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Abstract

This work is concerned with the forward modelling of ocean-induced magnetic fields on a global scale

as the first step needed for the identification of the ocean-induced magnetic signals in the recently

launched satellite mission Swarm and coastal-site magnetometers. The aim is at developing a

numerical model for the estimation and evaluation of the magnetic field constituents generated

by ocean flow dynamics. As an example of the input data, the strong semidiurnal M2 tide with

the period of 12 h 42 min is applied. Moreover, static main magnetic field of the Earth and a

realistic distribution of the electrical conductivity in radial direction are considered. Three different

solution methods for the Earth approximated by a spherically layered model are developed. For

this purpose a magnetic induction equation in the form of the Helmholtz equation is derived.

The analytical solution in the Fourier frequency domain in classical (strong) sense is found by

using the spherical Bessel functions. The second method makes use of weak formulation of the

induction equation where the spectral-finite element approach in Fourier frequency domain is later

applied. The third method is used to solve for the toroidal magnetic field in time domain. The

complex input ocean velocity field is discretized at individual time instants and the spectral-finite

element approach is applied in time domain. The ocean-induced magnetic field in this work is

split into toroidal and poloidal modes that are calculated separately. Additionally, the secondary

poloidal magnetic field generated by the lateral conductivity contrast due to the ocean-continent

boundary, the so-called coastal effect, is estimated. As the magnetic field is calculated for the

identical input data sets and parametrization, the numerical results of the three methods are

compared. Additionally, the behaviour of the calculated magnetic field is examined with respect to

the variations of different input parameters. The results of the individual magnetic field constituents

are compared in magnitude and spatial distribution.



Kurzzusammenfassung

Diese Arbeit beschäftigt sich mit der Vorwärtsmodellierung ozeaninduzierter Magnetfelder auf

globalen Skalen als eine Voraussetzung für die Identifizierung solcher Magnetfeldsignale in der

vor Kurzem gestarteten Satellitenmission Swarm und küstennahen Magnetometern. Das Ziel ist

die Entwicklung eines numerischen Modells für die Schätzung des Magnetfeldanteils, der durch

die ozeanische Dynamik induziert wird. Als Eingangsdaten für die ozeanische Strömungen wird

die stärkste halbtägliche M2-Tide benutzt. Weitere Eingangsparameter der Modellierung bilden

ein statisches Hintergrundmagnetfeld der Erde und eine realistische radiale Verteilung der elek-

trischen Leitfähigkeit der Erde. In der Arbeit werden drei verschiedene Lösungsmethoden en-

twickelt bei denen die Erde durch eine Kugel aproximiert ist. Um dieses Ziel zu erreichen wird

eine Induktionsgleichung in Form der Helmholtzgleichung hergeleitet. Bei der ersten Methode

wird die Induktionsgleichung mit einer analytischen Lösung in klassischer (starker) Formulierung

im Fourier-Frequenzbereich mit Hilfe von spherischen Bessel-Funktionen gelöst. Bei dem zweiten

Ansatz ist das Induktionsproblem in schwacher Formulierung, mit Hilfe der sogenannten Spektral-

Finite-Element Methode, im Fourier-Frequenzbereich gelöst. Bei der dritten Methode wird die

Lösung des toroidalen Magnetfeldanteils im Zeitbereich gesucht. In diesem Fall werden die kom-

plexen Eingangsgrößen des periodischen Tidensignals in einzelne Zeitschritte diskretisiert und

die Spektral-Finite-Element Methode ist im Zeitbereich angewandt. Das generierte Magnetfeld

ist in einen toroidalen und einen poloidalen Anteil getrennt und diese werden separat berech-

net. Neben dieser zwei primär induzierten Magnetfeldanteile wird zusätzlich der sogenannte

Küsteneffekt, ein sekundär induzierter poloidaler Magnetfeldanteil, der aufgrund des lateralen elek-

trischen Leitfähigkeitskontrastes zwischen Kontinent und Ozean induziert wird, geschätzt. Da

die Berechnungen des Magnetfeldes bei allen drei Methoden mit identischen Eingangsgrößen und

Parametrisierung durchgeführt werden, können die resultierenden Magnetfeldanteile untereinan-

der verglichen werden. Zusätzlich wird die Sensitivität des induzierten Magnetfeldes bezüglich

der wichtigsten Parameter untersucht und das magnetische Signal in Bezug auf seine Größe und

räumliche Verteilung diskutiert.
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Introduction

The question about motional induction driven by ocean flow has attracted scientists for a long time.

The idea about the motionally induced electric currents by water flow and their usage as indicators

for water transport in the river Thames was first suggested by Faraday (1832). The electric field

variations induced by oceanic tidal motion were identified by submarine telegraph cables already in

1850’s, but the observed lunar magnetic variations have been an object of discussion for a long time

ever since. With the exception of van Bemmelen (1912, 1913) who expected that the tidal magnetic

variation have a source in both, internal and external fields, the majority of the researchers at the

time (Chapman, 1919; Chapman and Bartels, 1962) believed that the lunar magnetic variations

were dominated by external sources. Larsen (1968) revealed the tidal signal in the electric field

and magnetic declination from sea floor, coastal- and island-side observations and concluded on the

dependence of the signal to the distribution of tidal currents and electrical conductivity beneath

the ocean with the hint that if either would be known perfectly, the measurements would serve to

give a precise information about the other.

The electromagnetic induction in the ocean as a separate scientific subject was introduced by

works of Stommel (1948), Longuet-Higgins (1949) and Longuet-Higgins et al. (1954). One of the

fundamental theoretical study for using electric fields for monitoring the in-situ oceanic transport

has been carried out by Sanford (1971). In the following theoretical studies by Chave (1983) and

Chave and Luther (1990a) the magnetic field was divided into toroidal and poloidal part according

to the Helmholtz decomposition and the differences in the behavior of the two modes were dis-

cussed. Chave (1983) in his theory confirmed the idea of Larsen (1968) that the crust and mantle

as electrical conductors were coupled to the ocean conductively and inductively. Therefore, the low-

frequency electromagnetic field observations with the oceanic origin contain an information about

the electrical conductivity and the circulation of the ocean. Hereby, from the geomagnetic point of

view, the dynamo interaction of the ocean flow with the background magnetic field forms an addi-

tional natural source beside of geomagnetic field variations. Finally, he suggested the use of tidally

induced electromagnetic fields with their high sensitivity to lithospheric electrical conductivity in

toroidal mode to probe the Earth’s conductivity structures. The precondition for interpretation of

the electromagnetic records is the numerical modelling which is in case of electromagnetic fields

generated by ocean flow a complex mathematical problem requiring specific solutions approaches.

All theoretical studies tend to reduce the complexity using various approximations depending on

specific applications, mostly involving interpretation of observational records and feasibility of nu-

merical calculations.

Today the applications involving oceanic contribution to the electromagnetic fields can be

separated in two groups, the geomagnetic and oceanographic ones. The geomagnetic applications

are more general and concentrate on estimation and extraction of the individual constituents of

different origins from the superposition of the Earth’s magnetic field signal (see section Global

Geomagnetic field constituents). For example, a correction of magnetic data for tidal signals

increases the accuracy of other field components, especially the lithospheric field (Friis-Christensen
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et al., 2006; Maus et al., 2006; Manoj et al., 2006) and vice versa. Besides the identification and

extraction of the electromagnetic signals from the observational records, the primary oceanographic

application is to gain an additional, independent and complementary indicator for determining the

oceanic flow by observations of the ocean-induced electric and magnetic fields and their variations.

In-situ observations of electric and magnetic signals are obtained using different techniques, like

submarine cables, sea floor sensors and mobile devices including vertical profilers and floating plat-

forms (Lilley et al., 2004). While in situ observations by submarine cables or bottom electrometers

are suitable for monitoring the integrated water transport (Luther et al., 1991), other techniques

like floating vertical profilers are used for measuring vertical profiles with a high resolution (Lilley

et al., 2001). Present day interpretations of in-situ electric field measurements in terms of oceanic

transport study also the influence of small horizontal velocity gradient of the flow or the sloping

topography (Szuts, 2010a,b), but often neglects global (non-local) effects (Szuts, 2008). One of

the advantages of remote magnetic sensing is its capability of measuring the integrated ocean flow

also in ice covered regions (Friis-Christensen et al., 2006). Observation techniques and numerical

models are also chosen depending on the investigated oceanic dynamics. This can be either a steady

state flow with small time variations but strong velocity decay with depth similar to investigations

of the Golf stream in the area of Cape Hatteras (Szuts, 2012), time-variable flow constant over

the whole ocean layer depth (oceanic tides) (Tyler et al., 2003; Maus and Kuvshinov, 2004), or

individual events like tsunami waves registered by sea floor geomagnetic observatories (Toh et al.,

2011; Manoj et al., 2011, 2010). Besides local terrestrial and marine observations, an additional

possibility of surveying the Earth’s magnetic field on a global scale is offered by satellite missions

over the last two decades.

The new generation of space-born magnetometers starting from Østred (launched in February

1999), followed by CHAMP (launched in July 2000) and SAC-C (launched in November 2000) pro-

vide with high-precision data of uniform quality and excellent spatio-temporal coverage (Kuvshinov,

2008). As electric fields from internal sources can not be observed from the space, the global oceanic

induction remains focused on magnetic field. High-resolution observations from the single satellite

CHAMP observations made it possible to identify the strong semidiurnal M2-tide signal by com-

paring the magnetic records with numerical simulations (Tyler et al., 2003). The satellite mission

Swarm, consisting of three identical satellites, launched in November 2013, promises with single

satellite requirements for magnetic field magnitude of 0.15 nT and for magnetic field vector of 0.5

nT an accuracy in the range of ocean-induced magnetic signals. Identifying the ocean circulation

by its magnetic signature is one of the research objectives of the Swarm mission (ESA SP-1279-6,

2004). Space-born measurements provide among others the possibility to detect depth-integrated

magnetic field variations. Therefore, magnetic field caused by tidal flow with well known periodic-

ity is suitable for identification in the Swarm magnetic records. Golubev (2011, 2012) studied the

potential of a mathematical algorithm for extracting the ocean-induced signals from the satellite

geomagnetic measurement that are approximately 4 orders smaller than the main magnetic field.

Such challenging task can be approached using numerical forward modelling on a global scale.

Besides the theoretical studies that are mostly intended to interpret measurements or estimate

the electric and magnetic fields by in-situ ocean flow, in recent years, being motivated by global

observations from CHAMP satellite, an interest in modelling global electromagnetic induction in

ocean has arisen. As only the poloidal magnetic field is measurable outside the ocean, present-day

global models reduce the ocean layer to a thin sheet approximation with depth-integrated velocities

as input data which allows consideration only of primary induced horizontal electric currents. Such

thin sheet models has been published by Tyler et al. (2003), who consider the space beneath this

thin sheet as insulator, or in an other approach from Kuvshinov et al. (2002) who places the ocean

as a thin sheet atop of global 3D conductivity distribution of the Earth. This model, based on an
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integral equation approach, has been published also in Kuvshinov and Olsen (2005), Vennerstrom

et al. (2005b) and Vennerstrom et al. (2005a). The results of the two models for the M2 tide have

been compared in Vennerstrom et al. (2005b) and Vennerstrom et al. (2005a) and found to agree

well in magnitude and global distribution. Besides the global modelling of tidal flow, predictions

for the general (termohaline and wind driven) circulation on a global scale have been studied for

a thin sheet approximation by Manoj et al. (2006) and for the Antarctic Circumpolar Current by

Vivier et al. (2004). Summarized results of the ocean-induced magnetic field on a global scale from

the geomagnetic point of view have been reviewed by Kuvshinov (2008). In another global study

for motional induction, Tyler et al. (1997a) focus on non-local effects of the electromagnetic fields

inside the ocean and point out the importance of sophisticated models with realistic conductivity

distribution beneath the ocean when considering non-local electric currents.

An accurate prediction based on numerical forward modelling, especially for small magnetic

field constituents, is a precondition for their identification and correct interpretation in the Earth’s

magnetic field. Therefore, the following thesis present a spherical model with an ocean as a layer

of finite thickness, beneath which an electric conductive space with realistic radial conductivity

distribution in finite layers are considered. This model implicitly includes also the influence of

mutual induction by large-scale poloidal magnetic signals discussed already by Sanford (1971).

In addition, a spherical model consisting of layers of finite thickness enables a calculation of the

toroidal magnetic field and study of its sensitivity to the velocity field decay with depth and

lithospheric structure. Already Chave (1983) pointed out that modelling the ocean as a thin

sheet with insulating boundaries causes large errors in calculated seafloor electromagnetic fields.

Consideration the toroidal part of the magnetic field is also a condition for studying coastal effects -

magnetic field induction due to ocean-continent conductivity contrast. Without accounting for these

effects the magnetic records in vicinity of coastal sites or small islands cannot be properly interpreted

(Manoj et al., 2006). Driven by a velocity field with well known periodicity and global extent the

semidiurnal M2 tide used for the study in this thesis forms an ideal input for the prediction of the

magnetic signal on a global scale. In addition, a periodical signal offers the possibility of solutions in

Fourier frequency domain which in turn allows using different mathematical approaches so that the

obtained results can be mutually validated. Also, the known periodicity facilitates an identification

of such tidal signal variations in magnetic records.

Organization of the dissertation

In chapter 1, the phenomenon of the motional induction and the separation in two modes, namely

toroidal and poloidal, are explained and the induction equation is derived. In chapter 2, the input

data for the modelling experiments are introduced and a source term based on realistic input data

is calculated. In chapter 3, we present an analytical solution for the toroidal and poloidal magnetic

field in Fourier frequency domain. The results from chapter 3 are reproduced in chapter 4 where

we solve the motional induction using a numerical spectral-finite elements approach for both, the

toroidal and poloidal modes. In the last chapter 5 we present a solution for the toroidal field in

time domain using the method from chapter 4 and compare the result with the solutions in Fourier

domain.

Global geomagnetic field constituents

The observed magnetic field near the Earth surface represents a superposition of magnetic field

constituents of different origins. The intention of this section is to give an overview of the diversity
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of magnetic field sources and their contributions to the Earth’s magnetic field as they are important

indicators for geological structure and dynamic processes in the Earth system.

Traditionally, the lower atmosphere (troposphere) is treated as an insulator. The magnetic field

constituents whose sources are placed in the electric conductive space above the lower atmosphere

are referred to as external, whereas the sources from the conductive space beneath, within the solid

Earth, as internal sources. Over 90 % of the magnetic field observed near the Earth surface is

generated by the geodynamo in the outer core (Mandea and Thebault, 2007) and is referred to as

the main field. The outer core consists of liquid iron and its flow induces magnetic field that reaches

the magnitudes of up to 60000 nT for the radial component in polar regions (Figure 2.4). As the

flow of the fluid iron evolves with time, the main field experiences spatial and temporal variations

on different scales. These secular variations can be among others related to torsional oscillations,

core-mantle interaction or geomagnetic jerks. The induced main field passes through the electrical

conductive mantle on its way to the Earth surface. Although the mantle is not considered as a

source of magnetic field, its electrical conductivity and especially the conductivity inhomogeneities

perturb the magnetic signal by up to ± 200 nT for the observed poloidal part on the Earth surface.

The lithosphere and crust overlying the mantle carry both the induced and remanent magnetization

with magnitudes of up to ± 1000 nT. The remanent magnetization is formed by rock cooling and

depends on the chemical composition, crystal conformation of the rocks and is influenced by the

main magnetic field at the time of the crystallization. The lithospheric magnetic constituent below

degree 14 of spherical harmonic series is masked by the core field (Friis-Christensen et al., 2006).

Another source of magnetic field at the Earth surface comes from the ocean dynamics. This

constituent of the magnetic field is the main topic of this thesis and will be discussed later in more

detail.

The external sources of the magnetic field lie above the solid Earth and are predominantly

influenced by the solar activity. The sun’s magnetic activity, which experiences an 11-year period-

icity known as the solar cycle, causes a stream of small particles, namely neutral hydrogen atoms,

protons and electrons. This so-called solar wind streams at high speed towards the Earth where the

magnetosphere, at a height of about 10 to 20 Earth’s radii, builds a protective shield that hinders

by deflection the penetration of these particles into the atmosphere. The deflection of such electric

charges in the magnetosphere forms a complicated system of electric currents. One of the dominant

parts of this current system is the equatorial circulation, the ring current, that contributes to the

Earth magnetic field and can be observed at the Earth surface. An another example with a longi-

tudinal character are the field-aligned currents. The sun influences also the ionosphere, the outer

atmosphere beneath the magnetosphere, at heights between about 50 and 600 km above the Earth

surface. The ultraviolet radiation ionizes atmospheric atoms whose electric currents induce mag-

netic field reaching the values of up to 80 nT. As the sunlight is the origin of the ionization process,

the ionosphere experiences strong daily variations. As a result the sunlit hemisphere is much more

electrically conductive then the nighttime one. In addition, the flow of electrically charged particles

in the atmosphere follows the gravitation forces and therefore the magnetic field contribution from

the ionosphere experiences variations due to tidal signatures. Irregularity in the sun activity causes

high energetic processes called geomagnetic storms. Here the solar wind-magnetosphere interac-

tion at auroral latitudes complemented by strong ionospheric currents in these regions manifests in

well known polar auroras. Ionospheric currents at mid- and low latitudes are primarily driven by

high-altitude wind system. The Figure 1 and the corresponding Table 1 show the time, spatial and

signal range for the individual magnetic field components at 400 km altitude as they are expected

for the Swarm satellite mission for internal and external sources.
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Figure 1: Amplitude of magnetic field constituents at 400 km (Swarm orbit) attitude as a function of space

scale separated according to the source origin. Source terms from within the Earth (internal sources) and

ocean (left) and external sources (right). Taken from ESA SP-1279-6 (2004).

Table 1: Expected magnetic signals to internal (upper) and external field (lower). Taken from ESA SP-

1279-6 (2004).





Chapter 1

The motionally induced magnetic field

This chapter focuses on the description of the physical phenomenon of the electromagnetic induction

in the ocean. We introduce some basic terminology, derive the induction equation in forms used in

the calculus and design a model for which the induction equation will be solved. These descriptions

are intended for introducing the strategy of numerical solutions in the following chapters.

1.1 Electromagnetic induction in the ocean

Sea water contains a high concentration of dissolved salts. Therefore, the ocean acts as an ionic

fluid where the electric charges are carried by dissolved cations and anions, making sea water highly

conductive. As oceans flow through the Earth’s main magnetic field, the ion content in the oceans

induces electric currents. As these electric currents flow around the globe, they in turn generate

secondary magnetic fields, which evolve in terms of both magnitude and geometry through time.

This effect, called motional induction, depends on the geometry and spatial scales of the ocean

flow, as well as the electrical conductivity of sea water and the Earth’s underlying crust and mantle

(Sanford, 1971)

The ocean-induced, that is motionally induced, magnetic field can be decomposed into its

poloidal and toroidal components based on the Helmholtz representation of a solenoidal vector field.

The poloidal magnetic field component results from toroidal electric currents flowing in horizontal

planes, while the toroidal magnetic field component is generated by the spheroidal electric currents

flowing in vertical planes (Chave, 1983; Chave and Luther, 1990b). An overview of ocean-induced

magnetic fields separated in toroidal and poloidal mode according to toroidal and spheroidal electric

currents is shown in the Figure 1.1. Both magnetic field modes depend on sea water transport, but

respond in different ways to the ocean flow velocity structure. The poloidal magnetic component is

predominantly sensitive to the depth integrated ocean velocities weighted by the ocean’s electrical

conductivity (Sanford, 1971), while the toroidal magnetic component is largely sensitive to the

vertical gradient of ocean flow velocities (Chave, 1983). The toroidal magnetic field component can

only be detected inside the oceans, e.g., at the sea floor, since it vanishes at the ocean surface, while

the poloidal magnetic field component is observable also outside the oceans by land observatories

and satellites.

Figures 1.2 and 1.3 display the individual modes of the magnetic fields in more detail. In an

example for the toroidal mode (Figure 1.2) we assume an oceanic circle flow (u, in blue) and a

homogeneous main (background) magnetic field (BE, in green). The acting Lorentz force separates

the positive (cations) and negative (anions) electrical charges , positive on one side of the flow

circle and negative on the other, and built electric fields (EL, in red). The electric fields attempt

to discharge in short-circuit currents in the conductive space. Because the electrical field can not
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discharge at the same place where they are generated due to acting Lorentz force, the (spheroidal)

electric currents find their way in dependency on the conductivity distribution in radial direction

and, therefore, discharge in the vertical planes (J , in brown). These electric currents in turn induce

the toroidal magnetic field (b, in green) that is constrained by the electric currents to the electric

conductive space. The distribution of the electric currents in respect to the depth is governed by

the electric conductivity profile in and beneath the ocean layer which explains the high sensitivity

of the toroidal magnetic field to the lithospheric electrical conductivity.

The second mode – the poloidal magnetic field (Figure 1.3) requires toroidal electric currents.

To fulfill this condition, the electric field has to discharge in the horizontal planes. In the previous

example we considered homogeneous ring flow through a homogeneous ambient (background) mag-

netic field. Such idealistic symmetric case does not allow horizontal electric currents. To break this

symmetry we consider now an inhomogeneous background magnetic field and oceanic flow. The

inhomogeneity by the oceanic transport, different directions of the flow or horizontal gradient in the

flow promote the conditions for induction of the poloidal magnetic field. As shown in the cartoon,

the poloidal magnetic field induced by horizontal electric currents emanate the electric conductive

space and can be measured in the atmosphere. The horizontal electric currents cause that the

poloidal magnetic field is less sensitive in respect to radial conductivity profile. This property jus-

tifies a crude approximation of thin sheet models with vertical integrated oceanic transport, where

the thin sheet is considered to have a uniform electrical conductance. Nevertheless, more sophisti-

cated models shows the influence of the radial distribution of the Earth’s electrical conductivity on

the poloidal magnetic field. Also, even by a high resistivity of the crust and lithosphere, a mutual

induction for non-local electric currents by increasing electrical conductivity with the depth should

be taken in account. Therefore, the horizontal electric currents are often separated into local and

non-local by the ratio of the horizontal scale of flow to the electromagnetic skin depth of the mantle

(Sanford, 1971). As we are interested in global magnetic fields generated by tidal flow, a realistic

radial conductivity profile should be included.

But not only the radial conductivity profile influences the resulting magnetic field. In a medium

with uniform electrical conductivity, the toroidal and poloidal modes do not influences mutually

and can be treated separately. In 3D conductive medium a conversion (so called coupling) between

the two magnetic modes occurs. Besides the radial electric conductivity distribution, represented

by spherical layers with uniform properties, the largest impact on the ocean-induced magnetic field

is given by conductivity differences in lateral direction due to the ocean-continent border. This

effect is illustrated in Figure 1.4. Besides the toroidal and primary poloidal magnetic fields induced

directly by flow in the oceans (described above), the induction of the secondary ocean-induced

poloidal magnetic field occurs. The generated toroidal magnetic field (green horizontal arrows)

hits the continents with at least 3 order of magnitude smaller electrical conductivity. Thereby the

toroidal magnetic field (1) is disturbed, new horizontal electric currents are generated (2) and a

secondary poloidal magnetic field (3) is induced.

This example shows that a precise determination of the ocean-induced contribution to the

geomagnetic field can be achieved only with 3D conductive models that include the toroidal part

of the magnetic signal. We may, therefore, also conclude that the toroidal component of the ocean-

induced magnetic field can indirectly be observed outside the ocean. In particular, a non-trivial

contribution of the secondary poloidal magnetic signals to the geomagnetic field at ground-based

magnetic observatories situated close to the oceanic shorelines necessitates accounting for it in

geomagnetic coastal-effect modelling. Without accurate estimation of this contribution, the coastal

magnetic records can not be interpreted reliably.
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constituents. The secondary field: The toroidal magnetic field (1) induces a toroidal electric currents (2)

on the conductivity jump between ocean and continent. These currents in turn induce a secondary poloidal

magnetic field (3).
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1.2 Derivation of the induction equation

The electromagnetic induction is governed by Maxwell’s equations, that is a set of four partial

differential equations (Stratton, 1941) of the form

curlB = µ0

(
j +

∂

∂t
D

)
, (1.1)

divB = 0 , (1.2)

curlE = − ∂

∂t
B , (1.3)

divD = ρ , (1.4)

where B stands for magnetic field, E for electric field, j for electric current density, D for dis-

placement field, µ0 for permeability of vacuum and ρ for total electric charge density. The electro-

magnetic induction caused by ocean flow is a slow process where the displacement field D can be

neglected. This reduces equation (1.1) to the Ampère’s circuital law

curlB = µ0j (1.5)

and the Maxwell’s equations take the quasi-stationary form. The following material equations

supplement Maxwell’s equations,

B = µ0µrH , (1.6)

D = ε0εrE , (1.7)

where H is magnetic field intensity, µr permeability coefficient, ε0 permittivity for vacuum and εr
permittivity coefficient. The third material equation is the Ohm’s law. In a electric conductive,

source-free medium (in our case without ocean currents), it is of the form

j = σE . (1.8)

The Lorentz force acting on the electrical charges moving with the ocean flow of velocity u through

the background magnetic field BE leads to an additionally term in the Ohm’s law,

j = σ(E + u×BE) . (1.9)

The first summand describes the conduction and the second the advection part of the electric

current density. Using this basic electromagnetic relations we derive the induction equation that

will be later solved in different ways. We substitute equation (1.9) for E in Faraday’s law (eq. 1.3)

and get the form

curl

(
1

σ
j − u×BE

)
= − ∂

∂t
B . (1.10)

Further we substitute Ampère’s law (eq. 1.5) for j in eq. (1.10) and get the final form of the

induction equation
1

µ0
curl

(
1

σ
curlB

)
+
∂

∂t
B = curl(u×BE) , (1.11)

an approximation where the self-induction (u × B) is not considered. It is a non-homogeneous

partial differential equation for the magnetic signal B generated by ocean flow with the right hand

side given by input signals. In the source-free part of the solution space – the electric conductive

space beneath the ocean layer where u = 0 – we apply the Ohm’s law in the form of eq. (1.8) and

get a homogeneous form of the induction equation

1

µ0
curl

(
1

σ
curlB

)
+
∂

∂t
B = 0. (1.12)
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We intend to calculate magnetic fields generated by partial tidal forcing with a particular angular

frequency ω. This allows a solution of the induction equation in Fourier frequency domain

(chap. 3 and chap. 4). To be able to do this we will assume that the ocean responds to the

tidal forcing by a steady-state periodic circulation with an ocean velocity field u whose temporal

variations are represented by the time-harmonic dependency eiωt, that is u(r, t) = u(r)eiωt, where

r = (r,Ω), Ω = (ϑ, ϕ) and i =
√
−1. Consequently, the induced magnetic field will be expressed

in the form B(r, t) = B(r)eiωt. Approximating the Earth by a conducting sphere of radius r =

a with a spherically symmetric distribution of electrical conductivity and dividing the spherical

conductor into a number of homogeneous layers, each of which is characterized by a constant

electrical conductivity σ we write

curl curlB + iωµ0σB = µ0σ curl(u×BE) . (1.13)

Considering the vector identity curl curl = grad div−∇2 and that the magnetic field is divergence

free (eq. 1.2), the magnetic induction equation within a homogeneous layer transforms to Helmholtz

equation

∇2B + k2B = −µ0σcurl(u×BE) , (1.14)

where k is the wave number, k2 = −iωµ0σ. For the time domain solution in chapter 5 we

discretize the periodical circulation of the tidal flow in a finite number of time steps, so we can

express the time dependent term in the induction equation as

∂B

∂t
=
Bi+1 −Bi

∆t
. (1.15)

where index i marks the time instant and ∆t is time step. Finally, the induction equation in time

domain takes the form

1

µ0
curl

(
1

σ
curlBi+1

)
+
Bi+1 −Bi

∆t
= curl(ui+1 ×BE) . (1.16)

1.3 Magnetic field decomposition

An arbitrary vector field f can be generally decomposed in toroidal fT and spheroidal fS part

f = fS + fT . (1.17)

The divergence free part of the spheroidal field is called poloidal (div fP = 0). According to

Maxwell equation (1.2), the magnetic field is divergence free and therefore the nonpoloidal part of

the spheroidal magnetic field is always zero. The decomposition of magnetic field can, therefore,

be described by

B = BP +BT . (1.18)

The formulation for the toroidal field is implicitly divergence free, while the formulation for the

poloidal magnetic field does not guarantee a divergence-free solution. This condition must be

either explicitly included into model equations, or the poloidal magnetic field is expressed in terms

of a toroidal magnetic potential (the case used in this thesis). The relation between the magnetic

potential and magnetic induction is (Stratton, 1941)

B = curlA . (1.19)

In particular, poloidal magnetic field BP is generated by toroidal magnetic potential AT as

BP = curlAT . (1.20)
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1.4 Induction equation represented in magnetic potential A

We present here the induction equation for poloidal magnetic fieldBP expressed in terms of toroidal

magnetic potential AT. Using the induction equation (1.3) for BP and the relation (1.20) we write

curlES = − ∂

∂t
curlAT . (1.21)

As has been used by Martinec (1997) and derived by Souček et al. (2011) for a homogeneous

induction equation, under the condition of spherically symmetric model, that means σ(r), holds

the relation

ES = − ∂

∂t
AT . (1.22)

We extend this relation for the source term and get from equation (1.10)

1

σ
j − u×BE = − ∂

∂t
AT . (1.23)

Using the Ampère’s law (eq. 1.5) we obtain the induction equation for σ(r)

curl curlAT + µ0σ
∂

∂t
AT = µ0σ [u×BE]T . (1.24)

1.5 Modelling approach and approximations

State of the art

Primarily motivated by interpretation of magnetic records from satellite observations, present-day

global models of electromagnetic induction are commonly reduced to thin sheet approximation

to provide the possibility to calculate primary poloidal ocean-induced magnetic fields. The thin

sheet approximations consist of a plain of ocean areas with water flow as radially integrated value

moving through only the radial component of the Earth’s magnetic field. Conductivity beneath

the ocean layer is either neglected (Tyler et al., 2003), or added in the form of conductance as by

Tyler et al. (1997a) or the source thin sheet layer is placed atop of the conductivity distribution of

the Earth as in Kuvshinov and Olsen (2005). The horizontal electrical currents are constraint to a

ocean areas and the secondary effects of the poloidal magnetic field, given by lateral conductivity

variations, can not be estimated in such models. As explained above, the magnitude and spatial

distribution of the magnetic field induced by ocean flow are largely influenced by the surrounding

electric conductive space. Therefore, an accurate prediction can be achieved only by thick layer

approximation considering the surrounding electric conductive space, where the toroidal part of

the magnetic field is not neglected.

Spherically symmetric layered model

The spherically symmetric layered model presented in this thesis is considered as the first step on

the way to the 3D conductive model for electromagnetic induction with its source in the ocean.

We represent the Earth by a spherically symmetric model of electrical conductivity. Dividing

the Earth in spherical finite layers allows variations of the conductivity in radial direction, where

each layer is represented by a constant conductivity. The magnetic fields in individual spherical

layers are then connected using boundary conditions. The source term for the electromagnetic

induction is placed in the upper most layer(s) representing the ocean. The atmosphere above the

Earth is considered as an insulator. (See cartoon in Figure 1.1.) The subdivision of the sphere

into layers with constant electrical conductivities and the electromagnetic field decomposition in

toroidal and poloidal modes makes the solution of the induction equation for a radial conductivity
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profile mathematically and numerically feasible. In addition, the use of identical source terms for

both modes allows studying differences in the behaviour of the two modes. The magnetic field is

parametrized in lateral direction using vector spherical harmonics. For radial direction, we use

two different methods. Following the classical approach described in chapter 3, the diffusion of

the magnetic signal with depth is solved analytically using the spherical Bessel functions as the

solution of the Helmholtz equation. In chapter 4, alternatively, a weak formulation of the induction

equation is formulated and magnetic field in radial direction is parametrized by finite elements.

One of the advantages of our model is, that under the premise of numerical feasibility, the model

with its parametrization allows arbitrary discretization in a radial direction and, dependent on

cut-off degree and order, an arbitrary resolution in a lateral direction.

Source term

The source term for the forward modelling consists of horizontal ocean velocities u and back-

ground magnetic field BE comprising all three vector components. Both vectors are represented

in horizontal direction by vector spherical harmonic series. The source term, the right hand side

of the induction equation, takes in dependency on the calculated case different forms, like shown

in equations (1.11), (1.16) or (1.24). As the model consists of thick layers, a volume source in the

ocean can be applied in one or several layers with different electrical conductivities. This enables

us to include a radial conductivity profile through the ocean. Besides the water flow as a source

of energy for the motional induction, temporal variations of the background magnetic field in

electrically conductive ocean induce secondary magnetic fields. Especially, fast changes of the

ambient magnetic field caused, for example, by magnetic storms induce an additional constituent

of magnetic field generated in the ocean. This effect is not considered in this work and the

background magnetic field is therefore considered to be static. The results of existing models show

that the induced magnetic field is 4 orders of magnitudes smaller than the background magnetic

field. This fact leads to the assumption that the self-induction, an effect where the induced

magnetic field is considered to be a part of the background magnetic field, does not significantly

affect the resulting magnetic field. Therefore, the effect of self-induction is not considered in

this work. Also, the feed back coupling in the magnetohydrodynamics, that is the influence of

magnetic field on the oceanic dynamics is considered to be negligible. Such a model can be called

as a one-sided dynamo.

Limitations

On the one hand, the analytical approach delivers a confident solution of the mathematical problem

that can be used for validation of the numerical (approximate) solution. On the other hand,

the strong (analytic) solution incorporates numerical limitations that can be overcome by the

weak (numerical) solution. In this respect, the analytical solution requires the thicknesses of the

conductive layer to be relatively large with relatively large values of electrical conductivity, whereas

for the weak solution, a dense discretization is preferable due to the linear approximation of a

solution between the neighboring nodes. In addition, a finer lateral resolution results in numerical

limitations of the analytical approach. Moreover, the analytical solution of the Helmholtz equation,

defined by the spherical Bessel functions can be performed in a Fourier frequency domain only,

whereas the numerical solution of the induction equation can be also obtained in a time domain

(chapter 5). The tidal dynamics with one particular frequency for each partial tide are, therefore,

well suited for the solution in a Fourier frequency domain. The strong (classical) solution discussed

in chapter 3, that is based on the matrix-propagator method, serves, therefor, as a reference for

the internal validation of the approximate method presented in chapter 4.

Some other aspects such as, for example, the resolution of the spatial discretization can also
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influence the obtained results. In the case of low lateral resolution, the kinematic energy included

in small-scale features like oceanic eddies can not be accounted and thus reduces the magnetic field

on small scales. Given the global oceanic tidal flow used in our modelling, small-scale features

can affect the signal in shallow coastal regions where the flow becomes turbulent. The spherically

symmetric approximation of the Earth and the separation of the calculus into toroidal and poloidal

modes have advantage that it makes the induction equation feasible, but does not allow to use 3D

conductivity structures. Therefore, lateral inhomogeneities in electrical conductivity such as at the

continent-ocean interface or by a depth-dependent bathymetry can not be included in the model.

The area of the ocean is defined only by a ocean velocity field, however, not by the conductivity

differences between oceans and continents. To obtain an estimate of the secondary magnetic field

induced at the ocean-continent boundary (see sec. 3.3), at the forward modelling stage we calculate

the spheroidal electric field ES from the spherically symmetric model, which is then applied as

an input datum for calculations of magnetic field in a model with a lateral conductivity mask

distinguishing between the ocean and the continent areas.





Chapter 2

Representation of the magnetic source

The Lorentz force acting on the electric charges moving with the ocean flow of velocity u on the

background magnetic field BE is the source and response into ocean-induced magnetic field. In

this chapter the source term in vector spherical harmonics is expressed in terms of the toroidal and

poloidal modes. This representation will be used for all later solutions in this thesis. The source

term is given by the right hand side of the induction equation (1.11) and (1.24) for the toroidal

magnetic field and the toroidal magnetic potential, respectively.

2.1 Source term F for the toroidal magnetic field

We denote the right hand side of the induction equation (1.11) as

F := curl(u×BE) . (2.1)

Since F is a vector field, it can be represented in terms of vector spherical harmonics in the form

F =
∑
jm`

F `jm(r)Y `
jm(Ω) , (2.2)

where Y `
jm(Ω) stands for the basis function of the vector spherical harmonics (Varshalovich et al.,

1988). The summation in eq. (2.2) runs over j = 1, 2, . . . ,∞, m = −j,−j + 1, . . . , j − 1, j, and

` = j − 1, j, j + 1. In section 2.5 we will show that F can be expressed in the form

F (r,Ω) =
∑
jm`

[
(1)F `jm

(r
a

)`
+ (2)F `jm

(a
r

)`+1]
Y `
jm(Ω) , (2.3)

where the expansion coefficients (1)F `jm and (2)F `jm are given by eq. (2.42). By this, a particular

solution of the inhomogeneous Helmholtz equation (1.14) in Fourier frequency domain is searched

by the ansatz

Bpart(r,Ω) =
∑
jm`

[
(1)b`jm

(r
a

)`
+ (2)b`jm

(a
r

)`+1]
Y `
jm(Ω). (2.4)

Substituting this ansatz to eq. (1.14) and realizing that functions r`Y `
jm(Ω) and r−`−1Y `

jm(Ω) are

harmonic, we obtain k2Bpart = −µ0σF , which yields the solution for the coefficients (α)b`jm,

(α)b`jm = − i
ω

(α)F `jm(a), (2.5)

α = 1, 2. The complete solution of the inhomogeneous Helmholtz equation (1.14) in Fourier fre-

quency domain is given by the sum of a homogeneous solution Bhom, expressed by eq. (3.2), and

the particular solution Bpart, expressed by eq. (2.4), that is B = Bhom +Bpart.
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2.2 Source term G for the poloidal magnetic field

To describe the source term for the poloidal magnetic field let us denote the cross product of u and

BE on the right hand site of the induction equation (1.24) for the magnetic potential A as

G := u×BE . (2.6)

Similar to the decomposition in eq. (2.2), we can write

G =
∑
jm`

G`jm(r)Y `
jm(Ω) . (2.7)

In contrast to the ansatz (2.3) for the toroidal magnetic field, in the case of the poloidal magnetic

field we assume that the horizontal ocean flow u does not change with depth. In such a case, it is

sufficient to describe G by only one set of spherical harmonic coefficients G`jm,

G(r,Ω) =
∑
jm`

G`jm(a)
(r
a

)`
Y `
jm(Ω) . (2.8)

By this, the partial solution of the inhomogeneous Helmholtz eq. (1.24) is

Apart(r,Ω) =
∑
jm`

p`jm

(r
a

)`
Y `
jm(Ω) , (2.9)

where eq. (1.24) reduces to k2Apart = −µ0σG. This yields the solution for the coefficients p`jm,

p`jm =
−µ0σ

k2
G`jm(a) = − i

ω
G`jm(a). (2.10)

2.3 Representation of ocean velocities u

To represent the source terms F and G in the term of vector spherical harmonic series, the ocean

velocities u and the main magnetic field BE need to be specified in an explicit way. As a matter

of fact, the radial component of ocean flow generated by tidal forcing is significantly smaller in

comparison to the horizontal velocity components. We will therefore approximate the ocean flow

velocity u by its horizontal components uϑ and uϕ only,

u = uϑeϑ + uϕeϕ, (2.11)

where eϑ and eϕ are unit base vectors in the co-latitude and longitude directions, respectively. The

velocity u can alternatively be represented as a series of vector spherical harmonics,

u(r,Ω) =
∑
jm`

u`jm(r)Y `
jm(Ω). (2.12)

Appendix A presents the least-squares method for estimating the coefficients u`jm(r) from gridded

ocean velocities (uϑ, uϕ). To examine the sensitivity of induced toroidal magnetic field on the radial

changes of u, we assume, without loss of generality, that the flow u can be a linear function of r

without a change in flow direction with depth. In the case where u is a more complex function

of r, the source term may be discretized into a set of layers analog to the parameter of radial

conductivity profile (sec. 3.1.1) in each of which u can be represented as a linear function of r.

Hence, we write

u`jm(r) = g`jm + h`jm r (2.13)
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for rb ≤ r ≤ ra, where ra and rb are the radii of the ocean surface and bottom, respectively. The

coefficients g`jm and h`jm can be determined from the ocean flow model.

As the constant and linear functions are not orthogonal to each other and therefore not inde-

pendent from each other, in the case of over the depth constant ocean flow the radial dependent

coefficient h`jm can not be omitted and the ansatz must be used still in the form of eq. (2.13).

As discussed in section 2.2 for the poloidal magnetic field we assume that ocean velocities do not

change with depth, and are then represented by coefficient u`jm(r) only.

2.4 Representation of the background magnetic field BE

The Earth’s magnetic field may be described in terms of spherical harmonic series. In the atmo-

sphere (σ = 0) this representation is given by spheroidal vector spherical harmonics in the form

BE(r,Ω) = −
∞∑
j=1

j∑
m=−j

[√
j(2j + 1)

(r
a

)j−1
G

(e)
jm Y

j−1
jm (Ω)

+
√

(j + 1)(2j + 1)
(a
r

)j+2
G

(i)
jm Y

j+1
jm (Ω)

]
,

(2.14)

where then Gauss coefficients G
(e)
jm and G

(i)
jm describe the magnetic fields of external and internal

origins, respectively. In the case of ocean-induced magnetic field, we consider the background

magnetic field BE as the main magnetic field of the Earth

BE(r,Ω) = −
jmain∑
j=1

j∑
m=−j

√
(j + 1)(2j + 1)

(a
r

)j+2
G

(i)
jm Y

j+1
jm (Ω), (2.15)

where G
(i)
jm are the internal Gauss coefficients truncated at degree jmain. Moreover, we assume that

G
(i)
jm are time independent. To simplify the notation, we introduce

Bj+1
E,jm(r) = Bj+1

E,jm(a)
(a
r

)j+2
, Bj+1

E,jm(a) = −
√

(j + 1)(2j + 1) G
(i)
jm. (2.16)

It is common in the magnetic community to describe the magnetic field by spherical harmonics

expressed in the Schmidt semi-norm. The calculus in this thesis is carried out according to the

norm given in Varshalovich et al. (1988) (eqs D.20 and D.8). The conversion between the two

normalizations is as follow. The Schmidt semi-normalized associated Legendre functions (Winch

et al., 2005) are given by

P̂mj (cosϑ) =

√
(2− δm0)

(j −m)!

(j +m)!
Pjm(cosϑ) , (2.17)

where Pjm(cosϑ) stands for associated Legendre functions and δm0 is the Kronecker delta symbol

here distinguishing the zonal case. On the other hand, the fully-normalized Legendre functions are

Pmj (cosϑ) =

√
2j + 1

4π

(j −m)!

(j +m)!
Pjm(cosϑ) . (2.18)

Therefore, the background magnetic field expressed in the Schmidt semi-normalized coefficient gjm
and in fully normalized Gauss coefficient Gjm has the forms that equals to each other,

Gjm

√
2j + 1

4π

(j −m)!

(j +m)!
Pjm(cosϑ) = gjm

√
(2− δm0)

(j −m)!

(j +m)!
Pjm(cosϑ) . (2.19)
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This yields the relation between the Schmidt semi-normalized coefficients gjm and fully normalized

coefficients Gjm

Gjm =

√
(2− δm0)

4π

2j + 1
gjm . (2.20)

2.5 Representation of the source terms of F and G

Having represented ocean velocities u and the main magnetic field BE in terms of vector spherical

harmonics, we aim now to express the source terms F and G in the form of the ansatz by eq. (2.3)

and (2.8), respectively. We will do this for the case when the background magnetic field BE is

characterized by one individual coefficient Bj2+1
E,j2m2

(r) only. Hence, we assume for the moment that

BE(r,Ω) = Bj2+1
E,j2m2

(r)Y j2+1
j2m2

(Ω), (2.21)

where the indexes j2 and m2 are fixed through the following derivation. Since the source term is

linear with respect to the background magnetic field BE, the complete representation of F and

G will be given by the sum of the representations of the individual contributions (eq. 2.21). The

cross-product of u and BE reads as

u×BE =
∑
j1m1`1

u`1j1m1
(r)Bj2+1

E,j2m2
(r)
(
Y `1
j1m1

(Ω)× Y j2+1
j2m2

(Ω)
)
, (2.22)

where the cross-product of two vector spherical harmonics can be expressed as a finite sum of vector

spherical harmonics (Varshalovich et al., 1988)

Y `1
j1m1

(Ω)× Y j2+1
j2m2

(Ω) =
∑
jm`

V jm`
j1m1`1,j2m2

Y `
jm(Ω) (2.23)

with the expansion coefficients given by equation (D.27)

V jm`
j1m1`1,j2m2

= i

√
3

2π
(2j1 + 1)(2j2 + 1)(2`1 + 1)(2j2 + 3)


j1 `1 1

j2 j2 + 1 1

j ` 1

C`0`10j2+10 C
jm
j1m1j2m2

.

(2.24)

Here, the curl brackets stand for Wigner’s 9 − j symbols and Cjmj1m1j2m2
are the Clebsch-Gordan

coefficients. The source term G = u ×BE can now be represented as a series of vector spherical

harmonics

G(r,Ω) =
∑
jm`

G`jm(r)Y `
jm(Ω) , (2.25)

where

G`jm(r) =
∑
j1m1`1

∑
`3

V jm`3
j1m1`1,j2m2

u`1j1m1
(r)Bj2+1

E,j2m2
(r). (2.26)

Applying the differential operator curl to eq. (2.22) and making use of the identity curl(fv) =

f curlv + gradf × v, where f and v are scalar and vector differentiable functions, respectively, we

obtain

curl(u×BE) =
∑
j1m1`1

{
u`1j1m1

(r)Bj2+1
E,j2m2

(r) curl
(
Y `1
j1m1

(Ω)× Y j2+1
j2m2

(Ω)
)

+
d

dr

(
u`1j1m1

(r)Bj2+1
E,j2m2

(r)
)
er ×

(
Y `1
j1m1

(Ω)× Y j2+1
j2m2

(Ω)
)}

. (2.27)
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By eq. (2.23) and the differential relation for the curl of Y `
jm(Ω) (see eqs D.32 - D.34),

curlY `
jm(Ω) =

1

r

∑
`3

α`3` Y
`3
jm(Ω), (2.28)

where the coefficients α`3` vanish unless

αjj−1 = −i

√
j + 1

2j + 1
(j − 1) , αjj+1 = i

√
j

2j + 1
(j + 2) ,

(2.29)

αj−1
j = i

√
j + 1

2j + 1
(j + 1) , αj+1

j = −i

√
j

2j + 1
(j),

the first term in eq. (2.27) can be written as

curl
(
Y `1
j1m1

(Ω)× Y j2+1
j2m2

(Ω)
)

=
1

r

∑
jm`

∑
`3

V jm`3
j1m1`1,j2m2

α``3 Y
`
jm(Ω). (2.30)

Likewise, by eq. (2.23) and the relation for the cross product of er with Y `
jm(Ω), see eqs (D.38 -

D.40),

er × Y `
jm(Ω) =

∑
`3

β`3` Y
`3
jm(Ω), (2.31)

where the coefficients β`3` vanish unless

βjj−1 = βj−1
j = i

√
j + 1

2j + 1
,

βjj+1 = βj+1
j = i

√
j

2j + 1
. (2.32)

we find that the second term in eq. (2.27) is

er ×
(
Y `1
j1m1

(Ω)× Y j2+1
j2m2

(Ω)
)

=
∑
jm`

∑
`3

V jm`3
j1m1`1,j2m2

β``3 Y
`
jm(Ω). (2.33)

The source vector F = curl(u×BE) can now be represented as a series of vector spherical harmonics

F (r,Ω) =
∑
jm`

F `jm(r)Y `
jm(Ω) (2.34)

with the expansion coefficients

F `jm(r) =
∑
j1m1`1

∑
`3

V jm`3
j1m1`1,j2m2

[
α``3

1

r
u`1j1m1

(r)Bj2+1
E,j2m2

(r) + β``3
d

dr

(
u`1j1m1

(r)Bj2+1
E,j2m2

(r)
) ]
. (2.35)

Substituting for the radial dependence of u`jm(r) and Bj2+1
E,j2m2

(r) from eqs (2.13) and (2.16), respec-

tively, we find, after some algebraic manipulations, that

F `jm(r) =
(
Djm`,j2m2 +

1

r
Ejm`,j2m2

)(a
r

)j2+2
, (2.36)

where

Djm`,j2m2 = Bj2+1
E,j2m2

(a)
∑

j1m1`1

∑
`3

V jm`3
j1m1`1,j2m2

(
α``3 − (j2 + 1)β``3

)
h`1j1m1

,

(2.37)
Ejm`,j2m2 = Bj2+1

E,j2m2
(a)

∑
j1m1`1

∑
`3

V jm`3
j1m1`1,j2m2

(
α``3 − (j2 + 2)β``3

)
g`1j1m1

.
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Finally, comparing the coefficients at Y `
jm(Ω) in the ansatz (2.3) with eq. (2.36), we obtain

(1)F `jm

(r
a

)`
+ (2)F `jm

(a
r

)`+1
=
(
Djm`,j2m2 +

1

r
Ejm`,j2m2

)(a
r

)j2+2
(2.38)

for all eligible indexes j, m and `, but fixed indexes j2 and m2. The last condition should hold at

any point of radius r inside the ocean layer, that is for rb ≤ r ≤ ra. Considering the thickness of

ocean layer being much smaller than the mean radius of the Earth, the powers (r/a)` and (a/r)`+1,

divided by power (a/r)j2+2, can be approximated within the ocean layer by 1/r by applying the

binomial theorem,(a
r

)k
=
(r + a− r

r

)k
=
(

1 +
a− r
r

)k
= 1 + k

(a− r
r

)
+O

(a− r
r

)2 .
= 1− k + k

(a
r

)
, (2.39)

where the higher-order expansion terms can be safely neglected. In particular, for k = −`− j2 − 2

and k = `− j2 − 1, it holds that(r
a

)`+j2+2
= `+ j2 + 3− (`+ j2 + 2)

(a
r

)
,

(2.40)(a
r

)`−j2−1
= −`+ j2 + 2 + (`− j2 − 1)

(a
r

)
.

Substituting eq. (2.40) into eq. (2.38) and comparing the constant terms and the coefficients at

1/r, we find

(`+ j2 + 3) (1)F `jm − (`− j2 − 2) (2)F `jm = Djm`,j2m2 ,
(2.41)

−(`+ j2 + 2) (1)F `jm + (`− j2 − 1) (2)F `jm =
1

a
Ejm`,j2m2 .

The solution of eq. (2.41) is therefore

(1)F `jm =
1

2`+ 1

[
(`− j2 − 1)Djm`,j2m2 + (`− j2 − 2)

1

a
Ejm`,j2m2

]
,

(2.42)
(2)F `jm =

1

2`+ 1

[
(`+ j2 + 2)Djm`,j2m2 + (`+ j2 + 3)

1

a
Ejm`,j2m2

]
,

by which the coefficients (α)F `jm of the source term F are expressed in terms of the coefficients

Djm`,j2m2 and Ejm`,j2m2 of u and one individual coefficient Bj2+1
E,j2m2

(a) of the background magnetic

fieldBE. The complete representation of F is given by the sum of the individual contributions (2.42)

for j2 = 1, . . . , jmain, and m2 = −j2, . . . , j2.

2.6 Input data

2.6.1 Ocean velocities

The input ocean velocities are generated by the Ocean Modell for Circulation and Tides (Thomas

(2002); Dobslaw (2007)) over a regular (ϑ, ϕ) grid with a grid size of 1.875◦ in latitude and longi-

tude. The model has been derived from The Hamburg Ocean Primitive Equation Modell (HOPE;

Drijfhout et al. (1996) and Wolff et al. (1997)). Thereby, the original model has been adapted for

studying short-term mass variations in ocean caused by lunisolar tides and general circulation. For

this purpose, the OMCT model has been coupled with ephemeris module for tides which allows the

determination of tidal lunisolar gravitation potential differences. Using temporally high resolution

atmospheric data adapted for short-time weather scales, the general circulation in the OMCT is

composed of thermohaline, wind driven and pressure driven circulation. As input for our modelling,
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the OMCT model provides depth-integrated velocity field of barotropic horizontal ocean circulation

flow u driven by the lunar semidiurnal tide M2 with a period of 12 h and 42 min,

uint =

∫ 0

hbath

u dr , (2.43)

where hbath stands for the bathymetry shown in Figure 2.3. An identical depth integrated velocity

field has been used also for the thin sheet approximation in Dostal (2009) where a good agreement

of the amplitude and global distribution of the radial component of the generated magnetic field

in comparison to the results by Tyler et al. (2003) and Maus and Kuvshinov (2004) has been

presented. This data set is used as the input of all numerical experiments carried out in this thesis.

Dividing the depth integrated velocity field uint by ocean depth hocean ,

u(ϑ, ϕ) =
uint(ϑ, ϕ)

hocean(ϑ, ϕ)
(2.44)

we obtain a realistic velocity distribution u (in the units of m/s). In dependence on hocean, we can

study two different effects of the ocean-induced magnetic field.

In the first case we scale uint with the ocean depth given by the bathymetry field hocean(ϑ, ϕ) =

hbath(ϑ, ϕ). The resulting data are the average tidal velocities uavg. This velocity field includes

the whole ocean areas and equals to ocean flow close to a sea surface. The average velocities

enable uavg us to study the influence of the M2 tidal wave on the generated magnetic field, given

by large ocean velocities in shallow-water coastal regions. The fast moving electrical charges are

particularly important for the induction of the toroidal and poloidal magnetic field. In addition,

in the locations close to the coast, the secondary poloidal magnetic field can be generated due to

the electrical conductivity contrast between ocean and continent. The areas of interest in this case

are shallow coastal regions. Not overestimate the generated magnetic field by using the average

velocity field uavg, we reduce the depth of the spherically symmetric ocean layer to h = 1 km.

In a second case, where we calculate the ocean induced magnetic field generated by the whole

transport of the M2 tide, we apply the integrated velocity field uint on a layer of average ocean

thickness equal to the ocean depth of hocean = 4 km. Dividing the integrated velocity field by

constant ocean layer depth reduces the value of the flow velocity in shallow regions and increases the

velocity in deeper regions. This weighing guarantees that the whole oceanic transport is considered

without overestimation or underestimation in shallow or deeper oceanic regions, respectively.

The gridded velocity field is described by the amplitude uAα (ϑ, ϕ) and spatial phase-shift

uφα(ϑ, ϕ) for the horizontal components (u)ϑ and (u)ϕ. For each velocity component we intro-

duce a complex quantity uα = ureal
α + i uimag

α by the relations

ureal
α (ϑ, ϕ) = uAα (ϑ, ϕ) cosuφα(ϑ, ϕ) ,

(2.45)

and

uimag
α (ϑ, ϕ) = uAα (ϑ, ϕ) sinuφα(ϑ, ϕ) , (2.46)

where label α = (ϑ, ϕ) stands for the two horizontal velocity components ϑ and ϕ. For a solution

in time domain (chap. 5) we discretize the tidal wave by the time step ∆t and have discrete values

of velocities in time

uiα(ϑ, ϕ) = uAα (ϑ, ϕ) cos[uφα(ϑ, ϕ) + i ∆t] i = 1, 2, . . . . (2.47)
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with i as a index for a time instant. The least-squares method (presented in the Appendix A) is

then applied to gridded ocean velocities (uϑ, uϕ), to each time instant to compute the least-squares

estimate û`jm of the spherical harmonic expansion coefficients u`jm of horizontal ocean velocity u.

For a grid-step size of 1.875◦, the angular degree j = 95 is the highest degree for which the discrete

velocity data can unambiguously be represented by spherical harmonic series in eq. (2.12). To

achieve reliable results, we represent the ocean velocity by the vector spherical harmonic series, see

eq. (2.12), cut off at degree jmax = 48. In addition, to mitigate the effect of the Gibbs phenomenon,

the series in eq. (2.12) is weighted by the Lanczos ηj coefficients (Duchon, 1979). In summary, the

horizontal ocean velocities are represented in the form

u(r, ϑ, ϕ) =

jmax∑
j=1

j∑
m=−j

j+1∑
`=j−1

ηj û
`
jm(r)Y `

jm(ϑ, ϕ). (2.48)

Figure 2.1 shows the real and imaginary parts of the ϑ and ϕ components of the average ocean

velocities synthesized from the spherical harmonic coefficients û`jm according to eq. (2.48). We

can see large-scale spatial patterns of the ocean velocities over deep-water open ocean areas and

rather short-wavelength spatial patterns over shallow-water coastal regions. Due to the truncation

of the spherical harmonic series in eq. (2.48), the modeled ocean velocities are slightly extended

over continental coastal regions. This will not, however, affect our estimates of the size and scale

of the induced magnetic field, but it would be a limitation when the observed magnetic field

is interpreted in terms of ocean velocities. The synthesized velocity of the oceanic transport are

presented in Figure 2.2. Comparing them with the average velocities (Figure 2.1) we recognize again

the large-scaled patterns over oceanic basins, but the weighting by constant ocean depth thickness

reduces the influence of the small-scaled features in coastal regions given by large velocities in

shallow water. Consider the different scale in both Figures.

2.6.2 Background magnetic field

For the Earth’s background magnetic fieldBE, which is considered constant over time, we apply the

POMME-6 model from Maus et al. (2010). The magnetic dipole term has the dominant influence

on the magnitude and spatial patterns of the ocean-induced magnetic field. For the poloidal mode

the background field is represented by dipole term only. The model for the toroidal magnetic field

has been designed also for higher degrees (non-dipole) of spherical harmonic coefficients of the

background magnetic field. Including higher-degree spherical harmonic coefficients allows to locate

the geographic position to the magnetic poles. This causes minor changes in the magnitudes of the

induced magnetic field, in particular, the magnetic field is slightly weakened around New Zealand.

Including spherical harmonic coefficients higher than degree and order 6 has no significant influence

on the induced magnetic field. Hence, the magnetic field BE is truncated at degree and order 6 in

numerical computations. The three components of the main magnetic field used for generating the

toroidal magnetic field are shown in Figure 2.4.

2.6.3 Radial profile of electrical conductivity

A conductive spherical earth model consists of two regions. A highly conductive ocean, where

the ocean velocities induce the magnetic field, and a source-free, less conductive mantle beneath

the ocean. For modelling the induced toroidal magnetic field, the ocean is divided into several

spherical layers with different electrical conductivities. In this thesis, we use 6-layer ocean where

the conductivity is piecewise constant and varies from σo = 4.7 Sm−1 at the sea surface to σo =
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Figure 2.1: Real (left) and imaginary (right) parts of ϑ (top) and ϕ (bottom) components of the ocean

velocities forced by M2 tide synthesized from the spherical harmonics coefficients û`jm.

3.2 Sm−1 at the ocean bottom due to varying water temperature and salinity. The electrical

conductivity model is taken accordingly to Apel (1987),

σo(T, s) = σ(25, s) e−β∆T , (2.49)

where

∆T = 25 ◦C− T , (2.50)

β = β(∆, s)

= 2, 033 · 10−2 + 1, 266 · 10−4 ∆ + 2, 464 · 10−6 ∆2 (2.51)

− s(1, 849 · 10−5 − 2, 551 · 10−7 ∆ + 2, 551 · 10−8 ∆2)

and

σ(25, s) = s(0, 182521− 1, 46192 · 10−3 s+ 2, 09324 · 10−5 s2 − 1, 28205 · 10−7 s3) (2.52)

with T for temperature in ◦C, ∆T for temperature difference and s for salinity, which is set con-

stantly by s = 34.25 psu. A uniform electrical conductivity of ocean, σo = 3.5 S/m, is modelled

by a constant temperature to T = 8.0 ◦C. For studying the influence of the conductivity gradi-

ent through the ocean layer and for modelling the poloidal magnetic field, we use also a constant

conductivity profile set by σo = 3.5 Sm−1. In dependence on the numerical experiment, the ocean

layer takes two different thicknesses. For the average tidal velocity field, the ocean layer depth is
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Figure 2.2: Real (left) and imaginary (right) parts of ϑ (top) and ϕ (bottom) components of the ocean

velocities weighted by ocean depth thicknesses for M2 tide, synthesized from the spherical harmonics coeffi-

cients û`jm.
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Figure 2.3: The bathymetry (in km) used to average M2 tide velocity field in Figure 2.1.

considered to be h = 1 km. For radially integrated velocity field where the whole oceanic trans-

port is considered, we use average ocean depth of h = 4 km. The conductivity of the underlying

sediments, lithosphere and mantle is divided into 17 layers with different thicknesses (Figure 2.5

and Table 2.1 (on left)) and follows, up to a large extent, the model proposed by Lizarralde et al.

(1995) and Baba et al. (2010) for the Northeastern Pacific mantle conductivity profile. The con-

ductivity of the top, 4 km thick sedimentary layer is set equal to 0.3 Sm−1. Underneath this layer,

the conductivity gradually decreases to 0.001 Sm−1 at a depth of 50 km. Then, the conductivity
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Figure 2.4: ϑ (left top), ϕ (right top) and r (bottom) components of the background magnetic field (in 104

nT) by spherical harmonics cut-off degree jmax = 6 from Maus et al. (2010).

increases to 0.05 Sm−1 until a depth of 250 km. Below this maximum, the conductivity slightly

decreases to 0.03 Sm−1 at 380 km. Finally, the conductivity at the top of the lower mantle is

equal to 1 Sm−1 and is fixed at this rate downward, since its effect on the induced magnetic field

is negligible. That affirms the numerical results in following chapters. The conductivity profile for

layers beneath the seafloor is attached to the bottom of the ocean layer. Therefore, the exact radius

of the layers in the profile depends on the thickness of the ocean layer (h = 1 or 4 km). We also use

different uniform conductivity profiles for studying the sensitivity of the induced magnetic field in

respect to a conductivity parameter. The discretization of the conductivity profiles differ for the

individual numerical experiments. The numerical limitations given by analytical solutions with a

high resistive (realistic) conductivity profile, such as shown in Table 2.1, do not allow a smoother

discretization in this case. Such difficulties can be overcome using profile with higher conductivity

such as in the case of the secondary poloidal magnetic field (Table 2.1 on right), or using the finite

elements approach.
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Figure 2.5: Radial profile of electrical conductivity σm (in Sm−1) beneath the ocean layer corresponding

to the conductivity profile in Table 2.1 on the left.
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Toroidal and primary poloidal mag. field

Radius el. conductivity (S/m)

(km) toroidal prim. poloidal

6371.00 4.7

6370.90 4.5

6370.70 3.9 3.5

6370.50 3.5

6370.40 3.4

6370.20 3.2

6370 0.3

6366 0.2

6361 0.01

6351 0.01

6331 0.006

6321 0.001

6281 0.007

6261 0.01

6221 0.025

6170 0.05

6121 0.04

6071 0.03

5991 0.04

5871 0.1

5771 0.2

5701 0.3

5621 0.6

5500 1.0

Secondary poloidal magnetic field

Radius el. conductivity (S/m)

(km)

6371 3.5

6370 0.3

6366 0.3

6362 0.25

6357 0.2

6352 0.15

6347 0.1

6342 0.08

6333 0.03

6317 0.01

6300 0.02

6280 0.05

6260 0.1

6240 0.08

6210 0.06

6190 0.04

6170 0.02

5768 0.1

5701 1.0

5600 1.0

5500 1.0

Table 2.1: On the left is shown the realistic radial profile of electrical conductivity with ocean layer depth

h = 1 km. The profile for toroidal magnetic field divides the ocean in 6 layers with different conductivities,

whereas the ocean conductivity for the poloidal magnetic field is considered uniform. The space beneath the

sea floor is for toroidal and primary poloidal magnetic field divided in 17 layers with different conductivities.

The first layer of the profile is 5500 km thick and starts in the centre of the sphere. The whole mantle is here

discretized in 18 layers as has been used for the analytical solution. The discretization of the 17 different

conductivity layers differ by the finite elements approach. In the table on the right is the adapted electrical

conductivity profile used for the secondary poloidal magnetic field.





Chapter 3

Solution by the matrix propagator

method

In this chapter we solve the magnetic induction equation (1.11) with a layer propagator method

for both the toroidal and poloidal magnetic field generated by horizontal ocean flow for a given

tidal frequency. Our approach is based on Pěč et al. (1985) who developed the matrix propagator

method for computing magnetic field in a sphere that is induced by an external magnetospheric

or ionospheric currents. We rebuild and extend this approach by including a source term acting

inside a sphere. We assume that an internal source generates also the toroidal magnetic field and

additionally develop a matrix propagator for the toroidal part of the magnetic field (Dostal et al.,

2012). Recalling the assumptions made in section 1.2, we are searching the analytical solution of

the the Helmholtz equation (1.14) in Fourier frequency domain,

∇2B + k2B = −µ0σcurl(u×BE) , (3.1)

with k as a wave number, k2 = −iωµ0σ. The fundamental solution of a homogeneous Helmholtz

equation is given by

Bhom(r,Ω) =
∑
jm`

α`jmw`(z)Y
`
jm(Ω) , (3.2)

where z = kr, Y `
jm(Ω) are the vector spherical harmonics and α`jmw`(z) stands for a linear combi-

nation of the spherical Bessel functions of the 1st and 2nd kind (Abramowitz and Stegun, 1970).

The basic relations for the spherical Bessel functions and vector spherical harmonics are given

in Appendix C and D, respectively. The summation in eq. (3.2) runs over j = 1, 2, . . . ,∞,

m = −j,−j + 1, . . . , j, and ` = j − 1, j, j + 1 . The linear combination of the spherical Bessel

functions can be expressed by

α`jmw`(z) = a`jm j`(z) + b`jm n`(z) , (3.3)

where j` and n` stand for the spherical Bessel functions of 1st and 2nd kind respectively and

a`jm and b`jm are spherical harmonic coefficients to be determined. The complete solution of the

inhomogeneous Helmholtz equation (3.1) is given by the sum of a homogeneous solution Bhom,

expressed by eq. (3.2), and the particular solution Bpart, that is B = Bhom +Bpart. The particular

solution corresponding with the right hand side of the induction equation has been solved for the

toroidal and poloidal case separately in sections 2.1 and 2.2. To complete the general specifications

for the layer propagator, boundary conditions for magnetic fieldB and electric fieldE are prescribed

at spherical interfaces across which the electrical conductivity σ changes discontinuously. As they
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are different for the toroidal and poloidal case they will be specified later in this chapter. The electric

intensity E, is expressed in terms of B by Ampère’s current law in the quasi-static approximation,

E =
1

µ0σ
curlB. (3.4)

3.1 Matrix propagator for the toroidal magnetic field

The aim of this section is to solve the induction equation for the toroidal magnetic field induced by

ocean tidal flow in Fourier frequency domain for a particular frequency. We thus confine ourselves

to a toroidal magnetic source term expressed by F in eq. (2.3),

FT(r,Ω) =
∑
jm

[
(1)F jjm

(r
a

)j
+ (2)F jjm

(a
r

)j+1]
Y j
jm(Ω), (3.5)

where the label T stands for ‘toroidal’. Since the assumed conductivity structure of the Earth is

spherically symmetric and only a toroidal magnetic source is applied, the induced magnetic field is

toroidal and can be expressed by the toroidal part of eqs (2.4), (2.5) and (3.2),

BT(r,Ω) =
∑
jm

[
αjjmwj(z)−

i

ω
(1)F jjm

(r
a

)j
− i

ω
(2)F jjm

(a
r

)j+1]
Y j
jm(Ω). (3.6)

Here, the first, second and the third terms correspond to a homogeneous and two particular solu-

tions of the Helmholtz equation (3.1), respectively. The associated electric intensity, expressed by

Ampère’s current law (3.4), is a spheroidal vector field,

ES(r,Ω) =
ik

µ0σ

∑
jm

αjjm

[√
j + 1

2j + 1
wj−1(z)Y j−1

jm (Ω)−

√
j

2j + 1
wj+1(z)Y j+1

jm (Ω)

]

+
1

ωµ0σ a

∑
jm

[√
(j + 1)(2j + 1) (1)F jjm

(r
a

)j−1
Y j−1
jm (Ω)

√
j(2j + 1) (2)F jjm

(a
r

)j+2
Y j+1
jm (Ω)

]
. (3.7)

To guarantee the continuity on the interfaces between spherical layers with different electrical

conductivity σ the tangential components of magnetic and electric intensity are required (Stratton,

1941):

er ×
[
B
]+
− = 0 ,

er ×
[
E
]+
− = 0 , (3.8)

where er is the unit vector in radial direction, the symbol [f ]+− indicates the jump of the quantity f

at a discontinuity. The tangential components of magnetic induction and electric intensity, required

for expressing boundary conditions (eq. 3.8), are then

er ×BT(r,Ω) =
∑
jm

[
αjjmwj(z)−

i

ω
(1)F jjm

(r
a

)j
− i

ω
(2)F jjm

(a
r

)j+1](
er × Y j

jm(Ω)
)
, (3.9)

er ×ES(r,Ω) =iωr
∑
jm

αjjm
1

z2

d

dz

(
zwj(z)

)
Y j
jm(Ω)

+
1

k2a

∑
jm

[
(j + 1) (1)F jjm

(r
a

)j−1
− j (2)F jjm

(a
r

)j+2
]
Y j
jm(Ω). (3.10)
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3.1.1 Toroidal matrix propagator for a source-free layer

After describing the general specifications for the layer propagator we present the homogeneous

solution of the matrix propagator for the toroidal magnetic field. We divide this spherical conductor

into n homogeneous layers bounded by spheres of radii r1 < r2 < . . . < rn = a, where r1 is the

radius of the innermost sphere. Let the first m layers (m < n) approximate the solid mantle

without an electric or magnetic source, while the n −m upper layers approximate an ocean layer

with the source electric current j = σ(u×BE). Equations (3.9) and (3.10) in a source-free layer,

where (α)F jjm = 0, reduce to

er ×BT(r,Ω) =
∑
jm

y1(z)
(
er × Y j

jm(Ω)
)
,

(3.11)
er ×ES(r,Ω) = iωr

∑
jm

y2(z)Y j
jm(Ω),

where y1(z) and y2(z) are components of the 2× 1 column vector y(z), which is defined as

y(z) :=

 αjjmwj(z)

αjjm
1

z2

d

dz

(
zwj(z)

)
 . (3.12)

Note that the dependency of y(z) on indexes j and m is not explicitly denoted to abbreviate

notations. The continuity conditions (3.8) then require the continuity of y(z) at spherical interfaces

between homogeneous, source-free layers, [
y(z)

]+
− = 0. (3.13)

Recalling that αjjmwj(z) stands for a linear combination of the spherical Bessel functions of the 1st

and 2nd kind, jj(z) and nj(z), eq. (3.12) can be written in matrix form as

y(z) = K(z) c , (3.14)

where c is a 2× 1 column vector of arbitrary constants and K(z) is the 2× 2 matrix with the two

fundamental solutions of the homogeneous Helmholtz equation,

K(z) :=

 jj(z) nj(z)
1

z2

(
zjj(z)

)′ 1

z2

(
znj(z)

)′
 . (3.15)

Here, the prime indicates differentiation with respect to the variable z. Furthermore, the inverse

matrix to K(z), needed in the following step, has the form

K−1(z) = z3

 1

z2

(
znj(z)

)′
−nj(z)

− 1

z2

(
zjj(z)

)′
jj(z)

 . (3.16)

In the sth source-free layer (s = 2, . . .m) with an electrical conductivity σs and wave number ks,

and bounded by radii rs−1 and rs, the constants c can be eliminated by the relationship between

the magnetic induction and the electric intensity at the upper and lower boundaries of the layer:

y(z1) = M(z1, z2)y(z2), (3.17)

where z1 := ksrs, z2 := ksrs−1, and the layer propagator matrix M(z1, z2) can be expressed in

terms of the matrix K and its inversion K−1 as

M(z1, z2) := K(z1)K−1(z2). (3.18)
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Substituting for K and K−1 from eqs (3.15) and (3.16), we obtain

M(z1, z2) = z2

 pj + z2qj −z2
2pj

1

z2
1

(pj + z1rj + z2qj + z1z2 sj)
z2

2

z2
1

(−pj − z1rj)

 , (3.19)

where pj , qj , rj and sj are the cross-products of the spherical Bessel functions and their derivatives

published by Pěč et al. (1985) and are shown including the recurrence relations by eqs (C.7 -

C.10) in Appendix C. The inversion of matrix K and additional mathematical derivations for the

M propagator are shown in Appendix B.1.2. The solution of eq. (3.14) in the innermost sphere

(s = 1) must be finite at the origin, which implies that the constant in the spherical Bessel functions

of the 2nd kind must be identically equal to zero, that is, c = (c1, 0)T. The solution for 0 ≤ r ≤ r1

thus takes a particular form, namely

y(k1r) = c1k(k1r), (3.20)

where k(k1r) is the 2× 1 column vector created from the first column of matrix K(z) and divided

by jj(k1r1) for numerical convenience. The solution in the sth spherical layer then follows from

the upward continuation of the solution from the innermost sphere and the continuity condition of

y(z) at the interfaces at r1 . . . rm (eq. 3.13). This corresponds to the multiplication of the product

of the layer propagator matrices with the inner sphere solution taken at r = r1. In the sth layer,

(rs−1 ≤ r ≤ rs, s = 2, . . . ,m), we obtain

y(ksr) = L(ksr, k1r1)y(k1r1), (3.21)

where

L(ksr, k1r1) = M(ksr, ksrs−1)M(ks−1rs−1, ks−1rs−2) . . .M(k2r2, k2r1). (3.22)

Substituting for y(k1r1) from eq. (3.20), we have

y(ksr) = c1L(ksr, k1r1)k(k1r1), (3.23)

where

k(k1r1) =

 1
1

k2
1r

2
1

[
j + 1− χj(k1r1)

]  , (3.24)

and

χj(z) := zjj+1(z)/jj(z) . (3.25)

The function χj(z) and the corresponding recurrence relation for the function χj(z) are given in

Pěč et al. (1985) and are summarized in the Appendix C.

3.1.2 Toroidal matrix propagator for the ocean layer

We divide the ocean, the spherical layer between b ≤ r ≤ a, where a, b stands for the top and bottom

radius, respectively, in several spherical layers with different electrical conductivity in each layer.

This allows us to estimate the influence of radially-varying electrical conductivity of ocean water

on the generated magnetic field. The uppermost ocean layers, labeled by m+ 1,m+ 2, . . . , n, and

bounded by spheres of radii rm+1, rm+2, . . . , rn, with electrical conductivities σm+1, σm+2, . . . , σn,

and with the source electric current js = σs(u×BE), s = m+ 1,m+ 2, . . . , n describe the ocean-

layer properties. Note that ocean velocity u and the main magnetic field BE are not labeled by the

layer index s since both are assumed to be continuous functions of a position in the entire ocean
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layer (section 2.5). The tangential components of magnetic induction and the electric intensity

within the sth ocean layer are given by eqs (3.9) and (3.10). To express them in a shorter form,

we introduce the 2× 1 column source-term vector

ss(r) := − i
ω

 (1)F jjm

(r
a

)j
+ (2)F jjm

(a
r

)j+1

1

k2
sa

2

[
(j + 1) (1)F jjm

(r
a

)j−2
− j (2)F jjm

(a
r

)j+3
]
 , (3.26)

where rs−1 ≤ r ≤ rs, s = m + 1,m + 2, . . . , n, and the dependency of ss(r) on indexes j and m

is not explicitly denoted. Then, eqs (3.9) and (3.10) in the sth source layer can be written in an

analogous form as eq. (3.11) for a source-free layer,

er ×BT(r,Ω) =
∑
jm

v1(r)
(
er × Y j

jm(Ω)
)
,

(3.27)
er ×ES(r,Ω) = iωr

∑
jm

v2(r) Y j
jm(Ω),

where v1(r) and v2(r) are components of the 2× 1 column vector v(r) expressed as

v(r) = K(ksr)cs + ss(r). (3.28)

Here, the matrix K(z) is given by eq. (3.15), ks is the wave number for the sth ocean-layer

parameters and cs is a 2×1 column vector with arbitrary constants. These unknown constants can

be eliminated by the values of magnetic induction and the electric intensity taken at the bottom

(r = rs−1) of the sth layer:

v(rs−1) = K(ksrs−1)cs + ss(rs−1), (3.29)

which yields

cs = K−1(ksrs−1)[v(rs−1)− ss(rs−1)]. (3.30)

The solution in the sth ocean layer for rs−1 ≤ r ≤ rs is then

v(r) = M(ksr, ksrs−1)[v(rs−1)− ss(rs−1)] + ss(r), (3.31)

where the matrix M is provided by eq. (3.19). The continuity conditions (eqs 3.8) require the

continuity of v(r) at spherical interfaces between homogeneous ocean source layers,[
v(r)

]+
− = 0. (3.32)

To make use of this condition, let us consider the solution in the two innermost ocean layers, labeled

by indexes s = m+ 1 and s = m+ 2, taken at radii rm+1 and rm+1 ≤ r ≤ rm+2, respectively,

v(rm+1) = M(km+1rm+1, km+1rm)[v(rm)− sm+1(rm)] + sm+1(rm+1),

v(r) = M(km+2r, km+2rm+1)[v(rm+1)− sm+2(rm+1)] + sm+2(r). (3.33)

By the continuity condition (eq. 3.32) considered at the interface r = rm+1, the last two equations

can be combined such that v(rm+1) is eliminated,

v(r) = L(km+2r, km+1rm)[v(rm)− sm+1(rm)]

+L(km+2r, km+2rm+1)[sm+1(rm+1)− sm+2(rm+1)] + sm+2(r), (3.34)

where matrix L(km+2r, km+1rm) is given by eq. (3.22) and L(km+2r, km+2rm+1) ≡
M(km+2r, km+2rm+1). The procedure continues successively. The solution in the sth ocean layer,
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s = m + 3, . . . , n, then follows from the upward continuation of the solution (eq. 3.34) in the

(m+ 2)th ocean layer and the continuity condition (eq. 3.32) at the interface r = rm+2, . . . , rn. In

the sth layer, that is for rs−1 ≤ r ≤ rs, we obtain

v(r) = L(ksr, km+1rm)[v(rm)− sm+1(rm)]

+L(ksr, km+2rm+1)[sm+1(rm+1)− sm+2(rm+1)]

+ . . . (3.35)

+L(ksr, ksrs−1)[ss−1(rs−1)− ss(rs−1)] + ss(r).

The continuity conditions (3.8) require the continuity of the tangential components of the magnetic

induction and the electrical intensity at the ocean-bottom–solid mantle interface,

y(kmrm) = v(rm). (3.36)

Substituting for y(kmrm) from eq. (3.23) and then entering this result into eq. (3.35), we obtain

v(r) = L(ksr, km+1rm)[c1L(kmrm, k1r1)a(k1r1)− sm+1(rm)]

+L(ksr, km+2rm+1)[sm+1(rm+1)− sm+2(rm+1)]

+ . . . (3.37)

+L(ksr, ksrs−1)[ss−1(rs−1)− ss(rs−1)] + ss(r) .

Finally, the toroidal magnetic field at the Earth’s surface must vanish, that is v1(rn) = 0, which

gives the equation for unknown constant c1,

c1 =
1[

L(knrn, k1r1)z(k1r1)
]
1

[
L(knrn, km+1rm)sm+1(rm)

−L(knrn, km+2rm+1)[sm+1(rm+1)− sm+2(rm+1)]

− . . . (3.38)

−L(knrn, knrn−1)[sn−1(rn−1)− sn(rn−1)]− sn(rn)
]

1
,

where
[
k
]
1

denotes the first component of vector k. In summary, the solution y(ksr) in the sth

source-free layer, rs−1 ≤ r ≤ rs, s = 2, . . . ,m, is expressed by eq. (3.23) with the constant c1 given

by eq. (3.38). The solution v(r) in the sth ocean layer, rs−1 ≤ r ≤ rs, s = m + 1, . . . , n, is given

by eq. (3.35) with v(rm) given by eq. (3.36).

3.2 Matrix propagator for the poloidal magnetic field

3.2.1 Poloidal matrix propagator for a source-free layer

To satisfy the divergence-free condition for the poloidal magnetic field, BP = 0, the substitution

BP = curlAT is used and the derivation for the poloidal magnetic field is carried out in toroidal

magnetic potential AT. The derivation for the poloidal propagator method is analogous to that of

magnetic field presented in section 3.1. First, we recall the induction equation (1.24),

curl curlAT + µ0σ
∂

∂t
AT = µ0σ [u×B0]T . (3.39)
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Next, we recall the relations for the source term (eq. 2.8) and the particular solution (eq. 2.9) for

the toroidal magnetic potential,

GT(r,Ω) =
∑
jm

Gjjm(a)
(r
a

)j
Y j
jm(Ω) , (3.40)

AT(r,Ω) =
∑
jm

[
αjjm wj(z)−

i

ω
Gjjm(a)

(r
a

)j]
Y j
jm(Ω) . (3.41)

The boundary conditions between the spherical layers with different electrical conductivity require

the continuity of the radial and tangential components of the magnetic field (Stratton, 1941):

er ·
[
B
]+
− = 0 ,

er ×
[
B
]+
− = 0 , (3.42)

where er is the unit vector in radial direction and the symbol [f ]+− indicates the jump of the

quantity f at a discontinuity. To express eq. (3.42) explicitly, the poloidal magnetic intensity BP

is represented by (D.33), the homogeneous solution of the induction equation is then

Bhmg
P = curlAhmg

T

= i
∑
jm

αjjm

[√
j

2j + 1

(
d

dr
− j

r

)
wj(r) Y

j+1
jm (Ω)

+

√
j + 1

2j + 1

(
d

dr
+
j + 1

r

)
wj(r) Y

j−1
jm (Ω)

]
. (3.43)

The radial and tangential components of BP in a source-free layer, where Gjjm = 0, reads as (see

Appendix B by eqs (B.18) and (B.19) )

er ·BP(r,Ω) =
i

r

∑
jm

αjjm
√
j(j + 1) wj(kr) Yjm(Ω) , (3.44)

er ×BP(r,Ω) = −1

r

∑
jm

αjjm
d

dr
[rwj(kr)] Y

j
jm(Ω) . (3.45)

Introducing a 2× 1 column vector y(z)

y(z) :=

 αjjm wj(z)

αjjm
d

dz

(
z wj(z)

)
 , (3.46)

we can describe equations (3.44) and (3.45) in a source-free layer in the form

er ·BP(r,Ω) =
∑
jm

y1(z) YjmΩ) ,

er ×BP(r,Ω) =
∑
jm

y2(z) Y j
jm(Ω) , (3.47)

where y1(z) and y2(z) are components of vector y(z). Recalling that αjjmwj(z) stands for a linear

combination of the spherical Bessel functions of the 1st and 2nd kind, jj(z) and nj(z), eq. (3.46)

can be written in matrix form as

y(z) = K(z) c , (3.48)
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where c is a 2×1 column vector of arbitrary constants and K(z) is the 2×2 matrix whose columns

are the two fundamental solutions of the homogeneous Helmholtz equation,

K(z) :=

 jj(z) nj(z)

[z jj(z)]
′ [z nj(z)]

′

 . (3.49)

Here, the prime indicates differentiation with respect to the variable z. Furthermore, the inverse

matrix to K(z), needed for building the matrix propagator, has the form

K−1(z) = z

 [z n′j(z) + nj(z)] −nj(z)

−[z j′j(z) + jj(z)] jj(z)

 . (3.50)

The derivation of the inverse matrix K−1(z) is shown in Appendix B.1.2. In the sth source-free

layer (s = 2, . . .m) with an electrical conductivity σs and wave number ks, and bounded by radii

rs−1 and rs, the constants c from eq. (3.48) can be eliminated by the relationship between the two

components of the magnetic induct at the upper and lower boundaries of the layer:

y(z1) = M(z1, z2)y(z2), (3.51)

where z1 := ksrs, z2 := ksrs−1, and the layer propagator matrix M(z1, z2) can be expressed in

terms of the matrix K and its inversion K−1 as

M(z1, z2) := K(z1)K−1(z2). (3.52)

Substituting for K and K−1 from eqs (3.49) and (3.50), the propagator has the form

M(z1, z2) = z2

(
pj + z2qj −pj

pj + z1rj + z2qj + z1z2 sj −pj − z1rj

)
, (3.53)

where pj , qj , rj and sj are the cross-products of the spherical Bessel functions and their derivatives,

see Appendix C. The derivation of relation (3.53) is shown in Appendix B.2.3. Magnetic field in

the innermost sphere (s = 1) must be finite at the origin, which implies that the constant at the

spherical Bessel functions of the 2nd kind must be identically equal to zero, that is, c = (c1, 0)T.

The solution for 0 ≤ r ≤ r1 thus takes a particular form, namely

y(k1r) = c1k(k1r), (3.54)

where k(k1r) is the 2× 1 column vector created from the first column of matrix K(z) and divided

by jj(k1r1) for numerical convenience. The solution in the sth spherical layer then follows from the

upward continuation of the solution from the innermost sphere and the continuity condition (3.13)

of y(z) at the interfaces at r1 . . . rm. This corresponds to the multiplication of the product of

the layer propagator matrices with the inner sphere solution taken at r = r1. In the sth layer,

(rs−1 ≤ r ≤ rs, s = 2, . . . ,m), we obtain

y(ksr) = L(ksr, k1r1)y(k1r1), (3.55)

where

L(ksr, k1r1) = M(ksr, ksrs−1)M(ks−1rs−1, ks−1rs−2) . . .M(k2r2, k2r1). (3.56)

Substituting for y(k1r1) from eq. (3.54), we have

y(ksr) = c1L(ksr, k1r1)k(k1r1), (3.57)
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where

k(k1r1) =

(
1

j + 1− χj(k1r1)

)
. (3.58)

The function χj(z) is defined by eq. (3.25). The corresponding recurrence relation for the function

χj(z) is included in the Appendix C.

3.2.2 Poloidal matrix propagator in the atmosphere

The ocean-generated poloidal magnetic field propagates to the atmosphere. For r > a, it is de-

scribed by the internal Gauss coefficients bG
(i)
jm (likewise the background magnetic field) by equa-

tion (2.15)

B0(r,Ω) = −
∞∑
j=1

j∑
m=−j

√
(j + 1)(2j + 1)

(a
r

)j+2
bG

(i)
jm Y

j+1
jm (Ω) . (3.59)

The radial and tangential components of B0 are given by relations (D.37) and (D.40)

er ·B0(r,Ω) =
∑
jm

(j + 1)
(a
r

)j+2
bG

(i)
jm Yjm(Ω) , (3.60)

er ×B0(r,Ω) = −i
∑
jm

√
j(j + 1)

(a
r

)j+2
bG

(i)
jm Y

j
jm(Ω) . (3.61)

Following, the solution for the radial and tangential components of the magnetic field in the atmo-

sphere can be described by

y(r) = C0
j
bG

(i)
jm

(r
a

)j+2
(3.62)

with

C0
j =

− i a
√

(j + 1)

j

i a
√
j(j + 1)

 (3.63)

that is derived in Appendix B in equation system (B.50).

3.2.3 Poloidal matrix propagator for the ocean layer

For poloidal magnetic field modelling, we assume that the whole ocean depth is represented by one

spherical layer assigned by label ’m’ with the vertical range rm−1 ≤ r ≤ rm, where rm = a and

rm−1 = b. We recall that the induced magnetic field in ocean layer, Bm, is the superposition of

homogeneous, Bm
hmg, and particular, Bm

part, solutions,

Bm = Bm
hmg +Bm

part . (3.64)

To express Bm
part in a shorter form, we use the 2× 1 column source-term vector

s(r) =

(
1

j + 1

)
−i
ω
Gjjm(a)

(r
a

)j
(3.65)
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that is derivated in Appendix B in equations system (B.50). Now, the solution for the magnetic

field components in the ocean layer can be expressed by

er ·BP(r,Ω) =
∑
jm

v1(r) Yjm(Ω) ,

er ×BP(r,Ω) =
∑
jm

v2(r) Y j
jm(Ω) , (3.66)

where v1(r) and v2(r) are components of the 2× 1 column vector v(r) in the form

v(r) = K(z)c+ s(r). (3.67)

Here, the matrix K(z), where z = kr, is given by eq. (3.49), k is the wave number for the ocean-

layer parameters and c is a 2× 1 column vector with arbitrary constants. The unknown constants

c can be eliminated by the values of magnetic intensity – radial and tangential part respectively –

taken at the bottom (r = rm−1) of the layer m. Equation (3.67) at the bottom of the ocean layer

(r = rm−1) has the form

v(rm−1) = K(kmrm−1)cm + s(rm−1) . (3.68)

Assuming the solution at ocean bottom is known then for arbitrary radius r in the ocean layer we

get

v(r) = Mm(r, rm−1)ym(rm−1) + s(r) , (3.69)

where we substituted for c from equation (3.48), the matrix Mm is provided by eq. (3.53) and

the wave number for the ocean layers is km. The continuity condition at the ocean bottom can be

written in the form

ym−1(rm−1) = ym(rm−1) + s(rm−1) . (3.70)

Solving eq. (3.70) for ym(rm−1) and substituting the result into the eq. (3.69), the solution inside

the ocean layer rm−1 ≤ r ≤ rm is then

v(r) = Mm(r, rm−1)[ym−1(rm−1)− s(rm−1)] + s(r) . (3.71)

To guarantee the continuity at the ocean-atmosphere interface v(rm) = ym+1(rm), we evaluate the

solution (eq. 3.71) at the upper boundary of the ocean layer r = rm,

v(rm) = Mm(rm, rm−1)
[
ym−1(rm−1)− s(rm−1)

]
+ s(rm) . (3.72)

In addition, the boundary condition at r = rm from the atmosphere side is given by eq. (3.62). The

whole system can be then described by

Mm(rm, rm−1)L(km−1rm−1, k1r1)k(k1r1) c1 −C0
j
bG

(i)
jm = Mm(rm, rm−1) s(rm−1)− s(rm) ,

(3.73)

where there are two unknowns, the coefficients c1 and bG
(i)
jm. Finally, we rewrite eq. (3.73) in matrix

form with two equations Q1 W1

Q2 W2

 c1

bG
(i)
jm

 =

P1

P2

 . (3.74)

The indexes ()1 and ()2 stand for the first and second components, respectively, and

Q = Mm(rm, rm−1) L(km−1rm−1, k1r1) k(k1r1) ,

W = −C0
j ,

P = Mm(rm, rm−1) s(rm−1)− s(rm) . (3.75)
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3.3 Secondary poloidal magnetic field

For a model consisting of spherically symmetric layers with homogeneous conductivities used until

now the computation of the generated magnetic field can be decomposed into separate calculations

of toroidal and poloidal modes. By considering lateral variations of electric conductivity the two

magnetic field components cannot be computed separately since they are coupled. A strong lateral

electrical conductivity contrast at the ocean-continent boundary causes the so called coastal effect.

The magnetic field generated due to this lateral conductivity contrast is referred as to the secondary

poloidal component. As a matter of fact, the present method does not allow us a full exploitation

of the mode conversion due to the coupling of the primary toroidal magnetic field with lateral

heterogeneities in electrical conductivity. The following approach thus provides only a first estimate

of the magnitude and spatial pattern of the secondary poloidal magnetic field. To make this

estimate, we consider a one-layer ocean model and approximate the lateral distribution of electrical

conductivity in the uppermost (ocean-continent) layer by a conductivity contrast between oceans

(σo = 3.5 S/m) and continents (σc = 10−3 S/m). Splitting the resistivity 1/σ into radially and

laterally varying parts, 1/σ0 and 1/σ1, respectively,

1

σ
=

1

σ0(r)
+

1

σ1(Ω)
, (3.76)

and considering the poloidal-toroidal decomposition of the magnetic induction, B = BP +BT, the

magnetic induction equation (1.11) reads as

1

µ0
curl

[ 1

σ0
curl(BP +BT)

]
+ curl

[ 1

σ1
(jS + jT)

]
+
∂(BP +BT)

∂t
= curl(u×BE), (3.77)

where jS,T = curlBT,P/µ0 are the spheroidal and toroidal components of electrical current density,

respectively. Decomposing the product of electrical current density with the lateral conductivity

variations as
1

σ1(Ω)
(jS + jT) = ES + ET, (3.78)

allows the induction equation to be written for the spheroidal and toroidal parts separately,

1

µ0
curl

( 1

σ0
curlBP

)
+
∂BP

∂t
=
[
curl(u×BE)

]
T
− curlET. (3.79)

1

µ0
curl

( 1

σ0
curlBT

)
+
∂BT

∂t
=
[
curl(u×BE)

]
S
− curlES. (3.80)

However, both equations are mutually coupled via terms ES,T since each of them is generated by

both the spheroidal and toroidal magnetic field components. F. Vivier (personal communication,

2011) has attempted to solve the coupled system of equations by an iterative method, but he

encountered numerical instabilities in an iterative solution due to the coupling terms ES,T. Here,

we will not attempt to find a stable iterative solution of the coupled system of equations (3.79)

and (3.80), but will confine ourselves to computing the first iteration of the magnetic induction

equation (3.79) for the secondary spheroidal magnetic fieldBP. After solving eq. (3.80) with ES = 0

for the primary toroidal magnetic field BT by applying the matrix-propagator method developed

in section 3.1, the term ET is computed by the spherical harmonic analysis of the product of the

electric current density j and the lateral conductivity variations σ1(Ω), as indicated by eq. (3.78),

and substituted into magnetic induction equation (3.79) for the secondary spheroidal magnetic

field BP. This equation, solved together with the free-divergence constraint on BP by the matrix-

propagator method described in section 3.2, yields the secondary poloidal magnetic field.
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3.4 Numerical results of the matrix-propagator method

With the presented analytical approach we estimate a possible range of magnitudes and global

distribution of the induced toroidal, poloidal and the secondary poloidal magnetic field. We also

study the sensitivity of the generated magnetic field with respect to variations of different parame-

ters. We are interested in answering questions like the following. How deep does the ocean induced

magnetic field penetrate for realistic values for ocean flow and an electrical conductivity profile

inside and beneath the ocean layer? How does the conductivity profile influences the magnitude of

the induced magnetic field? We study the influence of large velocities of the strong M2 tidal flow

in shallow-coastal regions on the generated magnetic field, but also the whole oceanic transport

given by the M2 tide. In addition, the classical approach enables an estimate of the secondary

poloidal ocean-induced magnetic field generated by a conductivity contrast between the ocean and

continent. In case of the toroidal magnetic field, the model also allows us to study the effect of

the decay of oceanic flow with depth on the generated magnetic field. Furthermore, the analytical

approach of the induction equation delivers an independent solution that can be used as a reference

the for validation of numerical approaches presented in the following chapters. All calculations are

carried out for spherical harmonic series with cut-off at degree jmax = 48 with the exception of

the secondary poloidal magnetic field where the cut-off degree is set by jmax = 43. As we are con-

strained by a spherically symmetric model, we note that the model with the ocean layer of depth

of h = 1 km and averaged ocean velocity field overestimates the magnitudes of generated magnetic

signal in the regions with bathymetry smaller than h = 1 km and underestimates the generated

magnetic signal in deeper ocean.

3.4.1 Toroidal magnetic field

We start the description with the behaviour of the toroidal magnetic field with depth. The profile

of complex toroidal magnetic signals for three different uniform electrical conductivity profiles σ

beneath the ocean layer (σm = 1 Sm−1, dashed lines; σm = 0.3 Sm−1, solid lines; σm = 0.1 Sm−1,

dotted lines) is plotted in Figure 3.1. The propagation of the real (red) and imaginary (blue) part

of the ϑ (top) and ϕ (bottom) components of the induced toroidal magnetic field by over the depth

constant tidal flow between the radius r = 5500 km and sea surface is presented in the left-hands

panels and the detail for the ocean layer in the right-hand panels. The average velocity field of M2

tide (subsec. 2.6.1) is used for the thickness of the ocean layer of h = 1 km. The radial profile is

taken at the location given by the yellow crosses in Figure 3.2.

The toroidal magnetic field vanishes at the atmosphere. Figure 3.1 clearly shows the decay of

the magnetic signal towards the sea surface where it vanishes. The source term (eq. 2.1), acting

constantly through the radial profile of the ocean layer generates the toroidal magnetic field that

increases with the depth. The interface conditions (eqs 3.9 and 3.10) guarantee the continuity of

the induced magnetic signal BT between the spherical layers. In the electrically conductive space

beneath the ocean layer, the magnetic signal is decaying with the depth in dependency on the

magnitude of electrical conductivity. A larger conductivity of the medium allows easier discharge

of the induced electric currents and the magnetic field diminishes faster with depth. A more

resistive medium in contrary hinder the discharge of electric currents and the generated magnetic

field reaches deeper parts of the sphere. The uniform conductivity profiles cause a smooth decay

of the toroidal magnetic field with depth that is beneath the radius r = 5500 km in all plotted

examples of Fig. 3.1 already very tiny. The maximum of the magnetic signal is achieved at the

bottom of the ocean layer and reaches the magnitude of 0.006 nT at the chosen location. This

example provides us with a first estimate for the penetration depth of the induced magnetic signal
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that can be used as a starting radius for numerical calculation with matrix-propagator method.

Beside the estimate of the magnetic signal depth, the behaviour of the magnetic field decay and

its changes with respect to changes of the homogeneous conductivity profile provide us with a

possibility for evaluation our numerical model. Model evaluation for the magnetic signal decay by

non-homogeneous (realistic) conductivity profile is not possible. Additionally, as is shown in detail

in the right-hand panel, changes in the conductivity profiles beneath the ocean layer influence also

the behaviour of the magnetic signal in the ocean (marked by dark colour). But as the differences

between the conductivity profiles in this numerical example are not large, the magnitudes of the

magnetic fields in the ocean do not differ substantially.

The influence of the electrical conductivity parameter beneath the ocean on the magnitude

of the toroidal magnetic field in the ocean reveals by comparing the presented numerical example

above with the realistic mantle conductivity profile used in Figure 3.4. In this case we apply

the same model setting with exception of the electrical conductivity profile beneath the ocean

layer. The solid lines represent the toroidal magnetic field obtained by using realistic electrical

conductivity profile (Fig. 2.5 and Table 2.1). A uniform conductivity profile beneath the ocean

(σm = 1 Sm−1, dashed lines) will serve for the comparison of the magnetic signals for different

electrical conductivities σm. In realistic case we separate the conductivity profile in 17 layers as

shown in Fig. 2.5 with the minimum value for the conductivity of σ = 10−3 Sm−1 at the radius

r = 6300 km.

A highly resistive lithosphere and crust leads to a strong decay of the magnetic signal over

solid Earth and reduce the magnitude over ocean layer to a half of that for an uniform conductivity

profile beneath the ocean. Another observation we can make is that, for realistic conductivity

profile, which is effectively more resistive beneath the sedimentary layer, the toroidal magnetic

field has the largest amplitudes above the ocean bottom. A general tendency is that the more

resistive the underlying mantle, the more the maximum of the toroidal magnetic field is shifted

towards the centre of the ocean layer. In the limiting case where we would assume that the medium

beneath the ocean layer is an insulator and that the conductivity of the ocean would be uniform,

the toroidal magnetic field would reach the maximum in the middle of the ocean layer. Until

now the conductivity profile of the ocean layer σo has been represented by realistic values given

in table 2.1. To study the sensitivity of radially varying electrical conductivity of the ocean water

on the generated toroidal magnetic field, we compare the above result with that for a uniform sea

water conductivity, σo = 3.5 Sm−1 (dotted lines on the right of Figure 3.4). The impact of uniform

conductivity profile through the ocean layer column in comparison to the realistic one consists of a

slight reduction in magnitudes of the magnetic signal, but no significant changes in the behaviour

of the propagation of the magnetic field through the ocean layer are found. The uncertainties of

the electrical conductivity of the solid Earth are in comparison to them of the ocean water larger.

Therefore, the conductivity profile of the ocean is changed only slightly and results in comparison

to the conductivity changes of the solid Earth only in a minor differences of the generated magnetic

field.

The spatial distribution of the ϑ and ϕ components of the induced toroidal magnetic field is

shown in Figure 3.2 where the yellow crosses mark the location of the radial profile in Figure 3.4.

The magnetic field in Figure 3.2 is plotted at the bottom of the ocean layer. The spatial patterns

of the induced magnetic field are dominated by small-scale features (high spectral frequencies)

associated with the spatial distribution of high ocean velocities in shallow regions along the coasts,

see Figure 2.1. The large-scale features (low spectral frequencies) generated over large deep oceanic

basins with relatively slow ocean velocities are three times smaller in magnitude than small-scale

features in shallow waters. In this first numerical experiment, we consider the averaged tidal flow

velocity field in a layer with a constant depth of h = 1 km. The magnetic field in shallower regions
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than 1 km is overestimated while over deeper regions is underestimated. The highest amplitudes

of the toroidal magnetic field in some coastal regions reach values up to 4× 10−3 nT, as example,

in East China sea, South China sea and Philippine sea (Figure 3.3).

In our second numerical experiment, we consider that the ocean flow is not contant over the

depth, but decays in magnitude (not the direction) of the ocean velocities with ocean depth. The

model in equation (2.13) of ocean velocities is intentionally designed to enable a linear change of

ocean velocities with depth. We will consider the maximum linear decrease of ocean flow such that

the velocities are set to equal to the input OMCT velocities at the top of the ocean layer and vanish

at the ocean bottom. Figure 3.5 shows the ϑ and ϕ components of the induced toroidal magnetic

field at the ocean bottom generated by this ocean flow. A comparison with the case of the constant

oceanic flow over the depth (Figure 3.3) shows that the toroidal magnetic field induced by the

horizontal flow with linear depth decay is three orders of magnitude larger than the field generated

by the radially constant flow and reaches amplitudes at the ocean bottom up to 2 nT (Figure 3.6).

A large difference in generated magnetic field between the constant and decaying ocean flows with

the depth shows on the importance of this parameter on the induced toroidal magnetic field. This

effect will be important for studying the toroidal magnetic field induced by a general (thermohaline

and wind-driven) circulation. Including the linear flow decay with depth changes also the spatial

distribution of the generated toroidal magnetic field. While by the constant average horizontal

velocities over the ocean depth the toroidal magnetic field reflects the small-scale patterns of high

ocean velocities along the coast, in the case with depth decaying flow, where the derivative term has

dominant effect over the whole ocean, the toroidal magnetic signal over the large basins has larger

amplitudes in comparison to the regions with high flow velocities. The spatial patterns become

large-scaled, whereas the small-scale features in coastal regions are less dominant, as for instance,

in areas along the coasts of Africa and India the induced magnetic field vanishes at all. Also,

the magnetic field has now significant maxima in southern Atlantic basin, south of Madagascar

and around New Zealand which are missing by the toroidal magnetic field generated by constant

horizontal flow over the depth.

To estimate the sensitivity of the induced magnetic field to the conductivity profile beneath

the ocean layer for the depth decaying horizontal flow, we set σm = 1 Sm−1 and obtain amplitudes

up to 3 nT (Figures 3.7 and 3.8). This model setup generates the highest values of the toroidal

magnetic field when the average ocean velocities are scaled by ocean layer of thickness of h = 1

km. Figure 3.9 shows the radial profile of the toroidal magnetic field induced by lineary decaying

horizontal ocean flow taken at the location marked by yellow crosses in Figures 3.5 and 3.7. The

behaviour and decay of the toroidal magnetic field for the uniform conductivity profile beneath the

ocean layer, σm = 1 Sm−1, (dashed lines) is comparable with the case of constant flow over the

depth. Notable is the decrease of the magnetic signal given by the realistic conductivity profile

(highly resistive lithosphere and crust). The decay of the toroidal magnetic field caused by highly

resistive layers (relatively to σm = 1 Sm−1) is stronger for case with constant flow over the depth,

whereas for depth decaying flow the magnetic signal penetrates deeper into the sphere. That can

be explained by large-scale magnetic field patterns for depth decaying flow as the long spatial

wavelengths reaches deeper parts of the Earth. Finally, the dotted lines in the right-hand panel

show the differences between the signal for a uniform ocean layer conductivity profile σo = 3.5 Sm−1

and the realistic one (full lines). The behaviour of the magnetic field in respect to this parameter

is comparable with the case of constant horizontal flow over the depth.

In the third numerical experiment we study the influence of the whole oceanic transport on

the generated magnetic field. We use ocean tidal flow integrated over the ocean depth and apply

it inside an ocean layer with the average depth of h = 4 km. Figure 3.10 shows the real (left) and

imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the induced toroidal magnetic
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field at the ocean bottom for realistic electrical conductivity profile. The strong magnetic signal

reflects the areas with a large water transport. The large oceanic basins with a deep bathymetry

dominate in the generated toroidal magnetic field, even if the flow velocities are smaller than those

in coastal areas. The strong small-scale signals, like in the real part of the ϑ component along the

coast of India, that can not be distinguished in the velocity fields (Fig. 2.2), are probably caused

by the Indian subcontinent that divides the area in two separate basins: Arabian Sea and Bay of

Bengal, where each of them generate a separate dipole field for the ϑ component. The amplitudes of

the toroidal magnetic field generated by the whole transport of tidal flow reach values up to 7-8 10−3

nT (Figure 3.11). Noticeable are the strong amplitudes of the ϕ component in the equatorial area,

where the dominant radial component of the background magnetic field BE is weak (Figure 2.4).

This phenomenon can be explained by the influence of ϑ component of the background magnetic

field which has its maximum in equatorial areas. The radial profile in Figure 3.12 shows the decay of

the signal with depth for the realistic conductivity profile (solid lines) and the uniform conductivity

profile beneath the ocean layer σm = 1 Sm−1 (dashed lines). As the magnetic field generated by

oceanic transport is dominated by long spatial wavelengths over deep ocean basins, the magnetic

signal penetrate deeper into the Earth as is the case for the numerical experiment with average

over the depth constant velocity field shown in Figure 3.4 and have similar behaviour to the case

with depth decaying flow from Figure 3.9. It should be mentioned that by the model for ocean

layer of the depth of h = 4 km, the conductivity profile presented in Table 2.1 has been shifted by

3 km into the depth.

3.4.2 Primary poloidal magnetic field

Now we turn our attention to the primary poloidal magnetic field generated by the magnetic source

given by the equation (2.6). By the matrix-propagator method we face numerical limitations for the

poloidal case given by numerical instabilities that do not allow for a numerical solution by the same

parametrization as for the toroidal magnetic field shown above. The numerical difficulties of the

matrix propagator are due to a high lateral resolution (spherical harmonic parametrization), low

electrical conductivity and by discretization of the radial profile in thin layers. Such parametrization

leads to large numerical values by tiny numerical differences between the bottom and top of the

layer during the propagation which causes numerical instabilities.

Therefore, to be able to maintain the calculus for the decided cut-off degree of spherical har-

monics jmax = 48 in this chapter, we limit our solution only to two numerical examples with a

uniform conductivity profile beneath the ocean layer with σm = 1 Sm−1 and for the ocean layer

σo = 3.5 Sm−1. These results will be used for the numerical comparison and validation with the

results of the spectral finite-element approach in chapter 4. The chosen parametrization allows an

easier comparison of the two applied mathematical methods, classical and spectral finite-element

approach (chapter 4), for both components of the magnetic fields, the toroidal and poloidal part.

Namely, as the matrix-propagator method requires sufficiently thick layers to get numerically stable

solution, the spectral finite-element approach requires preferably thin finite-element layers because

of the linear approximation between the nodes. Therefore, the requirements on the parametrization

of the radial profile are different for both techniques. Using a uniform conductivity profile provides

us a simple possibility of the comparison between the two mathematical approaches, independently

of the radial profile discretization. As the poloidal magnetic field does not vanish at sea surface

as the toroidal magnetic field it is convenient to plot its spatial distribution at the sea surface or

above the sea surface where it can be measured.

The spatial distribution for two numerical examples obtained by the matrix propagator method

are shown. Figure 3.14 represent the real (left) and imaginary (right) parts of the r (top), ϑ (middle)
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and ϕ (bottom) components of the induced poloidal magnetic field for the ocean layer of the depth

of h = 1 km with average velocities and in Figure 3.13 for the ocean layer of the depth of h = 4 km

with the whole oceanic transport. In both cases we use over the depth constant horizontal ocean

flow and use the dipole background magnetic field (BE) only. The corresponding radial profiles

are included in chapter 4 in Figures 4.19 and 4.13 where the primary poloidal magnetic field will

be discussed in more detail.

3.4.3 Secondary poloidal magnetic field

The analytical approach allows additionally making an estimate of the magnitude and the global

distribution of the secondary ocean-induced poloidal magnetic field generated by the toroidal mag-

netic field by the strong conductivity contrast between the ocean and continent described in sec-

tion 3.3. As the input for modelling the secondary poloidal magnetic field, we apply the electric

field calculated in the first and third numerical examples for generating the toroidal magnetic field.

Therefore, the input is the toroidal magnetic field induced by the average ocean velocities with the

ocean layer of the depth of h = 1 km (Figure 3.2) and in second case the whole oceanic transport

with the ocean layer of the depth of h = 4 km (Figure 3.10) and, therefore, originated by over the

depth constant horizontal ocean flow of the M2 tide presented in Figures 2.1 and 2.2, respectively.

The conductivity of the continents is set by σc = 10−3 Sm−1. Similarly as for the primary

poloidal magnetic field, we use the dipole background magnetic field only. To overcome the nu-

merical difficulties of the analytical solution for the poloidal magnetic field described above and

estimate the secondary poloidal magnetic field realistically, we reduce the cut-off degree of spherical

harmonic series to jmax = 43 and apply an adapted conductivity profile (see Table 2.1), where the

resistive part of the conductivity profile decreases to value of σ = 10−2 Sm−1 instead of σ = 10−3

Sm−1.

In the first case, for the average velocities and h = 1 km, we can see in Figure 3.15 that

the magnetic signal has small-scale features and is concentrated along the ocean shorelines. It

reflects the small-scale global patterns of the toroidal magnetic field in Figure 3.2 that are caused

by high ocean velocities in shallow regions along the coast. This is the case, for example, along the

east coast of North America, Argentine Sea, along the Indian subcontinent and the South China

Sea. The high velocities along the coast together with the strong conductivity contrast at the

same location essentially benefit to the secondary poloidal magnetic field. By this model setup,

the amplitudes (Figure 3.16) reach values up to 4 nT for ϑ and ϕ component and 5 nT for the

r component. The strong jump in conductivity along the coast causes the Gibbs phenomenon in

spherical harmonic parametrization, which has been mitigated by weighing the spherical harmonic

series by the Lanczos coefficients, similar as for the input velocity field in subsection 2.6.1. Still, as

the magnetic signal is small-scaled, a remaining noise is apparent.

In our second example of the oceanic transport by ocean layer with the depth of h = 4 km

(Figure 3.17), the induced secondary poloidal magnetic field has different spatial patterns. The

magnetic signal does not only reflect the locations of high ocean velocities in coastal regions, but

it appears along the coastlines more generally. The radial component especially distinguishes the

shorelines, for example, the African continent. Comparing the secondary magnetic field with its

source – the toroidal magnetic field in Figure 3.10, we find the explanation: The toroidal magnetic

field generated predominantly by ocean transport in deep ocean areas consists of large-scale pat-

terns, i.e., a low frequency signal that also reaches the coastlines. The amplitudes (Figure 3.18)

achieve approximately the same values (4-5 nT) as the secondary poloidal magnetic field induced

by high velocities along the coast. In this case, the input toroidal magnetic field is large-scale and

the Gibbs phenomenon can be more efficiently reduced. This can be deduced by the comparison
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Figure 3.1: Real (red) and imaginary (blue) parts of the ϑ (top) and ϕ (bottom) components of the toroidal

magnetic field (in nT) induced by over the depth constant tidal flow as functions of radius, beneath (left)

and, in detail, inside the ocean layer (right), for three different uniform conductivity profiles beneath the

ocean (σ = 1 Sm−1 - dashed lines; σ = 0.3 Sm−1 - solid lines; σ = 0.1 Sm−1 - dotted lines). The conductivity

in ocean layer is σo = 3.5 Sm−1. The radial profiles are taken at the location given by the yellow crosses in

Figure 3.2.

between the Figures 3.16 and 3.18. The comparison between the two numerical experiments for

the secondary poloidal magnetic field shows the contribution to the induced magnetic signal of

both, the high velocities near the coast and the whole oceanic transport. In addition, our estimates

show that the secondary poloidal magnetic field reaches approximately the same magnitudes as

the primary poloidal magnetic field, but with different spatial distribution. This will be elaborated

further in the next chapter where the primary poloidal magnetic field is studied in more detail.
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Figure 3.2: Real (left) and imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the toroidal

magnetic field (in 10−3 nT) at the ocean bottom induced by over the depth constant tidal flow with the

ocean layer of the depth of h = 1 km and the realistic electrical conductivity profile beneath and inside the

ocean layer. The yellow crosses at 23◦ N, 120◦ E mark the location where the radial profiles of the toroidal

magnetic field are plotted (see Fig. 3.4).
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Figure 3.3: Amplitude of the ϑ (left) and ϕ (right) components of the toroidal magnetic field (in 10−3 nT)

at the ocean bottom according to the magnetic field induced by condition in Fig. 3.2.
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Figure 3.4: Real (red) and imaginary (blue) parts of the ϑ (top) and ϕ (bottom) components of the toroidal

magnetic field (in nT) induced by over the depth constant tidal flow as functions of radius, beneath the ocean

layer (left) and inside the ocean layer (right) for electrical conductivity profile with realistic (solid lines) and

uniform profile beneath the ocean (σm = 1 Sm−1, dashed lines) and realistic conductivity profile inside the

ocean. The dotted lines in the detail for ocean layer represent the case for realistic solid Earth and uniform

ocean conductivity (σo = 3.5 Sm−1). The radial profiles are taken at the location given by the yellow crosses

in Figure 3.2.
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Figure 3.5: Real (left) and imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the

toroidal magnetic field (in nT) at the ocean bottom induced by depth decaying horizontal ocean flow with

the ocean layer of the depth of h = 1 km and realistic electrical conductivity profile beneath and inside the

ocean. The yellow crosses at 45◦ N, 5◦ W mark the location where the radial profiles of the toroidal magnetic

field are plotted (see Fig. 3.9).
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Figure 3.6: Amplitude of the ϑ (left) and ϕ (right) components of the toroidal magnetic field (in nT) at

the ocean bottom according to the magnetic field induced by condition in Fig. 3.5.
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Figure 3.7: Real (left) and imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the toroidal

magnetic field (in nT) at the ocean bottom induced by depth decaying horizontal ocean flow with the ocean

layer of the depth of h = 1 km, electrical conductivity profile for the solid Earth σm = 1 Sm−1 and realistic

ocean conductivity profile. The yellow crosses at 45◦ N, 5◦ W mark the location where the radial profile of

the toroidal magnetic field is plotted (see Figs. 3.9).
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Figure 3.8: Amplitude of the ϑ (left) and ϕ (right) components of the toroidal magnetic field (in nT) at

the ocean bottom according to the magnetic field induced by condition in Fig. 3.7.
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Figure 3.9: Real (red) and imaginary (blue) parts of the ϑ (top) and ϕ (bottom) components of the

toroidal magnetic field (in nT) induced by depth decaying horizontal flow as functions of radius, beneath

the ocean layer (left) and inside the ocean layer (right) for realistic (solid lines) and uniform (σm = 1 Sm−1,

dashed lines) conductivity profile beneath the ocean and the realistic conductivity profile inside the ocean.

The dotted lines in the detail for ocean layer represent the case for realistic solid Earth and uniform ocean

conductivity (σo = 3.5 Sm−1). The radial profiles are taken at the location given by the yellow crosses in

Figures 3.5 and 3.7.
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Figure 3.10: Real (left) and imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the

toroidal magnetic field (in 10−3 nT) at the ocean bottom induced by over the depth constant tidal flow with

the ocean layer of the depth of h = 4 km and the realistic electrical conductivity profile. The yellow crosses

mark at 50◦ N, 30◦ W the location where the radial profiles of the toroidal magnetic field are plotted (see

Figures 3.12).

270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚
270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚
270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

0 1 2 3 4 5 6 7

(BT)ϑ   (10−3 nT)

270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚
270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

0 1 2 3 4 5 6 7

(BT)ϕ   (10−3 nT)

Figure 3.11: Amplitude of the ϑ (left) and ϕ (right) components of the toroidal magnetic field (in 10−3

nT) at the ocean bottom according to the magnetic field generated by condition in Figure 3.10.
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Figure 3.12: Real (red) and imaginary (blue) parts of the ϑ (top) and ϕ (bottom) components of the

toroidal magnetic field (in 10−3 nT) induced by over the depth constant ocean flow as functions of radius,

beneath (left) and inside (right) the ocean layer for realistic (solid lines) and uniform (σm = 1 Sm−1, dashed

lines) conductivity profile beneath the ocean and realistic conductivity inside the ocean. The dotted lines in

the detail for ocean layer represent the case for realistic solid Earth and uniform ocean conductivity (σo = 3.5

Sm−1). The radial profiles are taken at the location given by the yellow crosses in Figure 3.10.
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Figure 3.13: Real (left) and imaginary (right) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field (in nT) at top of the ocean induced by over the depth constant tidal flow with

the ocean layer of the depth of h = 4 km, uniform electrical conductivity profile beneath (σm = 1 Sm−1)

and inside (σo = 3.5 Sm−1) the ocean layer. The yellow crosses at 43◦ S, 164◦ E mark the location where the

radial profiles of the poloidal magnetic field are plotted (see Figs. 4.13). Comparable result with variational

method is shown in Figure 4.11.
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Figure 3.14: Real (left) and imaginary (right) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field (in nT) at top of the ocean induced by over the depth constant tidal flow with

the ocean layer of the depth of h = 1 km, uniform electrical conductivity profile beneath (σm = 1 Sm−1)

and inside (σo = 3.5 Sm−1) the ocean layer. The yellow crosses at 43◦ S, 164◦ E mark the location where the

radial profiles of the poloidal magnetic field are plotted (see Figs. 4.19). Comparable result with variational

method is shown in Figure 4.17.
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Figure 3.15: Real (left) and imaginary (right) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the secondary poloidal magnetic field (in nT) at top of the ocean induced by over the depth constant tidal

flow with the ocean layer of the depth of h = 1 km.
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Figure 3.16: Amplitude of the ϑ (top left), ϕ (top right) and r (bottom) components of the secondary

poloidal magnetic field (in nT) at top of the ocean according to the magnetic field induced by condition in

Figure 3.15.
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Figure 3.17: Real (left) and imaginary (right) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the secondary poloidal magnetic field (in nT) at top of the ocean induced by over the depth constant tidal

flow with the ocean layer of the depth of h = 4 km.
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Figure 3.18: Amplitude of the ϑ (top left), ϕ (top right) and r (bottom) components of the secondary

poloidal magnetic field (in nT) at top of the ocean according to the magnetic field induced by condition in

Figure 3.17.



Chapter 4

Spectral finite-element approach for

ocean-induced magnetic field in

Fourier frequency domain

The numerical solution of the ocean-induced magnetic fields presented in this chapter is based on

the spectral-finite element approach introduced by to Martinec (1997) and Martinec (1999). For

the spherically symmetric model of electrical conductivity (subsection 2.6.3), the electromagnetic

induction is formulated in variational (weak) sense. The induction equation is solved for both, the

toroidal and poloidal modes of the magnetic field. The poloidal mode is, as in the previous chapter,

solved in terms of toroidal magnetic potential AT.

4.1 Weak formulation for toroidal magnetic field

Starting with the Earth’s model approximated by an electric conductive sphere G, the electromag-

netic induction is governed by the magnetic diffusion (induction) equation (1.13). In the Fourier

frequency domain, this equation is derived in section 1.2,

1

µ0
curl

(
1

σ(r)
curlBT

)
+ iωBT = [curl(u×B0)]T . (4.1)

For the toroidal mode, the magnetic field is confined to sphere G and, therefore, it vanishes on the

Earth surface ∂G,

BT = 0 on ∂G . (4.2)

Let us introduce the functional space

V := {BT|BT ∈ L2(G), curlBT ∈ L2(G)} , (4.3)

where the L2(G) is the space of square integrable functions in G. Additionally, we introduce so

called test functions δBT that belongs to the same functional space as BT, δBT ∈ V. For function

from the space V, we introduce the energy functionals of the forms

A (B, δB) :=
1

µ0

∫
G

1

σ
(curlB · curl δB) dV (4.4)

B(B, δB) :=

∫
G

(
∂B

∂t
· δB

)
dV (4.5)
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and the forcing functional

F (δB) :=

∫
GO

curl(u×BE) · δB dV . (4.6)

The forcing functional F is associated with the source term in the ocean layer GO. The medium

beneath the ocean layer is source free. The magnetic diffusion equation is homogeneous and

F (δB) := 0 . (4.7)

The weak formulation consists of finding BT ∈ V such that for any test-functions δBT ∈ V, the

variational equality

A (BT, δBT) + B(BT, δBT) = F (δBT) (4.8)

is satisfied.

To show the equivalence of the weak solution with the strong solution for sufficiently smooth

functions, we use Green’s theorem. According to this theorem (Kř́ıžek and Neittaanmäki (1990),

Theorem 2.8), if Ω0 is bounded domain with Lipschitz boundary ∂Ω0 and v, w ∈ W1
2 (Ω) and

v, w ∈ L2(∂Ω), the following identity holds (Green’s identity):∫
Ω0

∂v

∂xj
w dV +

∫
Ω0

v
∂w

∂xj
dV =

∫
∂Ω0

v w nj dS . (4.9)

In particular, for

v = (curlU)k (4.10)

w = Vi (4.11)

Green’s theorem takes the form∫
Ω0

∂(curlU)k
∂xj

Vi dV −
∫

Ω0

(curlU)k
∂Vi
∂xj

dV =

∫
∂Ω0

(curlU)k Vi nj dS . (4.12)

Multiplying this equation by Levi-Civita symbol εijk and summing up over all indices i, j, k, we

obtain∫
Ω0

[curl(curlU)]i Vi dV −
∫

Ω0

(curlU)k (curlV )k dV =

∫
∂Ω0

(n× curlU)i Vi dS , (4.13)

or, ∫
Ω0

curl curlU V dV −
∫

Ω0

curlU curlV dV =

∫
∂Ω0

(n× curlU)V dS . (4.14)

Using Green’s theorem in equation (4.8), we have

1

µ0

∫
G

curl

(
1

σ
curlB

)
· δB dV +

1

µ0

∫
∂G

1

σ
curlB · (n× δB) dS +

∫
G

(
∂B

∂t
· δB

)
dV

=

∫
G

curl(u×B) · δB dV . (4.15)

Then the volume integrals yield

1

µ0
curl

(
1

σ
curlB

)
+
∂B

∂t
= curl(u×B0) in G . (4.16)
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Moreover, we consider the relation

a · (b× c) = b · (c× a) = c · (a× b) (4.17)

and equation (3.4)

ES =
1

µ0σ
curlBT . (4.18)

The integrand of the surface integral in eq. (4.15) takes the form

1

µ0σ
curlBT · (er × δBT) = ES · (er × δBT) = δBT · (er ×ES) . (4.19)

The definition of the solution space contains the condition BT = 0 on ∂G (eq. 4.2). Hence, the

surface integrand in eq. (4.15) is equal to zero, and the weak formulation is equivalent to the strong

solution.

4.1.1 Spherical harmonics parametrization over angular coordinates

We parametrize B and δB in lateral direction Ω = (ϑ, ϕ) by vector spherical harmonics. The

spherical harmonic representation (D.10) of the toroidal magnetic field takes the form{
BT(r,Ω)

δBT(r,Ω)

}
=
∞∑
j=1

j∑
m=−j

{
Bj
jm(r)

δBj
jm(r)

}
Y j
jm(Ω) . (4.20)

We introduce

Rj+1
jm (r) = i

√
j

2j + 1

(
d

dr
− j

r

)
Bj
jm(r) , (4.21)

Rj−1
jm (r) = i

√
j + 1

2j + 1

(
d

dr
+
j + 1

r

)
Bj
jm(r) , (4.22)

then for toroidal field Bj
jm

curlBj
jm(r) Y j

jm(Ω) = Rj+1
jm (r) Y j+1

jm (Ω) +Rj−1
jm (r) Y j−1

jm (Ω) (4.23)

which results in the expression

curlBT(r) · curl δBT(r) =

∞∑
j1=1

j1∑
m1=−j1

j1+1,2∑
`=j1−1

R`1j1m1
(r) Y `1

j1m1
(Ω)

×
∞∑
j2=1

j2∑
m2=−j2

j2+1,2∑
`2=j1−1

δR`2j2m2
(r) Y `2

j2m2
(Ω) . (4.24)

The relation for complex conjugate of spheroidal vector spherical harmonics (eq. D.21) is

Y j±1 ∗
jm (Ω) = (−1)m Y j±1

j−m(Ω) . (4.25)

Furthermore, we make use of the orthonormality property (eq. D.20) and write for ` = j − 1 and

` = j + 1∫
Ω0

Y `1 ∗
j1m1

(Ω) Y `2
j2m2

(Ω) dΩ =

∫
Ω0

(−1)m1 Y `1
j1−m1

(Ω) Y `2
j2m2

(Ω) dΩ = δj1j2δm1m2δ`1`2 . (4.26)
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Then the A functional (eq. 4.4) takes the form

A (BT, δBT) =
1

µ0

∫ a

r=0

1

σ(r)

∫
Ω0

∞∑
j1=1

j1∑
m1=−j1

j1+1,2∑
`1=j1−1

R`1j1m1
(r) Y `1

j1m1
(Ω)

×
∞∑
j2=1

j2∑
m2=−j2

j2+1,2∑
`2=j2−1

δR`2j2m2
(r) Y `2

j2m2
(Ω) dΩ r2 dr (4.27)

and after applying the orthonormality properties of vector spherical harmonics, the last equation

leads to the final form

A (BT, δBT) =
1

µ0

∞∑
j=1

j∑
m=−j

(−1)m
j+1,2∑
`=j−1

∫ a

r=0

1

σ(r)
R`j−m(BT, r)R

`
jm(δBT, r) r

2 dr . (4.28)

The complex conjugate of the toroidal vector spherical harmonics (eq. D.21) is

Y j ∗
jm(Ω) = (−1)m+1 Y j

j−m(Ω) (4.29)

and with the use of the orthonormality property of the vector spherical harmonics (eq. D.20) for

the toroidal case∫
Ω0

Y j1 ∗
j1m1

(Ω) Y j2
j2m2

(Ω) dΩ =

∫
Ω0

(−1)m1+1 Y j1
j1−m1

(Ω) Y j2
j2m2

(Ω) dΩ = δj1j2δm1m2 . (4.30)

Hence, equation (4.5) reads as

B(BT, δBT) = −iω
∞∑
j=1

j∑
m=−j

(−1)m+1

∫ a

r=0
Bj
j−m(r) δBj

jm(r) r2 dr . (4.31)

Analogous for F = curl(u×BE) from equation (2.1) represented in form of eq. (3.5) we write for

the right hand side (eq. 4.6)

F (δBT) =

∫
GO
F · δBT dV . (4.32)

Setting b for the radius at bottom of the ocean layer, we have

F (δBT) = −
∞∑
j=1

j∑
m=−j

(−1)m+1

∫ a

r=b
F jj−m(r) δBj

jm(r) r2 dr . (4.33)

4.1.2 Finite-element approximation in radial coordinate

In radial direction, the sphere is divided in arbitrary spaced sub-intervals by nodes 0 = r1 < r2 <

. . . < rP+1 < rP < rP+1 = a. The piecewise linear basis functions (finite elements) ψk(ri) = δk,i can

be used as the basis functions of the Sobolev functional space W1
2 (0, a) (Kř́ıžek and Neittaanmäki,

1990). Thus, on a given interval between two nodes rk ≤ r ≤ rk+1, only two basis functions are

non-zero,

ψk(r) =
rk+1 − r
hk

, ψk+1(r) =
r − rk
hk

, (4.34)
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Figure 4.1: Piecewise linear finite elements that span the interval [0, a]. On each sub-interval [rk, rk+1]

only the two base functions ψk and ψk+1 are non-zero. In the case of the toroidal magnetic field the basis

function ψP+1 is zero due to condition given by eq. (4.2) . Therefore, the basis function ψP+1 (marked by

red) is non-zero only by poloidal magnetic field. Figure courteously taken from Tosi (2007).

where hk := rk+1 − rk. A scheme of the piecewise-linear finite elements are shown in Figure 4.1.

The solution for Bj
jm(r) and the test function δBj

jm(r) are elements of the Sobolev spaceW1
2 (0, a).

Therefore, they will be approximated by a linear combination of the basis functions ψk(r),{
Bj
jm(r)

δBj
jm(r)

}
=

P∑
k=1

{
Bj,k
jm

δBj,k
jm

}
ψk(r) . (4.35)

Considering the Dirichlet boundary condition given by eq. (4.2) in toroidal case the function

ψP+1(a) is omitted from the functional space W1
2 (0, a). Therefore, the upper limit of the summa-

tion in equation (4.36) is set by P . We now use the finite elements parametrization to approximate

the weak formulation in the radial direction. First we express the functional B, see eq. (4.32), in

the finite-element parametrization∫ a

r=0
Bj
j−m(r) δBj

jm(r) r2 dr

=
P∑
k=1

∫ rk+1

rk

(
B`,k
j−m ψk(r) +B`,k+1

j−m ψk+1(r)
)(

δB`,k
jm ψk(r) + δB`,k+1

jm ψk+1(r)
)
r2 dr

=

P∑
k=1

(
I

(1)
k B`,k

j−m δB`,k
jm + I

(2)
k B`,k

j−m δB`,k+1
jm + I

(2)
k B`,k+1

j−m δB`,k
jm + I

(3)
k B`,k+1

j−m δB`,k+1
jm

)
,

(4.36)

with B`,P+1
jm = 0 and δB`,P+1

jm = 0, and where we introduced the following integrals

I
(1)
k :=

∫ rk+1

rk

ψk (r)ψk(r) r
2 dr =

hk
30

(r2
k+1 + 3rkrk+1 + 6r2

k) ,

I
(2)
k :=

∫ rk+1

rk

ψk (r)ψk+1(r) r2 dr =
hk
60

(3r2
k+1 + 4rkrk+1 + 3r2

k) ,

I
(3)
k :=

∫ rk+1

rk

ψk+1 (r)ψk+1(r) r2 dr =
hk
30

(6r2
k+1 + 3rkrk+1 + r2

k) . (4.37)

Then the functional B takes the form

B(BT, δBT) = −iω
∞∑
j=1

j∑
m=−j

(−1)m+1
P∑
k=1

(
I

(1)
k B`,k

j−m δB`,k
jm + I

(2)
k B`,k

j−m δB`,k+1
jm

+ I
(2)
k B`,k+1

j−m δB`,k
jm + I

(3)
k B`,k+1

j−m δB`,k+1
jm

)
. (4.38)
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Second, we express the functional A , see eq. (4.29), in finite-element parametrization. For the

interval rk ≤ r ≤ rk+1, we have

d

dr
ψk(r) =

d

dr

(
rk+1 − r
hk

)
= − 1

hk
, (4.39)

d

dr
ψk+1(r) =

d

dr

(
r − rk
hk

)
=

1

hk
. (4.40)

The rotation of toroidal field is defined by equation (D.33). In the finite-element parametrization

we can write

Rj−1
jm (BT, r) = i

√
j + 1

2j + 1

[(
− 1

hk
+
j + 1

r
ψk(r)

)
Bj,k
jm +

(
1

hk
+
j + 1

r
ψk+1(r)

)
Bj,k+1
jm

]
, (4.41)

Rj+1
jm (BT, r) = i

√
j

2j + 1

[(
− 1

hk
− j

r
ψk(r)

)
Bj,k
jm +

(
1

hk
− j

r
ψk+1(r)

)
Bj,k+1
jm

]
. (4.42)

Finally,

A (BT, δBT) =
1

µ0

∞∑
j=1

j∑
m=−j

(−1)m
j+1,2∑
`=j−1

P∑
k=1

1

σk

∫ rk+1

rk

R`j−m(BT, r) R`jm(δBT, r) r
2 dr . (4.43)

Since electrical conductivity σ(r) ∈ L2(G), the radial dependence of σ can be approximated by

piecewise constant functions σ(r) = σk with rk < r < rk+1. As σ(r) does not vary with respect to

r on each sub-interval rk < r < rk+1, the integration reduces to the computation of the type∫ rk+1

rk

ψi (r)ψj(r) r
2 dr , (4.44)

where i and j are equal to k and/or k+1. This integral can be evaluated analytically or numerically,

for example, by means of the Gauss-Legendre numerical quadrature with the weights equal to 1

and the nodes x1,2 = ±1/
√

3 (Press et al., 1993),

∫ rk+1

rk

R`jm(B, r) r2 dr =
2∑

α=1

R`jm(B, rα)
r2
α hk
2

, (4.45)

where

rα =
1

2
(hkxα + rk + rk+1) , α = 1, 2 . (4.46)

4.2 Finite-element, spherical harmonic parametrization of the

toroidal source term

In this section we parametrize the toroidal source term F in terms of finite elements and spherical

harmonics. The source term F = curl(u×BE) is used in the weak formulation in equation (4.6)

F (δB) :=

∫
GO
F · δB dV . (4.47)

We recall the toroidal part of the source term by equation 2.3,

FT(r,Ω) =
∑
jm

F jjm(r) Y j
jm(Ω), (4.48)
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where

F jjm(r) = (1)F jjm

(r
a

)j
+ (2)F jjm

(a
r

)j+1
. (4.49)

We separate the integral over the ocean layer (GO) in lateral (Ω) and radial (b ≤ r ≤ a) directions,

where b stand for the ocean bottom, and write for the toroidal part of F (δBT),

F (δBT) =

∫ a

r=b

∫
Ω0

FT(r,Ω) · δBT dΩ r2 dr . (4.50)

The test function δBT is parametrized according equation (4.20) and we write

F (δBT) =

∫ a

r=b

∫
Ω0

∑
j1m1
j2m2

F j1j1,m1
(r) Y j1

j1,m1
(Ω) · δBj2

j2,m2
(r) Y j2

j2,m2
(Ω) dΩ r2 dr . (4.51)

By the relation for complex conjugation of Y j
jm(Ω) (eq. 4.30) and the orthonormality property of

Y j
jm(Ω) (eq. 4.31), we obtain

F (δBT) =
∑
jm

(−1)m+1

∫ a

r=b
F jj−m(r) δBj

jm(r) r2 dr . (4.52)

Dividing the interval 〈b, a〉 for δBT(r) into sub-intervals according to equation (4.36), we have

F (δBT) =

∞∑
j=1

j∑
m=−j

(−1)m+1
P∑

k=M

∫ rk+1

rk

[
(1)F jj−m

(r
a

)j
+ (2)F jj−m

(a
r

)j+1
]

×
[
δBj,k

jm ψk(r) + δBj,k+1
jm ψk+1(r)

]
r2dr . (4.53)

The integral over r yields,

F (δBT) =

∞∑
j=1

j∑
m=−j

(−1)m+1
P∑

k=M

[(1

a

)j (
(1)F jj−mδB

j,k
jm Q

(1)
k + (1)F jj−mδB

j,k+1
jm Q

(2)
k

)
+ aj+1

(
(2)F jj−mδB

j,k
jm Q

(3)
k + (2)F jj−mδB

j,k+1
jm Q

(4)
k

)]
, (4.54)

where M labels the finite-element node at the ocean bottom, so that rM = b and Q
(i)
k stands for

the following integrals:

Q
(1)
k =

∫ rk+1

rk

rj+2 ψk(r) dr , (4.55)

Q
(2)
k =

∫ rk+1

rk

rj+2 ψk+1(r) dr , (4.56)

Q
(3)
k =

∫ rk+1

rk

r−j+1 ψk(r) dr , (4.57)

Q
(4)
k =

∫ rk+1

rk

r−j+1 ψk+1(r) dr . (4.58)

They can be evaluated analytically as

Q
(1)
k =

1

hk

[
rk+1

j + 3

(
rj+3
k+1 − r

j+3
k

)
− 1

j + 4

(
rj+4
k+1 − r

j+4
k

)]
, (4.59)

Q
(2)
k =

1

hk

[
1

j + 4

(
rj+4
k+1 − r

j+4
k

)
− rk
j + 3

(
rj+3
k+1 − r

j+3
k

)]
, (4.60)

Q
(3)
k =

1

hk

(∫ rk+1

rk

rk+1 r
−j+1 dr −

∫ rk+1

rk

r−j+2 dr

)
, (4.61)

Q
(4)
k =

1

hk

(∫ rk+1

rk

r−j+2 dr −
∫ rk+1

rk

rk r
−j+1 dr

)
(4.62)
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with the solutions for Q
(3)
k and Q

(4)
k given by:

for j = 1 and j > 3

Q
(3)
k =

1

hk

[
rk+1

−j + 2

(
r−j+2
k+1 − r

−j+2
k

)
− 1

−j + 3

(
r−j+3
k+1 − r

−j+3
k

)]
, (4.63)

Q
(4)
k =

1

hk

[
1

−j + 3

(
r−j+3
k+1 − r

−j+3
k

)
− rk
−j + 2

(
r−j+2
k+1 − r

−j+2
k

) ]
, (4.64)

for j = 2

Q
(3)
k =

1

hk

[
rk+1 ln

(
rk+1

rk

)
− 1

−j + 3

(
r−j+3
k+1 − r

−j+3
k

)]
, (4.65)

Q
(4)
k =

1

hk

[
1

−j + 3

(
r−j+3
k+1 − r

−j+3
k

)
− rk ln

(
rk+1

rk

) ]
, (4.66)

and for j = 3

Q
(3)
k =

1

hk

[
rk+1

−j + 2

(
r−j+2
k+1 − r

−j+2
k

)
− ln

(
rk+1

rk

)]
, (4.67)

Q
(4)
k =

1

hk

[
ln

(
rk+1

rk

)
− rk
−j + 2

(
r−j+2
k+1 − r

−j+2
k

) ]
. (4.68)

4.2.1 The spectral-finite element approach for toroidal magnetic field

We now formulate the spectral-finite element solution to the boundary-value problem given by

equation (4.8). We introduce the solution space for the toroidal magnetic field

Vh =

Bh|Bh =

jmax∑
j=1

j∑
m=−j

P∑
k=1

Bj,k
jm ψk(r) Y

j
jm(Ω)

 , (4.69)

where jmax and P are finite cut-off degrees in lateral and radial direction, respectively. Vh is a

finite-dimensional subspace of the solution space V. The Galerkin method for approximating the

solution to the problem (4.8) consists of finding Bh ∈ Vh such that

A (Bh, δBh) + B(Bh, δBh) = F (δBh) ∀δBh ∈ Vh . (4.70)

Through eq. (4.71) the solution of the induction equation is reduced to a system of linear algebraic

equations, the so-called Galerkin system. The discrete solution Bh of the Galerkin system of

linear algebraic equations is called the spectral-finite element solution. The Galerkin system of

equations (4.71) is completely decoupled and degenerated. Its matrix diagonal-block form and the

spectral property of each block-diagonal is associated with a specific angular degree j. Moreover,

each block is band-diagonal with a finite bandwidth because of the finite support of the finite

elements ψk and ψk+1. We solve the system of equations (4.71) by the LU decomposition modified

for a linear algebraic system with a band-diagonal matrix. An example of the block-diagonal matrix

of the Galerkin system is shown in Figure 4.2.
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profile
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1

0

Figure 4.2: Example of the block-diagonal matrix of the Galerkin system for jmax = 3, kmax = 7. The

dashed red and blue lines at the right bottom show the behaviour of the linear finite-element functions ψk(r)

for the particular test functions δB used to parametrize B and δB in radial direction.

4.3 Weak formulation for the poloidal magnetic field in terms of

toroidal vector potential

In this section we turn our attention to the poloidal part of the magnetic signal expressed in terms

of the toroidal magnetic potential A. We start with the induction equation (1.24),

curl curlAT + µ0σ
∂

∂t
AT = µ0σ (u×BE) in G . (4.71)

As the poloidal magnetic field is not confined only to the Earth’s interior, we also consider the

atmosphere A (r ≥ a, σ = 0) where the induction equation (1.24) reduces to

curl curlA0 = 0 in A , (4.72)

where A0 is the toroidal magnetic potential in atmosphere. The continuity condition at the bound-

ary between the ocean and atmosphere is

AT = A0 on ∂G . (4.73)

We define the functionals

A (A, δA) :=

∫
G
(curlA · curl δA) dV , (4.74)

B(A, δA) := µ0

∫
G
σ(r)

(
∂A

∂t
· δA

)
dV , (4.75)

A0(A0, δA0) :=

∫
A

(curlA0 · curl δA0) dV , (4.76)

F (δA) := µ0

∫
G
σ(r) (u×BE) · δA dV . (4.77)



70 Spectral finite-element approach for ocean-induced magnetic field in Fourier frequency domain

We introduce functional spaces for the Earth V and atmosphere V0

V := {AT|AT ∈ L2(G), curlAT ∈ L2(G),divAT = 0 in G} , (4.78)

V0 := {A0|A0 ∈ C2(A),divA0 = 0 in A,AT = A0 on ∂G,A0 |r→∞= 0} . (4.79)

The weak formulation of the problem, eqs (4.72)-(4.74), consists of finding AT ∈ V and A0 ∈ V0

such that, at fixed time, the following variational equation is satisfied

A (AT, δAT) + B(AT, δAT) + A0(A0, δA0) = F (δAT)
∀δAT ∈ V
∀δA0 ∈ V0

. (4.80)

The equivalence of the weak solution with the strong solution for sufficiently smooth functions can

be shown by using Green’s theorem (eq. 4.9) in the variational equation (4.81),∫
G

curl curlAT · δAT dV +

∫
∂G

curlAT · (n× δAT) dS + µ0

∫
G
σ(r, ϑ)

(
∂AT

∂t
· δAT

)
dV+∫

A
curl curlA0 · δA0 dV +

∫
∂A

curlA0 · (n× δA0) dS = F (δAT) . (4.81)

Since this equation must hold for all δAT ∈ V and δA0 ∈ V0, we have

curl curlAT + µ0σ
∂AT

∂t
= µ0σ(u×BE) in G , (4.82)

curl curlA0 = 0 in A . (4.83)

By this, eq. (4.82) is reduced to∫
∂G

curlAT · (n× δAT) dS +

∫
∂A

curlA0 · (n× δA0) dS = 0 . (4.84)

The surface of the spherical atmosphere layer can be defined as the surface of the Earth on the

inner side by ∂Ain at r = a and a sphere ∂Aout at r → ∞ on the outer side. Then the surface of

the atmosphere ∂A = ∂Ain ∪ ∂Aout. Taking into account the opposite orientation of the normal

vectors n at Earth surface between ∂G and ∂Ain

n |∂Ain
= −er (4.85)

and the condition

A0 |r→∞= 0 (4.86)

the second integral in eq. (4.85) reduces to∫
∂G

curlAT · (er × δAT) dS −
∫
∂Ain

curlA0 · (er × δA0) dS = 0 . (4.87)

Since BP = curlAT and B0 = curlA0, we have∫
∂G
BP · (er × δAT) dS −

∫
∂Ain

B0 · (er × δA0) dS = 0 . (4.88)

Since ∂G = ∂Ain and AT(a) = A0(a), it follows that BP(a) = B0(a) which guarantees a continuity

of magnetic induction vector on the Earth’s surface. In the solid Earth and ocean (domain G), the

toroidal magnetic potentials are parametrized as{
AT

δAT

}
=

∞∑
j=1

j∑
m=−j

{
Ajjm(r)

∂Ajjm(r)

}
Y j
jm(Ω) . (4.89)
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Substituting eq. (4.90) into (4.76) yields

B(AT, δAT) = µ0

∫
G
σ(r)

(
∂AT

∂t
· δAT

)
dV

= µ0(i ω)

∫
G
σ(r) (AT · δAT) dV

= i ω µ0

∫ a

r=0

∫
Ω0

σ(r)
∞∑
j1=1

j1∑
m1=−j1

Aj1j1m1
(r)Y j1

j1m1
(Ω)

×
∞∑
j2=1

j2∑
m2−j2

δAj2j2m2
(r)Y j2

j2m2
(Ω) dΩ r2 dr . (4.90)

We use now the orthonormality property of toroidal vector spherical harmonics (eq. D.20) and

complex conjugation of Y j
jm(Ω) (eq. 4.30) and obtain

B(AT, δAT) = i ω µ0

∞∑
j=1

j∑
m=−j

(−1)m+1

∫ a

r=0
σ(r)Ajj−m(r) δAjjm(r) r2 dr . (4.91)

Using eq. (D.33), we have

curlAT(r,Ω) =
∞∑
j=1

j∑
m=−j

j+1,2∑
`=j−1

R`jm(AT, r)Y
`
jm(Ω) , (4.92)

where

Rj−1
jm (AT, r) = i

√
j + 1

2j + 1

(
d

dr
+
j + 1

r

)
Ajjm(r) , (4.93)

Rj+1
jm (AT, r) = i

√
j

2j + 1

(
d

dr
− j

r

)
Ajjm(r) . (4.94)

Substituting eq. (4.93) into eq. (4.75), we obtain

A (AT, δAT) =

∫
G
(curlAT · curl δAT) dV

=
∞∑
j=1

j∑
m=−j

(−1)m
j+1,2∑
`=j−1

∫ a

r=0
R`j−m(AT, r)R`jm(δAT, r) r

2 dr . (4.95)

4.3.1 Toroidal magnetic potential in the atmosphere

Let us parametrize the toroidal magnetic potential in the atmosphere in the form

A0 = −i a
∞∑
j=1

√
j + 1

j

(a
r

)j+1
j∑

m=−j

bG
(i)
jm Y

j
jm(Ω) . (4.96)

Keeping in mind B0 = curlA0 we show the equivalence of representation of A0, eq. (4.97), with

the representation of the poloidal magnetic field B0 in the atmosphere by eq. (3.59). By eq. (4.93),

we have
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B0 = curlA0

= −i a
∞∑
j=1

i

√
j

2j + 1

(
d

dr
− j

r

)√
j + 1

j

(a
r

)j+1
j∑

m=−j

bG
(i)
jm Y

j+1
jm (Ω)

= −
∞∑
j=1

√
(j + 1)(2j + 1)

(a
r

)j+2
j∑

m=−j

bG
(i)
jm Y

j+1
jm (Ω) (4.97)

which is equivalent to representation of B0 by eq. (3.59). Furthermore,

A0(A0, δA0) =

∫
A

(curlA0 · curl δA0) dV

=

∫ ∞
r=a

∫
Ω0

(curlA0 · curl δA0) dV

=

∫ ∞
r=a

∫
Ω0

∞∑
j1=1

j∑
m1=−j

√
(j1 + 1)(2j1 + 1)

(a
r

)j1+2
bG

(i)
j1m1

Y j1+1
j1m1

(Ω)

×
∞∑
j2=1

j∑
m2=−j

√
(j2 + 1)(2j2 + 1)

(a
r

)j2+2
δG

(i)
j2m2

Y j2+1
j2m2

(Ω) dΩ r2 dr

=

∞∑
j=1

j∑
m=−j

(−1)m (j + 1)(2j + 1) bG
(i)
j−m δG

(i)
jm

∫ ∞
r=a

(a
r

)2j+4
r2 dr . (4.98)

Evaluating the integral analytically,∫ ∞
r=a

(a
r

)2j+4
r2 dr = a2j+4

∫ ∞
r=a

r−2j−2 dr =
a2j+4

−2j − 1

1

r2j+1

∣∣∣∞
r=a

=
a3

2j + 1
(4.99)

we obtain

A0(A0, δA0) = a3
∞∑
j=1

j∑
m=−j

(−1)m (j + 1) bG
(i)
j−m δG

(i)
jm . (4.100)

4.3.2 The continuity condition

We now consider the continuity condition eq. (4.74) at the interface between the ocean and at-

mosphere ∂G. By the choice of the functional space V0, see eq. (4.80), the magnetic potential is

continuous on ∂G,

AT = A0 on ∂G . (4.101)

Substituting for AT from eq. (4.90) and for A0 from eq. (4.97),we have

Ajjm(a) = −i a

√
j + 1

j
bG

(i)
jm (4.102)

or, equivalently

bG
(i)
jm =

i

a

√
j

j + 1
Ajjm(a) . (4.103)
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The same relation is valid for a test function from the space V0,

δG
(i)
jm =

i

a

√
j

j + 1
δAjjm(a) . (4.104)

The substitution of bG
(i)
jm and δG

(i)
jm into eq. (4.101) yields the sesquilinear form A0(A0, δA0)

expressed in terms of Ajjm(a) and δAjjm(a),

A0(A0, δA0) = a3
∞∑
j=1

j∑
m=−j

(−1)m (j + 1)

(
i

a

)(
i

a

)
j

j + 1
Ajj−m(a) δAjjm(a)

= −a
∞∑
j=1

j∑
m=−j

(−1)mj Ajj−m(a) δAjjm(a) . (4.105)

Finally, we summarize for the left hand side of equation (4.81)

A (AT, δAT) =
∞∑
j=1

j∑
m=−j

(−1)m
j+1,2∑
`=j−1

∫ a

r=0
R`j−m(AT, r) R`jm(δAT, r) r

2 dr , (4.106)

B(AT, δAT) = i ω µ0

∞∑
j=1

j∑
m=−j

(−1)m+1

∫ a

r=0
σ(r)Ajj−m(r) δAjjm(r) r2 dr , (4.107)

A0(A0, δA0) = −a
∞∑
j=1

j∑
m=−j

(−1)m j Ajj−m(a) δAjjm(a) . (4.108)

4.3.3 Finite-element approximation of toroidal magnetic potential

in radial direction

In analogy to subsection 4.1.2, the parametrization in radial direction of the toroidal magnetic

potential is given by the radially-dependent finite element ψk(r),{
Ajjm(r)

δAjjm(r)

}
=

P+1∑
k=1

{
Aj,kjm
δAj,kjm

}
ψk(r) in G . (4.109)

Note that the function ψP+1 is considered since the toroidal magnetic potential continues from G
to the atmosphere A. The integral over r in eq. (4.108) for a constant conductivity is∫ a

r=0
Ajj−m(r) δAjjm(r) r2 dr

=

P∑
k=1

(
I

(1)
k A`,kj−m δA`,kjm + I

(2)
k A`,kj−m δA`,k+1

jm + I
(2)
k A`,k+1

j−m δA`,kjm + I
(3)
k A`,k+1

j−m δA`,k+1
jm

)
,

(4.110)

where I
(i)
k are given by equations in eq. (4.38). Hence, the functional B is then

B(AT, δAT) = i ω µ0

∞∑
j=1

j∑
m=−j

(−1)m+1
P∑
k=1

σk

(
I

(1)
k A`,kj−m δA`,kjm

+I
(2)
k A`,kj−m δA`,k+1

jm + I
(2)
k A`,k+1

j−m δA`,kjm + I
(3)
k A`,k+1

j−m δA`,k+1
jm

)
. (4.111)
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Moreover,

Rj−1
jm (AT, r) = i

√
j + 1

2j + 1

[(
− 1

hk
+
j + 1

r
ψk(r)

)
Aj,kjm +

(
1

hk
+
j + 1

r
ψk+1(r)

)
Aj,k+1
jm

]
, (4.112)

Rj+1
jm (AT, r) = i

√
j

2j + 1

[(
− 1

hk
− j

r
ψk(r)

)
Aj,kjm +

(
1

hk
− j

r
ψk+1(r)

)
Aj,k+1
jm

]
, (4.113)

and then

A (AT, δAT) =
∞∑
j=1

j∑
m=−j

(−1)m
j+1,2∑
`=j−1

P∑
k=1

∫ rk+1

rk

R`j−m(AT, r) R`jm(δAT, r) r
2 dr . (4.114)

4.3.4 Finite-element, spherical harmonic parametrization of the poloidal source

term

We now express the source term on the right hand side of equation (4.81)

F (δAT) = µ0

∫
G
σ(r) G · δAT dV , (4.115)

where the conductivity of the ocean layer for the poloidal case is set constant σ(r) = σo and G is

defined by eq. (2.6)

G = u×BE . (4.116)

To compare the results against the matrix propagator, we search for the source term GT in the

form of equation (2.8)

GT(r,Ω) =
∑
jm

Gjjm(a)
(r
a

)j
Y j
jm(Ω) , (4.117)

where Gjjm are defined by equation (2.26). Using the spherical harmonics expansion of the toroidal

part of the test function given by equation (4.90), the source term can be expressed analogous to

equation (4.92) in the form

F (δAT) = µ0

∞∑
j=1

j∑
m=−j

(−1)m+1

∫ a

b
σ(r) Gjjm δAjjm(r) r2dr (4.118)

for the ocean layer (b ≤ r ≤ a) and

F (δAT) = 0 (4.119)

beneath the ocean layer (r ≤ b). Hence,

F (δAT) = µ0 σo

∞∑
j=1

1

aj

j∑
m=−j

(−1)m+1
P+1∑
k=M

Gjjm

(
Q

(1)
k δAj,kjm +Q

(2)
k δAj,k+1

jm

)
, (4.120)

where M labels the finite-element node at the ocean bottom. Radial integrals over the finite-element

functions ψk(r) are given by Q
(1)
k and Q

(2)
k , see eqs (4.56) and (4.57).
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4.3.5 The spectral-finite element approach for toroidal magnetic potential

In analogy to subsection 4.2.1, we now formulate the spectral-finite element solution to the problem

given by equation (4.81). We introduce the solution spaces for the toroidal magnetic field

Vh =

Ah|Ah =

jmax∑
j=1

j∑
m=−j

P+1∑
k=1

Aj,kjm ψk(r) Y
j
jm(Ω)

 (4.121)

and

V0,h =

A0,h|A0,h =

jmax∑
j=1

j∑
m=−j

Aj0,jm(a) Y j
jm(Ω)

 , (4.122)

where jmax and P are finite cut-off degrees in lateral and radial direction, respectively. Vh and V0,h

are finite-dimensional subspaces of the solution spaces V and V0 (eqs 4.79 and 4.80), respectively.

The Galerkin method for approximating the solution to the problem (eq. 4.81) consists of finding

Ah ∈ Vh such that

A (Ah, δAh) + B(Ah, δAh) + A0(A0,h, δA0,h) = F (δAh)
∀δAh ∈ Vh

∀δA0,h ∈ V0,h
. (4.123)

By equation (4.124), the induction equation is reduced to solve a system of linear algebraic equations

(Galerkin system). The discrete solution Ah of the Galerkin system of linear algebraic equations

is called the spectral-finite element solution. The solution of the Galerkin system is analogous to

sec. 4.2.1.

4.3.6 Derivation of the poloidal magnetic field from toroidal magnetic potential

The poloidal magnetic field is now derived from the toroidal magnetic potential by eq. (1.20)

BP = curlAT. We recall the basic functions ψk(r) and ψk+1(r) for the radial direction (eq. 4.35)

and their derivations (eq. 4.40 and 4.41) and consider that r belongs to the interval rk ≤ r ≤ rk+1.

Applying the relation (D.33) for rotation the linear combination of the basic function yields then

for rk ≤ r ≤ rk+1

Bj−1
jm (r) = i

√
j + 1

2j + 1

[(
− 1

hk
+
j + 1

r
ψk(r)

)
Aj,kjm +

(
1

hk
+
j + 1

r
ψk+1(r)

)
Aj,k+1
jm

]
, (4.124)

Bj+1
jm (r) = i

√
j

2j + 1

[(
− 1

hk
− j

r
ψk(r)

)
Aj,kjm +

(
1

hk
− j

r
ψk+1(r)

)
Aj,k+1
jm

]
(4.125)

and

BP(r,Ω) =

jmax∑
j=1

j∑
m=−j

j+1,2∑
`=j−1

B`
jm(r) Y `

jm(Ω) . (4.126)

4.3.7 Poloidal magnetic field in the atmosphere

The poloidal field in atmosphere is described by eq. (2.15)

B0(r,Ω) = −
∞∑
j=1

√
(j + 1)(2j + 1)

(a
r

)j+2
j∑

m=−j

bG
(i)
jm Y

j+1
jm (Ω) . (4.127)
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Using relations (D.37) and (D.36), the radial and tangential parts of B0 are

er ·B0(r,Ω) =

∞∑
j=1

(j + 1)
(a
r

)j+2
j∑

m=−j

bG
(i)
jm Yjm(Ω) , (4.128)

er ×B0(r,Ω) = −i
∞∑
j=1

√
j(j + 1)

(a
r

)j+2
j∑

m=−j

bG
(i)
jm Y

j
jm(Ω) . (4.129)

4.4 Results of the spectral-finite element approach

The independent numerical method presented in this chapter enables the reproduction and ex-

tension of modelling the toroidal and poloidal magnetic field presented in the previous chapter 3.

The numerical solutions of the induction equation (1.13) and (1.24) will be carried out with the

source terms derived in chapter 2. As the source is identical for both, the classical and the weak

formulation methods, the results are comparable if the identical parametrization of the electrical

conductivity profile is used. This allows an internal validation of the methods. In addition, the

weak-formulation solution allows us to overcome numerical limitations of the analytical solution.

Therefore, in this chapter, the focus is devoted to compare the solutions by the matrix-propagator

method with the solutions by the spectral-finite element approach and study the primary poloidal

magnetic field in more detail which was not possible by the classical method in the previous chapter.

4.4.1 Toroidal magnetic field

We first return to the toroidal magnetic field that has been already discussed in detail in chapter 3.

Here, we recall the numerical examples calculated by the matrix-propagator method and compare

them with spectral-finite element solution to validate the correctness of the later method. In

Figure 4.3, we compare the radial profiles of the toroidal magnetic field generated by over the

depth constant horizontal ocean flow with ocean of the depth of h = 1 km, a uniform electrical

conductivity profile beneath the ocean layer, σm = 1 Sm−1, and the realistic conductivity profile

of the ocean. With the given parametrization, the radial profiles show good agreement without

significant differences. By this comparison we focus only on the studying the behaviour of the

two models. As mentioned in subsection 2.6.3, the two mathematical approaches require different

numerical discretization in radial direction. A uniform and numerically unpretentious conductivity

profile simplifies the validation by allowing an arbitrarily fine profile discretization suited for each

method. In this way the eventual differences caused by different numeric for each method can be

avoided.

Further, we also reproduce the three numerical experiments shown in Figures 3.2, 3.5 and 3.10

from chapter 3 and present the equivalent results calculated with spectral finite-elements approach

in Figures 4.4, 4.5 and 4.6, respectively. A very good agreement can be found in the case for large-

scale patterns, namely the toroidal magnetic field generated by oceanic transport (Fig. 4.6) and the

depth decaying ocean flow (Fig. 4.5). But there are small differences in the case where small-scale

signals dominate, such as for the toroidal magnetic field generated by over the depth constant

horizontal tidal flow with average velocities, see Figure 4.4. The matrix-propagator method shows

oscillating behaviour of the toroidal magnetic signal over large areas where the signal has small

magnitudes due to high resistive layer beneath the ocean. This shows numerical limitations of the

analytical solution that can be circumvented by using the weak formulation. Using a less resistive

uniform conductivity profile or a lower cut-off degree for spherical harmonic expansion, the result

of the analytical approach stabilizes and the differences between the two methods vanish.



Results of the spectral-finite element approach 77

4.4.2 Poloidal magnetic field

Now we turn our attention to the primary poloidal magnetic field. The poloidal magnetic field is

generally modeled only for over the depth constant tidal flow and for the background magnetic

field BE with dipole term only. In addition, the electrical conductivity profile for the ocean layer

is constant, set equal to σo = 3.5 Sm−1. As already mentioned, a good numerical performance of

the weak formulation enable us to study the behaviour of the poloidal magnetic field in detail. The

advantage of this approach is that numerical stability is independent of the electrical conductivity

distribution beneath the ocean layer such that the mantle can even be considered as an insulator

(σm = 0 Sm−1). We use this advantage in our first numerical experiment for the ocean layer of

the depth of h = 4 km, using as input flow the whole M2 tide transport and the space beneath

the ocean layer is considered to be an insulator. This model setup is comparable to the thin sheet

approximation applied in the studies by (Tyler et al., 2003) and (Kuvshinov and Olsen, 2005).

The r, ϑ and ϕ components of the poloidal magnetic field are shown in Figure 4.7. The spatial

patterns are generally large-scale but show also small-scale features like, for example, around New

Zealand. The amplitudes (Figure 4.8) of the small-scale spatial features achieve values of 3 nT for

the horizontal and 4-5 nT for the radial components, respectively. The large-scale patterns reach

amplitudes of 2 nT.

Until now, we validated our results only by comparing two independent methods, the analytical

and numerical approaches, used in this thesis. That only allows an internal validation of our

calculus. However, an external validation against published results are also essential for our studies.

The present day modelling of a global ocean-induced magnetic field is limited to a thin sheet

approximation. In addition, the published results on global scale modelling show only the radial

component of primary induced poloidal magnetic field. One of the intention behind the model setup

in this numerical experiment is to create comparable model conditions for external validations.

In Figure 4.9 we compare the amplitude of the radial component of the M2 tide against the

result by Dostal (2009). A positive result is that the amplitudes reach nearly the same size. The

amplitude of the finite-layer approximation reaches 4 nT while 6 nT for the thin sheet layer when

using the same OMCT velocity field. Also, the regions where large amplitudes appear are partly

coincident, like the region around New Zealand, the Atlantic Ocean west of Europa and the Pacific

Ocean south of Alaska. But there are also differences. A striking difference is the missing strong

magnetic signal in the Indian Ocean in the left panel of Figure 4.9 and the missing signal close the

west coast of Africa in the right panel. The amplitudes around New Zealand and in the Atlantic

Ocean between Greenland and Europe are also not at the same places. Whereas the magnetic signal

in the solution by the thin layer approximation is concentrated in the centers of ocean basins, the

signal in the finite-layer solution is concentrated more to coastal border. The reason for these

differences is due to the spherical symmetry of our conductivity model. The continent areas in

the thin sheet approximation are not a part of the solution domain for solving electromagnetic

induction problem. The continents are considered as insulators. The generated spherical electric

field is discharged only over the ocean areas. In the spherically symmetric model, the continents

are assumed to have the same electrical conductivity as the ocean. Therefore, the electric currents

discharging the induced magnetic field are not experienced of any barrier over continent areas. This

crucially influences the flow of electric currents and the resulting magnetic field. In the bottom

panel of Figure 4.9 we additionally show the result by Maus and Kuvshinov (2004) for the M2

tide with the input velocity field from TPXO 6.1 model. This comparison allows us to make an

external verification of our finite-layer model with the accepted results from thin sheet modeling.

Additionally, as we use the same input data for all calculations in this thesis, the results on the

toroidal, primary and secondary poloidal magnetic fields are consistently related.
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The radial profile of this numerical experiment (Figure 4.10) allows us to make an additional

internal validation. The assumption of a insulating space beneath the ocean layer together with

a constant conductivity of the ocean layer create a conductivity model symmetry with respect to

the middle of the ocean layer. Since the different field parametrizations beneath and above the

ocean a radial symmetry of the solution with respect to the middle of ocean layer allows a check for

the variational method. A slight deviation from this symmetry that can especially be seen in the

real (red) part of the radial component can be explained by geometrical space asymmetry in radial

direction of a sphere. Whereas the geometrical space beneath the ocean shrinks with depth, the

space above the ocean extends out with height. As the signal of the r-component penetrates deeper

into the Earth, its asymmetry is more visible. It is also noticeable along the profile that horizontal

components revise the polarity, whereas the polarity of the radial component does not change

through the ocean layer. As the poloidal magnetic field penetrates into the source-free electric

conductive layers, it generates additional electric currents that accelerate the energy discharge of

the magnetic field. If the space is considered as an insulator, the magnetic field penetrates deeper

into the sphere. Therefore, for the resistive underground we plot the radial profile starting in the

centre of the Earth to see how deep the magnetic signal penetrates and whether the magnetic signal

vanishes in the centre of the Earth.

In next two numerical experiments we keep the ocean depth h = 4 km but will change the

conductivity profile. First, we use the uniform conductivity beneath the ocean layer by setting

σm = 1 Sm−1. This setup allows us to make a validation with the solution by the matrix-propagator

method. In Figure 4.13 we compare the radial profiles computed by the two methods; solid lines

(red and blue) represent the solution by the matrix-propagator method and dashed lines (black)

shows the spectral-finite element approach. The profiles show a good agreement for all three

components. In this case, there is also a polarity reversal of the lateral components. Because

of uniform conductivity, the magnetic field decays smoothly with depth but it shows a different

behaviour as for the case of resistive mantle. The poloidal magnetic signal vanishes already beneath

the radius of r = 5800 km. The lateral component of the magnetic field at bottom of the ocean layer

has noticeable larger magnitude than at sea surface. The amplitudes at sea surface (Figure 4.12)

reach values of 2 nT for radial component and are only about a half of the amplitudes by resistive

mantle in Figure 4.8. Due to resistive mantle, the discharge processes of electromagnetic energy

are confined to the ocean layer, while a part of the energy can also be discharged below the ocean

layer when the mantle is conductive. Hence, the induced electromagnetic energy is redistributed

and the magnitude of the magnetic field at the top of the ocean is reduced. Comparing the

global distribution for the resistive and conductive mantle in Figures 4.7 and 4.11, we find that

the magnitude of the poloidal magnetic field changes from one to the other case, but the spatial

patterns remain essentially the same.

In the last numerical experiment for the tidal flow transport and the ocean layer depth of h = 4

km, we use the realistic conductivity profile. The poloidal magnetic field at the top of the ocean

layer is shown in Figure 4.14. The spatial distribution does not change with respect to the two

examples above, but the change of the conductivity profile influences the magnitude of magnetic

field. The amplitudes (Figure 4.15) at the sea surface are two times larger than for the case with a

high conductive profile and slightly smaller than for the resistive profile. To get a closer look into

the differences between the magnetic signals we compare the radial profile of the poloidal magnetic

field for the realistic case (solid lines) with the profile of the poloidal magnetic field generated for

the case of resistant mantle (dashed lines) (Figure 4.16). The behaviour of the magnetic signals

with depth are similar to radius of r = 5700 km. This can be explained by a high resistivity of the

lithosphere, crust and upper mantle. Beneath this radius the conductivity increases and the form
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of the magnetic signal is similar to the case with the conductive profile in Figure 4.13, the signal

decreases fast and vanishes beneath the radius of r = 5200 km.

In the last two numerical experiments we again use the average velocity field of the M2 tidal flow

for the ocean layer of the depth of h = 1 km. In one case we apply the uniform conductivity profile

σ = 1 Sm−1, which allows us one additional internal validation by the comparison of the results

with the matrix-propagator method (Figure 3.14). Also here, as for the toroidal case, the signal

is dominated by small-scale features caused by large ocean velocities. The spatial distribution

shows a good agreement between the two methods. In addition, Figure 4.19 shows the radial

profile where the solution of the matrix-propagator method is plotted in solid lines (red and blue)

and compared to the spectral-finite element approach in dashed lines (black), and we can again

see a good agreement. The amplitudes reach of about 1 nT and 2 nT for the lateral and radial

components, respectively (Figure 4.18).

In a second and last numerical experiment, we use the realistic conductivity profile. Similar to

the above example, a higher resistivity beneath the ocean layer causes an increase in the magnetic

signal at the sea surface but no change in the spatial distribution (Figure 4.20). The amplitudes

reach values of about 2 nT and 3 nT for the lateral and radial components, respectively (Fig-

ure 4.21). The amplitudes are smaller than for the whole oceanic transport of the M2 tide and the

magnetic signals are concentrated to coastal regions with high ocean velocities. In the radial profile

(Figure 4.19), we compare the realistic case (solid lines) with the magnetic field for a resistant

mantle (dashed lines). Also here, the propagation of the poloidal magnetic fields show a similar

behaviour up to the depth, where the electrical conductivity of realistic case starts to increase,

which allows a discharge of the energy and the poloidal magnetic field vanishes.
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Figure 4.3: Real (red) and imaginary (blue) parts of the ϑ (top) and ϕ (bottom) components of the toroidal

magnetic field (in nT) induced by over the depth constant tidal flow as functions of radius, beneath the ocean

(left) and, in detail, inside the ocean layer (right), for uniform electrical conductivity profile beneath (σm = 1

Sm−1) and realistic inside the ocean layer for the matrix-propagator method (solid lines) and the variational

method (black rectangles lines). The radial profiles are taken at the location given by the yellow crosses in

Figures 3.2 and 4.4.
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Figure 4.4: Real (left) and imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the

toroidal magnetic field (in 10−3 nT) at the ocean bottom induced by over the depth constant tidal flow by

ocean layer depth h = 1 km and realistic electrical conductivity profile beneath and inside the ocean layer.

The yellow crosses at 23◦ N, 130◦ E mark the location where the radial profiles of the toroidal magnetic

field with uniform electrical conductivity are plotted (see Figs. 4.3). A comparable result obtained with

matrix-propagator method is shown in Figure 3.2.
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Figure 4.5: Real (left) and imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the toroidal

magnetic field (in nT) at the ocean bottom induced by depth decaying horizontal flow with the ocean layer

of the depth of h = 1 km and realistic electrical conductivity profile beneath and inside the ocean layer. A

comparable result obtained with matrix-propagator method is shown in Figure 3.5.
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Figure 4.6: Real (left) and imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the toroidal

magnetic field (in 10−3 nT) at the ocean bottom induced by over the depth constant tidal flow with ocean

layer of the depth of h = 4 km and realistic electrical conductivity profile beneath and inside the ocean layer.

A Comparable result obtained with matrix-propagator method is shown in Figure 3.10. The yellow crosses

at 50◦ N, 30◦ W mark the location where the corresponding radial profiles calculated by matrix-propagator

method are plotted (see Figs. 3.12).
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Figure 4.7: Real (left) and imaginary (right) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field (in nT) at top of the ocean induced by over the depth constant tidal flow

with ocean layer of the depth of h = 4 km, with insulating underground (σm = 0 Sm−1) and ocean layer

conductivity σo = 3.5 Sm−1. The yellow crosses at 43◦ S, 164◦ E mark the location where the radial profiles

of the poloidal magnetic field are plotted (see Figs. 4.10).
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Figure 4.8: Amplitude of the ϑ (top left), ϕ (top right) and r (bottom) components of the induced poloidal

magnetic field (in nT) at top of the ocean according to the magnetic field generated by condition in Figure 4.7.
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Figure 4.9: Comparison of the r component of the induced poloidal magnetic field (in nT) at the top of the

ocean. On the top left panel the amplitude of the magnetic field generated in Figure 4.7 and on the top right

panel the result from thin sheet approximation from Dostal (2009). The OMCT input ocean velocity field is

for both calculations identical. At the bottom panel the amplitudes calculated with thin sheet approximation

by Maus and Kuvshinov (2004) using the ocean velocity data set from TPXO 6.1. (Mind that the scale bars

are not identical.)
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Figure 4.10: Real (red) and imaginary (blue) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field (in nT) induced by over the depth constant tidal flow as functions of radius,

beneath the ocean (left) and, in detail, inside the ocean layer (right) with uniform electrical conductivity

profile beneath the ocean σm = 0 Sm−1 and inside the ocean layer σo = 3.5 Sm−1. The radial profiles are

taken at the location given by the yellow crosses in Figure 4.7.



88 Spectral finite-element approach for ocean-induced magnetic field in Fourier frequency domain

270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚
270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

−1.0 −0.5 0.0 0.5 1.0

Real part of (BP)r   (nT)

270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚
270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

−1.0 −0.5 0.0 0.5 1.0

Imaginary part of (BP)r   (nT)

270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚
270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

−1.0 −0.5 0.0 0.5 1.0

Real part of (BP)ϑ   (nT)

270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚
270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

−1.0 −0.5 0.0 0.5 1.0

Imaginary part of (BP)ϑ   (nT)

270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚
270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

−1.0 −0.5 0.0 0.5 1.0

Real part of (BP)ϕ   (nT)

270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚
270˚ 0˚ 90˚ 180˚

−90˚

−60˚

−30˚

0˚

30˚

60˚

90˚

−1.0 −0.5 0.0 0.5 1.0

Imaginary part of (BP)ϕ   (nT)

Figure 4.11: Real (left) and imaginary (right) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field (in nT) at top of the ocean induced by over the depth constant tidal flow with

ocean layer of the depth of h = 4 km, uniform electrical conductivity profile beneath (σm = 1 Sm−1) and

inside the ocean (σo = 3.5 Sm−1). The yellow crosses at 43◦ S, 164◦ E mark the location where the radial

profiles of the poloidal magnetic field are plotted (see Figs. 4.13). Comparable result with matrix-propagator

method is shown in Figure 3.13.
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Figure 4.12: Amplitude of the ϑ (top left), ϕ (top right) and r (bottom) components of the induced

poloidal magnetic field (in nT) at top of the ocean according to the magnetic field generated by condition

in Figure 4.11.
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Figure 4.13: Real (red) and imaginary (blue) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field induced by over the depth constant tidal flow as functions of radius, beneath

(left) and, in detail, inside the ocean layer (right), with ocean layer of the depth of h = 4 km, uniform

electrical conductivity profile beneath (σm = 1 Sm−1) and inside (σo = 3.5 Sm−1) the ocean layer. The

black rectangles lines represent the solution of the variational method compared with the solution of the

matrix-propagator method in solid colored lines. The radial profiles are taken at the location given by the

yellow crosses in Figures 4.11 and 3.13.
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Figure 4.14: Real (left) and imaginary (right) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field (in nT) at top of the ocean induced by over the depth constant tidal flow with

ocean layer of the depth of h = 4 km, realistic electrical conductivity profile beneath the ocean and uniform

conductivity inside the ocean layer (σo = 3.5 Sm−1). The yellow crosses at 43◦ S, 164◦ E mark the location

where the radial profiles of the poloidal magnetic field are plotted (see Figs. 4.16).
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Figure 4.15: Amplitude of the ϑ (top left), ϕ (top right) and r (bottom) components of the poloidal

magnetic field (in nT) at top of the ocean according to the magnetic field induced by condition in Figure 4.14.
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Figure 4.16: Real (red) and imaginary (blue) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field induced by over the depth constant tidal flow as functions of radius, beneath

(left) and, in detail, inside the ocean layer (right) with realistic electrical conductivity profile beneath the

ocean and uniform conductivity inside the ocean layer (solid lines). The dashed lines represent the solution

with insulating underground (σm = 0 Sm−1). The radial profiles are taken at the location given by the

yellow crosses in Figure 4.14.
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Figure 4.17: Real (left) and imaginary (right) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field (in nT) at top of the ocean induced by over the depth constant tidal flow

with the ocean layer of the depth of h = 1 km, uniform electrical conductivity profile beneath (σm = 1

Sm−1) and inside (σo = 3.5 Sm−1) the ocean layer. The yellow crosses at 43◦ S, 164◦ E mark the location

where the radial profiles of the poloidal magnetic field are plotted (see Figs. 4.19). Comparable result with

matrix-propagator method is shown in Figure 3.14.
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Figure 4.18: Amplitude of the ϑ (top left), ϕ (top right) and r (bottom) components of the poloidal

magnetic field (in nT) at top of the ocean according to the magnetic field induced by condition in Figure 4.17.
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Figure 4.19: Real (red) and imaginary (blue) parts of the r (top), ϑ (middle) and ϕ (bottom) components of

the poloidal magnetic field induced by over the depth constant tidal flow as functions of radius, beneath (left)

and, in detail, inside the ocean layer (right) with uniform electrical conductivity profile beneath (σm = 1

Sm−1) and inside (σo = 3.5 Sm−1) the ocean layer. The black rectangles lines represent the solution of the

variational method compared with the solution of the matrix-propagator method in solid colored lines. The

radial profiles are taken at the location given by the yellow crosses in Figures 4.17 and 3.14.
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Figure 4.20: Real (left) and imaginary (right) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field (in nT) at top of the ocean induced by over the depth constant tidal flow

with the ocean layer of the depth of h = 1 km, realistic electrical conductivity profile beneath the ocean and

uniform conductivity inside the ocean layer (σo = 3.5 Sm−1). The yellow crosses at 43◦ S, 164◦ E mark the

location where the radial profiles of the poloidal magnetic field are plotted (see Figs. 4.22).
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Figure 4.21: Amplitude of the ϑ (top left), ϕ (top right) and r (bottom) components of the poloidal

magnetic field (in nT) at top of the ocean according to the magnetic field induced by condition in Figure 4.20.
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Figure 4.22: Real (red) and imaginary (blue) parts of the r (top), ϑ (middle) and ϕ (bottom) components

of the poloidal magnetic field induced by over the depth constant tidal flow as functions of radius, beneath

(left) and, in detail, inside the ocean layer (right) with realistic electrical conductivity profile (solid lines) and

insulating underground (dashed lines) beneath the ocean layer. The radial profiles are take at the location

given by the yellow crosses in Figure 4.20.





Chapter 5

Spectral finite-element approach for

ocean-induced magnetic field in time

domain

In this chapter we present the solution for the toroidal ocean-induced magnetic field in the time

domain. The approach is based on the numerical method derived in chapter 4 combined with the

time domain solution presented by Martinec et al. (2003).

5.1 Time domain solution for the toroidal magnetic field

The induction equation in the time domain has been derived in chapter 1, see eq. (1.16),

1

µ0
curl

(
1

σ
curlBi+1

)
+
Bi+1 −Bi

∆t
= curl(ui+1 ×B0) . (5.1)

It can be rewritten in the form

1

µ0
curl

(
1

σ
curlBi+1

)
+

1

∆t
Bi+1 =

1

∆t
Bi + curl(ui+1 ×B0) . (5.2)

Then the weak formulation consists of finding B ∈ V such that, at fixed time, the following

variational equation is satisfied

A (Bi+1, δB) +
1

∆t
B(Bi+1, δB) =

1

∆t
B(Bi, δB) + F (δB) ∀δB ∈ V . (5.3)

The functional space V is defined by equation (4.3). The energy functionals have analogous forms

to those for the toroidal magnetic field in Fourier frequency domain (section 4.1)

A (Bi, δB) :=
1

µ0

∫
G

1

σ
(curlBi · curl δB) dV , (5.4)

B(Bi, δB) :=

∫
G

(
Bi · δB

)
dV (5.5)

and the forcing functional has the form

F (δB) :=

∫
GO

curl(ui+1 ×B0) · δB dV . (5.6)

In analogy to the Fourier frequency domain, the parametrized functionals A , F are given by

equations (4.44) and (4.55), respectively. The functional B is defined by equation (4.39), where
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the angular frequency ω is omitted. With this parametrization, the numerical solution of eq. (5.3)

is given by a solution of the Galerkin system, which is analogous to that in subsection 4.2.1,

A (Bi+1
h , δBh) +

1

∆t
B(Bi+1

h , δBh) =
1

∆t
B(Bi

h, δBh) + F (δBh) ∀δBh ∈ Vh , (5.7)

where Vh is the solution space defined by eq. (4.70).

5.2 Numerical results of the time domain

Calculations in the time domain are carried out for the same ocean velocities u as in the previous

chapters for modelling in the Fourier frequency domain. We discretize the M2 tide period in 20

time steps (∆t =
1

20
TM2) according to relation (2.47), calculate the source term separately for

every time instant and create a source-term time series. As is already indicated by label i, Bi in

the functional B on the right hand side of eq. (5.7) is given by the solution in the previous time

step.

Since the initial value of B is not known, an arbitrary B is used for its initialization (for

example zero), and the so called spin-up process is necessary to perform. During the spin-up

process, the model is loaded by a source term until an equilibrium between the input of the energy

and the energy dissipation is achieved. Therefore calculations are started by repeating successively

the periodical tidal wave several times until the time evolution of a new solution is identical with the

previous one. Due to periodical signal variations with magnetic field polarity change, the spin-up

process necessities repetitions of the tidal period only several times.

In this section, we present a solution only for one numerical experiment described by the ocean

layer of the depth of h = 1 km, average over the depth constant horizontal ocean velocity field and

realistic conductivity profile for the ocean and the mantle. The analytical solution of this numerical

experiment has already been discussed from the point of physics in chapter 3. Here, we focus on

the validation of the time domain solution by comparing it with the analytical solution in Fourier

frequency domain.

Figure 5.1 compares the real and imaginary parts of the ϑ and ϕ components of the analytical

solution in Fourier frequency domain against the 1. and 15. time-instant snapshot of the time

domain solution. The results agree well in magnitude and spatial patterns, but small differences

are apparent. They are given by numerical limitation of the analytical solution due to the realistic

parametrization of the model, which was already discussed in previous chapters. The real and

imaginary part of the solution in the Fourier frequency domain are orthogonal to each other. This

property of a periodical signal corresponds to 90◦ angular shift, which can also be found in the

time-domain solution. By discretization of the tidal signal period into 20 time steps, we find that

the time span between the 15. and 1. time instant again corresponds with the 90◦ angular shift of

the signal period.

Figure 5.2 presents the time evolution of the ϕ component of the toroidal magnetic field at the

ocean bottom over one period of M2 tide. The time instants are numbered for every image, but

not all time instants are shown. Beside the time evolution of spatial patterns, the polarity reverse

of the magnetic field after a half of the period is apparent. The images labeled by x and 10 + x

show the pair with the same spatial distribution but the opposite polarity. As the magnetic field

repeats after every period, the last image, is continued again by the image labeled with number 1.
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Figure 5.1: Comparison of the analytical solution in Fourier frequency domain from Fig. 3.2 (left-hands

panels) against the time domain solution (right-hands panels) for the toroidal magnetic field (in 10−3 nT)

at the ocean bottom induced by over the depth constant tidal flow for the ocean layer of the depth of h = 1

km and the realistic electrical conductivity profile beneath and inside the ocean layer. The top two rows

show the ϑ component, the bottom two the ϕ component. The real (cos) part of the magnetic field (shown

in first and third row) correspond with the 1. and the imaginary (sin) part with the 15. time instant of the

numerical solution, respectively.
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Figure 5.2: The time evolution of the ϕ component for toroidal magnetic field (in 10−3 nT) at the ocean

bottom induced by over the depth constant tidal flow with the ocean layer of the depth of h = 1 km and

realistic electrical conductivity profile beneath and inside the ocean layer. The M2 tide period is discretized

in 20 time instants, ∆t =
1

20
TM2

. (Not all time instants shown.)
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Figure 5.2: (Continued)





Summary and Outlook

Increasing accuracy of space-borne magnetometers, especially by the recently launched mission

Swarm, renew the question about the identification of global magnetic features induced by oceans

and their use as an indicator for oceanic dynamic. For understanding the dynamic of ocean-induced

magnetic fields, their structures, magnitudes and behaviours with respect to different parameters

necessitate a numerical modelling. The present day thin-sheet models for computing global ocean-

induced magnetic field are not sufficient for examining the magnetic signal in detail. Therefore, in

this thesis we developed a new finite-layer model where the Earth is approximated by a sphere with

a spherically symmetric distribution of electrical conductivity. Using realistic input oceanic flow of

M2 tide, simulated by Oceanic Model for Circulation and Tides (OMCT), main magnetic field and

a radial profile of electric conductivity, our model allows separated calculations of the toroidal and

poloidal modes of the ocean-induced magnetic field. As the calculation of both magnetic modes

are based on the same input data and parametrization, the comparison between the toroidal and

poloidal parts can be carried out with respect to magnitude, structure and behaviour.

Our numerical simulations show that the induced toroidal magnetic field is extremely sensitive

to the vertical gradient of horizontal ocean flow. Depending on the size of this gradient, the

magnitudes of induced toroidal magnetic field at ocean bottom vary from 10−3 nT for over the

depth constant flow up to several nT if a linear decay of the horizontal ocean flow is imposed.

Therefore, the common opinion in the geophysical community dealing with the CHAMP magnetic

data that the toroidal component of the magnetic field induced by ocean circulation is larger by

an order of magnitude than the induced poloidal part can not be confirmed. This idea originated

from Sanford (1971) who estimated that the toroidal magnetic field induced by ocean circulation

may be as large as 100 nT. However, neither recent model simulations, nor observations of the

toroidal magnetic field can not confirm it since the toroidal magnetic field is not directly observable

by coastal magnetic observatories or satellite missions.

We should emphasize that our results on the amplitudes of the toroidal magnetic field are

valid for a tidally-forced ocean circulation, while the estimate of 100 nT (Sanford, 1971) has been

done for a magnetic field induced by a general ocean circulation model. This may differ in spatial

pattern, amplitude and frequency contents in comparison to tidal ocean circulation. Moreover,

the limited spatial resolution may also cause the reduction of amplitudes of the induced toroidal

magnetic field. Being explicit, we have not found a model setup for the M2 tidal ocean flow that

induces the toroidal magnetic field reaching amplitudes of 100 nT.

The primary poloidal ocean-induced magnetic field reach amplitudes of several nT at the sea

surface and it corresponds to the radial component of magnetic field modelled by the thin-sheet

approximation. The amplitudes of the primary poloidal magnetic field has already been published

by Kuvshinov and Olsen (2005) and Maus and Kuvshinov (2004) and are, in general, accepted

by the geomagnetic community. Nevertheless, the spatial patterns show the differences between

the thin-sheet model and finite-layer model calculations. These can be explained by considering a

different parametrization of continental conductivity. Whereas the thin-sheet approach excludes the
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continent areas from the solution domain and, therefore, the continents have electrical conductivity

zero, the continents in a spherically symmetric model have the conductivity of oceans. However, the

differences in spatial distribution of electrical conductivity do not essentially influence the study of

the magnetic diffusion in radial direction of the primary poloidal magnetic field inside and beneath

the ocean layer.

Additionally, as the finite-layer model enables simulations of the toroidal magnetic field, the

secondary poloidal ocean-induced magnetic field, the so called coastal effect, can be estimated. We

show that, due to the conductivity contrast between the ocean and continent of the order of ∆σ =

10−3 Sm−1, a poloidal magnetic field is generated with magnitudes of the primary poloidal magnetic

field. However, the spatial distribution between the two poloidal magnetic fields differ considerable.

Whereas the primary part has rather large-scale features over ocean areas, the secondary part is

small-scaled and concentrated along coasts.

To examine the correctness of the forward modelling, the validation of obtained results has

been carried out. For external verification of our results, we compare them with the thin-sheet

approximation. Due to a limited number of published studies on a global scale, internal validations

create an essential part of this thesis. For this purpose, the diffusion of the induced magnetic field is

solved by two independent methods, the classical (strong) solution and the modern (weak) solution.

The agreement between the two methods is confirmed by our calculations. Additional examinations

have been carried out by varying input parameters for the individual numerical experiments to test

the numerical solutions. For example, considering a symmetric model set up with respect to the

ocean layer for the primary poloidal magnetic field and compare the symmetry of the simulated

magnetic field beneath and above the ocean layer, we tested different mathematical parametrization

of a solution in the atmosphere and mantle.

Using only one particular tidal wave with a well known frequency of input ocean velocities, the

solution of the two methods has been carried out in the Fourier frequency domain. As one of the

applied approach offers a possibility for a solution in time domain, the input velocity data has been

discretized and the toroidal magnetic field for the M2 tide in time domain has been calculated. A

mutual comparison with the solutions in the Fourier frequency domain confirms the results of the

time-domain approach.

We should emphasize that different factors limit the accuracy of calculations. For example, a

rather sparse lateral resolution of the input ocean velocities, a spherically symmetric conductivity

model or a simple conductivity contrast at the ocean-continent boundary mainly influences the re-

sulting magnetic field. These are effects that may reduce or amplify the simulated fields. Moreover,

our results are valid for a tidally-forced ocean circulation only. As the structure of a general ocean

circulation differ in comparison to the tidal circulation, the resulting magnetic field is expected to

differ in amplitudes and spatial patterns.

Nevertheless, the variations of the model input parameters allow not only carrying out an

internal validation and testing the numerical behaviour of the model, but also offer an insight into

the behaviour of the magnetic field in respect to variations of the ocean flow, electric conductivity

structure or the background magnetic field. This sensitivity analysis contributes essentially for

understanding the key parameters influencing the generated magnetic fields. In particular, we show

a strong sensitivity of the induced magnetic field in respect to the variation of radial conductivity

profile beneath the ocean and, in case of the toroidal mode, also thorough the ocean. The results of

our study additionally show a different sensitivity of two magnetic modes with respect to a radial

conductivity profile. While a high resistivity of crust and lithosphere hinders the penetration of

the vertical electrical currents into the mantle and therefore also the penetration of the toroidal

magnetic signal, the penetration of the poloidal magnetic signal is hindered by a high conductivity

of the medium beneath the ocean where electrical currents discharge the poloidal magnetic field.
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Further, we show the influence of the vertical gradient of the flow on the toroidal magnetic field.

For instance, a strong linear decay of the horizontal ocean flow between the top and bottom of the

ocean layer generates toroidal magnetic signal that is by far larger than that generated by over the

depth constant flow. This is an important aspect for modelling the ocean-induced magnetic field

driven by a general ocean circulation. We also alternated the input ocean velocity fields to examine

the difference between using the whole oceanic transport on one hand and the average tidal flow

dominated by large velocities in shallow coastal region on the other hand. Three calculated magnetic

field constituents, the toroidal, primary poloidal and secondary poloidal parts show different spatial

distributions for the two scenarios but are comparable in the magnitude.

The presented work examined the ocean-induced magnetic field variations on a global scale by

considering the ocean as a volume source of the magnetic signal. The used mathematical approach

allows a new insight into the magnetic field driven by ocean circulation. Especially, the volume

source opens the possibility to consider the toroidal mode of the magnetic field and therefore also

the secondary effects of the ocean induced magnetic signal can be estimated. The results show

the possibility of the ocean-induced magnetic field to be measured outside of the ocean, and, in

particular, in view of the given specifications of the new satellite mission Swarm also at the satellite

attitudes. The identification of such signals would help, on one hand, a better understanding of

the geomagnetic field and, on the other hand, to use the observed magnetic signal as an additional

sensor understanding processes of the global oceanic circulation.

Outlook

The focus of this thesis was creating a finite-layer model for solving the induction problem in ocean

and its independent validation. We obtained many new scientific findings about the ocean-induced

magnetic field such as the magnitudes, spatial distribution, the behaviour of the magnetic field

with respect to different parameters or the penetration depth of the magnetic signal in the Earth

mantle. Still, open questions remain, where some of them have arised when writing this thesis. It

is challenging to solve them by continuing to develop the model.

The presented solution in the time domain is done for the toroidal mode of the magnetic

field only. An extension for the poloidal mode is still to be done and should be complemented in

future. The solution in the time domain opens the possibility to study the ocean-induced magnetic

field originated by a general ocean circulation which is of different origin than the tidal flow.

Whereas over the depth constant tidal flow consists of periodical short time signal variations, short

time variations of a general ocean circulation are rather small, but they contain permanent flow

constituents with a strong vertical gradient. The importance of the vertical gradient of the flow

for the toroidal magnetic field has been demonstrated in one of the numerical experiments in this

thesis. Due to the coastal effect it is expected that the magnetometer records at coast sites contain

a signal of the secondary poloidal magnetic field originated by a general ocean circulation.

One of the most important steps for further development is to extend the finite-layer model

to a 3D induction model, which allows modelling a laterally heterogeneous electrical conductivity

such as a conductivity jump at the ocean-continent boundary, or at the ocean bottom.

The results delivered by the forward modelling are intended, in the first step, to be used for

the identification of the ocean-induced magnetic constituents in the space born and coastal site

magnetometers. Strong tidally induced signal variations with known frequencies should facilitate

this process. Once the ocean originated signal is identified in magnetic records, the measured signal

can be assimilated into ocean modelling, and the ocean modelling can be improved. From the

geomagnetic point of view, the model-predicted data can also be used for dealiasing the magnetic
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records from space-borne magnetometers for the oceanic part. The ability to remove the ocean-

induced signal, in particular, the permanent contribution given by a general circulation, should

help to identify other geomagnetic constituents, especially, the lithospheric magnetic part. Further

on, the oceanic electromagnetic field could be used as a source for the estimation of conductivity

structures close to ocean areas.



List of symbols

The list contains symbols used generally through the whole thesis. Locally defined and used

symbols for mathematical description are not listed.

A magnetic vector potential [A] = Vs
m

AT toroidal magnetic potential

A0 toroidal magnetic potential in atmosphere

A atmosphere (r ≥ a, σ = 0)

a radius of the Earth - top of the ocean (a = 6371km)

B magnetic flux density [B] = T = Vs
m2

BE background (main) magnetic flux density of the Earth

BP poloidal magnetic flux density

BT toroidal magnetic flux density

B0 poloidal magnetic flux density in atmosphere

b radius of ocean layer bottom [b] = km

D dielectric displacement

E electric field intensity [E] = V
m

ES spheroidal electric field intensity

er, eϑ, eϕ unit base vectors for radial direction, co-latitude and longitude

F source term for the toroidal magnetic field

G source term for the poloidal magnetic field in term of toroidal magnetic potential

Gjm orthonormal normalized Gauss coefficients of the magnetic field

G
(i)
jm Gauss coefficients for the internal sources

G
(e)
jm Gauss coefficients for the external sources

bG
(i)
jm orthonormal fully-normalized Gauss coefficients of the induced magnetic field

G space of the solid Earth + ocean (sphere with r = a)
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GO space containing the ocean layer

∂G surface of the solid Earth + ocean (sphere with r = a)

gjm Schmidt semi-normalized coefficients of the magnetic field

H magnetic field intensity [H] = A
m

j`, Bessel functions of the first kind

j′` derivation of the Bessel functions of first kind

i i =
√
−1

i label for time instant

j electric current density [j] = A
m2

K 2× 2 matrix with fundamental solutions of the homogeneous Helmholtz equation

k wave number, k2 = −iωµ0σ

L matrix propagator over several layers

M layer propagator matrix M(top,bottom)

n outward directed normal vector

n` Bessel functions of the second kind

n′` derivation of the Bessel functions of second kind

Pjm(cosϑ) associated Legendre functions

Pmj (cosϑ) orthonormal normalized associated Legendre functions

P̂mj (cosϑ) Schmidt semi-normalized associated Legendre functions

r radius [r] = m

r radius vector r = (r,Ω)

s source term

s salinity [s] = 34.25 psu (in sec. 2.6.3)

T time period [T ] = s

T temperature [T ] = ◦C (in sec. 2.6.3)

ti time instant

u horizontal velocities of the ocean flow [u] = m
s

u = uϑ eϑ + uϕ eϕ

y homogeneous solution of the Helmholtz equation

v solution of the Helmholtz equation in ocean layer v = y + s
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Yjm scalar spherical harmonics of degree j and order m

Y `
jm vector spherical harmonics of degree j and order m

z z = kr

∆t time step

∆T temperature difference (in sec. 2.6.3)

δij Kronecker delta symbol

ε0 permittivity for vacuum ε0 = 8.854187817 · 10−12 F
m

εr permittivity coefficient

η Lanczos coefficients (for weighing the spherical harmonic series)

ϑ geographical latitude

µ0 permeability of vacuum µ0 = 4π · 10−7 V s
A m

µr permeability coefficient

π ratio of a circle’s circumference π = 3.14 . . .

ρ charge density [ρ] = C
m3

σ electrical conductivity [σ] = S
m

σc electrical conductivity of the continent σc = 10−3 S
m

σo electrical conductivity of the ocean layer (if constant ocean conductivity σo = 3.5 S
m)

σm electrical conductivity beneath the ocean layer (mantle, lithosphere and crust)

ψk, ψk+1 set of basis functions for finite elements in radial direction

ϕ geographical longitude

Ω Ω = (ϕ, ϑ)

ω angular frequency ω = 2π
T
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Appendix A

Spherical harmonic analysis of

horizontal ocean velocities

Let a vector field u defined on the unit sphere [0, π] × [−π, π] be represented as a series of vec-

tor spherical harmonics Y `
jm(ϑ, ϕ) in the form of eq. (2.12). To perform the spherical harmonic

analysis of its values prescribed on the unit sphere, it is convenient to represent u in terms of the

vector spherical harmonics Y
(λ)
jm(ϑ, ϕ), λ = −1, 0, 1. The reason is that, in contrast to the vectors

Y `
jm(ϑ, ϕ), the vectors Y

(λ)
jm(ϑ, ϕ) are separated in orientation with respect to the r and (ϑ, ϕ)

directions. Specifically, the vector Y
(−1)
jm (ϑ, ϕ) is normal to the sphere surface, whereas the vectors

Y
(0)
jm(ϑ, ϕ) and Y

(1)
jm(ϑ, ϕ) are tangential Varshalovich et al. (1988),

Y
(−1)
jm (ϑ, ϕ) = Yjm(ϑ, ϕ)er,

Y
(1)
jm(ϑ, ϕ) =

1√
j(j + 1)

[
∂Yjm(ϑ, ϕ)

∂ϑ
eϑ +

1

sinϑ

∂Yjm(ϑ, ϕ)

∂ϕ
eϕ

]
, (A.1)

Y
(0)
jm(ϑ, ϕ) =

i√
j(j + 1)

[
1

sinϑ

∂Yjm(ϑ, ϕ)

∂ϕ
eϑ −

∂Yjm(ϑ, ϕ)

∂ϑ
eϕ

]
,

where Yjm(ϑ, ϕ) are scalar spherical harmonics and i is the imaginary unit. In particular, a vector

field u that has no radial component, such is the case for the horizontal ocean velocity field u

introduced in section 2.1, where

u(ϑ, ϕ) = uϑ(ϑ, ϕ)eϑ + uϕ(ϑ, ϕ)eϕ, (A.2)

and, in addition, assuming that u is a square integrable function on the unit sphere, then u can

be represented in terms of Y
(0)
jm(ϑ, ϕ) and Y

(1)
jm(ϑ, ϕ) as

u(ϑ, ϕ) =

∞∑
j=0

j∑
m=−j

∑
λ=0,1

u
(λ)
jm Y

(λ)
jm(ϑ, ϕ). (A.3)

In addition, when u is a real-valued function on the unit sphere, its coefficients satisfy

u
(λ)
j−m = (−1)m+λ+1

[
u

(λ)
jm

]∗
, (A.4)

where the asterisk stands for the complex conjugation. The purpose of spherical harmonics analysis

is to estimate two sets of coefficients u
(λ)
jm, λ = 0, 1, from the measurements of the horizontal

components uϑ(ϑ, ϕ) and uϕ(ϑ, ϕ) of u on the unit sphere. The individual samples will be called

uk` = uϑ(ϑk, ϕ`) and vk` = uϕ(ϑk, ϕ`). Throughout this work, we assume that these measurements
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are performed over an equal angular grid where the separation between parallels, ∆ϑ = π/N , where

N is an integer, is constant and is equal to the separation between meridians, ∆ϕ = ∆ϑ = ∆. For

such a regular grid, data consist of values determined at the intersections of the grid and indexes

k and ` take the values 0 ≤ k ≤ N − 1 and 0 ≤ ` ≤ 2N − 1. Thus, there are 2N2 points in

the equal angular grid for each component uϑ and uϕ, which implies that the number of fully

recoverable coefficients u
(0)
jm and u

(1)
jm is finite. In analogy with 2-D Fourier series, Colombo (1981)

has shown that the Nyquist frequency in the case of spherical harmonics is π/∆. This implies that

the maximum angular degree jmax up to which the coefficients u
(λ)
jm are fully recoverable and are

free of the alias effect, is given by the inequality jmax < π/∆, or jmax < N . As a consequence, the

expansion (A.3) must be replaced by a truncated spherical harmonic series,

u(ϑ, ϕ) =

jmax∑
j=1

j∑
m=−j

∑
λ=0,1

u
(λ)
jm Y

(λ)
jm(ϑ, ϕ). (A.5)

Note that the summation over j starts from j = 1, since Y
(0)
00 (ϑ, ϕ) = Y

(1)
00 (ϑ, ϕ) = 0 for any

(ϑ, ϕ). In other words, 4N2 data are disposable for determining jmax(jmax + 3) complex harmonic

coefficients u
(0)
jm and u

(1)
jm because of the validity of eq. (A.4) for the negative-order coefficients.

Estimates above the Nyquist frequency are usually regarded as meaningless. In the terminology of

inverse problems, the determination of u
(0)
jm and u

(1)
jm is an overdetermined problem with no exact

solution. In the following, the coefficients u
(0)
jm and u

(1)
jm will be estimated by the least-squares

method.

We suppose that the data samples uk` and vk`, measured over the equal angular grid,

ϑk = ∆/2 + k∆, k = 0, 1, . . . , N − 1,
(A.6)

ϕ` = `∆, ` = 0, 1, . . . , 2N − 1,

with ∆ = π/N , satisfy the observation equation of the form

y = Xβ + e, (A.7)

where y is the column vector of 4N2 data samples,

y = {(uk`, vk`), k = 0, 1, . . . , N − 1, ` = 0, 1, . . . , 2N − 1}, (A.8)

β is the column vector of jmax(jmax + 3) coefficients u
(1)
jm and u

(0)
jm,

β = {(u(1)
jm, u

(0)
jm), j = 1, . . . , jmax,m = 0, 1, . . . , j}, (A.9)

and X is the design matrix with the elements

Xk`,jm =
1√

j(j + 1)


∂Yjm(ϑ, ϕ)

∂ϑ

i

sinϑ

∂Yjm(ϑ, ϕ)

∂ϕ

1

sinϑ

∂Yjm(ϑ, ϕ)

∂ϕ
−i∂Yjm(ϑ, ϕ)

∂ϑ


(ϑk,ϕ`)

. (A.10)

Because of data errors e, eq. (A.7) is mathematically inconsistent and an exact solution to this

system does not exist. By assuming that errors e have zero means and are uncorrelated, the

least-squares estimate β̂ of parameters β is given by the normal equations (e.g. Koch, 1999)

X†X β̂ = X†y, (A.11)
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where the dagger stands for the conjugate transpose. The elements of the normal matrix X†X are

(X†X)j1m1,j2m2 =

(
B11
j1m1,j2m2

B12
j1m1,j2m2

B21
j1m1,j2m2

B22
j1m1,j2m2

)
1√

j1(j1 + 1)j2(j2 + 1)
(A.12)

with the elements

B11
j1m1,j2m2

=
∑
k`

(
∂ Y ∗j1m1

(ϑ, ϕ)

∂ϑ

∂ Yj2m2(ϑ, ϕ)

∂ϑ
+

1

sin2 ϑ

∂ Y ∗j1m1
(ϑ, ϕ)

∂ϕ

∂ Yj2m2(ϑ, ϕ)

∂ϕ

)
(ϑk,ϕ`)

,

B12
j1m1,j2m2

=
∑
k`

i

sinϑ

(
∂ Y ∗j1m1

(ϑ, ϕ)

∂ϑ

∂ Yj2m2(ϑ, ϕ)

∂ϕ
−
∂ Y ∗j1m1

(ϑ, ϕ)

∂ϕ

∂ Yj2m2(ϑ, ϕ)

∂ϑ

)
(ϑk,ϕ`)

,

B21
j1m1,j2m2

= B12
j1m1,j2m2

, (A.13)

B22
j1m1,j2m2

= B11
j1m1,j2m2

.

For the equal angular grid, ϕ` = 2π`/2N , it holds that

2N−1∑
`=0

eimϕ` =

{
2N, m = 0,

0, otherwise.
(A.14)

This condition, applied to the elements of the normal matrix, eliminates the summation over

longitudinal index ` and requires that m1 = m2,

B11
j1m1,j2m2

= 2N
N−1∑
k=0

(
∂Pj1m1(ϑ)

∂ϑ

∂Pj2m2(ϑ)

∂ϑ
+

m2
1

sin2 ϑ
Pj1m1(ϑ)Pj2m2(ϑ)

)
ϑ=ϑk

δm1m2 ,

(A.15)

B12
j1m1,j2m2

= −2Nm1

N−1∑
k=0

1

sinϑ

(
∂Pj1m1(ϑ)

∂ϑ
Pj2m1(ϑ) +

∂Pj2m1(ϑ)

∂ϑ
Pj1m1(ϑ)

)
ϑ=ϑk

δm1m2 ,

where δm1m2 is the Kronecker delta symbol. The last equation shows that the matrix of normal

equations for the equal angular grid is sparse. To make use of it for fast numerical solutions of the

normal equations, the spherical harmonic coefficients u
(1)
jm and u

(0)
jm are arranged in such a way that

all those of the same order m are grouped together. Then, the normal matrix has a block diagonal

form. For each order m1 > 0, the block is of dimension 2(jmax −m1 + 1). The largest block is for

the order m1 = 0 and is of the dimension 2jmax. The smallest block is for m1 = jmax and is of

dimension 2× 2.

Transformation of SH coefficients of horizontal velocity field from

Y
(λ)
jm(ϑ, ϕ) to Y `

jm(ϑ, ϕ) representations

As has been stated above the least squares estimate is carried out for u represented in vector

spherical harmonics Y
(λ)
jm(Ω) due to their explicit orientation with respect to radial and horizontal

directions. All other calculations in the thesis are carried out in Y `
jm(Ω) representation. The

spherical harmonic series for u are defined as follow

u(ϑ, ϕ) =
∑
jmλ

u
(λ)
jm Y

(λ)
jm(ϑ, ϕ)

=
∑
jm`

u`jm Y
`
jm(ϑ, ϕ) . (A.16)
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The spherical harmonics coefficients of the two representations can be related with the help of

relations (D.14), (D.15), (D.16),

uj−1
jm =

√
j + 1

2j + 1
u

(1)
jm +

√
j

2j + 1
u

(−1)
jm ,

uj+1
jm =

√
j

2j + 1
u

(1)
jm −

√
j + 1

2j + 1
u

(−1)
jm ,

ujjm = u
(0)
jm . (A.17)

In the case where the radial component of u is zero, ur = u
(−1)
jm = 0, the transformation relations

reduce to

uj−1
jm =

√
j + 1

2j + 1
u

(1)
jm ,

uj+1
jm =

√
j

2j + 1
u

(1)
jm ,

ujjm = u
(0)
jm . (A.18)



Appendix B

Matrix propagator

This appendix supplements some derivations for the matrix-propagator method presented in chap-

ter 3. In particular, the sections B.1 and B.2 supplement the derivations for the toroidal and

poloidal mode in sections 3.1 and 3.2, respectively.

B.1 Toroidal matrix propagator

B.1.1 Interface conditions for a homogeneous solution

We first derive the interface conditions for the toroidal matrix propagator given by a homogeneous

part of the Helmholtz equation (1.14). To guarantee the continuity of a solution for the magnetic

field BT on the spherical layer interface given by a discontinuity of electric conductivity σ(r), the

tangential component of magnetic and the tangential component of electric field are required to

pass continuously through it (eq. Stratton (1941)),

er ×
[
B
]+
− = 0,

er ×
[
E
]+
− = 0. (B.1)

With the help of the relations (D.36 ) - (D.40), the interface condition for the toroidal magnetic

field takes the form

er ×BT(r,Ω, k) =
∑
jm

αjjm wj(kr) [er × Y j
jm(Ω)]

= i
∑
jm

αjjm wj(kr)

[√
j + 1

2j + 1
Y j−1
jm (Ω) +

√
j

2j + 1
Y j+1
jm (Ω)

]
.

(B.2)

With relation (3.7), the interface condition for the spheroidal electric field is

er ×ES(r,Ω, k) =
i

σµ0

∑
jm

αjjm

[√
j

2j + 1

(
d

dr
− j

r

)
wj(kr) (i)

√
j

2j + 1
Y j
jm(Ω)

+

√
j + 1

2j + 1

(
d

dr
+
j + 1

r

)
wj(kr) (i)

√
j + 1

2j + 1
Y j
jm(Ω)

]

=
i2

σµ0

∑
jm

αjjm

[(
d

dr
+

(−j2) + (j + 1)2

(2j + 1)r

)
wj(kr) Y

j
jm(Ω)

]

= − 1

σµ0

∑
jm

αjjm

(
d

dr
+

1

r

)
wj(kr) Y

j
jm(Ω)

= − 1

rσµ0

∑
jm

αjjm
d

dr
[rwj(kr)] Y

j
jm(Ω) .

(B.3)
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B.1.2 Derivation of the matrix propagator for the toroidal case

Starting by the matrix K for the toroidal mode (eq. 3.15) consisting of the fundamental solutions

given by linear combination of the Bessel functions 1st and 2nd kind, we derive now the propaga-

tor M for a homogenous solution through a layer with a constant electrical conductivity σ (and

therefore, a constant wave number k). The matrix K for an arbitrary layer indexed by s has the

form

Ks
j(r) =

 jj(z) nj(z)
1

z2

d

dz
[z jj(z)]

1

z2

d

dz
[z nj(z)]


z = zs

=

 jj(z) nj(z)
1

z2
[z j′j(z) + jj(z)]

1

z2
[z n′j(z) + nj(z)]


z = zs

. (B.4)

First, the inversion of matrix K is required. A general form of 2 × 2 inverse matrix is following

Bronstein et al. (1997). If

K =

(
k11 k12

k21 k22

)
, (B.5)

then

K−1 =
1

k11k22 − k12k21

(
k22 −k12

−k21 k11

)
(B.6)

provided that k11k22 − k12k21 6= 0. The determinant of K given by (B.4) is

detK =
1

z2
{jj(z)[z n′j(z) + nj(z)]− nj(z)[z j′j(z) + jj(z)]}

=
1

z2
z[jj(z)n

′
j(z)− j′j(z)nj(z)]

=
1

z3
,

(B.7)

where we use the Wronskian determinant (Abramowitz and Stegun, 1970)

1

z2
= jj(z)n

′
j(z)− j′j(z)nj(z) . (B.8)

The inverse matrix than takes the form

K−1(z) = z z2

 1

z2
[z n′j(z) + nj(z)] −nj(z)

− 1

z2
[z j′j(z) + jj(z)] jj(z)


= z

 z n′j(z) + nj(z) −z2 nj(z)

−[z j′j(z) + jj(z)] z2 jj(z)

 . (B.9)

Let z1 = zs = ksrs be the top and z2 = zs−1 = ksrs−1 be the bottom of a spherical layer s. Then

the transformation between the top-bottom interface values ys1 and ys2 is(
ysjm

)
rs

= M s(ksrs, ksrs−1)
(
ysjm

)
rs−1

, (B.10)
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where M s stands for the transformation matrix through a spherical layer s

M s = Ks
j(ksrs)[K

s
j(ksrs−1)]−1

=

 jj(z1) nj(z1)

1

z2
1

[z1 j
′
j(z1) + jj(z1)]

1

z2
1

[z1 n
′
j(z1) + nj(z1)]


z2

 z2 n
′
j(z2) + nj(z2) −z2

2 nj(z2)

− [z2 j
′
j(z2) + jj(z2)] z2

2 jj(z2)

 .

(B.11)

Using the cross-products for the spherical Bessel functions in appendix C (eqs C.7 - C.10), the

matrix elements can be arranged as

m11 = z2{jj(z1)[z2 n
′
j(z2) + nj(z2)]− nj(z1)[z2 j

′
j(z2) + jj(z2)]}

= z2(pj + z2 gj) , (B.12)

m12 = z2
2 z2[−jj(z1)nj(z2) + nj(z1)jj(z2)]

= −z2
2 z2 pj , (B.13)

m21 =
1

z2
1

z2{[z1 j
′
j(z1) + jj(z1)][z2n

′
j(z2) + nj(z2)]− [z1 n

′
j(z1) + nj(z1)][z2 j

′
j(z2) + jj(z2)]}

=
1

z2
1

z2(pj + z1rj + z2gj + z1z2sj) , (B.14)

m22 = z2 z
2
2

1

z2
1

{−[z1 j
′
j(z1) + jj(z1)] nj(z2) + jj(z2) [z1 n

′
j(z1) + nj(z1)]} ,

= z2 z
2
2

1

z2
1

(−pj − z1rj) . (B.15)

Hence,

M s = z2

 pj + z2 gj −z2
2 pj

1

z2
1

(pj + z1 rj + z2 gj + z1 z2 sj)
1

z2
1

z2
2 (−pj − z1 rj)

 . (B.16)

B.2 Poloidal matrix propagator

In this section we derive the interface conditions for the poloidal matrix-propagator method given

by a homogeneous part of the Helmholtz equation (1.24). To guarantee the continuity of a solution

for the magnetic field BP on a spherical layer interface given by a discontinuity of electric conduc-

tivity σ(r), the radial and tangential components of magnetic field (eqs 3.42) are required to pass

continuously through it (eq. Stratton (1941)),

er ·
[
B
]+
− = 0,

er ×
[
B
]+
− = 0. (B.17)

B.2.1 A homogeneous solution

The induction equation for the poloidal magnetic field (eq. 1.24) is represented in magnetic po-

tential A. Therefore, we use the relation (D.33) to obtain the representation of magnetic field B.



128 Matrix propagator

Additionally, with the relations (D.36 ) - (D.40), we express the normal and tangential components

of the poloidal magnetic field in the following form,

er ·BP(r,Ω, k) = i
∑
jm

αjjm

[√
j

2j + 1

(
d

dr
− j

r

)
wj(kr) er Y

j+1
jm (Ω)

+

√
j + 1

2j + 1

(
d

dr
+
j + 1

r

)
wj(kr) er Y

j−1
jm (Ω)

]

= i
∑
jm

αjjm

[√
j

2j + 1

(
d

dr
− j

r

)
wj(kr)

(
−

√
j + 1

2j + 1

)
Yjm(Ω)

+

√
j + 1

2j + 1

(
d

dr
+
j + 1

r

)
wj(kr)

√
j

2j + 1
Yjm(Ω)

]

= i
∑
jm

αjjm

[√
j(j + 1)

2j + 1

j + j + 1

r

]
wj(kr) Yjm(Ω)

=
i

r

∑
jm

αjjm
√
j(j + 1) wj(kr) Yjm(Ω)

(B.18)

and

er ×BP(r,Ω, k) = i
∑
jm

αjjm

[√
j

2j + 1

(
d

dr
− j

r

)
wj(kr) (i)

√
j

2j + 1
Y j
jm(Ω)

+

√
j + 1

2j + 1

(
d

dr
+
j + 1

r

)
wj(kr) (i)

√
j + 1

2j + 1
Y j
jm(Ω)

]

= i2
∑
jm

αjjm

[(
d

dr
+

(−j2) + (j + 1)2

(2j + 1)r

)
wj(kr) Y

j
jm(Ω)

]

= −
∑
jm

αjjm

(
d

dr
+

1

r

)
wj(kr) Y

j
jm(Ω)

= −1

r

∑
jm

αjjm
d

dr
[rwj(kr)] Y

j
jm(Ω) .

(B.19)

B.2.2 The particular solution

The particular solution for the poloidal case is given by eqs (2.9) and (2.10),

Apart
T (r,Ω, ω) = − i

ω

∑
jm

Gjjm(a)
(r
a

)j
Y j
jm(Ω). (B.20)

Let be

Ajjm(r) := − i
ω
Gjjm(a)

(r
a

)j
, (B.21)

then, considering the relation (D.33), we express eq. (B.20) in terms of the magnetic intensity

Bpart
P = curlApart

T

= i
∑
jm

[√
j

2j + 1

(
d

dr
− j

r

)
Ajjm(r) Y j+1

jm (Ω)

+

√
j + 1

2j + 1

(
d

dr
+
j + 1

r

)
Ajjm(r) Y j−1

jm (Ω)

]
. (B.22)
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First, we consider the derivative term in eq. (B.22);

d

dr
Ajjm(r) =

d

dr

[(
−i
ω

)
Gjjm(a)

(r
a

)j]
=
j

r

(
−i
ω

)
Gjjm(a)

(r
a

)j
=
j

r
Ajjm(r) . (B.23)

We substitute the result from eq. (B.23) in eq. (B.22) and find that the first summand of eq. (B.22)

is zero. For the second term, we get

Bpart
P (r,Ω, ω) = i

∑
jm

√
j + 1

2j + 1

(
j

r
+
j + 1

r

)(
−i
ω

)
Gjjm(a)

(r
a

)j
Y j−1
jm (Ω)

=
∑
jm

√
(j + 1)(2j + 1)

1

rω
Gjjm(a)

(r
a

)j
Y j−1
jm (Ω) . (B.24)

Finally, the boundary condition given by the normal and tangential parts of the magnetic field,

respectively, can by expressed with the relations (D.36) and (D.38),

er ·Bpart
P (r,Ω, ω) =

∑
jm

√
j

2j + 1

√
(j + 1)(2j + 1)

1

rω
Gjjm(a)

(r
a

)j
Yjm(Ω)

=
1

ωa

∑
jm

√
j(j + 1) Gjjm(a)

(r
a

)j−1
Yjm(Ω) , (B.25)

er ×Bpart
P (r,Ω, ω) = i

∑
jm

√
j + 1

2j + 1

√
(j + 1)(2j + 1)

1

rω
Gjjm(a)

(r
a

)j
Y j
jm(Ω)

=
i

ωa

∑
jm

(j + 1) Gjjm(a)
(r
a

)j−1
Y j
jm(Ω) . (B.26)

B.2.3 Derivation of the matrix propagator for the poloidal case

Starting by the matrix K for poloidal mode (eq. 3.49) consisting of the fundamental solutions given

by a linear combination of the Bessel functions 1st and 2nd kind, we derive now the propagator M

for a homogenous solution through a layer with constant electrical conductivity σ (and therefore,

constant wave number k). The matrix K for the s layer has the form

Ks
j(r) =

(
jj(z) nj(z)

[z j′j(z) + jj(z)] [z n′j(z) + nj(z)]

)
z = zs

. (B.27)

According to relations (B.5), and (B.6) we determine the inverse matrix. The needed determinant

by considering the Wronskian relation (B.8) has the form

detK = jj(z)[z n
′
j(z) + nj(z)]− nj(z)[z j′j(z) + jj(z)]

= z[jj(z)n
′
j(z)− j′j(z)nj(z)]

=
1

z
.

(B.28)

The inverse matrix is then

K−1(z) = z

 [z n′j(z) + nj(z)] −nj(z)

−[z j′j(z) + jj(z)] jj(z)

 . (B.29)
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Let z1 = zs = ksrs be the top and z2 = zs−1 = ksrs−1 be a bottom of the s spherical layer. Then

the transformation between the top-bottom interface values ys1 and ys2 is(
ysjm

)
rs

= M s(ksrs, ksrs−1)
(
ysjm

)
rs−1

, (B.30)

where M s stands for the transformation matrix through a spherical layer s

M s = Ks
j(ksrs)[K

s
j(ksrs−1)]−1

= z2

 jj(z1) nj(z1)

[z1 j
′
j(z1) + jj(z1)] [z1 n

′
j(z1) + nj(z1)]

 z2 n
′
j(z2) + nj(z2) −nj(z2)

− [z2 j
′
j(z2) + jj(z2)] jj(z2)

 .

(B.31)

Using the cross-products for the spherical Bessel functions in appendix C (eqs C.7 - C.10), the

matrix elements are of the form,

m11 = z2{jj(z1)[z2 n
′
j(z2) + nj(z2)]− nj(z1)[z2 j

′
j(z2) + jj(z2)]} ,

= z2(pj + z2 gj) (B.32)

m12 = z2[−jj(z1)nj(z2) + nj(z1)jj(z2)] ,

= −z2 pj (B.33)

m21 = z2{[z1 j
′
j(z1) + jj(z1)][z2n

′
j(z2) + nj(z2)]− [z1 n

′
j(z1) + nj(z1)][z2 j

′
j(z2) + jj(z2)]} ,

= z2(pj + z1rj + z2gj + z1z2sj) (B.34)

m22 = z2{−[z1 j
′
j(z1) + jj(z1)] nj(z2) + jj(z2)[z1 n

′
j(z1) + nj(z1)]} .

= z2 (−pj − z1rj) (B.35)

Hence,

M s = z2

(
pj + z2gj −pj

pj + z1rj + z2gj + z1z2sj −pj − z1rj

)
. (B.36)

B.2.4 Derivation of the solution in the source layer for poloidal case

To describe the generated poloidal magnetic field, let us divide the space into three different spher-

ical domains connected by spherical interfaces. The first domain, the Earth’s mantle and crust, is

defined by an electric conductive sphere without a source term of electromagnetic induction. The

solution for B in this domain is described by a homogeneous part of the Helmholtz equation. The

second domain is the atmosphere which is considered as an insulator, and therefore, there are no

electric currents passing through it. Nevertheless, as the poloidal magnetic field penetrates into

the atmosphere, it is a part of the solution domain. The magnetic field in the atmosphere can be

described by the Gauss coefficients bG
(i)
jm. Between these two domain the ocean layer is placed. It

is an electric conductive space with a source of the induced magnetic field. The solution for B

in the domain is described by the Helmhotz equation with a source of the magnetic field which

corresponds to the particular solution of this equation. Magnetic fields in particular domains are

connected by appropriate boundary conditions at the interfaces. First, we recall some relations

for the poloidal magnetic field from section 3.2. The ocean layer is assigned by label ’m’ with the
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radial distances r, rm−1 ≤ r ≤ rm, where rm = a and rm−1 = b. We recall equation (3.64) that

expresses the magnetic field in ocean layer Bm as the sum of homogeneous Bm
hmg and particular

Bm
part solutions,

Bm = Bm
hmg +Bm

part . (B.37)

We also recall that the interface conditions for a homogeneous solution are given by eqs (B.18) and

(B.19),

er ·Bhmg(r,Ω, k) =
i

r

∑
jm

αjm
√
j(j + 1) wj(kr) Yjm(Ω) , (B.38)

er ×Bhmg(r,Ω, k) = −1

r

∑
jm

αjm
d

d(kr)
[k r wj(kr)] Y

j
jm(Ω) , (B.39)

and for the particular solution by eqs (B.25) and (B.26),

er ·Bpart(r,Ω, ω) =
1

ω a

∑
jm

Gjjm(a)
√
j(j + 1)

(r
a

)(j−1)
Yjm(Ω) , (B.40)

er ×Bpart(r,Ω, ω) =
i

ω a

∑
jm

Gjjm(a) (j + 1)
(r
a

)(j−1)
Y j
jm(Ω) . (B.41)

Additionally, the interface conditions at the Earth’s surface from the atmosphere side are given by

eqs (3.60) and (3.61),

er ·B(r,Ω) =
∑
jm

(j + 1)
(a
r

)j+2
bG

(i)
jm Yjm(Ω) , (B.42)

er ×B(r,Ω) = −i
∑
jm

√
j(j + 1)

(a
r

)j+2
bG

(i)
jm Y

j
jm(Ω) . (B.43)

Having recalled necessary relations, we can express the interface conditions at the boundaries of

the ocean (label ’m’ stands for the ocean). The label m− 1 assigns the neighbouring layer beneath

the ocean with radii r ≤ rm−1 and label m + 1 stands for the atmosphere with radii r ≥ rm. The

two interface conditions at the bottom of the ocean layer (r = rm−1) are

er ·Bm−1
hmg (rm−1) = er ·Bm

hmg(rm−1) + er ·Bm
part(rm−1) , (B.44)

er ×Bm−1
hmg (rm−1) = er ×Bm

hmg(rm−1) + er ×Bm
part(rm−1) . (B.45)

The two interface conditions at the surface of the ocean layer (r = rm) are

er ·Bm
hmg(rm) + er ·Bm

part(rm) = er ·Bm+1(rm) , (B.46)

er ×Bm
hmg(rm) + er ×Bm

part(rm) = er ×Bm+1(rm) . (B.47)

For Bm−1
hmg (rm−1) in eq. (B.44) we use equation (3.23),

ym−1(rm−1) = c1L(km−1 rm−1, k1r1)k(k1r1) . (B.48)

Connecting the three solution domains together, the problem is fully described. The particular

solution Bm
part in the ocean is given by the source term. To evaluate the magnetic field in the

ocean, we additionally have to find a homogeneous solution in the ocean, Bm
hmg, denoted also as

ym(r), which is unknown variable to be determined. The solution in the ocean layer depends

also on the properties and behaviour of the magnetic field in neighbouring solution domains - the
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atmosphere and the layers beneath the ocean. To evaluate the solution at the ocean bottom, we

use equation (B.48), where coefficient c1 is unknown. The forth and last unknown in our system is

the Gauss coefficients bG
(i)
jm in eqs (B.42) and (B.43), which describes the generated magnetic field

in the atmosphere. To find four unknowns: ym
1 (r) , ym

2 (r) , c1 and bG
(i)
jm, we set up an equation

system consisting of four equations given by the interface conditions at top and bottom of the ocean

layer (B.44) - (B.47). Substituting for every term in eqs (B.44) - (B.47) by eqs (B.38) - (B.43), we

get the following equation system that corresponds to the derivation in subsection 3.2.3

i

rm−1

√
j(j + 1) ym−1

1,jm(rm−1) =
i

rm−1

√
j(j + 1) ym

1,jm(rm−1) +
1

ω a

√
j(j + 1) Gjjm(a)

(rm−1

a

)j−1

−1

rm−1
ym−1

2,jm(rm−1) =
−1

rm−1
ym

2,jm(rm−1) +
i

ω a
(j + 1) Gjjm(a)

(rm−1

a

)j−1

i

rm

√
j(j + 1) ym

1,jm(rm) +
1

ω a

√
j(j + 1) Gjjm(a) = (j + 1) bG

(i)
jm

−1

rm
ym

2,jm(rm) +
i

ω a
(j + 1) Gjjm(a) = −i

√
j(j + 1) bG

(i)
jm

(B.49)

which can be simplified as

ym−1
1,jm(rm−1) = ym

1,jm(rm−1)− i

ω
Gjjm(a)

(rm−1

a

)j
ym−1

2,jm(rm−1) = ym
2,jm(rm−1)− i

ω
(j + 1) Gjjm(a)

(rm−1

a

)j
ym

1,jm(rm)− i

ω
Gjjm(a) = − i a

√
(j + 1)

j
bG

(i)
jm

ym
2,jm(rm)− i

ω
(j + 1) Gjjm(a) = i a

√
j(j + 1) bG

(i)
jm .

(B.50)

We denote the particular solution as

sjm(r) :=


−i
ω
Gjjm(a)

(r
a

)j
−i
ω

(j + 1) Gjjm(a)
(r
a

)j


=

(
1

j + 1

)
−i
ω
Gjjm(a)

(r
a

)j
(B.51)

and introduce, on the atmosphere side, a vector

C0
j :=

− i a
√

(j + 1)

j

i a
√
j(j + 1)

 . (B.52)

These relations are those introduced by eqs (3.65) and (3.63).



Appendix C

The spherical Bessel functions

This appendix summarizes the relations for the Bessel functions used by the matrix propagator

technique in chapter 3. This relations has been published by Pěč et al. (1985). The spherical Bessel

functions of the first and the second kind, j`(z) and n`(z), are defined by

j`(z) =

√
π

2z
J`+ 1

2
(z) , (C.1)

n`(z) =

√
π

2z
N`+ 1

2
(z) . (C.2)

where J` and N` stand for the cylindrical Bessel functions of the first and the second kind, respec-

tively. Both functions satisfy the differential equation

d2w

dz2
+

2

z

dw

dz
+

[
1− `(`+ 1)

z2

]
w = 0 , (C.3)

where w(z) stands for j`(z) or n`(z). Moreover, the spherical Bessel functions w(z) satisfy the

recurrence relations of the terms

w`+1(z) + w`−1(z) =
2`+ 1

z
w`(z) , (C.4)

dw`(z)

dz
− `

z
w`(z) + w`+1(z) = 0 , (C.5)

dw`(z)

dz
+
`+ 1

z
w`(z) + w`−1(z) = 0 . (C.6)

The cross-products of the Bessel functions of first and second kind and their derivatives are defined

as

p` = j`(z1)n`(z2)− j`(z2)n`(z1) , (C.7)

q` = j`(z1)n′`(z2)− j′`(z2)n`(z1) , (C.8)

r` = j′`(z1)n`(z2)− j`(z2)n′`(z1) , (C.9)

s` = j′`(z1)n′`(z2)− j′`(z2)n′`(z1) , (C.10)

where ′ stands for the derivative of functions with respect to argument. The cross-products (C.7)

- (C.10) satisfy the following recurrence relations,

p`+1 = s` +
`2

z1z2
p` −

`

z1
q` −

`

z2
r` , (C.11)



134 The spherical Bessel functions

q`+1 =
`

z1
p` −

`+ 2

z2
p`+1 − r` , (C.12)

r`+1 =
`

z2
p` −

`+ 2

z1
p`+1 − q` , (C.13)

s`+1 = p` −
(`+ 2)2

z1z2
p`+1 −

`+ 2

z1
q`+1 −

`+ 2

z2
r`+1 . (C.14)

The checking relation is

p`s` − q`r` =
1

z2
1z

2
2

. (C.15)

The starting values of recurrences (C.11) - (C.14) are:

p0 =
sin(z2 − z1)

z1z2
, (C.16)

q0 =
cos(z2 − z1)

z1z2
− sin(z2 − z1)

z1z2
2

, (C.17)

r0 = −cos(z2 − z1)

z1z2
− sin(z2 − z1)

z2
1z2

, (C.18)

s0 =
sin(z2 − z1)

z1z2
− cos(z2 − z1)

z2
1z2

+
cos(z2 − z1)

z1z2
2

+
sin(z2 − z1)

z2
1z

2
2

. (C.19)

Spherical Bessel functions of the first and the second kind of the same argument satisfy the relation

j`(z)n`−1(z)− j`−1(z)n`(z) = z−2 . (C.20)

Let function χ`(z) be the ratio of the spherical Bessel functions of the first and second kind,

χ`(z) =
z j`+1(z)

j`(z)
. (C.21)

The recurrent relation for χ`(z) reads as

χ`+1(z) = (2`+ 3)− z2

χ`(z)
. (C.22)

The starting value of recurrence (C.21) is

χ0(z) = 1− z cot(z) . (C.23)



Appendix D

Basic relations for spherical

harmonics representation

This appendix summarizes some basic relations for spherical harmonics by following Varshalovich

et al. (1988) book with the references on the section number and equation number given in this

book.

D.1 Definition of scalar spherical harmonics

(chap. 5.2.1 eq. 6 )

Yjm(ϑ, ϕ) := Pjm(cosϑ)eimϕ (D.1)

where Pjm(cosϑ) are the associated Legendre functions

Pjm(cosϑ) := (−1)m

√
2j + 1

4π

(j −m)!

(j +m)!
(sinϑ)m

dm

(d cosϑ)m
Pj(cosϑ) (D.2)

and Pj(cosϑ) is the Legendre polynomial, with

Pj(cosϑ) :=
1

2jj!

dj(cos2 ϑ− 1)j

d(cosϑ)j
(D.3)

where

j = 0, 1, 2, 3, . . . ,∞ (D.4)

m = −j, . . . , 0, . . . , j (D.5)

The expansion of function F into a series of scalar spherical harmonics is

F (r, ϑ, ϕ) =

∞∑
j=1

j∑
m=−j

Fjm(r) Yjm(ϑ, ϕ) (D.6)

The zonal spherical harmonics are

Yj0(ϑ, ϕ) =

√
2j + 1

4π
Pj(cosϑ) (D.7)
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Orthonormality condition

(Chap. 5.1.4 )

(eq. 6 ) ∫ π

0

∫ 2π

0
Yj1m1(ϑ, ϕ) Y ∗j2m2

(ϑ, ϕ) sinϑ dϑ dϕ = δj1j2δm1m2 (D.8)

Complex conjugation

(Chap. 5.4 )

(eq. 1 )

Y ∗jm(ϑ, ϕ) = (−1)m Yj−m(ϑ, ϕ) (D.9)

D.2 Vector spherical harmonics

The expansion of a vector function F into a series of vector spherical harmonics

F (r, ϑ, ϕ) =
∞∑
j=1

j∑
m=−j

j+1∑
`=j−1

F `jm(r) Y `
jm(ϑ, ϕ) (D.10)

(Chap. 7.3.1 )

(eq. 6,7 )

Y
(1)
jm(ϑ, ϕ) =

1√
j(j + 1)

∇Ω Yjm(ϑ, ϕ) (D.11)

Y
(0)
jm(ϑ, ϕ) =

−i√
j(j + 1)

(er ×∇Ω)Yjm(ϑ, ϕ) (D.12)

Y
(−1)
jm (ϑ, ϕ) = er Yjm(ϑ, ϕ) (D.13)

(eq. 10 )

Y j+1
jm (ϑ, ϕ) =

√
j

2j + 1
Y

(1)
jm(ϑ, ϕ)−

√
j + 1

2j + 1
Y

(−1)
jm (ϑ, ϕ) (D.14)

Y j
jm(ϑ, ϕ) = Y

(0)
jm(ϑ, ϕ) (D.15)

Y j−1
jm (ϑ, ϕ) =

√
j + 1

2j + 1
Y

(1)
jm(ϑ, ϕ) +

√
j

2j + 1
Y

(−1)
jm (ϑ, ϕ) (D.16)

(eq. 9 )

Y
(1)
jm(ϑ, ϕ) =

√
j + 1

2j + 1
Y j−1
jm (ϑ, ϕ) +

√
j

2j + 1
Y j+1
jm (ϑ, ϕ) (D.17)

Y
(0)
jm(ϑ, ϕ) = Y j

jm(ϑ, ϕ) (D.18)

Y
(−1)
jm (ϑ, ϕ) =

√
j

2j + 1
Y j−1
jm (ϑ, ϕ)−

√
j + 1

2j + 1
Y j+1
jm (ϑ, ϕ) (D.19)

Orthonormality condition

(Chap. 7.3.13 )

(eq. 121 ) ∫ π

0

∫ 2π

0
Y `1 ∗
j1m1

(ϑ, ϕ)Y `2
j2m2

(ϑ, ϕ) sinϑ dϑ dϕ = δj1j2δ`1`2δm1m2 (D.20)
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Complex conjugation

(Chap. 7.3.3 )

(eq. 39 )

Y ` ∗
jm(ϑ, ϕ) = (−1)j+`+m+1Y `

j−m(ϑ, ϕ)

Y
(λ)∗
jm (ϑ, ϕ) = (−1)m+λ+1Y

(λ)
j−m(ϑ, ϕ)

(D.21)

The zonal spherical vector harmonics are expressed by the associated Legendre function of order

m = 1

Y
(0)
j0 (ϑ, ϕ) = −i Pj1(ϑ) eϕ (D.22)

D.3 Components of vector spherical harmonics

(Chap. 7.3.2 )

(eq. 25 ) [
Y

(1)
jm(ϑ, ϕ)

]
r

= 0[
Y

(1)
jm(ϑ, ϕ)

]
ϑ

=
1√

j(j + 1)

∂

∂ϑ
Yjm(ϑ, ϕ)[

Y
(1)
jm(ϑ, ϕ)

]
ϕ

=
1√

j(j + 1)

1

sinϑ

∂

∂ϕ
Yjm(ϑ, ϕ)

(D.23)

(eq. 26 ) [
Y

(0)
jm(ϑ, ϕ)

]
r

= 0[
Y

(0)
jm(ϑ, ϕ)

]
ϑ

=
i√

j(j + 1)

1

sinϑ

∂

∂ϕ
Yjm(ϑ, ϕ)[

Y
(0)
jm(ϑ, ϕ)

]
ϕ

= − i√
j(j + 1)

∂

∂ϑ
Yjm(ϑ, ϕ)

(D.24)

(eq. 27 ) [
Y

(−1)
jm (ϑ, ϕ)

]
r

= Yjm(ϑ, ϕ)[
Y

(−1)
jm (ϑ, ϕ)

]
ϑ

= 0[
Y

(−1)
jm (ϑ, ϕ)

]
ϕ

= 0

(D.25)

D.4 Solution of the Helmholtz equation by vector spherical har-

monics

The vector w`(z)Y
`
jm(ϑ, ϕ) satisfies the vector Helmholtz equation

(Chap.7.3.5 Differential Equations c) eq. 49 )

(∆ + k2){w`(z)Y `
jm(ϑ, ϕ)} = 0 (D.26)

where w`(z) is the Bessel function of the first and second kind, and z = kr.
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D.5 The cross product of vector spherical harmonics used for the

source term

The cross product in equation (2.24) is arranged according to the relation given in

(chap.7.3.10 eq. 100 Clebsch-Gordan Series)

Y `1
j1m1

(ϑ, ϕ)× Y `2
j2m2

(ϑ, ϕ) = i

√
3

2π
(2j1 + 1)(2j2 + 1)(2`1 + 1)(2`2 + 1)

×
∑
j `


j1 `1 1

j2 `2 1

j ` 1

C`0`10`20 C
jm
j1m1j2m2

Y `
jm(ϑ, ϕ) . (D.27)

where the Wigner’s 9− j symbols are given by

(Chap. 10.9.2 Explicit Forms of the 9j symbols for Special Values of the Arguments)
a b c

d e c

g g 1

 = (−1)b+d+g+c2
(a− d)(a+ d+ 1)− (b− e)(b+ e+ 1)

[(2g + 2)(2g + 1)2g(2c+ 2)(2c+ 1)2c]
1
2

{
a b c

e d g

}
(D.28)

and the 6− j symbols are given in table 9.2 Numerical Values of the 6j symbols

(Chap. 9.11 Tables of Algebraic Expressions for the 6j Symbols). The Glebsch-Gordan coefficients

Cjmj1m1j2m2
are then numerically solved in

(Chap. 8 The Clebsch-Gordan coefficients). The first Glebsh-Gordan coefficient for the zonal case

is (Chap. 8.5.2 Spherical Values of Momentum Projections a))

Cc0a0b0 =

0, if a+ b+ c = 2g + 1,

(−1)g−c
√

2c+1 g!
(g−a)!(g−b)!(g−c)!

[
(2g−2a)!(2g−2b)!(2g−2c)!

(2g+1)!

] 1
2
, if a+ b+ c = 2g,

(D.29)

where g is a positive integer. The general form of the Clebsch-Gordan coefficients can be found in

(Chap. 8.2.1 Representations of the Glebsh-Gordan coefficients in the form of algebraic sums 5)

Wigner[43])

Cjmj1m1j2m2
=δm,m1+m2 4 (j1j2j)

[
(j +m)!(j −m)!(2j + 1)

(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!

] 1
2

×
∑
z

(−1)j2+m2+z(j + j2 +m1 − z)!(j1 −m1 + z)!

z!(j − j1 + j2 − z)!(j +m− z)!(j1 − j2 −m+ z)!
(D.30)

where

4(j1 j2 j) =

[
(j1 + j2 − j)!(j1 − j2 + j)!(−j1 + j2 + j)!

(j1 + j2 + j + 1)!

] 1
2

(D.31)

and the summation index z assumes integer values for which all the factorial arguments are non-

negative.

D.6 Differential operations

(chap.7.3.6. c) eq. 55 )
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1)

curl[f(r)Y j+1
jm (ϑ, ϕ)] = i

√
j

2j + 1

(
d

dr
+
j + 2

r

)
f(r)Y j

jm(ϑ, ϕ) (D.32)

2)

curl[f(r)Y j
jm(ϑ, ϕ)] = i

√
j

2j + 1

(
d

dr
− j

r

)
f(r) Y j+1

jm (ϑ, ϕ)

+ i

√
j + 1

2j + 1

(
d

dr
+
j + 1

r

)
f(r) Y j−1

jm (ϑ, ϕ)

(D.33)

3)

curl[f(r)Y j−1
jm (ϑ, ϕ)] = i

√
j + 1

2j + 1

(
d

dr
− j − 1

r

)
f(r)Y j

jm(ϑ, ϕ) (D.34)

D.7 Algebraic relations

(chap. 7.3.8. b) eq. 71 )

er · Y j−1
jm (ϑ, ϕ) =

√
j

2j + 1
Yjm(ϑ, ϕ) (D.35)

er · Y j
jm(ϑ, ϕ) = 0 (D.36)

er · Y j+1
jm (ϑ, ϕ) = −

√
j + 1

2j + 1
Yjm(ϑ, ϕ) (D.37)

(chap. 7.3.8 c) eq. 73 )

er × Y j−1
jm (ϑ, ϕ) = i

√
j + 1

2j + 1
Y j
jm(ϑ, ϕ) (D.38)

er × Y j
jm(ϑ, ϕ) = i

√
j + 1

2j + 1
Y j−1
jm (ϑ, ϕ) + i

√
j

2j + 1
Y j+1
jm (ϑ, ϕ) (D.39)

er × Y j+1
jm (ϑ, ϕ) = i

√
j

2j + 1
Y j
jm(ϑ, ϕ) (D.40)

D.8 Operator ∇

(Chap. 1.3.1 )

∇ = er∇r + eϑ∇ϑ + eϕ∇ϕ (D.41)

∇r =
∂

∂r

∇ϑ =
1

r

∂

∂ϑ

∇ϕ =
1

r sinϑ

∂

∂ϕ

(D.42)

and if

∇ = er
∂

∂r
+

1

r
∇Ω (D.43)

then

∇Ω = eϑ
∂

∂ϑ
+

eϕ
sinϑ

∂

∂ϕ
(D.44)
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D.9 Special case: zonal toroidal vector spherical harmonics

Y
(0)
j0 (ϑ, ϕ)

The derivation of Yjm with respect to longitude ϕ

(Chap. 5.8.2 )

(eq. 4 )
∂

∂ϕ
Yjm(ϑ, ϕ) = imYjm(ϑ, ϕ) . (D.45)

For m = 0
∂

∂ϕ
Yj0(ϑ, ϕ) = 0 . (D.46)

The derivation with respect to co-latitude ϑ

(eq. 5 )

∂

∂ϑ
Yjm(ϑ, ϕ) =

1

2

√
j(j + 1)−m(m+ 1)Yjm+1(ϑ, ϕ)e−iϕ

− 1

2

√
j(j + 1)−m(m− 1)Yjm−1(ϑ, ϕ)eiϕ .

(D.47)

In addition, the relation for m = ±1:

(Chap. 5.13.2 )

(eq. 8 )

Yj±1(ϑ, ϕ) = ∓ e
±iϕ

sinϑ

√
j(j + 1)

4π(2j + 1)
[Pj−1(cosϑ)− Pj+1(cosϑ)] . (D.48)

Eq. (D.47) for m = 0 now reads as

∂

∂ϑ
Yj0(ϑ, ϕ) = −1

2

√
j(j + 1)

eiϕ

sinϑ

√
j(j + 1)

4π(2j + 1)
[Pj−1(cosϑ)− Pj+1(cosϑ)] e−iϕ

− 1

2

√
j(j + 1)

e−iϕ

sinϑ

√
j(j + 1)

4π(2j + 1)
[Pj−1(cosϑ)− Pj+1(cosϑ)] eiϕ

= −
√
j(j + 1)

1

sinϑ

√
j(j + 1)

4π(2j + 1)
[Pj−1(cosϑ)− Pj+1(cosϑ)]

= − 1

sinϑ

j(j + 1)√
4π(2J + 1)

[Pj−1(cosϑ)− Pj+1(cosϑ)]

(D.49)

and using relations (D.24); the components of the zonal toroidal vector spherical harmonics take

the form[
Y

(0)
j0 (ϑ, ϕ)

]
r

= 0 ,[
Y

(0)
j0 (ϑ, ϕ)

]
ϑ

= 0 ,[
Y

(0)
j0 (ϑ, ϕ)

]
ϕ

=
i√

j(j + 1)

j(j + 1)

sinϑ

1√
4π(2j + 1)

[Pj−1(cosϑ)− Pj+1(cosϑ)] ,

=
i

sinϑ

√
j(j + 1)

4π(2j + 1)
[Pj−1(cosϑ)− Pj+1(cosϑ)] .

(D.50)
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