
thus the impact of dry periods and droughts. The ecosystems of the Sahel region (WA) with their
overall lower β during dry periods are expected to be vulnerable to future droughts. The vegetation
productivity of SWA (MAP < 600 mm) is likely to be less susceptible to changes in water availability
given its widespread, relatively high β values during dry periods. However, above this MAP, SWA
may be considered to be prone to periods of below average rainfall. The region-specific implications
of ecosystem-scale β found here are remarkable also since the results are consistent irrespective of
vegetation type.
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Appendix A

Additional Information on the Study Regions

The South West African (SWA) study region is characterized by Southern hemisphere summer
precipitation. The long-term mean rainy season in the region depending on the position lasts
approximately from November to April with the southern parts experiencing significantly shorter
seasons compared to the north [70]. The study region in the southern quarter is part of the semi-desert
landscape Nama-Karoo with annual low precipitation (<150 mm MAP) [70]. Its vegetation consists
mainly of perennial grasses which, however, have been widely replaced by poorly palatable annuals
and dwarf shrubs [71]. Virtually the entire east of the study area comprises parts of the western
branches of the Kalahari semi-desert. Most of the Kalahari vegetation consists of a variety of tree-grass
savanna landscapes with the dominating tree species being of the Acacia genus. West of the Kalahari,
former savanna landscapes have been widely replaced by shrubland with most of the shrub species
being of the Acacia and Dichrostachys genus [72]. The westernmost part of the study region comprises
parts of the highly arid and only sparsely vegetated Namib Desert. Vegetation in this region is mostly
characterized of enduring grasses [73].

The West African (WA) study region is characterized by Northern hemisphere summer
precipitation regime. The long-term mean duration of the rainy season is from approximately July
to October [33]. The WA region recurrently is faced with periods of droughts and famines and is
regularly identified as area being highly affected by land degradation [74]. It has suffered severe
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droughts during the 1970s and 1980s following dramatically below long-term average precipitation [75].
The consequence was a wide spread loss in available forage which triggered a decline of livestock
populations of up to 40% [30] and severe famines [76]. In the northern part the WA study region
can be characterized as Saharan-Sahelian transition zone with the regional plant community being
dominated by perennial grasses [33]. Further south, the Sahelian zone comprises a savanna type
vegetation consisting of scattered trees of the Acacia genus and an annual grass understory [77].
The Sudano-Sahelian zone connects the Sahelian zone in the north with more humid regions in the
south. It mainly consists of a savanna which is dominated by species of the Combretacae family in the
tree layer and by annual grasses in the herbaceous story [33].

In both study regions, recurring wild fires are an important contributor to vegetation dynamics [78]
and can ultimately affect the functional composition particularly of savanna type ecosystems [31].

Appendix B

Phenological Parameterization Model

The algorithm of the phenological model [46] used in this study is designed to handle vegetation
index data in a bi-weekly temporal resolution. In a first step, it ingests a set of 3 years of data with
the year of interest being the centermost. This window is subsequently shifted along the temporal
axis as soon as per time step all processing steps have been accomplished. Therefore, the following
descriptions are generic and applicable to any given time step. In order to avoid false alarms for the
calculation of the start of season, negative outliers are linearly interpolated; considered a negative
outlier is a value with a difference of 5% to the preceding and following bi-weekly value relative to
the value calculated as max−min of the respective two-year period. The start of the season (SOS) is
found by means of an ancillary variable derived as moving sum of the differences between each value
of the time series and its predecessor. The moving sum is built over each six consecutive differences,
and can be understood as the average change over time during each 3-month window. In cases where
no SOS can be found the average SOS of the other years is taken. SOS in general refers to the start of
the so called “vegetation year”. A vegetation year is composed of commonly one (or two and more
in regions with several rainy seasons) vegetation peak(s) (cyclic fraction, CFR) followed by the dry
season(s) (see Figure B1). To determine the onset and the end of the CFR of any given year, a baseline
is derived, which separates the dry season values from the CFR. Values above this baseline are part of
the CFR, values below belong to the dry season. The baseline is derived from the average amplitude
between the dry season values and the preceding and respectively subsequent vegetation peak.
The CFR is consequently determined as sum of the distances of all time-series values above the
baseline to the latter. Thus, the CFR constitutes the integral of the vegetation season values above the
(local) “dry season greenness” level expressed by the baseline.
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Appendix C

Shifting Linear Regression Model (SLR)

The SLR is computed on a per-pixel basis. Thereby, the linear regression model is calculated over
a given set of years denoted by the window length, L, starting with the first set, and subsequently
shifted along a temporal axis in one year steps until the end of the time series. Hence, for a given
window length, n + 1 − L models are computed, where n denotes the number of years in the time
series. For example, assuming a length of the time series of n = 28 and a window of L = 11, sets
of 28 + 1 − 11 = 18 models and linear slope coefficients are derived.
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The principle of the SLR is depicted by Figure C1. The first model in the time series in this
schematic is Model 1 ingesting data from year 1 to year L. The model is subsequently shifted by
one year and becomes Model 2 etc. Per model, the linear slope coefficient (β) is extracted. Slope
coefficients are found based on ordinary least squares (OLS) techniques. The procedure is similar to
moving correlation functions [79]. However, the SLR derives quantitative slopes rather than correlation
coefficients (r-values).

Appendix D

Complementary SLR Analysis

To determine a potential effect of rainfall of previous years, we conducted the entire analysis
using the SLR framework but with two additional model setups. (1) We extended the original model
by rainfall of the previous year resulting in a multiple linear regression model with two explanatory
variables (termed “Multiple”). (2) We extended the latter model by incorporating an interaction
term between rainfall of the concurrent year and rainfall of the previous year (termed “Interactive”).
To determine which model supersedes the other models over time and in space we computed time
series of Akaike’s Information Criteria (AIC) for each of the three model types per pixel. We then
determined the model with the lowest AIC per pixel and time step. In a final step we derived the
mode of the model with the lowest AICs. Maps of this mode are depicted by Figures D1 and D2. As is
apparent from both figures as well as from the relative contribution of the model mode to the total
pixel count (Figure D3) it is by far the model with only one variable (rainfall of concurrent year, termed
“Single” in Figures D1–D3) which supersedes both other models spatially and temporally.
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