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Chapter 1

Introduction

Molecular simulation approaches play an important role in studying aqueous solvation
in condensed matter physics (See Ref. [69]). However, the size and time scales of the
simulation are by far too small compared to those required for a complete understand-
ing of the solvation process. Recently developed adaptive resolution multiscale tech-
niques [22,34,84,89] allow to treat only those DOF’s in a region of space where process of
interest takes place while allowing the rest of the system to be treated at coarser level. Such
a scheme not only results in gain in computational efficiency but also paves the way for
studying the physio-chemical properties in a complete and accurate way since the DOF’s
that are not essential to the problem and that may overshadow the underlying physics of
system are, in this case, coarse-grained [49,89]. The interesting study in this context is the
treatment of hydrogen as a quantum particle (i.e. with a sizeable delocalization in space)
since many of the crucial properties of water may indeed be influenced by the quantum
nature of hydrogen [72]. The quantum delocalization of the hydrogen atom is treated in
molecular dynamics (MD) via path-integral (PI) formalism [25, 107] where each atom is
mapped onto a polymer ring containing fictitious beads and the proper statistical sampling
can be obtained by averaging over the trajectories of the polymer rings; which in turn are
governed by Newton’s equations. Thus, PIMD can be used to determine the quantum
statistical properties of the system. Compared to standard MD, the computational costs
of PIMD are very high. As a consequence, studies involving large systems and long time
scales that allow for an accurate calculation of statistical and thermodynamic properties
as done in Refs. [49] would be prohibitive with the current computational resources. In
this perspective, one can combine PIMD with the latest version of AdResS, i.e. grand-
canonical AdResS [111] which is equivalent of coupling two regions with different number
of effective “classical” degrees of freedom, where a relatively small high resolution (PI)
region is embedded in a large reservoir containing coarse-grained (spherical) molecules.
This idea implies that the high resolution system is an open system that exchanges energy
and particles with the reservoir. In order to realize such a scheme, it becomes imperative
to provide a mathematical/rigorous definition of equilibrium statistical properties in sim-
ulation techniques with open boundaries. Since the adaptive resolution approach is based
on force interpolation and a global Hamiltonian cannot be defined [17], the principles of
standard statistical mechanics can not be applied directly and have to be reformulated
within the framework of adaptive resolution. In the first part of the thesis, we show the
capability of GC-AdResS, with classical MD, to be a generic tool for the calculation of

1
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thermodynamic properties (specifically, the excess chemical potential) of a system in a
grand-canonical fashion, using a simple generic Weeks-Chandler-Andersen (WCA) poten-
tial in the coarse-grained reservoir. Thus, one does not need to run a full MD simulation to
calculate the coarse-grained potential as is required for structural coarse-graining methods
like inverted Boltzmann Inversion [96], Force matching [23] etc. We calculate the excess
chemical potential for a wide variety of liquids and mixtures and compare the results with
thermodynamic integration (TI) results. In the second part of this thesis, we show the cor-
respondence between the Bergman-Lebowitz model for grand ensemble and GC-AdResS,
which gives a conceptual consistency to the simulation techniques that mimic open systems
and provides a theoretical definition to the equilibrium time correlation functions in sys-
tems with varying number of particles. We calculate these functions for liquid water using
GC-AdResS and show that the method reproduces the reference results from full-atomistic
simulations. This establishes GC-AdResS as a reliable method for the calculation of static
and dynamical properties in open systems. Since the path-integral polymer rings can be
interpreted in terms of classical fictitious atoms, the theoretical concepts developed in the
first two parts of this thesis for classical MD are used straightforwardly for the conceptual
justification of merging PI techniques with GC-AdResS. We calculate the quantum static
and dynamical properties of liquid water using GC-AdResS in conjunction with three dif-
ferent PI techniques: path integral molecular dynamics (PIMD) [108, 118], ring polymer
molecular dynamics (RPMD) [16,31,32] and centroid molecular dynamics (CMD) [13,38].
The comparison with reference data is highly satisfactory and suggest that GC-AdResS
may be used as a complementary method for large scale PIMD applications.

1.1 Outline of the thesis

The thesis is organised as follows: In Chapter 2, the important theoretical concepts of
statistical mechanics and molecular simulations are reported that are used throughout this
thesis. The adaptive resolution method (AdResS) is introduced and the theoretical evolu-
tion of the method in the last ten years has been discussed. Finally, Feynman’s path integral
formalism is discussed and the derivation of path integral partition function is reported.
Chapter 3 deals with the calculation of structural properties and the excess chemical poten-
tial using GC-AdResS with classical MD. The method is applied to a representative class
of liquids and mixtures where the coarse-grained particles interact via a generic WCA
potential. Chapter 4 establishes the connection between the Bergmann-Lebowitz model
for grand ensemble and GC-AdResS. The principles of this model are used to define equi-
librium time correlation functions in open systems. Finally, simulation of liquid water is
performed using GC-AdResS with classical MD and the equilibrium time correlation func-
tions are calculated. The functions are compared with the functions calculated in reference
MD simulations. Chapter 5 deals with the implementation of different path-integral (PI)
techniques in GC-AdResS. Three different PI techniques are discussed and the technical
aspects of the implementation in GC-AdResS are reported in detail. Finally, quantum
static and dynamic properties of liquid water are calculated using PI-GC-AdResS. These
properties are compared with the results from reference PI simulations.



Chapter 2

Theoretical Background

In this chapter, we describe all the different methods and theoretical concepts that have
been used in this thesis. In the first part, we discuss the theoretical background of Molecular
Dynamics (MD) and the Liouville theorem, a key theorem in statistical mechanics for MD.
We describe the relevant computational aspects (integrators / thermostats / potentials)
of MD that are important for the work in subsequent chapters. Since there is plethora of
literature available, we just focussed on the following books for writing this chapter: Stat-
istical Mechanics: Theory and Molecular Simulation [107]; Molecular Modelling: Principles
and Applications [51]; Understanding Molecular Simulation: From Algorithms and Applic-
ations [26] and Computer Simulation of Liquids [1]. The second part of this chapter deals
with coarse-grained methods and Adaptive Resolution Simulations (AdResS). We discuss
the theoretical and computational aspects of the AdResS method and review the literature
about the AdResS method. In the last part of this chapter, we discuss the path-integral
formalism that is used to model systems where nuclear delocalization plays an important
role.

2.1 Molecular Dynamics (MD) in a nutshell

In this section, we give a brief overview of MD principles and how macroscopic observables
are calculated in MD [1,26,51,107]. MD uses the information at the microscopic level, i.e.
coordinates and momenta of the particles, and transforms this information into macroscopic
data such as energy, pressure, heat capacity etc. This is done by solving Newton’s equations
of motions for a relatively small number of particles (compared to realistic system found
in nature) (N ∼ 103−5). The position and momenta of these N particles can be considered
as points in a multidimensional phase space with 6N dimensions. Each point in the phase
space represents a microstate. If we represent the coordinates and momenta of the ith

particle by qi and pi respectively, then the set of coordinates and momenta of N particles
can be written as:

q ≡ q1, ...,qN (2.1)

and
p ≡ p1, ...,pN (2.2)

If we denote the microstate by (q,p), then the instantaneous value of any observable A can
be denoted by a(q,p). The macroscopic observable A can be obtained by taking average

3
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of a(q,p) over a long time duration [1].

A = 〈a(q,p)〉time = lim
t→∞

∫ t

0

1
t′
a(q,p, t′)dt′ (2.3)

where t represents a sufficiently long time. In MD simulation, t is divided into a large
number of time steps (τ), where the length of each time step is ∆t = t/τ . The equations
of motions are solved at each step, and the coordinates and momenta of N particles are
updated. Thus, in MD the integral in Eq. 2.3 can be replaced by a summation:

A = 〈a(q,p)〉 = 1
τ

τ∑
0
A(q,p, t)∆t (2.4)

2.2 Liouville Theorem

Liouville theorem is an important theorem in statistical mechanics that describes the time
evolution of the phase space probability distribution function(See Refs. [1, 107]). In this
section, we show the derivation of the Liouville equation and discuss the theoretical found-
ations of the ensemble theory in statistical mechanics. We also discuss the equilibrium
solutions to the Liouville equation and the various ensembles that correspond to different
macroscopic parameters. Finally, we discuss ergodicity and how one can calculate phase
space averages using MD.

2.2.1 Ensemble theory and Liouville equation

An ensemble is defined as a collection of microstates in the phase space that have the same
set of macroscopic properties [35,101]. The probability distribution function ρ(q,p, t) de-
scribes how the systems in the ensemble are distributed in the phase space at any given
time. This function is specific to the choice of macroscopic parameters (N,V, P, T etc).
Each system represents a point in the phase space which evolves in time, with no depend-
ency on the evolution of other systems. The Liouville theorem states that ρ(q,p, t) is
conserved in time:

dρ(q,p, t)
dt

= 0 (2.5)

The total time derivative of ρ(q,p, t) can be written as:

dρ(q,p, t)
dt

= ∂ρ(q,p, t)
∂t

+
N∑
i=1

q̇i
∂ρ(q,p, t)

∂qi
+

N∑
i=1

ṗi
∂ρ(q,p, t)

∂pi
(2.6)

A Lioville operator L is defined such that:

iL =
N∑
i=1

q̇i
∂

∂qi
+

N∑
i=1

ṗi
∂

∂pi
(2.7)

Since total derivative of ρ(q,p, t) is zero, Eq. 2.6 can be rewritten as:

∂ρ(q,p, t)
∂t

= −(
N∑
i=1

q̇i
∂ρ(q,p, t)

∂qi
+

N∑
i=1

ṗi
∂ρ(q,p, t)

∂pi
) (2.8)
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The time evolution of the system can be described by Hamilton’s equations [33]:

dpi
dt

= −∂H(q,p)
∂qi

(2.9)

and
dqi
dt

= +∂H(q,p)
∂pi

(2.10)

where H = H(q,p) is the Hamiltonian of the system Therefore, once can write Eq. 2.11
as [1]:

∂ρ(q,p, t)
∂t

= −(
N∑
i=1

∂H(q,p)
∂pi

∂ρ(q,p, t)
∂qi

−
N∑
i=1

∂H(q,p)
∂qi

∂ρ(q,p, t)
∂pi

) (2.11)

which can further be represented in terms of Poisson bracket as:

∂ρ(q,p, t)
∂t

= −{ρ(q,p, t),H(q,p)} (2.12)

This equation can be written in terms of Liouville operator introduced in Eq. 2.7:

∂ρ(q,p, t)
∂t

= −iLρ(q,p, t) (2.13)

where i = 2√−1. The Liouville operator is defined as:

iL∗ = {∗,H} (2.14)

which means that the function on which Liouville operator acts gets substituted in place
of “∗” in the Poisson brackets. The formal solution to Eq. 2.13 can be written as:

ρ(q,p, t) = e−iLtρ(q,p, 0) (2.15)

Similarly, it can be shown that for any phase space function a(p,q), the time evolution of
the function can be expressed in terms of Liouville operator:

a(q,p, t) = eiLta(q,p) (2.16)

The operator eiLt is referred to as the classical propagator.

2.2.2 Equilibrium Solutions of the Liouville Equation

The macroscopic variable A can be computed from ensemble averages, which is defined
as [1]:

A = 〈A〉 =
∫
ρ(q,p, t)A(q,p)dqdp (2.17)

If ρ depends explicitly on time, then the observable will also depend on time. If we consider
the system at equilibrium, then the macroscopic variable should be time independent. This
will be possible only if the probability distribution function does not depend on time; i.e.

∂ρ(q,p, t)
∂t

= 0 (2.18)
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Thus, Eq. 2.12 reduces to:
{ρ(q,p, t),H(q,p)} = 0 (2.19)

The solution to Eq. 2.19 is that the probability distribution function is a function of H:

ρ(q,p) = 1
Z
F (H(q,p)) (2.20)

Here, Z is a normalization factor defined as:

Z =
∫
F (H(q,p))dqdp (2.21)

Z is also known as partition function which describes the statistical properties of a system in
equilibrium. It quantifies the number of microstates in the phase space that are accessible
within the ensemble. This quantity is specific to the choice of macroscopic parameters used
to define the ensemble. The three most commonly used ensembles are(See Ref. [35, 101]):

• Microcanonical ensemble or constant NVE ensemble: It represents the possible mi-
crostates of the system with constant number of particles (N), constant volume (V )
and constant energy (E). Such a system is referred to as “isolated” system, because
the system cannot exchange energy with the surroundings, and thus energy is con-
served in this system. The ensemble distribution function for the microcanonical
ensemble is defined as:

ρ(q,p) = 1
Z
δ(H(q,p))− E) (2.22)

where the partition function Z is defined as:

Z = 1
N !

1
h3N

∫
δ(H(q,p)− E)dqdp (2.23)

The distribution function in Eq. 2.22 selects out those states that have energy E,
while discarding other states. For an isolated system in thermodynamic equilibrium,
all the accessible microstates have the same probability.

• Canonical Ensemble or constant-NVT ensemble: This ensemble represents the micro-
states of the system which has constant number of particles (N), constant volume (V )
and constant temperature (T ). These conditions characterize the “closed” system,
which exchanges energy with the surroundings. The surroundings can be considered
as an infinite heat source, which keeps the system at a fixed temperature T , by driv-
ing energy fluctuations within the system. The ensemble distribution function for
the canonical ensemble is defined as:

ρ(q,p) = 1
Z
e

(
−H(q,p)

KBT

)
(2.24)

where Z is:

Z = 1
N !h3N

∫
e

(
−H(q,p)

KBT

)
dqdp (2.25)

The distribution in Eq. 2.24 is referred to as Boltzmann distribution. In contrast to
NVE system, the Hamiltonian of the system is not conserved when temperature is
fixed.
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• Grand-Canonical or constant-µVT ensemble: This ensemble represents the micro-
states of the system which has a constant chemical potential (µ), constant volume
(V ) and constant temperature (T ). The conditions describe an “open” system, which
exchanges energy and matter with the surroundings. Thus, the system is coupled
to a reservoir of energy and particles, which keeps the chemical potential µ con-
stant within the system, while driving the fluctuations in the number of particles.
The grand-canonical ensemble has been used in the study of order-disorder trans-
itions in binary substitutional alloys [97], anisotropic mass diffusion in a nanoporous
medium [37], adsorption isotherms in various zeolites [102] etc. The ensemble distri-
bution function for the grand-canonical ensemble is defined as:

ρ(q,p) = 1
Z
e

(
−H(q,p)−µN

KBT

)
(2.26)

where Z is:

Z =
∑
N

1
N !

1
h3N e

(
µN
KBT

) ∫
e

(
−H(q,p)

KBT

)
dqdp (2.27)

2.2.3 Ergodicity

The macroscopic observables can also be computed from the phase space averages [107]:

A = 〈a(q,p)〉 = 1
Z

∫
a(q,p)F (H(q,p))dqdp (2.28)

where F(H(q, p)) is the ensemble distribution function corresponding to a given set of
macroscopic variables. If the system is able to visit all the microstates in the given ensemble
in an infinite amount of time, then it is assumed to be ergodic. In such a scenario, the
ensemble average in Eq. 2.28 is equal to the time average in Eq. 2.4.

2.3 Integrators and Periodic Boundary Conditions (PBC)

In this section, we discuss the numerical integrators used in MD and give a brief overview
on the periodic boundary conditions in MD setup.

2.3.1 Integrators in Molecular Dynamics

As mentioned in Section 2.1, MD algorithm involves updating the positions and velocities
of all the molecules at each step. The molecules interact with each other via intermolecular
forces which are derived from predefined interaction potentials. The Hamiltonian for N
particles interacting with a potential U can be written as [26]:

H(r,p) =
N∑
i=1

p2
i

2mi
+ U(rN ) (2.29)

where r ≡ r1, ..., rN denotes the cartesian coordinates of the particles. Using the relations
in Eq. 2.9 and 2.10 the following microscopic equations of motion are obtained:

dri
dt

= ∂H(r,p)
∂pi

= pi
m

(2.30)
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for the positions and
dpi
dt

= −∂H(r,p)
∂ri

= −∇iU(r) (2.31)

for the momenta. The force acting on the molecule can be obtained from the potential
energy:

Fi(t) = −∇iU(r) (2.32)

The system evolves according to these equations which are solved using a numerical integ-
rator (see Refs. [51, 95]). The Verlet algorithm [109] is one of the many algorithms that
can be used to solve these differential equations. Using a Taylor expansion with respect to
the coordinates (and discarding the higher order terms), one obtains:

ri(t+ ∆t) ≈ ri(t) + ∆tvi(t) + ∆t2

2
Fi(t)
m

(2.33)

Similarly, one can use a Taylor expansion for ri(t−∆t):

ri(t−∆t) ≈ ri(t)−∆tvi(t) + ∆t2

2
Fi(t)
m

(2.34)

Adding Eq. 2.33 and Eq. 2.34, one obtains

ri(t+ ∆t) ≈ 2ri(t)− ri(t−∆t) + ∆t2

2
Fi(t)
m

(2.35)

Eq. 2.35 can be used to generate MD trajectories if one gives the initial set of positions.
Since the Verlet algorithm does not explicitly involve velocities, it can be modified such
that the algorithm updates the coordinates and velocities of the molecule simultaneously;
the modified algorithm is called Velocity Verlet [104]. Taylor expansion of the velocity at
time t+ ∆t gives:

vi(t+ ∆t) = vi(t) + ∆tv̇i(t) + ∆t2

2 v̈i(t) (2.36)

The unknown term in Eq. 2.36 v̈(t) can be obtained from the Taylor expansion of v̇(t+∆t):

v̈i(t) = v̇i(t+ ∆t)− v̇i(t)
∆t (2.37)

Substituting Eq. 2.37 in Eq. 2.33, one obtains:

vi(t+ ∆t) = vi(t) + ∆t
2 (v̇i(t+ ∆t) + v̇i(t)) (2.38)

Eq. 2.38 can be expressed in terms of forces:

vi(t+ ∆t) = vi(t) + ∆t
2 ( Fi

mi
(t+ ∆t) + Fi

mi
(t)) (2.39)

Eq. 2.33 and 2.39 are used to generate the trajectories in the Velocity-Verlet algorithm.
The algorithm works in the following way:

• From the set of coordinates and velocities at time t, the coordinates at time t + ∆t
are obtained.
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• Next, forces are calculated at time t+ ∆t, using the new set of coordinates.

• Finally, velocities are updated using the new calculated forces.

There is another variant of Velocity Verlet algorithm, known as Leapfrog algorithm [1]. It
uses the positions at time t and velocities at time t − ∆t

2 to get the new positions. The
system evolves according to the following sets of equations:

vi(t+ ∆t
2 ) = vi(t−

∆t
2 ) + ∆tFi(t)

mi
ri(t+ ∆t) = ri(t) + ∆tvi(t+ ∆t

2 ) (2.40)

The alogithm works as follows:

• Forces at time t are calculated first

• Next, velocities at time t+ ∆t
2 from the velocities at time t− ∆t

2 and forces at time
t are calculated.

• Finally, positions at time t + ∆t from the positions at time t and the velocities at
time t+ ∆t

2 are calculated

Velocity Verlet and Leapfrog algorithm generate identical trajectories with corresponding
starting points, but if the input coordinates and velocities are same then the trajectories
generated with Velocity Verlet and Leapfrog algorithm are completely different. Both the
methods provide good numerical stability and are time-reversible [107].

2.3.2 Periodic Boundary Conditions

In MD, periodic boundary conditions [95] are employed which enable a simulation to be
performed using a relatively small number of particles. The effect of the periodic boundary
conditions is that particles experience forces as though they were in a bulk solution. The
simulation volume represent the primary system that is replicated infinite times in all the
directions. The particles which move out of the box after the integration step are brought
back into the box from the opposite side.

2.4 Thermostats in MD

Most of the experimental setups work under the conditions of constant temperature, which
means that the system can exchange energy with the surroundings. In order to mimic the
experimental environment, simulations are usually performed in canonical ensemble. Even
if one wants to perform microcanonical simulations, the temperature is adjusted to the
desired value in the equilibration phase which requires coupling the system to a thermo-
stat [51]. The surrounding is not explicitly modeled (at molecular level) in MD simulation
as it is computationally highly expensive. Instead, the heat exchange between the sys-
tem and the reservoir is taken into account implicitly by modifying the MD algorithm.
There are different thermostating schemes that are routinely used in MD simulations (See
Refs. [26,107]). In this section, we will give a brief overview on some of the most common
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thermostats employed in MD simulations. Since the temperature of the system is related
to the kinetic energy:

〈KE〉NV T = 3
2NKBT, (2.41)

the most obvious choice to attain the desired temperature is to scale the velocities at each
time step by the factor λ = 2

√
Ttarget
Tcurrent

, where Ttarget is the target temperature and Tcurrent
is the temperature calculated at the current time step. This scheme is called “velocity-
rescaling” [119]. Another way to achieve the desired temperature is by coupling the system
to an external bath which acts as a source of energy [5]. The velocities are scaled at each
time step by a scaling factor:

λ2 = 1 + ∆t
τ

(
Ttarget
T (t) − 1

)
(2.42)

where T (t) is the instantaneous temperature and τ is a coupling parameter that determines
how much time the system takes to achieve the target temperature. The problem with
the scaling methods is that they do not generate a canonical ensemble [51]. If an efficient
canonical sampling is required, Anderson thermostat [2] and Nose-Hoover thermostat [39,
71] are employed in MD simulation. Anderson thermostat is based on the concept of
stochastic collisions, where a particle is selected randomly and the velocity of this particle
is chosen randomly from Maxwell-Boltzmann distribution. The Nose-Hoover thermostat
comes under the category of extended system method, where the reservoir is considered
as a part of the system, and is represented as an additional degree of freedom in the
Hamiltonian of the system. In the next section, we discuss Langevin thermostat in detail
since this thermostat is employed in AdResS simulations.

2.4.1 Langevin Thermostat

Based on stochastic dynamics, Langevin equations were initially formulated as a model
for Brownian motion of a particle that is immersed in a solvent (See Refs. [20,51]). Apart
from the forces due to the interaction potential, there are two more forces that all the
particles experience. The first force is the friction force on the particle due to the solvent
which reduces the kinetic energy of the particles and the second force is due to the random
fluctuations caused due to interaction with the solvent, which adds kinetic energy to the
particles. The balance of the two forces makes sure that the system attains the desired
temperature. The Langevin equation of motion for ith particle can be written as [100]:

mi
d2ri(t)
dt2

= Fi(ri(t))− γi
dri(t)
dt

mi +Ri(t) (2.43)

where γi is the friction coefficient and Ri(t) is the random force. The random force is chosen
such that its mean is zero and it is uncorrelated in time. Since both the friction force and
random force originate from interactions with the solvent, they cannot be independent.
The following equation relates the two forces [100]:

〈R(t)R(t′)〉 = 2KBTmiγiδ(t− t
′) (2.44)

This guarantees that the fluctuation-dissipation theorem is satisfied and the system gener-
ates NVT statistics. In MD simulations, one needs to specify the inverse friction coefficient
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(τ−1), which has to be chosen carefully. The value of the inverse friction coefficient de-
termines the time that system takes to reach the desired temperature. If a strong coupling
is used, then the temperature of the system quickly relaxes to the target temperature.
However, dynamical properties such as equilibrium time correlation functions, would differ
significantly from the realistic behaviour. This subject has been studied in Ref. [55] where
gentle stochastic thermostats have been proposed to calculate the dynamical properties.

2.5 Force Fields

Force fields in molecular mechanics contain potential functions that depend on the nuclear
positions which makes it possible to perform calculations of a large number of particles [51].
Most of the force fields used contain simple functional forms of the intramolecular and
intermolecular potentials. In this section we discuss the most commonly used potential
functions used in molecular simulations.

2.5.1 Intramolecular potentials

The intramolecular potentials or bonded potentials (See Refs. [1, 26, 51]) consist of simple
terms that describe the deviation of angles and bonds between different atoms within the
same molecule from the “equilibrium” values. The stretching of the bond between two
atoms i and j is often modeled using a harmonic potential:

Ub(rij) = 1
2k

b
ij(rij − bij)2 (2.45)

where kbij is the force constant and bij is the equilibrium bond length. The angular potential
function describes the deviation of the angle formed by three consecutive atoms i, j and k
from its equilibrium value:

Uθ(θijk) = 1
2k

θ
ijk(θijk − θ0

ijk)2 (2.46)

where kθijk is the force constant and θ0
ijk is the equilibrium bond angle. Apart from the

bond-stretching and angle-bending terms, there exists a dihedral angle potential which
depends on the four consecutive bonded atoms. This potential is mostly used to constrain
the rotation around a bond. It depends on the torsion angle (φijkl) which is the angle
between the plane going through i, j and k and the plane going through j, k and l atoms.
The harmonic dihedral angle potential is expressed as:

Uijkl(φijkl) = 1
2k

φ
ijkl(φijkl − φ

0
ijkl)2 (2.47)

where kijkl is the force constant and φ0
ijkl is the equilibrium value of the torsion angle.

2.5.2 Intermolecular interactions

The intermolecular or nonbonded interactions (See Refs. [1,26,51]) act between two particles
that are not bonded to each other. They are assumed to be pairwise additive:

U(r1, ..., rN ) =
∑
i<j

Uij(rij) (2.48)
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and symmetric:
Fi = −∇iVij = −Fj (2.49)

Nonbonded interactions can be categorized as Van der Waals interactions and electrostatic
interactions. Van der Waals potential take into account the dispersive and exchange-
repulsive interaction between two atoms. It consists of two components: an attractive part
that varies as r−6 and a repulsive part that varies as r−12. They can be modeled using
Lennard-Jones function which has the following form [42,43]:

V (rij) = 4εij

(σij
rij

)12

−
(
σij
rij

)6
 (2.50)

where rij = |ri−rj | is the distance between two particles, εij is the minimum of the potential
and σij represents the separation for which the energy is zero between the two particles.
Lennard-Jones interactions are considered to be short-ranged since the forces due to these
interactions decay faster than r−3. Such interactions are usually computed by imposing a
cut-off (rc) to the potential such that the potential is assumed to be zero outside this cut-
off. If the cut-off is sufficiently large, then the effects of such a truncation are negligible.
The interactions are then computed using minimum image convention [95], where each
particle interacts with the closest replica of the rest of the particles in the system. The
particle interacts with all the other particles that are inside the cut-off radius, and the
interactions with the particles outside this sphere are discarded. The cut-off method,
however, produces a drift in the energy due to the discontinuity at r = rc, thus it is
difficult to use in NVE simulations. The electrostatic interactions are long-ranged because
of their slow power-law decay (1

r ), which makes them difficult to handle in MD since the
simulation cell and all its periodic images must be considered. Using a spherical cut-off
would create artifacts due to the movement of the charged particles in and out of the
spherical surface. The most common method for treating long-range interactions is Ewald
summation [1] which efficiently sums the interaction between a charged particle and all
the periodic images of the simulation cell. The interaction is divided into two components:
the first component corresponds to the short-range contribution which is computed in real
space and the second component represents the long-range contribution which is calculated
in the Fourier space. Due to the difficulties in handling long-ranged interactions in AdResS,
Reaction-Field method [106] is implemented in AdResS method for computing electrostatic
interactions. The method comprises of two different contributions. The first contribution
consists of the the interactions of the charged particle i with all the particles inside the
sphere with cut-off radius r = rc. It can be written as:

U1 =
N∑
i=1

N∑
j<i

qiqj
rij

(2.51)

where qi and qj represents the charges on ith and jth atom respectively. The second
contribution comes from the particles outside the cut-off radius. Their interactions is
treated in an average way by considering that they form a dielectric continuum (εs) which
produces a reaction field inside the sphere. The strength of the field is directly proportional
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to the dipole moment within the sphere:

εi =
[2(εs − 1)

2εs + 1

] 1
r3
c

∑
k∈R

µj (2.52)

where µj is the dipole moment of molecule j and the sum runs over all the molecules within
the sphere. The total energy from the reaction field is:

U2 = −1
2

N∑
i=1

µiεi (2.53)

Due to the movement of molecules in and out of the sphere, a discontinuous jump in energy
takes place leading to a poor energy conservation. It implies that reaction-field method
is computationally cheaper than Ewald summation, but a thermostat is needed in MD
simulations.

2.6 Properties of Interest

In this thesis, we have several different physical properties to demonstrate the grand-
canonical characteristic of AdResS method. However, the are some properties that have
been calculated frequently in this work. These properties are radial distribution functions,
equilibrium time correlation functions and excess chemical potential. In this section, we
briefly discuss how these quantities are calculated in molecular simulations.

2.6.1 Radial Distribution Functions

Radial distribution functions or pair correlation functions (g(r1, r2)) are used to charac-
terize the structure of the liquids. The second order distribution function (g(r1, r2)) in a
homogenous system is defined as [107]:

g(2)(r1, r2) = V 2(N − 1)
NZN

∫
...

∫
f(H(r))dr3...drN (2.54)

where f(H(r)) is the ensemble distribution function, ZN is the partition function corres-
ponding to a given ensemble, V is the volume, N is the number of particles and U is
the potential acting between particles. This equation gives the probability of finding a
particle at r2 given a particle is at r1, with respect to the ideal gas distribution. In case of
spherically symmetric particles, g(2)(r1, r2) depends on the relative distance between two
particles. Thus g(2)(r1, r2) can be written as g(r), which can be defined as:

g(r) = V

N2 〈
∑
i

∑
k 6=i

∆(r − rik)〉 (2.55)

where the angular brackets represent the ensemble average. The radial distribution function
of a liquid consists of a small number of peaks at short distances which decay to the value
of ideal gas, which indicates that there is no long-range order in the liquids. To compute
g(r), the neighbours around each particle are put into concentric spheres or bins that are
separated by distance ∆r. The number of particles in each bin is then averaged over all
the simulation time frames. The result is then normalized by the volume of each bin and
the average density of atoms in the system.
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2.6.2 Equilibrium time correlation functions

Molecular Dynamics enables one to correlate the value of a property at some time to
the value of another property at another time; the function that stores this correlation
at different t is called equilibrium time correlation function (See Refs. [1, 51, 107]). The
equilibrium time correlation function between two observables A and B corresponding to
the phase space functions a(p,q) and b(p,q) is given by [107]:

CAB(t) = 〈a(0)b(t)〉 =
∫
dpdqf(p,q)a(p,q)eiLtb(p,q)

=
∫
dpdqf(p,q)a(p,q)b(pt(p,q),qt(p,q))

(2.56)

where, a(p,q) and b(p,q) are phase space functions corresponding to the observables A
and B respectively, a(0) = a(t = 0) and b(t) is the function at time t, f(p,q) is the
equilibrium distribution function and the dynamics is generated by the Liouville operator
iL. pt(p,q),qt(p,q) indicates the time evolution of the positions and momenta p,q. For
the canonical ensemble, Eq. 4.15 can be written as:

CAB(t) = 1
QN

∫
dpdqe−

HN (p,q)
KBT a(p,q)b(pt(p,q),qt(p,q)). (2.57)

where QN is the Canonical partition function and HN (p,q) the Hamiltonian of a system
with N (constant) molecules. If the functions a(p,q) and b(p,q) are same, then the
correlation function is called auto-correlation function.

CAA(t) = 1
QN

∫
dpdqe−

HN (p,q)
KBT a(p,q)a(pt(p,q),qt(p,q)). (2.58)

The autocorrelation function gives an indication of how the system loses the memory of
its initial conditions. The characteristic time over which the trajectory pt(p,q),qt(p,q)
depends on the initial condition p,q and beyond which pt(p,q),qt(p,q) does not possess
any memory of its initial condition is called correlation time (tcorr). For times smaller than
than the correlation time, a(p,q) and a(p,q)a(pt(p,q),qt(p,q)) are highly correlated
while for times larger than the correlation time, a(p,q) and a(pt(p,q),qt(p,q)) do not
have any correlation. The correlation time is highly dependent on the type of property
considered. If the system is ergodic, the adequate sampling of the ensemble distribution
function e

−HN (p,q)
KBT is ensured. In this case, the phase space average can be replaced by

time average:

CAA(τ) =
∫
dpdqe−

HN (p,q)
KBT a(p,q)a(pτ (p,q),qτ (p,q))

= lim
τ→∞

1
τ

∫
dta(p,q)a(pτ+t(p,q),qτ (p,q))

(2.59)

If the trajectory time is much larger than the correlation time, then the trajectory can be
subdivided into a large number of segments which act as independent sampling points for
the correlation functions, since the correlation function decays to zero over these segments.
The length of each of these segments is slightly greater than the correlation time. Suppose
there are M points in a trajectory, i = 1...M and if subdivide the trajectory into segments
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that consist of K points (K << M), then the length of each segment is K∆T , where
K∆t > tcorr. The segments can be selected in different ways with different origin points.
Thus, Eq. 2.59 can be written in discrete form:

CAA(n∆t) =
M−n∑
m=1

a(pm∆t(p,q),qm∆t(p,q))a(p(m+n)∆t(p,q),q(m+n)∆t(p,q)), n = 0, ...,K

(2.60)
Some correlation functions involve quantities that are averaged over all the molecules in the
system, eg. velocity auto correlation function, orientational correlation function while some
involve quantities that are calculated for the whole system, eg. dipole moment correlation
function where the total dipole moment is the vector sum of all the individual dipoles
corresponding to the molecules in the system.

2.6.3 Excess Chemical Potential

In Chapter 3, we will discuss the potentiality of AdResS method to calculate the excess
chemical potential of pure liquids and solutes in different mixtures. The chemical potential
is defined as the change in free energy of the system due to the addition of one particle
in the system [26]. The excess chemical potential is defined as the difference between
the chemical potential of a system and the chemical potential of ideal gas under the same
condition. In this section, we discuss the two techniques that are generally used to calculate
the chemical potential: Widom Insertion [116] and Thermodynamic Integration [105].

Widom Insertion

The canonical ensemble partition function can be expressed in terms of coordinates as:

Q(N,V, T ) = V N

N !λ3N

∫
drNe−βU(r1,...,rN ) (2.61)

where V is the volume, λ is the thermal wavelength and U is the interaction potential. In
the thermodynamic limit, the chemical potential is given by:

µ = −kBT log
(
Q(N + 1, V, T )
Q(N,V, T )

)
(2.62)

Substituting Q(N + 1, V, T ) and Q(N,V, T ) in Eq. 2.62, we get

µ = −KBT log
(

V

λ3(N + 1)

)
−KBT log

(∫
drN+1e−βU(r1,...,rN+1)∫
drNe−βU(r1,...,rN )

)
= µid + µex (2.63)

The total chemical potential can be separated into two parts: one is the ideal gas con-
tribution (µid) and other is the excess contribution (µex). Since µid can be evaluated
analytically, one evaluated µex from the molecular simulations. The potential energy of
the system with N + 1 particle can be subdivided into the potential energy of N particle
system and interaction energy of (N + 1)th particle with all the other particles (∆U).

∆U = U(rN+1)− U(rN ) (2.64)
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The excess chemical potential can be expressed in terms of ∆U :

µex = −KBT

∫
drN+1〈e−β∆U 〉N (2.65)

where 〈.〉 denotes the canonical averaging over N particle phase space. The ensemble
average can be computed using Metropolis Monte Carlo scheme. The algorithm works
as follows: A Monte-Carlo simulation of N particles is performed. A random particle is
generated at frequent intervals and eβ∆U is evaluated for this random particle at position
rN+1. This quantity is then divided by number of times the particle was generated. To
achieve good and reliable statistics, many insertions are performed. It should be noted
that the random particle is considered virtual and does not remain in the system since the
trial confirmations are not accepted.

Thermodynamic Integration

The thermodynamic integration method calculates the free energy difference between
two systems (A and B) with the same macroscopic properties but with different potentials
(UA and UB). If the free energy of one of these systems is known, then one can compute the
free energy of the other system. The free energy difference is integrated along a reversible
path from A to B. At any state between A and B, the potential is assumed to depend
linearly on a coupling parameter λ

U(λ) = (1− λ)UA + λUB (2.66)

If λ = 0, then the potential of the state is equal to the potential of the system A (whose
free energy is known), and if λ = 1, then the potential is equal to the potential of the
system B. The free energy (F ) can be expressed in terms of the partition function as:

F (λ) = −KBT logQ(N,V, T, λ) (2.67)

where Q(N,V, T, λ) = V N

N !λ3N
∫
dre−βU(λ) is the partition function corresponding to the

system with potential U(λ). The derivative of F (λ) with respect to λ can be written as:

∂F (λ)
∂λ

= − 1
KBTQ(N,V, T, λ)

∂Q(N,V, T, λ)
∂λ

=
∫
dr
(
∂U(λ)
∂λ

)
e−KBTU(λ)∫

dre−KBTU(λ) = 〈∂U(λ)
∂λ

〉λ
(2.68)

Thus, one can write ∂F (λ)
∂λ in terms of ensemble average which can be evaluated using

Monte Carlo or molecular dynamics simulation. If we integrate Eq. 2.68, then the free
energy difference can be written as:

F (λ = 1)− F (λ = 0) =
∫ λ=1

λ=0
dλ〈∂U(λ)

∂λ
〉λ (2.69)

This integral can be evaluated by choosing a large number of values of λ, and adding the
ensemble averages calculated at each value of λ. In order to calculate the excess chemical
potential, two systems are considered. In the first system, there are N−1 particles and one
test particle that is not interacting with the other particles, while in the second system, the
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test particle is fully coupled to rest of the N − 1 particles. The excess chemical potential
is the difference of the free energy of the two systems, which can be evaluated using the
procedure described before. The test particle is called “λ particle”, and its potential is
expressed in terms of λ as done in Eq. 2.66. The direct use of the potential U(λ) leads to
very large values of 〈∂U(λ)

∂λ 〉λ when the particle suddenly starts appearing or disappearing
(λ close to 0 or 1). This numerical singularity is avoided by using a soft-core potential [26].

2.7 Coarse-Graining technique

Multiscale modeling refers to the hierarchy of simulation approaches that are employed
to simulate the system at different scales (See Refs. [78, 89]). An appropriate simulation
scheme is chosen to simulate the system for a given length and time scale. Coarse-grained
(CG) methods are usually employed when one needs to access very large length and time
scales. In this section, we will discuss structure-based coarse-graining where one rep-
resents a group of atoms in a molecule by a single “superatom”. Since the number of
explicit degrees of freedom are reduced, MD simulations of large systems that require large
computational resources may be performed, which otherwise would have been prohibit-
ive. Since several internal frequencies are eliminated in the coarse-grained model, one
can choose large time steps, which makes it possible to access large time scales. While
creating a coarse-grained representation, one has to formulate a mapping function that
maps the full-atomistic system on coarse-grained superatoms. This implies the derivation
of new coarse-grained potentials for the superatoms such that the CG system reproduces
the properties of the reference full-atomistic system [68]. It should be noted that several
properties cannot be reproduced in the CG system since they may depend strongly on the
atomistic details.

2.7.1 Mapping atomistic degrees of freedom on a superatom

A mapping function is required to construct the coarse-grained representation of the full-
atomistic model. It takes as input the coordinates of the full-atomistic system and maps it
to a unique coarse-grained representation. Suppose r = rAT represents the coordinates of
the the molecules in the full-atomistic system and R = rCG denote the coordinates of the
molecule in the coarse-grained system, then the mapping function M has the form [70]:

R = M(r) (2.70)

In all the AdResS simulations performed in this thesis, superatoms are defined at the
center-of-mass (COM) of the molecule in the full-atomistic representation. Thus, the
coarse-grained coordinates are given by:

RCG
i =

∑
mjrj∑
mj

(2.71)

The summation is done over all the atoms in molecule and the atomistic masses are denoted
by mj . It is preferred that large molecules such as polymers are represented by more than
one coarse-grained superatom. In case of multiple CG atoms, the bonded interactions are
present between the neighbouring superatoms as well.
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2.7.2 Calculation of the coarse-grained potential

The potential between the CG superatoms is derived in such a way that the CG system
reproduces some of the properties of the reference full-atomistic system. There are various
methods in literature that are used to obtain the CG potential. Most of the methods
require simulation of a very small representative atomistic system and the information
is transferred from this simulation to the CG level. The ‘optimal’ CG potential is the
one which is not pairwise additive and can take any functional form. Furthermore, the
properties obtained from the CG simulation with the ‘optimal’ potential would be the
same as in the full-atomistic system. This potential can be obtained by matching the
configurational probability for R in the CG phase space to that in the atomistic phase
space [70]:

PCG(R) = PAT (R) (2.72)

where PAT (R) is defined as:

PAT (R) =
∫
PAT (r)δ[M(r)−R]dr (2.73)

The delta function separates out all the configurations in the atomistic phase space r that
are mapped onto the coarse-grained configuration R. For canonical ensemble, one obtains:

e−βUCG(R)

ZCG
=
∫
e−βUAT (R)

ZAT
δ(M(r)−R)dr (2.74)

Taking the logarithm on both sides, one obtains:

UCG(R) = −β log
∫
e−βUAT (r)δ(M(r)−R)dr + constant (2.75)

The potential UCG(R) is the potential of mean force or the free energy surface that cor-
responds to the reduced degrees of freedom R. As mentioned before, UCG(R) is not a
pairwise sum of interactions between the superatoms. Infact, it depends on all the CG
degrees of freedom and hence it can not be used in the simulations as it would be com-
putationaly very expensive. To obtain an effective two-body potential one approximates
the potential of mean force using a variety of methods. Some of the methods are Iterative
Boltzmann Inversion [96], Pressure correction [112], Force matching [23], Inverse Monte
Carlo [61], Relative Entropy minimization [63] etc. The choice of the method depends on
the properties that the CG model should reproduce.

2.8 Adaptive Resolution Simulation (AdResS)

The Adaptive Resolution Simulation (AdResS) method [27,89,111] comes under the branch
of concurrent coupling methods [18], where different scales are treated within the same sim-
ulation system simultaneously. The space is divided into different subregions where each
subregion has a different molecular representation. The particles move between differ-
ent regions and change their resolution accordingly while preserving the thermodynamic
properties of the region of interest (high resolution region). The difference with methods
like QM/MM [15] is that the free exchange of molecules from one subregion to another
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Figure 2.1: Pictorial representation of the adaptive box containing water in different mo-
lecular representation. The region on the left, is the low resolution region (coarse-grained),
the central part is the transition (hybrid) region ∆, where the switching function w(x) is
defined, and the region on the right, is the high resolution region (atomistic).

subregion is allowed; this implies that the particle density fluctuations are not artificially
suppressed. In this part of the chapter, we describe the theoretical concepts of the Ad-
ResS method, that were developed over the course of ten years, starting from an empirical
intuitive idea to the grand-canonical like setup of the latest version.

2.8.1 Theoretical concepts of AdResS

The main components of the original AdResS is idea are based on an empirical principle:

• The simulation box is divided in three regions, one is represented by atomistic resol-
ution, another one is represented by coarse-grained resolution and in between, there
is a third region where the molecules have a mixed resolution, where both atomistic
and coarse-grained degrees of freedom are present (see Figure 2.1).

• Molecules in the different regions are coupled through a spatial interpolation formula
on the forces:

Fαβ = w(Xα)w(Xβ)FAtom
αβ + [1− w(Xα)w(Xβ)]FCG

αβ (2.76)

where α and β indicate two molecules, FAtom is the force derived from the atomistic
force field and FCG from the corresponding coarse-grained potential, X is the x
coordinate of the center of mass of the molecule and w is an interpolating function
which smoothly goes from 0 to 1 (or vice versa) in the interface region, (∆), where
the lower resolution is slowly transformed (according to w) in the high resolution (or
vice versa), as illustrated in Fig.2.1. The most common weighting function that has
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been used in AdResS is:

w(x) =


1 x < dAT

cos2
[

π
2(d∆)(x− dAT )

]
dAT < x < dAT + d∆

0 dAT + d∆ < x

where, dAT and d∆ are size of atomistic and hybrid regions respectively and x is
the x-coordinate of the center of mass of the molecule. According to Eq. 2.76, the
molecules that are present in the atomistic region interact with forces derived from
the atomistic potential, the coarse-grained molecules interact via forces derived from
the coarse-grained potential while rest of the molecules interact according to some
space dependent hybrid interpolation of atomistic and coarse-grained forces. This
implies that as the molecule moves from the atomistic to the coarse-grained region,
the force on its atomistic degrees of freedom slowly diminishes, while the coarse-
grained forces start dominating. The same process takes place in reverse order when
a coarse-grained molecule enters into the atomistic zone. The technical aspects of
Eq. 2.76 can be found in Ref. [44,114]. The smooth interpolation of the forces allows
for the smooth transition of a molecule from atomistic dynamics to coarse-grained
dynamics and vice versa. Since the transition region is chosen to be as small as
possible, the perturbation of the dynamics in atomistic and coarse-grained region
due to the change in resolution is expected to be negligible. Therefore, the behaviour
of the molecules in the atomistic and coarse-grained regions is statistically close to
the molecules in a full-atomistic or full coarse-grained simulation.

• As the molecule moves from atomistic region to the coarse-grained region, it slowly
acquires the vibrational and rotational DOF’s, and loses the same DOF’s while mov-
ing in the opposite direction. Thus, a molecules needs to acquire (or remove) the
free energy per DOF so that it equilibrates with the environment once it has changed
its resolution. This is achieved by coupling the whole system to a thermostat that
ensures overall thermodynamic equilibrium.

The setup gave accurate results when applied to toy systems [85, 87, 88] and later it was
successfully tested to simulate physio-chemical systems [49, 64, 92]. The coarse-grained
model in these simulations were derived from full-atomistic systems such that it reproduces
the COM-COM radial distribution functions at the same thermodynamic conditions [96,
98]. However, in these systems, it was seen that there was a systematic discrepancy between
the reference particle number density and the particle number density in the transition
region. The discrepancy in the transition region implies that there is a small systematic
error in the densities in the atomistic and coarse-grained regions as well. The natural
question that arises is why such a discrepancy is present and whether it is possible to
modify the method to control and improve the accuracy in the transition region. In such
a scenario, one would be able to improve the accuracy in the high resolution (atomistic)
region. This would require a deeper understanding of the thermodynamics and statistical
mechanics of AdResS systems, while considering the following aspects:

• AdResS is based on the force interpolation and it has been shown that the force
cannot be derived from a potential [17].
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• Since the global Hamiltonian cannot be defined, the standard statistical mechanics
cannot be used to define the thermodynamic properties and the laws of statistical
mechanics must be redefined within the realm of adaptive resolution systems.

The hybrid resolution does not have any physical meaning per se; infact, a system of
N water molecules must have the same properties of water irrespective of the molecular
representation, i.e. the macroscopic properties (ρ, T and P ) must be same in the different
regions. In the next sections, we describe how various thermodynamic properties are
balanced in the different regions of AdResS system.

Temperature in transition region

In AdResS system, the temperature is well defined in the atomistic and coarse-grained
region via the equipartition theorem, as the average kinetic energy divided by the total
number of DOFs

TAtom = 2〈KAtom〉
nAtom

(2.77)

TCG = 2〈KCG〉
nCG

(2.78)

where 〈KAtom〉 and 〈KCG〉 are the kinetic energies in the atomistic and coarse-grained
region, and nAtom and nCG are the DOF’s in the atomistic and coarse-grained region.
However, such a definition does not apply in the transition region since the temperature
in the transition region is defined as:

T∆ = 2 〈K∆〉
n∆

(2.79)

where n∆ = nAtomw(x) + nCG(1 − w(x)), with n the number of DOFs, molecules would
have if they had full atomistic resolution. One cannot define K∆ since DOF’s are partially
removed/reintroduced as the position of the particle changes. It should be noted that in
the context of adaptive resolution simulations, the calculation of average kinetic energy
implies that each removed/reintroduced DOF in the transition region does not contribute.
In fact in the integral of 〈K〉, the dimensionality of the changing resolution goes from 0 (a
coarse-grained molecule) to 1 (full-atomistic molecule). Such cases can be described in an
exact way via the mathematical formalism of integration in fractional dimensions, which
implies an extra multiplicative term in the integral of 〈K〉 [90, 91]. The final result shows
that the temperature at each point x in the transition region is calculated as:

T∆ = 2 〈K∆〉
n∆(x) (2.80)

Moreover, since 〈K∆〉 is proportional to n∆(x), the ratio 〈K∆〉
n∆(x) is a constant value which

is the target temperature of the full-atomistic reference system. It was shown numerically
that with this definition of the temperature in transition region, the system was kept at
the correct thermodynamic state during the simulation. This was the first essential step
in the direction of having a deeper understanding and justification of the basic algorithm.
Once the procedure for the calculation of the temperature was proven satisfactory, then
the development moved towards the question as to why in the transition region a small,
but systematic, discrepancy for the particle density is observed in all the simulations.
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Balancing the chemical potential

If one interfaces three open systems where each system consists of a different molecular
specie, then the different species would remain in equilibrium if their chemical potentials
are same. In AdResS method, molecules do not belong to different species, they just have
different representation and are free to move between different regions. The density in
such an adaptive system would remain constant if the chemical potential characterizing
each resolution is same as that of the reference full atomistic system. Let us assume
the chemical potential µAT in the atomistic region, µCG in the coarse-grained region and
µ(x) = µ∆(x) = µ(w(x)) in the transition region. In order to have a thermodynamic
equilibrium and a uniform density across the whole box, it would be sufficient to have
µ(w(x)) = µAT ,∀x. This target can be achieved by imposing a force proportional to
the gradient of the difference between the full atomistic chemical potential and the space
dependent chemical potential [80]:

F(x∆) ≈ ∇[µAtom − µ(x)] (2.81)

This force acts on the center of mass of the molecules in the transition region, and dis-
appears in both AT and CG regions. One can use thermodynamic integration or Widom
insertion methods to calculate the chemical potential in the AT and CG systems. The
problem arises with the calculation of chemical potential in the transition region since
both these techniques require the definition of a Hamiltonian. This problem was circum-
vented by dividing the transition region in several small regions that are characterized by
a constant value of w. Then each region with the fixed w was treated separately, i.e. an
auxiliary simulation was performed where the molecules in the box interact with AdResS
force with w fixed in Eq. 2.76. In such a scenario, it is possible to define a Hamiltonian and
calculate the chemical potential µ(ŵ) corresponding to w = ŵ. Thus, one has a discrete
set of µ(ŵ) (for each ŵ) and this can then be fit to µ(w(x)). This is an approximate
(although numerically accurate) way to determine µ(x) in the transition region. One can
then calculate the force Fth ≈ ∇[µAtom − µ(x)], called “thermodynamic force” [80] and
apply it to the center of mass of molecules in the transition region, which would ensure
a uniform density in the box, while reproducing the thermodynamic and structural prop-
erties in the atomistic region. Even in the absence of the global Hamiltonian, the basic
properties were reproduced accurately. From the conceptual point of view, this study gave
insights into how the principles of standard thermodynamics can be used to interpret the
process of changing resolution. From the practical point of view, however, the calculation
of the thermodynamic force was expensive as it required a large number of extra calcula-
tions. Therefore, further conceptual developments were stimulated which are reported in
the next section.

Thermodynamics and Statistical mechanics of a generic open system

In the approach described in the previous section, it was required that the coarse-grained
model is characterized by the same pressure as that of atomistic system. This is done by
adding a pressure correction term to the coarse-grained potential derived by the inversion
of molecule-molecule radial distribution function. A more generalized scheme was devised
that imposes a uniform density profile across the box, where a specific coarse-grained model
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is not required. This scheme was formalized on the principles of standard thermodynam-
ics. Since AdResS system consists of open systems that are interfaced with each other, the
quantity of interest is the grand potential Ω = PV . The volume of each subsystem is a
fixed quantity, as a result the balance of pressure implies equilibrium between the atom-
istic and coarse-grained region. Thus, in the transition region, the conditions are defined
such that the pressure balance in the atomistic and coarse-region regions is assured. The
thermodynamic force was reformulated in terms of pressure balance [27]:

pAtom + ρ0

∫
∆

Fth(r)dr = pCG, (2.82)

where pAtom is the target pressure of the atomistic region, pCG is the pressure of the coarse-
grained region, ρ0 is the target molecular density of the reference full atomistic system.
The thermodynamic force Fth is calculated via an iterative procedure as a function of the
molecular density in the transition region. The iterative formulas at the i-th step is:

Fi+1
th (r) = Fi

th(r)− 1
ρ0κ2

T

∇ρi(r), (2.83)

where κT the isothermal compressibility. The force is converged once the density in the
transition region is equal to the density in the transition region. This formulation implies
a grand-canonical like setup where each region functions as a reservoir for other region
and the transition region acts a filter that ensures thermodynamic equilibrium in differ-
ent regions. Due to the limited size of the reservoir, the approach cannot be defined as
grand-canonical. Nevertheless, this approach was satisfactory from the theoretical and
computational point of view [27, 67], and paves the path for further development towards
a proper grand-canonical setup [27,114], which will be discussed in more detail in Chapter
3.

2.9 Path Integral Formalism

The quantum delocalization of light atoms is treated in MD via path-integral formalism
developed by Richard Feynman [25,36,107]. In this section, we will briefly discuss the de-
rivation of path integral partition function, which forms the basis for the three techniques:
path integral molecular dynamics (PIMD) [108, 118], ring polymer molecular dynamics
(RPMD) [16, 31, 32] and centroid molecular dynamics (CMD) [13, 38], which will be dis-
cussed in Chapter 5. These techniques are used to calculate equilibrium statistical and
dynamical properties in systems where nuclear delocalization plays a major role. Light
nuclei such as hydrogen exhibit quantum character at low temperature; the thermal de
Broglie wavelength for hydrogen at room temperature is 0.1 nm which is of the same or-
der as the average bond length in a water molecule. This verifies that hydrogen atom is
delocalized in space and that hydrogen atoms at low temperatures must not be treated as
classical point particles. Therefore, hydrogen atoms must be treated within the realm of
quantum mechanics since many of the crucial properties of water may be influenced by the
non classical nature of this element.
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2.9.1 Derivation of path-integral partition function

A more detailed derivation of path-integrals can be found in Ref. [107]. In this section, we
show how one obtains a quantized Hamiltonian starting from the Hamiltonian for a single
particle moving under the influence of an external potential U , which is written as:

Ĥ = p̂2

2m + U((̂x)) = K̂ + Û (2.84)

where K̂ and Û are the non-commuting kinetic and potential energy operators. ([K̂, Û ] 6=
0). The coordinate space matrix elements of the density matrix are given by:

ρ(x, x′) = 〈x′ |e−βH|x〉 (2.85)

where x and x
′ represent the initiation and detection points between which the particle

moves undetected. The matrix elements can be computed by taking the sum of all the
possible paths between x and x

′ . Since K̂ and Û do not commute, there is no way to
evaluate exp(−βH) directly. To circumvent this problem, Trotter theorem is used. For
two operators A and B that do not commute, Trotter theorem can be written as:

eλ(Â+B̂) = lim
P→∞

[e
λÂ
2P e

λB̂
P e

λÂ
2P ]P (2.86)

where P is called Trotter number. Using Trotter theorem for K̂ and Û , one obtains:

e−β(K̂+Û) = lim
P→∞

[e−
βÛ
2P e−

βK̂
P e−

βÛ
2P ]P (2.87)

Substituting Eq. 2.87 in Eq. 2.85, one obtains:

ρ(x, x′) = lim
P→∞

〈x′ |[e−
βÛ
2P e−

βK̂
P e−

βÛ
2P ]P |x〉 (2.88)

If one defines an operator Ω̂, such that:

Ω̂ = e−
βÛ
2P e−

βK̂
P e−

βÛ
2P (2.89)

then Eq. 2.88 can be written as:

ρ(x, x′) = lim
P→∞

〈x′ |Ω̂P |x〉 = 〈x′ |Ω̂P |x〉 = lim
P→∞

〈x′ |Ω̂Ω̂Ω̂Ω̂...Ω̂|x〉 (2.90)

If one introduces an identity operator Î =
∫
dx|x〉〈x| between each factor of Ω̂, then P − 1

insertions of the identity operator are required. This will generate a P − 1 dimensional
integral for the density matrix.

ρ(x, x′) = lim
P→∞

∫
dx2...dxP × 〈x

′ |Ω|xP 〉〈xP |Ω|xP−1〉〈xP−1|...|x2〉〈x2|Ω|x〉 (2.91)

One needs to calculate the matrix elements of Ω̂ to evaluate the integral in Eq. 2.91.

〈xk+1 | Ω̂ | xk〉 = 〈xk+1 | e−
βÛ
2P e−

βK̂
P e−

βÛ
2P | xk〉 (2.92)
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Since the potential energy operator depends on the coordinates, the eigen values of the
operator e−

βÛ
2P is e−

βU(xk)
2P . Thus, the expression 〈xk+1 | e−

βÛ
2P e−

βK̂
P e−

βÛ
2P | xk〉 can be

written as:

〈xk+1 | e−
βÛ
2P e−

βK̂
P e−

βÛ
2P | xk〉 = e−

βU(xk+1)
2P 〈xk+1 | e−

βK̂
P | xk〉e−

βU(xk)
2P (2.93)

In order to evaluate the eigenvalues of the momentum operator, one uses an identity
operator containing momentum eigen states.

I =
∫
dp | p〉〈p | (2.94)

Thus, the matrix element can be written as:

〈xk+1 | e−
βK̂
P | xk〉 =

∫
dp〈xk+1 | p〉〈p | e−

βK̂
P | xk〉 (2.95)

The kinetic energy operator acts on the momentum eigen state from the left. Thus, Eq. 2.95
can be expressed as:

〈xk+1 | e−
βK̂
P | xk〉 =

∫
e−

βp2
2mP 〈xk+1 | p〉〈p | xk〉 (2.96)

The relation between the position and momentum eigenstate is given by:

〈x | p〉 = 1√
2π~

e
ipx
~ (2.97)

Substituting Eq. 2.97 in Eq. 2.96, one obtains:

〈xk+1 | e−
βK̂
P | xk〉 = 1

2π~

∫
dpe

ip(xk+1−xk)
~ e−

βp2
2mP (2.98)

which can also be formulated as:

〈xk+1 | e−
βK̂
P | xk〉 = 1

2π~

∫
dpe
− β

2mP

[
p−
(
imP
β~ (xk+1−xk)

)]2
× e−

mP
2β~2 (xk+1−xk)2

(2.99)

The second exponential term in the integral is devoid of any momentum variables and
the first term can be written as a gaussian integral, if one makes a change of variables
p̃ = p− imP (xk+1−xk)

β~ . Thus, the above equation takes the following form:

〈xk+1 | e−
βK̂
P | xk〉 =

(
mP

2πβ~2

)1/2
e
− mP

2β~2 (xk+1−xk)2
(2.100)

Substituting Eq. 2.100 in density matrix, one obtains:

ρ(x, x′) = lim
P→∞

(
mP

2πβ~2

)∫
dx2...dxP

× exp
(
−1
~

P∑
k=1

[
mP

2β~2 (xk+1 − xk)2 + β~
2P (U(xk+1) + U(xk))

])∣∣∣∣∣
xP+1=x′

x1=x

(2.101)
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In this equation, the end points of the path x1 and xP+1 are fixed at x and x′ respectively.
This is also know as the discretized path integral representation of the density matrix in
the limit P →∞. The partition function of a single quantum particle is given by:

Z = Tr[ρ] = Tr[exp(−βĤ)] (2.102)

The partition function can be evaluated by integrating the diagonal elements of the density
matrix:

Z =
∫ L

0
dx〈x | e−βĤ | x〉 =

∫ L

0
dxρ(x, x) (2.103)

where the particle is restricted within an interval [0, L]. To compute the integral in
Eq. 2.103, the diagonal elements of the density matrix can be obtained by assigning
x1 = xP+1 = x in Eq. 2.101. Therefore, one can also perform the integration over x1
in place of x in Eq 2.103. Thus, one obtains:

Z = lim
P→∞

(
mP

2πβ~2

)P/2 ∫
D(L)

dx1...dxP × exp
(
−1
~

P∑
k=1

[
−mP2β~(xk+1 − xk)2 + β~

P
U(xk)

])∣∣∣∣∣
xP+1=x′

x1=x
(2.104)

which can further be expressed as the classical configurational partition function:

Z = lim
P→∞

(
mP

2πβ~2

)P/2 ∫
D(L)

dx1...dxP e
−βφ(x1...xP ) (2.105)

where the effective classical Hamiltonian is given by:

φ(x1...xP ) =
P∑
k=1

[1
2mω

2
P (xk+1 − xk)2 + 1

P
U(xk)

]
(2.106)

where ωP =
√
P
β~ and xP+1 = x1. The expression in Eq. 2.105 is known as the discretized

path integral representation of the partition function. It resembles the partition function
of a polymer ring with P beads with harmonic nearest neighbour couplings where the
strength of harmonic coupling is denoted by ωP . The potential acting on each bead is
reduced by a factor 1

P . The extension of the above results to a system of N particles
is not trivial since the symmetry of the physical states must be included as well, and
this gives rise to exchange terms. For Fermionic systems, the calculation of the exchange
terms is numerically problematic; the problem is termed as Fermi Sign problem. For
Bosonic systems, however, the sign problem does not exist and the exchange terms can be
numerically solved. In the present study, we completely ignore the exchange effects which
is the case for liquids at room temperature. The particles treated in this work do not
follow a quantum statistics (fermions or bosons), thus they are semiclassical. The path-
integral formalism is used to model only the nuclear quantum effects (zero-point energy
and delocalization) in this thesis. Consider the Hamiltonian of N particles in d-dimensions:

Ĥ =
N∑
i=1

p̂2
i

2m + U(r̂1, ..., r̂N ) (2.107)
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If the exchange effects are excluded, then each particle is represented by a polymer ring,
and the quantum partition function takes the form:

Z = lim
P→∞

N∏
i=1

(
miP

2πβ~2

)dP/2 ∫ N∏
i=1

dr
(1)
i ...dr

(P )
i

× exp
(
−

P∑
k=1

[
N∑
i=1

miP

2β~2 (r(k+1)
i − r(k)

i )2 + β

P
U(r(k)

1 , ..., r(k)
N )

])
r(P+1)
i =r(1)

i

(2.108)

According to the partition function in Eq. 2.108, the beads with the same index k will
interact with each other while other cross-interactions will not be considered. This partition
function can be sampled using Monte-Carlo or Molecular Dynamics methods. In this
thesis, we will use MD methods as sampling tool. It must be noted that the standard
Path Integral Molecular Dynamics (PIMD) algorithms are used to calculate the quantum
equilibrium properties. The calculation of quantum dynamics properties entail numerical
difficulties. There are approximate methods for computing real-time quantum correlation
functions. The methods are Ring Polymer Molecular Dynamics (RPMD) and Centroid
Molecular dynamics (CMD). All these approaches will be discussed in detail in Chapter 5.

2.10 Conclusions

In this chapter, we have covered the various theoretical concepts and computational meth-
ods that will be used throughout the rest of this thesis. In the next chapter, we discuss
the latest version of AdResS (the development of which was one of this work), i.e. grand-
canonical AdResS (GC-AdResS) and how it can be used as a tool to calculate the excess
chemical potential.



Chapter 3

AdResS as a tool to efficiently calculate
the excess chemical potential of liquids and
mixtures

3.1 Introduction

Molecular Simulation techniques such as Widom insertion particle method (IPM) [117] or
Thermodynamic Integration (TI) [105] have been regularly used to calculate excess chem-
ical potential of complex molecular systems. IPM is computationally very demanding, and
for complex molecules, the time taken for convergence is rather large. TI is computationally
convenient, but it is specifically designed to calculate the chemical potential, which may not
be the optimal choice if one wants to calculate other properties within the same simulation
framework. It was suggested in Ref. [111], that the chemical potential can also be calcu-
lated by using AdResS in its Grand-Canonical like formulation (GC-AdResS) [27,111,114].
However, no analytical derivation of the formula to evaluate the chemical potential was
given, and the method was only applied to liquid water. In this part of the thesis, we
give an analytical form to the formula, and apply it to various liquids and mixtures of
particular relevance in natural science, and compare our results with those obtained from
TI. We further comment on the practical applicability of GC-AdResS as a tool to calculate
the chemical potential, pointing out its computational convenience compared to methods
like IPM and TI.

3.2 Grand-Canonical formalism of AdResS

In this section, we summarize the theoretical foundations behind the grand canonical form-
alism of AdResS developed in work previous to the work of this thesis. Next we discuss the
formalism developed within this work on how AdResS can be used to calculate the excess
chemical potential in molecular systems.

3.2.1 From AdResS to GC-AdResS

The formulation of AdResS in terms of grand-canonical ensemble emerged in Refs. [111,
114]. A well known principle of standard statistical mechanics tells us that when the ref-

28
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Atomistic Coarse−Grained∆

w(x)

R
C

Figure 3.1: Schematic representation of the adaptive box, showing the coarse-grained region
(the region on the right) , the hybrid region (the central part) ∆, where the switching
function w(x) (in green) is defined, and the high resolution atomistic region (the region on
the left). It should be noted that in GC-AdResS, the definition of w(x) is modified. The
transition region is extended by an amount Rc, which is the cut-off radius of atomistic
interactions, so that the molecules in the atomistic region interact with other molecules
via well defined atomistic interactions. This allows to write an exact Hamiltonian for the
atomistic region, which is essential if one wants to treat the system in a Grand-Canonical
fashion.

erence atomistic system (i.e. a large full atomistic simulation) reaches the thermodynamic
limit, a subsystem of a large system samples the grand-canonical ensemble [50]. Therefore,
it is interesting to investigate if phase space variables xAT and the number of molecules in
the atomistic region NAT of the adaptive system are subject to grand-canonical distribu-
tion, which implies numerically verification of the following formula:

p(xAT, NAT) ≈ 1
Z

exp
{
βµ∗ATNAT − βHAT(xAT)

}
(3.1)

where µ∗AT is the chemical potential of the reference atomistic system at the desired equi-
librium, Z is the grand canonical partition function, HAT is the atomistic Hamiltonian,
and β denotes the inverse temperature 1/(kBT ). In order to have a fair comparison with
the reference atomistic system, one has to consider the thermodynamic limit in AdResS,
which corresponds to large enough atomistic region, a relatively thin transition region and
a coarse-grained region, which acts as a large reservoir; this implies the assumption that
NCG � 1, NAT � 1, NCG � NAT � N∆ (NCG is the number of molecules in the coarse-
grained region and N∆ is the number of molecules in the hybrid region). Regarding the
accuracy of AdResS, the probability distributions in AdResS should be compared with
that of a full-atomistic system. Therefore the full-atomistic reference system serves as a
good comparison for the accuracy of AdResS as a Grand-Canonical setup. The analysis
of Eq. 3.1 within the grand-canonical setup is rather complex, therefore, the problem was
circumvented through various steps, the first of which consists of splitting the distribution
as:

p(xAT, NAT) = p(xAT|NAT) p(NAT) (3.2)
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The first term in the R.H.S. of Eq. 3.2 can be written as:

p(xAT|NAT) =
∑
N∆

∫
dx∆ p(xAT|NAT; x∆, N∆) · p(x∆, N∆|NAT) (3.3)

The conditional distribution is the Boltzmann distribution:

p(xAT|NAT; x∆, N∆) ∝ exp{−βHAT
NAT(xAT; x∆, N∆)} (3.4)

where

HAT
NAT(xAT; x∆, N∆) =

NAT∑
i=1

1
2miv2

i +
NAT∑
i<j

UAT(r i − rj) +
NAT∑
i=1

NAT+N∆∑
j=NAT+1

UAT(r i − rj). (3.5)

For an exact definition of HAT
NAT

, a technical modification was proposed in the transition
region and of the corresponding definition of the switching function w(x). In Ref. [114],
the switching function was modified in such way that it allows the separation of atomistic
interactions from coarse-grained and hybrid interactions. This was made possible by ex-
tending the transition region into the atomistic region, by an amount corresponding to the
cut-off of molecule-molecule interaction. In this way, a molecule in the atomistic region in
AdResS interacts with other molecules through atomistic interactions. Figure 5.1 shows the
modified system with the extended transition region. It should be noted that probability
density in Eq. 3.4 is identical to that of the reference atomistic system. Therefore according
to Eq. 3.3, in order to have a high accuracy for the distribution p(xAT|NAT), one should
have high accuracy of the distribution p(x∆, N∆|NAT). Ideally, this distribution must be
the same as in the reference system, however, it was seen that the density distribution in
the hybrid region deviates from the reference density [80]. Thus, one can define proper
conditions for the AdResS system, which ensure satisfactory accuracy of p(x∆, N∆|NAT).
The first necessary condition that assures a first order accuracy (usually sufficient in MD)
is that the density profile of the hybrid region is identical to the reference density profile:

ρ∆ = ρAT (3.6)

The second necessary condition is that the two body probability density, i.e. g(r) in the
hybrid region should be same as in the reference full atomistic system.

g∆(r) = gAT(r) (3.7)

The first condition is fulfilled by the thermodynamic force, while the second condition can
be fulfilled by a force which corrects the RDF’s in the hybrid region. It is also possible
to raise necessary conditions for the accuracy of the distribution p(NAT), in Eq. 3.2. The
necessary condition for the first order accuracy is the balance of the chemical potential:

µCG − µAT = ω0 (3.8)

where µCG and µAT are the chemical potential in the coarse-grained and atomistic region
respectively, and ω0 is the work done in the transition region. This relation holds auto-
matically with the introduction of the thermodynamic force, which uniformizes the density
across the simulation box. The second order accuracy is achieved when the isothermal com-
pressibility of the coarse-grained model is equal to the atomistic compressibility:

κCG = κAT (3.9)
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3.2.2 Calculation of Excess Chemical Potential

Here, we outline the procedure to calculate the chemical potential, which is an essen-
tial thermodynamic quantity in a grand-canonical ensemble. In Ref. [111], it was shown
that the chemical potential of the atomistic and coarse-grained regions are related by the
following formula:

µCG = µAT + ωth + ωQ (3.10)

where µCG and µAT are the chemical potential in the coarse-grained and atomistic regions
respectively, ωth =

∫
∆ F th(r)dr is the work done by the thermodynamic force in the

transition region, ωQ is the heat provided by the thermostat, in order to thermalize the
inserted/removed degrees of freedom, as the molecule enters the atomistic region or vice
versa. ωQ is composed of two parts: ωextra and ωDOF. ωextra compensates the dissipation of
energy due to non-conservative interactions in the transition region, and ωDOF is related to
the equilibration of the reinserted/removed degrees of freedom (rotational and vibrational).
From the equipartition theorem, ωDOF = 1

2kBT , per degree of freedom. The calculation
of ωextra is not direct, and a procedure, which involves auxiliary Hamiltonian approach
was proposed in Ref. [111]. In this approach, the coarse-grained and atomistic potentials
are interpolated, instead of forces as in the standard AdResS. Next, it was imposed that
the Hamiltonian system must have the same thermodynamic equilibrium as the force-
interpolation AdResS, which is achieved by introducing a thermodynamic force, which
keeps the density of particles the same across the system, at the target temperature.
The equilibrium is the same in both standard and auxiliary Hamiltonian AdResS. The
change of resolution is provided by (F th, ωDOF, ωextra) and (FH

th, ωDOF) in the standard
and auxiliary Hamiltonian AdResS respectively; it follows that the difference between the
work of the original thermodynamic force and work of the thermodynamic force in the
auxiliary Hamiltonian AdResS should be equal to ωextra. It was also shown numerically
for liquid water, that ωextra =

∫
∆∇w(r)〈w(UAT − UCG)〉rdr , where UAT and UCG are

the atomistic and coarse-grained potential. It was numerically verified that the ensemble
average remains same irrespective of the type of simulation approach (force interpolation
or potential interpolation) one may wish to use. In the next section, it is shown that
the above formula is exact at the first order w.r.t. probability distribution of the system.
Thus, ωQ can be calculated during the equilibration phase within the GC-AdResS code.
However, the quantity of interest is not the total chemical potential but the excess chemical
potential, which is defined by subtracting the kinetic contribution from the total chemical
potential, i.e., µexc = µ− µkin. Substituting it in Eq. 4.14, we get:

µexcCG − µexcAT = ωth + ωextra + ωDOF −∆µkin (3.11)

It should be noted here that, the kinetic contribution from the center-of-mass (COM) is
same for the atomistic and coarse-grained molecules, thus the fourth term on the R.H.S.
in the above equation is automatically removed. Also, the kinetic part of µAT due to the
rotational and vibrational degrees of freedom corresponds to ωDOF, which can be calculated
by hand removing 1

2kBT for each degree of freedom. However, this is not required as in
the current version of AdResS in GROMACS, the removed degrees of freedom are kept as
phantom variables and are thermally equilibrated [44]. As a consequence, the heat provided
by the thermostat for this part is same for the atomistic and coarse-grained molecule, and
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is automatically removed. Finally, one can calculate the chemical potential of the coarse-
grained system using standard methods such as IPM or TI, which for very simple models
(e.g. spherical molecules) requires small computational cost. The final expression for
calculating the excess chemical potential is:

µex
AT = µex

CG −
∫

∆
Fth(r)dr −

∫
∆
∇rw(r)〈w(UAT − UCG)〉rdr (3.12)

3.3 Quantification of the work of the thermostat

In this section, we derive the formula for work done by the thermostat ωextra, for single as
well as multi component systems.

3.3.1 Single Component

If we consider a potential coupling between the atomistic and coarse-grained regions, based
on the spatial interpolation of the potential in the atomistic and coarse-grained region, then
the total potential energy of the system can be written as (similar to the force interpolation
expression in standard AdResS):

U =
∑
i<j

w(r i)w(rj)UAT
i,j +

∑
i<j

[1− w(r i)w(rj)]UCG
i,j , (3.13)

where UAT
i,j is the potential in the atomistic region and UCG

ij is the potential acting in the
coarse-grained region between molecules i and j, given by:

UAT
i,j =

∑
α∈i

∑
β∈j

UAT(rα − rβ), UCG
i,j = UCG(r i − rj), (3.14)

where α and β denote the atom indexes of the corresponding molecule. The COM of the
molecule is defined as:

r i =
∑
α∈i

mα∑
α∈imα

rα, (3.15)

where mα is the mass of atom α of molecule i. The potential interpolation was referred to
as auxiliary Hamiltonian approach in the previous section. The force derived from Eq. 3.13
is given by:

F i,j = w(r i)w(rj)FAT
i,j + [1− w(r i)w(rj)]FCG

i,j −∇rw(r i)w(rj)(UAT
i,j − UCG

i,j ). (3.16)

All the properties of auxiliary Hamiltonian approach will be denoted by using a superscript
‘H’. The force of changing representation (from atomistic to coarse-grained and vice versa)
for a single molecule is defined by:

F rep,i =
∑
j

∇rw(r i)w(rj)(UAT
i,j − UCG

i,j ). (3.17)

The thermodynamic variables (number of molecules N , Volume V and temperature T )
in the atomistic, hybrid and coarse-grained region are denoted by (N1, V1, T ), (N2, V2, T )
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and (N3, V3, T ) respectively. The transition region is assumed to be much smaller than
atomistic and coarse-grained region. Thus it is reasonable to assume that:

V ≈ V1 + V3 (3.18)
N ≈ N1 +N3 (3.19)

We further assume that the system is in the thermodynamic limit and the molecules are
short-range correlated, i.e. the range of any interaction is slightly smaller compared to the
size of the transition region. The thermodynamic force in the standard AdResS (F th) and
the auxiliary Hamiltonian AdResS (FH

th) ensure that the system has a flat density across
the box, i.e.,

ρ∆ = ρAT = ρCG = ρ0 (3.20)
ρH

∆ = ρAT = ρCG = ρ0 (3.21)

where ρ0 is the equilibrium number density of the system defined by ρ0 = N/V . The
work done by thermodynamic force balances the grand potential between the atomistic
and coarse-grained regions, which leads to:

pAT = pCG − ρ0 ωth (3.22)

where ωth represents the work done by the thermodynamic force F th. In the auxiliary
Hamiltonian approach, the third term on R.H.S in Eq. 3.16 is not symmetric w.r.t. particle
exchange, thus Newton’s third law is violated and the total momentum is not conserved
anymore. As a result of this, the pressure equation is no more valid, and has to be derived
again for the consistency with Eq. 3.16. In the following, we will report how the equation
of equilibrium is now obtained. We assume that the resolution of the system changes only
along the x-direction. The transition region can be assumed to be an ideal “piston”, which
is given a displacement of ∆L towards the coarse-grained region. The displacement ∆L
should be infinitesimal, i.e. much smaller than than the transition region. This implies
that there is an infinitesimal increment of volume ∆V and an infinitesimal decrement of
volume ∆V in the atomistic and coarse-grained regions respectively, where ∆V = ∆L · S,
and S is the cutting surface area. As the displacements of the molecules are infinitesimal,
it can be safely assumed that the resolution of the molecules does not change under a
displacement of ∆L. Thus, the approximate change in free energy is:

∆A ≈AAT(N1, V1 + ∆V, T )−AAT(N1, V1, T ) +ACG(N3, V3 −∆V, T )−ACG(N3, V3, T )

+
∫

∆
dx ρ0V1 ·

[
FH

th(r)−
〈
Frep(r)

〉 ]
−
∫

∆
dx ρ0(V1 + ∆V ) ·

[
FH

th(r)−
〈
Frep(r)

〉 ]
(3.23)

where AAT and ACG are the free energies in the atomistic and coarse-grained region re-
spectively. Since the resolution changes only along the x-direction, Fth and 〈Frep(r)

〉
depend on x component of the center of mass of the molecule. This can be generalized to
resolution change along any direction, by replacing x by r . Eq. 3.23 is justified under the
hypothesis that the system is in thermodynamic limit, and the interactions are short range
correlated, with the interaction range comparable to the size of the transition region. The
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fifth term on R.H.S. in Eq. 3.23 denotes the work done by the ideal piston. This term
is made of two parts, first is the work done by the thermodynamic force, and second is
the work done by the force of changing representation which does not vanish as it violates
Newton’s action-reaction law. From the physical point of view, this term represents the
work done by the thermodynamic force and the force of changing representation to bring
the molecules across the transition region Since the number of particles in the atomistic
region after moving the piston would be ρ0.(V1 + ∆V ), there is an extra work done by
the thermodynamic force and the force of changing representation to bring ρ0.∆V extra
molecules across the transition region. This work is denoted by the last term on R.H.S. in
Eq. 3.23. This equation can be further simplified as:

∆A ≈AAT(N1, V1 + ∆V, T )−AAT(N1, V1, T ) +ACG(N3, V3 −∆V, T )−ACG(N3, V3, T )

+
∫

∆
dr ρ0S ·∆L ·

[
FH

th(r)−
〈
Frep(r)

〉 ]
(3.24)

As the first two terms in Eq. (3.16) are based on pairwise interactions, they do not contrib-
ute to the difference in energy; in fact the total work of these forces is zero. From Eq. 3.24,
one can deduce:

∆A ≈ −pAT∆V + pCG∆V − ρ0∆V (ωH
th − ωrep), (3.25)

where wH
th is the integral of the thermodynamic force FH

th, and ωrep is the work of changing
representation, which can be written as:

ωrep =
∫

∆
dr 〈F rep(r)〉 =

∫
∆
dr ∇rw(r)

〈
w(r ′) [

∑
α,β

UAT(rα − r ′β)− UCG(r − r ′)]
〉

r ′;r

(3.26)

Here, 〈·〉 denotes the ensemble average, where the average is performed over all the possible
positions of the second molecule r ′ keeping the position of the first molecule r fixed. The
equilibrium volume in the atomistic region maximizes the free energy in the thermodynamic
limit, i.e., ∆A/∆V = 0. Hence, we obtain:

pCG − pAT = ρ0(ωH
th − ωrep). (3.27)

As the pressure difference between the atomistic and coarse-grained region in the standard
AdResS and auxiliary Hamiltonian AdResS is the same, we get the following relation by
comparing the Eq. 3.27 with Eq. 3.22:

ωrep = ωH
th − ωth (3.28)

The above equation relates the thermodynamic force of auxiliary Hamiltonian AdResS
with thermodynamic force of GC-AdResS. The chemical potential difference between the
different resolutions in GC-AdResS is given by:

µCG − µAT = ωth + ωDOF + ωextra (3.29)

Using the same arguments, the chemical potential difference between the atomistic and
coarse-grained resolutions in auxiliary Hamiltonian AdResS is given by:

µCG − µAT = ωH
th + ωDOF (3.30)
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By comparing (3.29) with (3.30), we have the relation:

ωextra = ωH
th − ωth, (3.31)

which also relates the thermodynamic force of the auxiliary Hamiltonian AdResS and GC-
AdResS. It has been shown in Ref. [111], that the ensemble average of F rep is equivalent
in both GC-AdResS and auxiliary Hamiltonian AdResS. The complete formula for the
calculation of excess chemical potential in GC-AdResS becomes:

µex
AT = µex

CG −
∫

∆
drFth(r)−

∫
∆
dr ∇rw(r)

〈
w(r ′) [

∑
α,β

UAT(rα − r ′β)− UCG(r − r ′)]
〉

r ′;r

(3.32)

3.3.2 Extension to Multi Component systems

We assume that there are two components present in the system A and B, with total
number of molecules of each component NA and NB, respectively. We denote the number
of molecules of type A by NA

1 , NA
2 and NA

3 in the atomistic, transition, and coarse-grained
regions respectively and similarly of type B byNB

1 , NB
2 andNB

3 . Under the assumption that
the transition region is very small compared to the atomistic and coarse-grained regions,
we have the following:

V ≈ V1 + V3 (3.33)
N ≈ NA +NB (3.34)
NA ≈ NA

1 +NA
3 (3.35)

NB ≈ NB
1 +NB

3 (3.36)

The thermodynamic force is applied to each component, which ensures uniform density of
a particular component throughout the whole simulation box. Thus, we have:

ρA
∆ = ρA

AT = ρA
CG = ρA

0 (3.37)
ρB

∆ = ρB
AT = ρB

CG = ρB
0 (3.38)

Similar to Eq. (3.22), for mixtures, we have the following relation:

pCG − pAT = ρA
0 ω

A
th + ρB

0 ω
B
th (3.39)

Using the relation between the thermodynamic force in GC-AdResS and auxiliary Hamilto-
nian AdResS, we get the following:

pCG − pAT = ρA
0 (ωA,H

th − ωA
rep) + ρB

0 (ωB,H
th − ωB

rep), (3.40)

where work of changing representation for different components is given by:

ωA
rep = ωAA

rep + ωAB
rep =

∫
∆
dr〈FAA

rep (r)〉+
∫

∆
dr〈FAB

rep(r)〉, (3.41)

ωB
rep = ωBA

rep + ωBB
rep =

∫
∆
dr〈FBA

rep(r)〉+
∫

∆
dr〈FBB

rep(r)〉. (3.42)
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where ωAA
rep is work of changing representation for molecule of type A, due to interactions

with molecule of type A only, while ωAB
rep denotes the work of changing representation, due

to interactions with molecule of type B. Similarly, one can define ωBA
rep and ωBB

rep . The
explicit expressions are:

〈FAA
rep (r)〉 = ∇rw(r)

〈
w(r ′)

[ ∑
α,β

UAT
AA(rα − r ′β)− UCG

AA (r − r ′)
]〉

r ′,A;r,A (3.43)

〈FAB
rep(r)〉 = ∇rw(r)

〈
w(r ′)

[ ∑
α,β

UAT
AB(rα − r ′β)− UCG

AB (r − r ′)
]〉

r ′,B;r,A (3.44)

〈FBA
rep(r)〉 = ∇rw(r)

〈
w(r ′)

[ ∑
α,β

UAT
BA(rα − r ′β)− UCG

BA (r − r ′)
]〉

r ′,A;r,B (3.45)

〈FBB
rep(r)〉 = ∇rw(r)

〈
w(r ′)

[ ∑
α,β

UAT
BB (rα − r ′β)− UCG

BB (r − r ′)
]〉

r ′,B;r,B (3.46)

where, UAT
AB represents the interaction potential in the atomistic region between molecules

of type A and B and UCG
AB is the coarse-grained potential between molecules of type A

and B. Similarly, all other interaction terms can be defined. Notation 〈·〉r ′,B;r,A denotes
the ensemble average is performed w.r.t. position of molecule B, keeping the position of
A molecule fixed at r . (The same convention holds for the other combinations of indices
r ′, r ,A,B). Thus, 〈FAB

rep(r)〉 represents the force acting on molecule of type A, due to the
interactions with molecules of B. From Eq. (3.39), (3.40), we get:

ρA
0 (ωA,H

th − ωA
th − ωAA

rep − ωAB
rep ) + ρB

0 (ωB,H
th − ωB

th − ωBA
rep − ωBB

rep) = 0 (3.47)

It should be specified that we do not have ωBA
rep = ωAB

rep , even though UAT
AB = UAT

BA and
UCG

AB = UCG
BA . Let us denote the work done by the transition region on molecules of

type A and B by ωA
0 and ωB

0 , respectively. The chemical potential balance equation for
the atomistic and coarse-grained regions, derived in Ref. [111], can easily be extended to
multi-component systems.

µA
AT(NA

1 , N
B
1 , V1, T ) = µA

CG(NA
3 , N

B
3 , V3, T )− ωA

0 (3.48)
µB

AT(NA
1 , N

B
1 , V1, T ) = µB

CG(NA
3 , N

B
3 , V3, T )− ωB

0 (3.49)

Here, µA
AT is the excess free energy of solvation when molecule of type A is inserted into

the infinitely large A–B mixture. For GC-AdResS, one can write:

µA
CG − µA

AT = ωA
th + ωA

DOF + ωA
extra (3.50)

µB
CG − µB

AT = ωB
th + ωB

DOF + ωB
extra (3.51)

where ωA
extra is the energy dissipation due to molecule of type A that changes resolution.

Similar definition holds for ωB
extra. The energy dissipation can be further written as:

ωA
extra = ωAA

extra + ωAB
extra (3.52)

ωB
extra = ωBA

extra + ωBB
extra (3.53)

ωAB
extra is the energy dissipation of a molecule of type A produced by non-conservative inter-

actions with molecules of type B. Similarly ωAA
extra is the energy dissipation of a molecule
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A produced by non-conservative interactions between molecules of type A and A only.
The definitions are similar for ωBA

extra and ωBB
extra. It should be noted that, we do not have

ωBA
extra = ωAB

extra in general. In accordance with the auxiliary Hamiltonian approach, for
a single component, the chemical potential difference between the atomistic and coarse-
grained regions can be written as:

µA
CG − µA

AT = ωA,H
th + ωA

DOF (3.54)

µB
CG − µB

AT = ωB,H
th + ωB

DOF (3.55)

By using Eq. (3.50), (3.52) and (3.54), we have

ωAA
extra + ωAB

extra = ωA,H
th − ωA

th. (3.56)

Using Eq. (3.51), (3.53) and (3.55), we have

ωBA
extra + ωBB

extra = ωB,H
th − ωB

th. (3.57)

By inserting Eq. (3.56) and (3.57) into Eq. (3.47), we have

ρA
0 (ωAA

extra + ωAB
extra − ωAA

rep − ωAB
rep ) + ρB

0 (ωBA
extra + ωBB

extra − ωBA
rep − ωBB

rep) = 0 (3.58)

The intuitive physical conclusion from the above equation is ωAA
extra = ωAA

rep , because these
two terms exclusively involve A–A interactions, thus its related energy dissipation. The
same is true for B–B interaction: ωBB

extra = ωBB
rep . The physical meaning of ωAB

extra, ωAB
rep ,

ωBA
extra and ωBA

rep , leads to ωAB
extra = ωAB

rep , and ωBA
extra = ωBA

rep . It follows that for component A,
the excess chemical potential difference is:

µA,ex
CG − µ

A,ex
AT =

∫
∆

FA
th(r)dr +

∫
∆
〈FAA

rep (r)〉dr +
∫

∆
〈FAB

rep(r)〉dr (3.59)

3.4 Numerical Results

In this section, we report the technical details of all the simulations, for reproducibility of
our results. We report the excess chemical potential for a variety of liquids and mixtures
that are important in (bio)chemistry and natural science as well as the structural properties
of two mixtures: TBA/water and urea/water. We further compare the efficiency of GC-
AdResS as a tool to compute the chemical potential with popular MD approach such as
TI and IPM.

3.4.1 Simulation Setup

The potential energy function and the force field parameters for all the molecules were taken
from GROMOS53A6 parameter set. Liquid water was described by the SPC model [4],
methanol was described by the model developed by Walser et al [110], urea by the model
described in [103], tert-butyl alcohol by the parameter set of [54] and DMSO was described
by the model given by Geerke et.al. [28]. For liquid methanol simulations, GROMOS43A1
parameter set was used, as it was shown to be more accurate for calculating excess chem-
ical potential of methanol [29]. The resolution of the molecules is assumed to change only
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System ε(kJ/mol) σ(nm)
methane 0.65 0.40
ethane 0.20 0.50

propane 0.65 0.55
methanol 0.65 0.40
DMSO 0.30 0.50

methanol in methanol/water 0.65 0.40
methane in methane/water 0.65 0.40

urea in urea/water 0.65 0.40
ethane in ethane/water 0.65 0.45

TBA in TBA/water 0.65 0.60
DMSO in DMSO/water 0.65 0.50
TBA in TBA/DMSO 0.40 0.60

DMSO in TBA/DMSO 0.30 0.50

Table 3.1: Parameters for WCA potential in the coarse-grained region

in the x-direction in all AdResS simulations performed in this work. To obtain a con-
verged thermodynamic force, and subsequently a flat density, we performed 30 iterations
for each system. Each iteration comprised of 200 ps of equilibration followed by 200 ps
of data collection. All the simulations were performed at 298 K except simulations of
liquid methane and ethane which were performed at 111.66 K and 184.52 K respectively.
As it was discussed in [111], there is no requirement of a coarse-grained model that re-
sembles the structural and thermodynamic properties of a full atomistic model. It was
shown numerically that the proper exchange of energy and molecules was independent
from the molecular model used in the coarse-grained region, showing the convenience of
GC-AdResS. In this work, generic WCA potential was used in the coarse-grained region.
The interaction potential between the coarse-grained particles is given by:

U(r) = 4ε
[(

σ

r

)12
−
(
σ

r

)6
]

+ ε, r ≤ 21/6σ. (3.60)

The parameters σ and ε were chosen such that the radial distribution function of center
of mass of particles reproduces a liquid structure. For water molecule, the parameters
used in this study are ε = 0.65 kJ/mol and σ = 0.30 nm. Table 3.1 shows the WCA
parameters for other molecules that we have studied. For interactions between solute
and solvent, σ values were obtained by averaging over the individual parameters. The
solute-solvent ε is kept same as the solute-solute ε. To obtain the chemical potential of
coarse-grained component, insertion particle method was used, where a trajectory of 8 ns
was obtained and the coordinates were written after every 0.4 ps. The insertions of the
molecule were performed 4,000,000 times in each frame at random locations and with
random orientations of the molecule. The excess chemical potential value was calculated
by averaging over the last ten iterations after the thermodynamic force had converged and
the statistical uncertainty was determined by the standard deviation in the data. The
excess chemical potential of the solute or the excess free energy of solvation was calculated
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System Nsolute Nsolvent System size (nm3) AT + HY region (nm3)
water — 13824 30.2× 3.8× 3.8 14.6× 3.8× 3.8

methane — 2000 9.0× 3.7× 3.6 6.0× 3.7× 3.6
ethane — 2000 12.0× 3.9× 3.7 7.0× 3.9× 3.7

propane — 1433 10.0× 4.5× 4.5 7.0× 4.5× 4.5
methanol — 4000 12.0× 4.6× 4.5 7.4× 4.6× 4.5
DMSO — 1500 15.0× 3.6× 3.3 7.0× 3.6× 3.3

methanol/water 128 12672 29.5× 3.7× 3.7 14.6× 3.7× 3.7
methane/water 40 6960 10.0× 4.8× 4.7 7.0× 4.8× 4.7

urea/water 50 2500 9.7× 2.9× 2.8 6.8× 2.9× 2.8
ethane/water 40 6960 10.0× 4.7× 4.6 7.0× 4.7× 4.6

TBA/water (xTBA = 0.001) 40 39960 50.1× 5.8× 4.3 7.0× 5.8× 4.3
TBA/water (xTBA = 0.02) 80 4400 10.0× 3.6× 4.2 7.0× 3.6× 4.2
TBA/water (xTBA = 0.04) 180 4300 10.0× 4.3× 3.7 7.0× 4.3× 3.7
TBA/water (xTBA = 0.12) 538 3942 10.0× 4.4× 4.6 7.0× 4.4× 4.6
TBA/water (xTBA = 0.16) 717 3763 10.0× 4.9× 4.6 7.0× 4.9× 4.6
TBA/water (xTBA = 0.20) 896 3584 12.0× 4.6× 4.5 7.0× 4.6× 4.5

DMSO/water 50 4950 12.0× 4.0× 3.3 7.0× 4.0× 3.3
TBA/DMSO 80 4400 10.0× 7.3× 7.2 7.0× 7.3× 7.2

Table 3.2: Simulation details of AdResS and full-atom systems.

using the thermodynamic integration (TI) approach, introduced in Section 2.6.3. We
computed the excess chemical potential using a two-stage approach as described in [66],
first coupling van der Waals interactions to transform the non-interacting molecule into
a partially-interacting uncharged molecule, then coupling Coulomb interactions from an
uncharged interacting molecule to fully-interacting molecule. The resulting free energy
∆Gfinal is the sum of ∆G values obtained from the two procedures,

∆Gfinal = ∆Gele + ∆Gvdw (3.61)

where ∆Gvdw is the free energy change associated with introducing the van der Waals
interactions and ∆Gele is the free energy change associated with introducing Coulomb in-
teractions. We evaluated the above integral for 21 values of λ (evenly spaced between 0
and 1) in both the procedures. At each value of λ, first a steepest descent energy minimiz-
ation was performed followed by 200 ps of NPT equilibration and 400 ps of data collection
under constant volume and temperature conditions, in accordance with AdResS simula-
tions. During the van der Waals coupling, soft-core interactions were used with soft-core
parameters αLJ = 0.5, σ = 0.3 and the power of λ in soft-core equation was taken as 1.
Free energy estimates and the errors were calculated through Bennet’s acceptance ratio
method (BAR) [3]. For both AdResS and full-atom simulations, same system size was
used. Table 5.2 gives a detailed summary of each system studied.
In all the simulations, a leap-frog stochastic dynamics integrator with a time step of 2 fs

and an inverse friction coefficient of 0.1 ps was used. All bond-lengths were constrained
using the LINCS algorithm. For liquid water, methanol, methanol/water, methane/water
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and ethane/water a cut-off radius of 0.9 nm was used for van der Waals and Coulomb
interactions, while for rest of the systems, a cut-off radius of 1.4 nm was used. For the
TBA/water system, the chemical potential converges at cut-off 0.9 nm for mole-fraction
xTBA = 0.02. Since it would be too expensive to do the convergence tests for all concen-
trations, we simply use a large cut-off 1.4 nm for the concentration dependency study of
TBA/water. Electrostatic interactions were calculated using the reaction-field term [106]
with a dielectric permittivity 54 for urea in SPC water [103], 64.8 for TBA in SPC wa-
ter [54], 61 for other solutes in SPC water, 19 for methanol and 46 for DMSO as the
solvent [29].

3.4.2 Chemical Potential Results

We have calculated µex for a large variety of liquids and mixtures, with different molecu-
lar characteristics, eg. alkane liquids such as methane, ethane and propane, hydrophobic
solvation in alkane/water mixtures, hydrophilic solvation in TBA/water and urea/water
mixture, other liquids such as methanol and DMSO and non-aqueous mixture such as
TBA/DMSO. Some systems such as urea/water are commonly used as co-solvent of biolo-
gical molecules and TBA/water plays an important role in modern technology. Table 3.3
shows the chemical potential values obtained using GC-AdResS, compared with the value
obtained using TI at the same concentrations. In Ref. [111], it was shown that the GC-
AdResS reproduces µex of liquid water obtained from IPM, however the computational
cost of IPM was rather large, thus we have not computed µex using IPM in this work. The
results show that the agreement between GC-AdResS and TI values is highly satisfactory,
with the maximum deviation in the values being 10%. This validates the robustness of
GC-AdResS in describing the essential thermodynamics of the system correctly. We have
also compared the values with those available in literature. The concentration of solute in
the mixtures we have treated in GC-AdResS is slightly higher than those in Ref. [29, 54],
but the chemical potential does not change significantly in the dilute regime, and has been
verified for one relevant system (TBA/water), which will be discussed later on in this sec-
tion. Figure 3.2 and 3.3 provide complementary information to Table 3.3. In GC-AdResS,
the electrostatic interactions are computed using the reaction-field method, and the cut-
off radius may play an important role in some of the systems investigated. Moreover, in
TI, long range dispersion corrections are taken into account while calculating the excess
energy of solvation (or excess chemical potential), while in GC-AdResS, we do not con-
sider long range dispersion corrections. Hence we studied the behaviour µex for DMSO
in DMSO/water mixture as a function of cut-off radius. It can be seen from Figure 3.2,
that as the value of cut-off increases, the chemical potential obtained from GC-AdResS
simulations improves systematically and converges to the value obtained using TI at cut-
off = 1.5 nm. It must be mentioned here that in MD simulations, 1.4 nm is taken as the
standard cut-off radius, and results are highly satisfactory for this value. Figure 3.3 shows
the behaviour of µex as a function of concentration of TBA in TBA/water mixture. This
study again demonstrates the robustness of GC-AdResS in predicting the correct thermo-
dynamics in a very dilute regime. It can be seen that the agreement between GC-AdResS
and TI values is remarkable, and at a very dilute concentration, GC-AdResS value matches
perfectly with the experiment value. Moreover, the trend of the chemical potential values
as a function of concentration is similar to that reported in Ref. [54].
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Liquid component Mole fraction of solute GC-AdResS TI Experiment
methane – −4.6± 0.1 −5.2± 0.1 –
ethane – −8.2± 0.3 −8.8± 0.1 –

propane – −8.5± 0.1 −9.5± 0.2 –
methanol – −20.1± 0.1 −20.6± 0.4 −20.5 [29]
DMSO – −32.2± 0.3 −34.7± 0.7 −32.2 [79]

methanol in water 0.01 −18.1± 0.2 −19.7± 0.2 –
methane in water 0.006 9.1± 0.1 8.5± 0.2 –

urea in water 0.02 −56.1± 0.6 −58.2± 0.5 −57.8± 2.5 [103]
ethane in water 0.006 7.2± 0.2 7.4± 0.3 –
TBA in water 0.001 −19.5± 0.3 −20.8± 0.6 −19.0 [54]

DMSO in water 0.01 −31.4± 0.5 −33.2± 0.3 –
TBA in DMSO 0.02 −24.8± 0.4 −24.0± 0.5 –

Table 3.3: The excess chemical potential (in kJ/mol) of different liquids and mixtures
calculated in GC-AdResS and TI. In some cases, experiment values are also reported at
the same concentrations. For methanol we compare our results with those available in
the literature using the same force field. The chemical potential of solvent is not reported
above as it does not change significantly in a dilute regime.
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Figure 3.2: Excess chemical potential of Dimethyl sulfoxide (DMSO) in water as a function
of cut-off radius calculated using GC-AdResS. The value obtained from thermodynamic
integration calculation is also shown, with a grey region indicating the standard deviation.
This value was calculated using a cut-off radius of 1.4 nm. It was seen that the value does
not change significantly if the cut-off radius is varied.
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Figure 3.3: Excess chemical potential of tert-butyl alcohol (TBA) in water for different
concentrations (in semi-logarithmic scale), calculated using GC-AdResS. The results are
compared with thermodynamic integration values. At mole-fraction xTBA = 0.001, the
experiment value is shown.

3.4.3 Structural Properties

As discussed previously, in addition to the calculation of µex on-the-fly, one can also determ-
ine various thermodynamic and structural properties in a single GC-AdResS simulation to
further strengthen the robustness of the method. The action of thermodynamic force and
thermostat ensures that the density in the hybrid region is sufficiently close to the refer-
ence density. Figure 3.4 shows the molecular density of TBA and water in TBA/water
mixture in the hybrid region, compared with the reference density. The results show that
the largest difference is below 20% and the average difference is below 10%, which is good
enough to ensure that there are no significant artifacts on the molecular density in the
explicit region due to the interpolation of forces in the hybrid region. Figure 3.5 shows
the molecular density of urea and water in urea/water mixture. In this case too, the av-
erage deviation of the molecular density is below 10%. Figure 3.6 and 3.7 show various
radial distribution functions calculated in the explicit region in GC-AdResS and reference
full-atomistic simulation for two systems: TBA/water and urea/water. The agreement
between GC-AdResS and full-atomistic results is highly satisfactory. It must be noted
that the systems studied here represent the worst case scenario of the technical setup in
GC-AdResS, with a very small atomistic region (0.9 nm) and coarse-grained region (0.5
nm), and a relatively large transition region (2.7 nm). Even under such extreme technical
conditions, the local distribution functions as well as relevant thermodynamic quantity
such as µex are well reproduced.

3.4.4 Efficiency

We compare the time taken to run a full GC-AdResS simulation to the time for a thermo-
dynamic integration calculation for different systems at different concentrations of TBA
in water to check the numerical efficiency of our approach. The total time required for a
GC-AdResS simulation consists of the time taken to obtain a converged thermodynamic
force and the time taken to obtain the coarse-grained chemical potential. The total time
is obtained by adding the time taken to complete the TI procedure at each value of λ. TI
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Figure 3.4: Top: Molecular density profile in ∆ for TBA/water mixture; Bottom, the same
plot for water. The action of the thermodynamic force and that of the thermostat leads
to the largest deviation of 20% and an average difference of 10% from the reference all
atomistic average density; which is numerically satisfactory. The mole-fraction is xTBA =
0.02, and the cut-off radius is 0.9 nm.
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Figure 3.5: Top: Molecular density profile in ∆ for urea/water mixture; Bottom, the same
plot for water. The action of the thermodynamic force and that of the thermostat leads
to the largest deviation of 20% and an average difference of 10% from the reference all
atomistic average density; which is numerically satisfactory. The mole-fraction is xTBA =
0.02, and the cut-off radius is 0.9 nm.
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Figure 3.6: Top: g(r) for TBA-TBA ; Middle: g(r) for TBA-water; Bottom: g(r) for water-
water. Red: the results of the AdResS simulation. Blue: the results of a full-atomistic
reference simulation. Note: g(r) is calculated only in the atomistic region. The mole-
fraction is xTBA = 0.02, and the cut-off radius is 0.9 nm.
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Figure 3.7: Top: g(r) for Urea-Urea; Middle: g(r) for Urea-water; Bottom: g(r) for water-
water. Red: the results of the AdResS simulation. Blue: the results of a full-atomistic
reference simulation. Note: g(r) is calculated only in the atomistic region. The mole-
fraction is xUREA = 0.02, and the cut-off radius is 0.9 nm.
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procedure is preformed in two stages first the van der Waals interactions are coupled and
then electrostatic interactions are coupled. At each stage, we use 21 equally distributed
values of λ. Thus, in total 42 simulations are performed to calculate each TI chemical po-
tential value. In AdResS, the time for thermodynamic force convergence largely depends
on the initial guess. We start with a randomly chosen initial guess for system with the
highest mole fraction of TBA. Since we use a random thermodynamic force, the number of
iterations taken for convergence is large. For all the other systems, we use the converged
thermodynamic force obtained from the first system as an initial guess, which makes the
convergence faster in all the other systems. Table 5.1 shows the number of iterations re-
quired for the thermodynamic force convergence in GC-AdResS and total time required
for GC-AdResS and TI calculation. The advantage of GC-AdResS over TI is that we get
two values of excess chemical potential for both solute and solvent in a single calculation,
while in TI, the whole process has to be repeated to get the excess chemical potential of
other component. For very dilute systems (xTBA = 0.001), however, one has to take a
very large systems in GC-AdResS. The time taken to obtain a converged thermodynamic
force increases significantly in this case, and hence TI is always a better choice at such low
concentrations, where much smaller systems can be simulated, at the same mole fraction.

GC-AdResS TI
xTBA No. of iterations Time(hrs.) Time(hrs.)
0.200 20 52.4 30.8
0.160 5 15.1 31.0
0.120 5 16.3 29.9
0.040 8 27.2 26.7
0.020 8 28.8 26.6
0.001* 20 252 202

Table 3.4: Time required for a full GC-AdResS and thermodynamic integration (TI) calcu-
lation for tert-butyl-alcohol(TBA) in water at different mole-fractions. The “*” indicates
that a larger system was used in order to simulate a very dilute system (xTBA = 0.001).
All the simulations were performed on a workstation that has two Quad-Core AMD Op-
teron(tm) 2376 Processors.

3.5 Current Computational Convenience: Comparison with
other methods

An important question arising from the previous discussion is whether or not GC-AdResS
provides a computationally convenient approach to calculate µex compared to TI or In-
sertion Particle (IP) approaches. The current scenario does not give any straightforward
answers, but the work is a first step towards a slightly more positive answer for future.
In the fastest version of AdResS implemented in GROMACS-4.5, a speedup factor 4 was
obtained compared to full-atomistic simulations using the same code. In this case, using
GC-AdResS would be more convenient as one can not only calculate µex, but also various
structural and thermodynamical quantities. However, in GROMACS-4.6, the performance
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of atomistic simulations (specifically SPC/E water) have improved considerably, while Ad-
ResS implementation has not been optimized fully. At the current stage, a speedup factor
of 2 to 3 is obtained for large systems (30000 molecules, except SPC/E water) in AdResS
simulations compared to atomistic simulations. Thus, TI would be computationally less
demanding than GC-AdResS in this case. Another point that must be addressed for a fair
comparison between TI and GC-AdResS is the following: TI has an advantage of using
a single molecule as a solute, which acts as the minor component in a very dilute solu-
tion. However in GC-AdResS, one must consider a true mixture, with certain number of
molecules of minor component present in the liquid of major component. At low concen-
trations, GC-AdResS requires much larger systems than those required in TI (for reference,
see Table 5.2). Because of the low density of the solute component, thermodynamic force
convergence requires long runs, as the density profile fluctuates highly. Thus, for very
dilute systems, TI is more preferable to GC-AdResS, however, if one wants to calculate
other properties too, then (optimized) GC-AdResS would be more convenient. At high
concentrations, GC-AdReS is more preferable to TI for calculating both the chemical po-
tential as well as general properties of the mixture because of the faster convergence of the
thermodynamic force acting on the minor component. Another advantage of GC-AdResS
over TI is that the chemical potential of both the components can be calculated in a single
simulation, while one needs to run two separate simulations in order to get the chemical
potential of both the components. The results reported in the previous section are en-
couraging, however, at the current state of the code, there is no clear convenience in using
GC-AdResS over TI in calculating µex. It should be noted that the major motivation of
this work was to extend the theoretical concepts of GC-AdResS and show the robustness
of the method in calculating important thermodynamic property such as µex. In future,
with all the technical optimizations in the AdResS code, we may have a more definitive
answer as to where GC-AdResS stands in comparison to other methods.

3.6 Conclusions

In this chapter, we have given the analytical derivation of the formula to calculate excess
chemical potential in GC-AdResS, and shown the accuracy and robustness of GC-AdResS
in calculating the excess chemical potential for a representative class of complex liquids and
mixtures. In every AdResS simulation, during the initial equilibration process, where the
thermodynamic force is being calculated, one can automatically obtain the excess chem-
ical potential. One may further calculate various other structural and thermodynamical
properties within the same simulation. Thus, one does not need to run specific simula-
tions in order to calculate µex, which highlights one advantage of GC-AdResS over other
computational methods that are used to compute µex. Thus, GC-AdResS has evolved into
a reliable multiscale technique, which upon further computational optimizations may be-
come an effective tool to calculate µex. Since this chapter firmly establishes GC-AdResS as
a robust method to calculate thermodynamic and structural properties in open boundary
systems, in the following chapter, we will deal with dynamical properties (equilibrium time
correlation functions). We will give a theoretical definition of equilibrium time correlation
functions in open boundary systems using the so-called Bergmann-Lebowitz model and we
will calculate these functions for liquid water.



Chapter 4

Molecular Dynamics in open boundary sys-
tems: Bergmann-Lebowitz model and Ad-
aptive Resolution Simulation (AdResS)

4.1 Introduction

Real life systems as well as experimental setups are likely (in most of the cases) to ex-
change matter and energy with their surroundings. Such systems fall under the class of
systems, known as “open boundary systems” [94]. The theoretical description of open
boundary systems is not trivial, and the theorems of statistical mechanics for systems with
fixed number of particles, cannot be applied anymore and have to be modified accord-
ingly. Molecular dynamics techniques with open boundary systems did not succeed as
expected, due to their reduced efficiency when compared to standard MD simulations with
fixed number of particles [60]. However, grand canonical adaptive resolution simulations
(GC-AdResS) have led to the development of a technique, which allows for an efficient
exchange of particles between the system and an external environment. In comparison
to other algorithms with varying number of particles, GC-AdResS is highly efficient and
flexible. This flexibility allows for the calculation of various equilibrium properties such
as time correlation functions, some of which, because of varying N , require a theoretical
redefinition compared to the standard canonical MD studies. In order to define the equi-
librium time correlation functions in open boundary systems, it becomes necessary that we
revisit the theoretical concepts that were developed five to six decades ago for statistical
mechanics of open boundary systems [7, 52, 53]. In this part of the thesis, we will refer to
open boundary systems which exchange energy and matter with the surroundings as grand
ensemble systems; the grand-canonical ensemble is one particular case of grand ensemble.
The aim of this chapter is: (a) discussion of theoretical aspects of open boundary MD sim-
ulations and a brief overview about the development of algorithms with varying number
of particles in MD; (b) review of the so-called Bergman-Lebowitz (BL) model [7,52,53] for
open boundary systems (c) discussion on the conceptual consistency of GC-AdResS with
the BL model (d) definition of equilibrium time correlation functions in open boundary
systems, and calculation of these functions for liquid water in GC-AdResS and reference
full-atomistic simulations. The need to approach more complex systems, which are char-
acterized by a realistic exchange of energy and matter with the surroundings is becoming

49
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a guiding principle in the development of open boundary molecular dynamics systems [76],
and this work represents only a starting point.

4.2 Background

In this section, we give a general overview on the theoretical concepts developed about the
statistical mechanics of open boundary systems and discuss the general features of different
MD techniques with varying number of particles reported in literature.

4.2.1 Statistical mechanics of open boundary systems

In literature [7,21,52,53,75], most of the ideas involving open boundary systems focus on
coupling a system to a reservoir of energy, or non-equilibrium scenarios, such as transport
of matter with an external source. Exchange of matter with the surroundings is usually
limited to simple (formal) extensions of the case of heat exchange and heat flow [21,52,53].
However, while the exchange of heat has played an important role in MD simulations,
the system is coupled to an external reservoir of energy which makes the system achieve
its desired temperature and avoids the need of very large systems, as required in NVE
simulations [107]. The idea of open boundary systems that automatically implies exchange
of matter did not succeed in MD. Thus, concepts developed in Refs. [7,52,53] regarding the
exchange of matter were not implemented in numerical tools for calculations. However, it
has been shown that GC-AdResS is a highly efficient grand canonical-like MD technique.
It becomes imperative to rediscover and develop the work in Refs. [7, 52, 53] further so
that quantities which need a redefinition (where N is varying) such as equilibrium time
correlation functions, can have a rigorous definition in GC-AdResS. In this work we discuss
how in some approaches the microscopic description of the reservoir and its coupling to
the system is not explicitly required; such a scenario is close enough to the GC-AdResS
implementation. The basic principle of the approaches where an explicit coupling term in
the Hamiltonian is not required, is that a small system is in contact with a large reservoir
and the objective is to extract the (thermo) dynamical laws of small systems from the
microscopic equation of the global system, i.e. small system and the reservoir. The Liouville
equation of the global system is an ideal starting point; however the variables in the
reservoir are macroscopic variables, that are considered to be averages over the microscopic
states and do not explicitly enter into the evolution of the small system. The general
hypothesis at the core of such models is that the small system is influenced by the reservoir
only through its intensive properties [52]. The essential idea is that the intensive properties
of the reservoir are constants of motion, even though its extensive properties change. As a
consequence, the small system is governed by a self-consistent dynamical evolution, which
does not contain any time dependent function of the reservoir. In this regard, we will
discuss the grand-ensemble model proposed by Bergmann and Lebowitz for open boundary
systems in Section 4.3, which (compared to other models) is conceptually solid and practical
enough to be implemented in MD code.
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4.2.2 Molecular Dynamics of subsystems with a varying number of particles

Grand Canonical MD simulations have mostly been intended as the tool to calculate the
excess chemical potential following the Widom insertion [117] or the thermodynamic in-
tegration [105] techniques. These methods describe the effect of inserting/removing one
molecule from a system. They are computationally expensive and the calculation of the
excess chemical potential is the only aim of such studies. Hybrid MC/MD approach is an
extension to these methods, where the dynamical evolution of the MD system is interfaced
with MC moves which insert or remove molecules, and the system is equilibrated locally
before the next MD step is initiated (see discussion in Ref. [24] and references therein).
This approach is computationally highly demanding as each insertion/removal has costs of
the order of those of Widom-like techniques for the calculation of chemical potential. Petitt
and collaborators [10,11,41,60,115] initiated the development of grand-canonical like mo-
lecular dynamics. This method is based on the introduction of an additional variable ‘s’,
a fractional number that depends on the degree of presence of an additional molecule. An
extended Hamiltonian which describes the evolution of ‘N + s’ particles is then derived. It
has been shown that this approach was not efficient when applied to liquid water [48]. The
method was further improved by Eslani and Muller-Plathe [24]. In this method, the idea
of fractional particles is conceptually appealing, but the extra computational costs and the
numerical stability of the algorithm have restricted its popularity. As anticipated before,
with the increasing success of multiscale simulations and the development of concurrent MD
methods, a new generation of grand-canonical MD algorithms have come to forefront [89].
Such a category is that of adaptive resolution techniques, where molecules in the different
regions are coupled via space-dependent forces [86,111,114], Hamiltonians [22,84] or Lag-
rangians [34]. These algorithms can be easily converted to a grand-canonical MD scheme
if the following requirements are fulfilled: (a) The reservoir is large enough to ensure phys-
ically realistic particle number fluctuations (b) The high resolution region is big enough
to consist statistically relevant number of molecules. These methods are computationally
superior to open boundary MD techniques of the previous generations. From this point of
view, they represent a realistic pathway to future open boundary MD simulations, and in
particular for those studies where the physics of subsystems is highly relevant.

4.3 Bergmann-Lebowitz model and Liouville equation for
open boundary systems

In this section, we will discuss the Bergmann-Lebowitz (BL) model and report the Liouville
equation for open boundary systems where the number of particles is not constant in time.
In a seminal paper, Bergmann and Lebowitz [52] (see also Ref. [53]) present a general
model for a many-particle system that is interacting with different reservoirs of energy
and particles. For simplicity and consistency with our grand-canonical like MD setup,
we will only consider the case of a single reservoir. The assumption in the BL model is
that the interaction between the system and the reservoir is impulsive. Because of this
assumption, it can be stated that the state of the reservoir state does not depend on
the previous history of the system at the beginning of the interaction. Since there is no
further interaction, the time dependence of the reservoir can be completely ignored. If
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one specifies the distribution of the reservoir before the interaction with the system, then
the effect of the reservoir on the system can be completely described; thus, one does not
need to deal with the microscopic details of the reservoir. The interaction of the system
with the reservoir component produces a discontinuous transition of a system from a state
with N particles (X ′N ) to one with M particles (XM ). The change in the system state
can be described by a stochastic kernel, KMN (XM , X

′
N ). KMN (XM , X

′
N ) represents the

contingent probability that, in an infinitesimally small time interval, the system at X ′N
makes a transition to XM as a result of the interaction with the reservoir component. The
evolution of the distribution function ρ(XM ,M, t) in the system phase space is governed by
the extended Liouville equation which we will name as the Bergmann-Lebowitz Liouville
equation:

∂ρ(XM ,M, t)
∂t

+ {ρ(XM ,M, t),H(XM )} (4.1)

=
∞∑
N=0

∫
dX

′
N [KMN (XM , X

′
N )ρ(X ′N , N, t)−KNM (X ′N , XM )ρ(XM ,M, t)]

where H(XM ) is the Hamiltonian of the system corresponding to the point XM and {∗, ∗}
are the canonical Poisson brackets. The natural motion of the system and its interaction
with the reservoir are responsible for the evolution of the distribution function ρ(XM ,M, t)
in the phase space of the system. If the condition of flux balance is satisfied (necessary
and sufficient condition):
∞∑
N=0

∫
[e−βH(X′N )+βµNKMN (XM , X

′
N )−KNM (X ′N , XM )e−βH(XM )+βµM ]dX ′N = 0 (4.2)

then the stationary solution is the grand-canonical distribution given by:

ρM (XM ,M) = 1
Q
e−βHM (XM )+βµM (4.3)

where β the Boltzmann factor of the system at a given temperature T , µ is the chemical
potential and Q =

∑∞
M=0 e

βµM
∫
e−βHM (XM )dXM . In such a scenario, the BL Liouville

equation represented in Eq. 4.1 is reduced to the standard Liouville equation, with the
number of particles being a stochastic variable:

∂ρ(XM ,M, t)
∂t

= {H(XM ), ρ(XM ,M, t)}. (4.4)

A rigorous mathematical formulation of Liouville theorem and operator for grand-ensemble
systems is discussed in Ref. [19]

4.4 Correspondance between Bergmann-Lebowitz model and
GC-AdResS

In this section we analyze the correspondence between BL model and GC-AdResS. The
section is divided into four parts: In the first part, we will discuss the technical and
conceptual features of GC-AdResS and relate them directly to the hypothesis/requirements
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of the theoretical derivation of BL model. In the second part, we will show numerically why
one can relate the Hamiltonian in the atomistic region of GC-AdResS to the Hamiltonian
prescribed in the BL model. The third part focusses on the transition kernel in BL model
and how one can interpret it within the GC-AdResS protocol. In the final part, we give
a conceptual solidity to the calculation of equilibrium time correlation functions in GC-
AdResS using the principles of BL model.

4.4.1 GC-AdResS formalism

The theoretical and computational formalism of GC-AdResS has already been discussed
in detail in Chapter 3. Here, we will only discuss those features that are relevant to this
Chapter. In the original AdResS setup [114], the thermostat acts over the whole system;
in this work the idea has been extended further and in order to fulfil the requirements of
the BL model for the calculation of the equilibrium time correlation functions, we have
constructed a setup in which the thermostat is coupled to the reservoir and AT region is
not subjected to the action of the thermostat; this particular setup will be referred to as
‘local-thermostat’. Figure 5.1 shows the schematic representation of the original AdResS
setup and ‘local-thermostat’ AdResS setup used for the calculation of dynamic properties.
In Ref. [111], it was shown that in the coarse-grained region, one can use a generic liquid
of spheres where the only requirement is that it has the same molecular density as the
reference density. This is in accordance with the basic principle of BL model that we need
only to know the distribution of the reservoir and not its microscopic details.

4.4.2 Mapping the Hamiltonian of the Atomistic region in GC-AdResS
to the Bergmann-Lebowitz Hamiltonian

Consider a molecule i at position r i in the AT region of AdResS; we have w(r i) = 1.
The corresponding force can be divided into two parts, one is the force generated by the
interaction of molecule i with molecules in the AT region:

F i,j = FAT
i,j , ∀j ∈ AT (4.5)

and the other is the force generated by interaction with molecules in the reservoir:

F i,j = w(rj)FAT
i,j + [1− w(rj)]FCG

i,j , ∀j ∈ ∆ + CG. (4.6)

The total force acting on the ith molecule due to interaction with molecules in AT region
is:

F i =
∑
j 6=i

FAT
i,j (4.7)

This force can be expressed in terms of the gradient of the atomistic potential:

F i =
∑
j 6=i
∇iUAT (4.8)

where ∇i is the gradient w.r.t. molecule i. Eq. 4.6 represents the action of molecules in the
reservoir on molecule i, i.e. an external force. The microscopic Hamiltonian of the system,
embedded in the reservoir can not be defined due to system-reservoir coupling in Eq.4.6.
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Figure 4.1: Schematic representation of the AdResS scheme; CG indicates the coarse-
grained region, AT the atomistic region and HY the hybrid region where atomistic and
coarse-grained forces are interpolated via a space-dependent, slowly varying, function w(x).
Top, the standard set up with the thermostat that acts globally on the whole system.
Bottom, the “local” thermostat technique employed in this work where the thermostat
acts in the HY and CG regions.
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This restricts a straightforward correspondence between the Hamiltonian in the BL model
(HM ) and the Hamiltonian of the AT region in AdResS (HAT ). However, in this work, we
want to advocate that AdResS can be mapped to the BL framework and the numerical
evidence will be provided later in this section. The non-integrable dynamics in the HY
region can be considered as a boundary effect that can be incorporated in the definition of
transition kernel. Further elaborating on this point, we will rewrite Eq. 4.6 as:

F i =
∑

j∈∆+CG
[w(rj)FAT

i,j + [1− w(rj)]FCG
i,j ] =

∑
j∈∆+CG

[w(rj)∇iUAT + [1− w(rj)]∇iUCG].

(4.9)
The net force on the ith particle can be considered as a non-local gradient field that is
instantaneously produced by the external field generated by the molecules in the reservoir.
Thus, the energy of the ith molecule at time t > 0 associated with Eq. 4.9 can be written
as:

W i
AT−RES(t) =

∑
j∈∆+CG

[w(rj)U ijAT + [1− w(rj)]U ijCG], (4.10)

where U ij· represents the interaction energy between molecule at position ri and molecule
at position rj . The total energy of coupling is then defined as:

WAT−RES(t) =
∑
i∈AT

W i
AT−RES(t) . (4.11)

The total energy in Eq. 4.11 should be compared to the amount of energy, WAT−AT ,
corresponding to the interaction between molecules of the AT region only: WAT−AT (t) =∑
i<j U

ij
AT ; i, j ∈ AT . If

|WAT−AT (t)| − |WAT−RES(t)|
|WAT−AT (t)| ≈ 1;∀t (4.12)

then it seems reasonable to approximate the total energy of the atomistic system by the
Hamiltonian of the AT region:

HAT ≈ HAT−AT . (4.13)

which corresponds to the Hamiltonian HM of the BL model. For all the practical purposes,
Eq. 4.12 holds true when the HY region is very small as compared to the AT region.
However, Eq. 4.12 may not hold for the systems used routinely in AdResS simulations,
where the size of the HY region is comparable to the size of the AT region. Figure 4.2
shows WAT−AT (t) and WAT−RES(t) for a system of 5000 molecules (about 450 in the AT
region) that represents the worst case scenario. It can be seen that WAT−AT (t) is at least
one order of magnitude larger than WAT−RES(t), so that the modeling error in terms of
equilibrium expectation values that arises from replacing HM of the BL model by HAT−AT
is about 10%. We have also performed simulations of a system where the technical setup
was close to the thermodynamic limit (100000 molecules, with 20000 molecules in the
AT region). In this case, the relative energy WAT−RES(t)/WAT−AT (t) is less than 1%.
Thus, microscopic characteristics of the AT system can be fully specified by assuming
HM = HAT−AT
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Figure 4.2: Potential energy of the subsystem only as a function of time, WAT−AT (t)
compared to the energy associated with the interaction between subsystem and reservoir,
WAT−RES(t); the former is at least one order of magnitude larger than the latter. Inset:
The relative interaction between the AT region and the reservoir as a function of time
: |WAT−AT (t)|−|WAT−RES(t)|

|WAT−AT (t)| , it can be seen that the contribution of the system-reservoir
interaction is atmost 10%.
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4.4.3 Interpretation of Bergmann-Lebowitz transition kernel within the
GC-AdResS framework

The reservoir in GC-AdResS influences the dynamics in the AT region via three different
components: (a) the thermostat (b) thermodynamic force and (c) coupling force. As
already discussed in the Chapter 3, the role of the thermostat is to provide thermal stability
to the reservoir, and as a consequence, to the system. According to the BL model, no
explicit knowledge of the phase space of the reservoir is required. This allows in GC-
AdResS the use of stochastic thermostat in the reservoir, which is independent of the
apriori knowledge of the microscopic structure of the reservoir and of the thermodynamic
force (F th) in order to equilibrate the system to the thermodynamic state desired. The
thermodynamic force converges once the density across the HY region becomes flat. This
requires an exchange of particles between the AT and CG regions. The effect of the
thermodynamic force is that the number of particles in the AT region vary such that the
average number density is equal to the reference density. Thus, F th imposes the stationary
distribution of the reservoir at the first order (ρ(x)), which is independent of the interaction
between the reservoir and the system. This condition is equivalent to the main requirement
that the reservoir needs to fulfil in the BL model. The calculation of the thermodynamic
force corresponds to the equilibration process in GC-AdResS and the chemical potential
(µAT ) is then automatically determined according to the equation:

µCG = µAT + ωth + ωQ, (4.14)

where ωth =
∫
∆ F th(r)dr and ωQ =

∫
∆∇w(r)〈w(UAT − UCG)〉rdr + ωgas, ωgas is the

chemical potential in absence of intermolecular interactions and 〈·〉r indicates the condi-
tional equilibrium average for fixed AT configurations. Eq. 4.14 is the necessary condition
that GC-AdResS should fulfil in order to have a grand-canonical like distribution; i.e. to
satisy Eq. 4.2, and as discussed above, this condition is imposed by the thermodynamic
force. It follows that if the reservoir in the GC-AdResS has the identical insertion/deletion
behaviour (Eq. 4.2), then the chemical potential in the AT region must be same. This
implies that the condition of Eq. 4.2 in the BL model corresponds to the Eq. 4.14 in GC-
AdResS. As shown in Section 4.4.2, the coupling force does not have a major energetic
contribution to the interaction energy in the AT region. However, it consists of strong re-
pulsive interactions that prevents molecules entering in the AT region to overlap with the
molecules already present in AT region; which would produce numerical singularities that
would automatically stop the simulation. Thus, the coupling force can be conceptually
neglected as far as the construction of the transition kernel is concerned. However, it plays
an important role as it imposes collision-avoidance between particles in the AT region and
the reservoir in a robust and numerically efficient way. Although, a rigorous derivation
of the BL kernel with GC-AdResS framework cannot be given, we have described how
the different force contributions correspond to some of the properties of the kernel. The
explicit mathematical formulation of the kernel in terms of the forces is beyond the scope
of this work.
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4.4.4 Equilibrium time correlation functions in GC-AdResS

The general definition of equilibrium time correlation function, CAB(t) between the two
physical observables, A and B is [107]:

CAB(t) = 〈a(0)b(t)〉 =
∫
dpdqf(p,q)a(p,q)eiLtb(p,q)

=
∫
dpdqf(p,q)a(p,q)b(pt(p,q),qt(p,q))

(4.15)

where, a(p,q) and b(p,q) are phase space functions corresponding to the observables A
and B respectively, a(0) = a(t = 0) and b(t) is the function at time t, f(p,q) is the
equilibrium distribution function and the dynamics is generated by the Liouville operator
iL. pt(p,q),qt(p,q) indicates the time evolution of the positions and momenta p,q. For
the canonical ensemble, Eq. 4.15 can be written as:

CAB(t) = 1
QN

∫
dpdqe−

HN (p,q)
kT a(p,q)b(pt(p,q),qt(p,q)). (4.16)

where QN is the Canonical partition function and HN (p,q) the Hamiltonian of a system
with N (constant) molecules. According to Eq. 4.16, CAB(t) can be computed by calcu-
lating a(p,q) and b(pt(p,q),qt(p,q)) along the MD trajectory and then averaging over
all the data. The trajectories must be long enough to ensure the basic requirements of
ergodicity. In this case the dynamics generated by the Liouvillian operator is well defined,
since the Liouville operator is well defined by the Hamiltonian of N molecules:

iL =
N∑
j=1

[
∂H
∂pj

∂

∂qj −
∂H
∂qj

∂

∂pj

]
= {∗,H} (4.17)

For grand-canonical ensemble, Eq. 4.16 can be extended as:

CAB(t) = 1
QGC

∑
N

∫
dpNdqNe−

[HN (pN,qN )−µN ]
kT a(pN ,qN )b(pt(pN ,qN ),qt(pN ,qN )).

(4.18)
where QGC is the Grand-Canonical Partition function, µ the chemical potential and N
the number of particles (now varying in time) of the system. The question that arises
is how to calculate the quantity b(pt(pN ,qN ),qt(pN ,qN )). Suppose a system at time
‘0’ has evolved from its initial condition and at any given time ‘t’ has different number of
molecules N ′ from its initial state. The correspondence between BL model and GC-AdResS
enables to interpret the quantity b(pt(pN ,qN ),qt(pN ,qN )) in numerical simulation, since
the evolution of the system from (pN ,qN ) to (pt,qt) with N ′ molecules is given by Eq. 4.4.
This leads to the following definition of the equilibrium time correlation functions for
numerical simulations in GC-AdResS: “if a molecule at time to leaves the AT region at
time t, then its contribution to the correlation function outside the time window [to, t] is
neglected”. This is fully in accordance with the principle of BL model, which states that
the microscopic identity of the molecule is lost once it enters into the reservoir.
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4.5 Numerical Results

In this section, we report the results for SPC/E water [6] at room temperature. The
section is divided into four parts: In the first part, we report the technical details of all the
simulations performed in this work. The second part reports the various thermodynamic
quantities calculated in this work. In the third part, we calculate the static properties with
the aim of verifying numerically that GC-AdResS reproduces results of a natural grand-
canonical system. The final part deals with the calculation of equilibrium time correlation
functions. In Section 4.4.4, we have already discussed how to define the Liouville operator
in the atomistic region, and how to count correlations when a molecule exits/enters the
atomistic region. We will first show that GC-AdResS gives the same results as those
of an open subsystem in a full atomistic NVE simulation. Next, we will show that by
increasing the size of the atomistic region, results systematically converge to those of full
NVE simulations, where the correlation functions are calculated over the whole system.

4.5.1 Technical Setup

All simulations are performed by home-modified GROMACS [93], and the thermodynamic
force in AdResS simulations is obtained using VOTCA [98] package. The system contains
5000 water molecules and the dimensions of the system are 14.6×3.2×3.2 nm3. In AdResS
simulations, the resolution of the molecules changes only in the x-direction as depicted in
Figure 5.1. Three different atomistic regions are used in AdResS simulations, whose sizes
are 0.6 × 3.2 × 3.2 nm3, 1.2 × 3.2 × 3.2 nm3 and 4.8 × 3.2 × 3.2 nm3 (this latter being
a worst-case scenario for the reservoir, still results are highly satisfactory). The size of
the hybrid region is kept same in all the three cases 2.9 × 3.2 × 3.2 nm3. The remaining
system contains coarse-grained particles, which interact via generic WCA potential given
by Eq. 3.60: The parameters σ and ε in the current simulations are 0.30 nm and 0.65 kJ/mol
respectively. The time step used in the simulations is 0.002 ps, and the coordinates and
velocities are recorded after every 10 time steps, i.e. 0.02 ps. All simulations are performed
at room temperature 298 K. The coarse-grained and the hybrid region in the AdResS
system are coupled to a Langevin thermostat, whose time scale is 0.1 ps. The reaction
field method [57, 106] is used for calculating the electrostatic interactions in the system,
with dielectric constant εRF = ∞, as this tends to give good energy conservation. The
“switch” cut-off method is used to treat the Van der Waals interactions. The cut-off radius
for interactions is 1.2 nm. For a 1 ns full atomistic simulation (without any thermostat),
the total energy obtained is −195846 kJ/mol and the drift is just 11.4 kJ/mol, which is
less than 0.01%. The dynamical results from this micro-canonical ensemble are compared
with results from AdResS simulations. All the dynamical properties are computed from
equilibrated trajectories of 1 ns in full atomistic and AdResS simulations. The velocity
autocorrelation function is defined as:

CV V (t) = 1
N

N∑
i=1

〈vi(t) · vi(0)〉
〈vi(0) · vi(0)〉 (4.19)

where 〈·〉 denotes the equilibrium average and 〈vi(t) · vi(0)〉 computes the correlation
between the velocities of ith molecule at time ‘0’ and ‘t’. In this work, the velocity auto
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correlation function is calculated only for the oxygen atoms. In the same way, the dipole
auto correlation function is defined as:

Cµµ(t) = 1
N

N∑
i=1

〈µi(t) · µi(0)〉
〈µi(0) · µi(0)〉 (4.20)

where 〈µi(t) · µi(0)〉 computes the correlation between the dipole moment of ith molecule
at time 0 and t. In the current implementation of AdResS, the electrostatic interactions
are calculated by short ranged reaction field method. The dipole auto correlation function
results are consistent with the full atomistic simulation, also using reaction-field. The
reactive flux hydrogen bond correlation [58,59] function is defined as:

k(t) = −dCHH/dt (4.21)

where CHH(t) is the hydrogen bond autocorrelation function defined as:

CHH(t) = 〈h(0) · h(t)〉
〈h〉

(4.22)

Here h is the hydrogen bond population operator for a particular pair of molecules. It
is assigned a value ‘1’, if there is a hydrogen bond between this pair, otherwise a value
‘0’. The criteria for considering a hydrogen bond between two water molecules is (1) inter
oxygen distance is less than 0.35 nm and (2) the O − H . . . O angle is smaller than 30o.
The function CHH(t) is the conditional probability that a hydrogen bond between a pair
of molecules is present at time ’t’, given that it was present at time zero. In both the full
atomistic and AdResS simulations, first CHH(t) was calculated and then k(t) was obtained
by taking numerical derivative of CHH(t), using a time step of 0.02 ps.

4.5.2 Thermodynamic Properties

The following thermodynamic quantities are analyzed in this work:

V ar(E) = 〈E
2〉 − 〈E〉2

〈E〉
(4.23)

and
CoV ar(N,E) = 〈NE〉 − 〈N〉〈E〉

〈N〉
(4.24)

where V ar(E) is the variance in the total energy of the molecules in the atomistic subregion
in AdResS and an equivalent subregion in the full-atom simulations, CoV ar(N,E) is the
covariance between the total energy of the molecules and number of molecules which are
present in the atomistic subregion in AdResS and an equivalent subregion in the full-atom
simulations. The energy E consists of the sum of the kinetic energy of the molecules in the
region considered, plus the energy coming from the interactions of each molecule with all
the other molecules of the region considered. The interactions with the reservoir, defined
in the text, “technical interactions”, are not counted, for consistency with the definition of
reservoir in the Bergmann-Lebowitz model. The different properties are calculated from a
2 ns long trajectory. The error in the data was calculated using “block-averaging” analysis.
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4.5.3 Results-Static Properties

Figure 4.3,4.4,5.8 show the various static properties calculated in AT subregion of AdResS
and in an equivalent subregion of a full-atomistic NVE simulation. The difference with the
results in Ref. [111] is that the transition region is considerably smaller and the thermostat
acts only on the reservoir. Figure 4.3 shows that the number density in GC-AdResS sim-
ulations agree quite well with that of full-atomistic simulations. The largest deviation is
seen at the border of atomistic and transition region. This is due to the fact that we switch
off the thermostat abruptly. The effect is negligible; however, there are three technical op-
tions that will allow us to reduce the effects of such a difference: (a) consider the atomistic
buffer as a transition region; in accordance with the technical setup of original GC-AdResS
protocol [111] (b) the convergence criteria for thermodynamic force should be made stricter
(c) smoothly switching off the thermostat in the transition region. In this work, we have
opted for option (a), because in any case, the deviation in the results due to this discrep-
ancy is not more than 10%. Figure 4.4 shows the various radial distribution functions
calculated in a subregion in GC-AdResS and full- atomistic NVE simulations. It can be
seen that the agreement between the two set of curves is excellent, which again shows the
robustness of GC-AdResS in reproducing the probability distributions of a natural grand
canonical at least up to second order. Figure 5.8 reports the particle number probability
distribution calculated in the subsystems of GC-AdResS and full atomistic simulations.
The shape of two curves is gaussian and the curve of GC-AdResS is shifted compared to
NVE system by two particles, due to deviation in the density at the border of the atomistic
region. If we consider the original protocol and calculate the distribution functions in the
atomistic region neglecting the region at the border; two curves overlap. Table 4.1 shows
the robustness of GC-AdResS as a grand-canonical setup for the calculation of thermody-
namic properties such as energy fluctuation and the covariance. Regarding the accuracy,
in the worst case, the deviation is no more than 10% with results of the full-atomistic sim-
ulations, which is numerically satisfactory. However, if we apply the rigorous GC-AdResS
protocol, the discrepancy reduces to 3%. We performed an additional test in order to prove
that GC-AdResS satisfies a thermodynamic condition of a grand-canonical ensemble. In
the thermodynamic limit, the isothermal compressibility κT in a grand-canonical ensemble
can be related to the fluctuations in particle number distributions by [99]:

ρkBTκT = 〈N
2〉 − 〈N〉2

〈N〉
(4.25)

where ρ is the density of particles, kB the Boltzmann constant and, T = 298K, the
temperature. The test was done for a system of 20000 molecules with a reservoir of
80000 (total number of molecules 100000) at a pressure of 1atm; in this case we obtain
κT = 44.6±1.6 106(bar−1) which should be compared with the value 45.9±1.2 106(bar−1)
of the corresponding full atomistic system and with the value of about 45.25±106(bar−1) of
experiments [40,45] and 44.0±106(bar−1) from NPT simulations of SPC/E water [40]; the
overall accuracy is within 5% (in the worst case), which can be considered a satisfactory
result. It must also be underlined that an effective compressibility, that is the definition of
Eq.4.25 used not in the thermodynamic limit (i.e. small systems), is found to be the same
in GC-AdResS and in the full atomistic simulation. We have shown that the reservoir
based on the local-thermostat procedure of GC-AdResS produces grand-canonical stat-
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Figure 4.3: Molecular number density calculated in GC-AdResS where the thermostat
is acting only in the reservoir and in a full atomistic NVE simulation. A discrepancy
of about 5% is observed at the border of the AT region (vertical lines). In general, the
rigorous protocol of GC-AdResS requires that this part is included in the hybrid region as
a buffer of fully atomistic molecules.

istics, by calculating various static and thermodynamic quantities. We will now proceed
with the calculations of equilibrium time correlation functions where the BL model for
grand-ensemble provides a conceptual solidity to the numerical calculations.

Quantity Full-Atomistic GC-AdResS
〈E2〉−〈E〉2
〈E〉 20.6± 0.4 19.3± 0.4

〈NE〉−〈N〉〈E〉
〈N〉 4.4± 0.2 3.9± 0.2

Table 4.1: Thermodynamic fluctuations calculated in atomistic subregion (EX=1.2) in
GC-AdResS and full-atom simulations. There is a discrepancy of around 5-10% between
the results of GC-AdResS and those of the reference full-atom simulation.

4.5.4 Results-Dynamic Properties

Figure 4.6 shows the velocity-velocity autocorrelation function, CV V (t) (top), (molecular)
dipole-dipole autocorrelation function, Cµµ(t) (middle), reactive flux correlation function,
k(t) (bottom) calculated in the subsystem in GC-AdResS simulation and an equivalent sub-
region in full-atomistic NVE simulation. It can be seen that the agreement is remarkable.
This implies that the ‘ideal’ reservoir in GC-AdResS is very close to the thermodynamic
limit of the microscopic system. In order to further validate the concepts discussed here,
we have done a systematic study by varying the size of the AT region in GC-AdResS and
checking if the correlation functions converge to those obtained for the whole system in a
full-atomistic NVE simulation. This principle is based on the fact that all the ensembles
are equivalent in the thermodynamic limit. Figure 4.7 shows the systematic convergence
of the correlation functions to the reference full atomistic results as a function of the size of
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Figure 4.4: Oxygen-Oxygen (top), oxygen-hydrogen (middle) and hydrogen-hydrogen (bot-
tom) radial distribution functions (RDF’s) calculated in the subsystem (1.2 nm) of ‘local-
thermostat’ GC-AdResS and an equivalent subregion in a fully atomistic NVE simulation.
The results are compared with the same quantity calculated over the whole system in the
reference full-atomistic simulations
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Figure 4.5: (top) Particle number probability distribution calculated in the subsystem (1.2
nm) of ‘local-thermostat’ GC-AdResS and an equivalent subregion in a fully atomistic NVE
simulation. The shape of both curves is a Gaussian (reference black continuous curve); the
curve of AdResS is shifted compared to the NVE results by only two particles. However,
if we consider the additional atomistic buffer (bottom), as it should be if the principles of
GC-AdResS are rigorously applied, then the two curves overlap.

Quantity Full-Atomistic GC-AdResS
〈E2〉−〈E〉2
〈E〉 27.1± 0.5 26.4± 0.5

〈NE〉−〈N〉〈E〉
〈N〉 5.1± 0.2 4.9± 0.2

Table 4.2: Same quantities as above calculated in the region excluding the (negligible) part
where the density is 5% off compared to the reference density, as discussed in Fig 4.3. The
results in GC-AdResS and full-atom simulation agree now within 3%, which is numerically
highly satisfactory.
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the AT subsystem of AdResS. It must be noted that this procedure establishes a connection
between the decay of correlation function as a function of time and the spatial locality of
the process. For eg. in dense gases, the decay times are relatively large, thus if the size of
explicit atomistic region is very small, then the decay time would be smaller than the real
decay time, since many molecules are likely to leave the region. One way to check whether
or not this method captures a certain decay process is to perform a systematic study by
increasing the size of the atomistic region and observe the convergence of the functions.
The connection between the decay process and spatial locality is not a limitation of the
method, in fact it represents one of its main conceptual advantages since it allows one to
identify the essential degrees of freedom (in space and time) required for a certain process.

4.6 Conclusions

In this part of the thesis, we have discussed Bergmann-Lebowitz model for grand ensembles
in the context of statistical mechanics of open boundary systems. The model has not been
employed in the development of open boundary MD techniques before, despite its concep-
tual solidity. We have discussed the connection between GC-AdResS and BL model and
used its ideas in defining equilibrium time correlation functions in open boundary systems,
where the number of particles is not constant. We have then calculated these functions
for liquid water in the atomistic region in GC-AdResS, and shown that the results have a
highly satisfactory agreement with the reference full-atomistic results. These results have
established GC-AdResS as a conceptually robust and numerically efficient method for the
simulation of open boundary systems. Therefore, one can introduce more complex molecu-
lar models in the explicit region in GC-AdResS, for eg. introducing quantum mechanics
via path-integral formalism of Feynman. In this perspective, we discuss the various path-
integral techniques available in literature and use the concepts developed in this to give a
to combine path-integral molecular dynamics with GC-AdResS in the next chapter.
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Figure 4.6: Velocity-Velocity autocorrelation function, CV V (t), (molecular) dipole-dipole
autocorrelation function, Cµµ(t), reactive flux correlation function, k(t) (semilogarithmic
plot) for SPC/E water at room conditions calculated with GC-AdResS and for an equivalent
subsystem in a full atomistic NVE simulation. The agreement between GC-AdResS and
the full atomistic simulation is highly satisfactory.
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Chapter 5

Path Integral techniques within the grand
canonical-like adaptive resolution (GC-AdResS)
technique: Simulation of liquid water

5.1 Introduction

Atoms characterized by light nuclei such as hydrogen display considerable quantum effects,
in the form of spatial delocalization. Systems composed by atoms of such kind are modelled
via Feynman’s path integral (PI) formalism [25]. In this approach, as discussed in Chapter
2, a classical atom is mapped onto a polymer ring with fictitious beads, and the magnitude
of the quantum character is defined by the number of beads. As a consequence, the
computational effort associated with path-integral simulations is massive (due to increase
in number of interactions) compared to classical simulations (where the nuclei is treated
as a rigid particle). The limitation of treating only small systems and short time scales
may prohibit the treatment of “large-scale” problems (eg., hydration of protein in water).
One of the options would be to use path integral (PI) techniques (employed in molecular
dynamics) in conjunction with GC-AdResS [111, 114], where the region of relevance can
be treated within the path-integral formalism, and rest of the system can be treated using
simple coarse-grained models. The (open)path-integral region will exchange particles and
energy with the coarse-grained reservoir, in statistical and thermodynamic equilibrium.
The major difficulty in realizing a quantum/classical coupling is the different equation of
motion in different regions: probabilistic for the quantum region and deterministic in the
classical (or coarse-grained) region. However, the isomorphism between the path-integral
partition function and the classical partition function of fictitious polymer beads transforms
the problem of quantum/classical coupling into a standard coupling of different classical
regions that are characterized by different number of “effective” degrees of freedom. Thus,
a molecule where each atom is represented by a polymer ring, moves from the path-integral
region to the coarse-grained region in a smooth way, thereby loosing (technically speaking)
classical degrees of freedom. Thus, in this way, one can realize the passage from quantum
to classical description and vice versa by simply employing equilibrium conditions of the
standard adaptive resolution scheme. Previously PI was merged with AdResS [81–83],
and the technique was used in the study of tetrahedral molecules and low-temperature
parahydrogen, and the results were highly encouraging. The latest version of AdResS,

68
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i.e. GC-AdResS, technically and conceptually more advanced, allows for the study of
more complex systems. In this part of thesis, we report the technical implementation of
different PI formalisms (path integral molecular dynamics (PIMD) [56,118], ring polymer
molecular dynamics (RPMD) [14, 62] and centroid molecular dynamics (CMD) [13, 38])
into GC-AdResS, and we show its application to liquid water by calculating the structural
and dynamical properties in the explicit PI subregion, and comparing the results with the
reference PI results.

5.2 Path Integral Formalism and Normal Modes

In this section, we give a brief overview about path-integral formalism and the different
techniques that exist in literature.

5.2.1 Background

The path-integral formalism of Feynman [25,107] in the context of dynamics of molecular
systems has already been discussed in Chapter 2. Thus, in this section we will only
discuss the technical aspects that are essential for its practical application in MD (see
Refs. [8,16,77,107,108]). The Hamiltonian for a single particle moving under the influence
of an external potential U is expressed as:

H = p̂2

2m + U(x̂) (5.1)

where mj is the mass of the j-th particle and U(r1, ....rN ) is the interaction potential
in space. The path-integral formalism transforms the above Hamiltonian into a quant-
ized Hamiltonian of polymer ring containing fictitious beads (each ring corresponds to an
atom)(Eq. 2.106):

φ(x1...xP ) =
P∑
k=1

[1
2mω

2
P (xk+1 − xk)2 + 1

P
U(xk)

]
(5.2)

In order to perform MD simulation, one needs momenta which can be obtained by recasting
the prefactor in Eq. 2.105 by adding P-Gaussian integrals over the momentum variables
p1, ..., pP : (

mP

2πβ~2

)
=
∫
dp1...dpP

(
−β

P∑
i=1

p2
i

2m′

)
(5.3)

Here, m′ = mP
(2π~)2 is an arbitrary mass parameter. Inserting Gaussian integrals in Eq. 2.105,

one obtains the following partition function:

Z = lim
P→∞

∫
dp1...dpP

∫
dx1...dxP × exp

(
−β

P∑
k=1

[
p2
k

2m′ + 1
2mω

2
P (xk+1 − xk)2 + β~

P
U(xk)

])∣∣∣∣∣
xP+1=x′

x1=x
(5.4)
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There are no restrictions on the choice of mass m′ since the prefactor does not influence
equilibrium averages. The corresponding quantized Hamiltonian has the following form:

HP =
P∑
k=1

[
[p(k)]2

2m′ + 1
2mω

2
P (xk+1 − xk)2 + 1

P
U(xk)

]
(5.5)

where P is the Trotter number, m′j = Pm
(2π~)2 and pi are fictitious mass and momentum re-

spectively, ωP =
√
P
β~ (β = 1/kBT ) and U(ri1, ..., riN ) is the potential that acts between same

bead index i of two different particles. The spatial oscillations/fluctuations of the polymer
ring represent the quantum spatial delocalization of an atom. The statistical sampling of
the individual bead trajectories allows for the calculation of statistical properties of the
atomic/molecular system. The problem with the direct use of the Hamiltonian in Eq. 5.5
is that it leads to highly non-ergodic dynamics and inefficient sampling in the extended
phase space of polymer rings, since the dynamics are characterized by a wide range of
frequencies present in the system [107]. The time step in the simulation is limited by the
high frequency modes, which in turn leads to a poor sampling of lower frequency modes.
Thus, if the Hamiltonian in Eq. 5.5 is used directly in MD simulations, one needs to ac-
cumulate fairly long trajectories each starting from a different initial state. To circumvent
the ergodicity problem, normal modes or staging transformation is preferred [8, 108]. The
basic idea of the normal modes transformation is to decouple the harmonic spring term
in Eq. 5.5, so that there remains a single frequency and the time step of the simulation
can be chosen accordingly. The procedure is based on the transformation of the cartesian
coordinates to the normal mode coordinates. In the matrix notation the second term on
the R.H.S. in Eq. 5.5 can be written as follows:

Vharmonic(XI) = 1
2MIω

2
PXT

I AXI (5.6)

where A is the matrix that couples the coordinates of different beads. This matrix is
diagonalised and the eigen vectors obtained are used to construct an orthogonal matrix O
which diagonalises the above matrix. The normal mode coordinates can be written as:

X′ = 1√
P
OX (5.7)

Now, the second term in Eq 5.5 can be formulated as:

Vharmonic(X
′
I) = 1

2MIω
2
P (X′)TI ΩX′I (5.8)

where Ω = PXAXT is the diagonal matrix containing the eigen values of matrix A multi-
plied by P. The eigen values of the matrix can be easily calculated by hand:

λ2i−1 = λ2i−2 = 4P sin2
(
π(i− 1)

P

)
(5.9)

Finally, the Hamiltonian in Eq. 5.5 in terms of normal mode coordinates can be written
as:

Hnormal =
P∑
i=1

[
p2
i

2m′i
+ 1

2mω
2
Pλi(x

′
i)2 + 1

P
U(xi(x

′))
]

(5.10)
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where x′ denotes the normal mode coordinates. The equations of motion in terms of normal
mode variables can be written as:

ẋ
′
i = pi

m
′
i

(5.11)

and,
m
′
iẍ
′
i = −mω2

Pλix
′
i −

1
P

∂U

∂x
′
i

(5.12)

The different choice of mass in the above equations leads to different PI algorithms [118],
which will be discussed in the next section. For N particles the quantized Hamiltonian is
written as:

HP =
P∑
i=1

 N∑
j=1

p
(i)2

j

2m′j
+

N∑
j=1

1
2mjω

2
P (r(i)

j − r(i+1)
j )2 + 1

P
U(ri1, ..., riN )

 (5.13)

In terms of normal mode variables, the N -particle Hamiltonian can be written as [107]:

HP =
P∑
i=1

 N∑
j=1

p
(i)2

j

2m(i)′
j

+
N∑
j=1

1
2mjλ

i
jω

2
P (x′)(i)2

j + 1
P
U
(
r(i)

1 (x′1), . . . , r(i)
N (x′N )

) (5.14)

where 1
P U

(
r

(i)
1 (x′1), . . . , r(i)

N (x′N )
)

is the potential that acts between same indexed bead in
two different particles.

5.2.2 Different path integral techniques

The different choice of fictitious masses in Eq. 5.12 leads to three different PI tech-
niques [118]: path integral molecular dynamics (PIMD) [12, 73, 107, 108], ring polymer
molecular dynamics (RPMD) [16, 31] and Centroid Molecular Dynamics (CMD) [13, 38].
From the conceptual point of view, the methods differ considerably, however, from the
numerical point of view, the difference lies in the choice of masses and the use of ther-
mostat. We will incorporate all these different PI techniques in GC-AdResS method. In
this section, we briefly discuss the conceptual aspects of these methods and how they dif-
fer from the computational perspective. (From now on, PI-GC-AdResS will denote all
the different PI techniques combined with GC-AdResS, while PIMD-GC-AdResS/RPMD-
GC-AdResS/CMD-GC-AdResS will denote the specific PI technique combined with GC-
AdResS)

Path Integral Molecular Dynamics

The standard Path Integral Molecular Dynamics (PIMD) method is an elegant way of
computing equilibrium static properties, however, the real time dynamic information can
not be calculated [107]. In the standard PIMD method, the masses m(i)′

j are chosen such
that all the internal modes have the same frequency. Thus, the choice of mass is:

m
(i)′

j = mjλ
i
j , i = 2, . . . , P

m1′
j = mj

(5.15)
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where mj is the physical mass and λij are the eigenvalues obtained by the normal mode
transformation. In PIMD, the expectation value of an observable A can be calculated using
the following expression:

〈Â〉 = 1
Z

lim
P→∞

(
mP

2πβ~2

)P/2 ∫
dx1...dxP

(
1
P

P∑
k=1

a(xk)
)
e−βφ(x1,...,xP ) (5.16)

The observable can be measured by taking an average over the beads of the polymer ring
and then subsequently taking an ensemble average. In path-integral calculations, one can
approximate the equilibrium expectation values by using estimator functions that depend
on P coordinates. If aP (x1, ..., xP ) is defined as an appropriate estimator for 〈Â〉, then:

aP (x1, ..., xP ) = 1
P

P∑
i=1

a(xk) (5.17)

For finite P , the expectation value 〈Â〉 can be approximated as an average of the estimator
w.r.t. the probability distribution function f(x1, .., xP ):

〈Â〉P = lim
P→∞

〈aP (x1, ..., xP )〉f (5.18)

where 〈...〉f denotes the average w.r.t. probability distribution function f(x1, ..., xP ). The
expectation value can be written as:

〈Â〉 = lim
P→∞

〈Â〉P (5.19)

Ring Polymer Molecular Dynamics

Craig and Manolopoulos [16] have developed Ring Polymer Molecular Dynamics (RPMD)
which approximates the effects of quantum fluctuations on the dynamics. In RPMD, the
choice of the masses is as follows:

m
(i)′

j = mj (5.20)

which means that the (real) physical mass of the bead is used. The original formulation
of the RPMD method is a bit different from the formulation in Eq. 5.13. In the original
formulation, the classical Hamiltonian in RPMD is written as:

HP =
P∑
i=1

 N∑
j=1

[p(i)]2j
2mj

+
N∑
j=1

mj

2β2
P~2 (r(i)

j − r(i+1)
j )2 + U(ri1, ....riN )

 (5.21)

where βP = β/P . This effectively translates to performing the simulation at P times the
original temperature. Moreover, the harmonic bead-bead interaction and the potential
energy terms are scaled by P relative to Eq 5.14. Ring Polymer Molecular Dynamics
(RPMD) provides an approximation to the Kubo-transformed correlation functions [46,47]
by using the classical ring polymer trajectories that are generated by the Hamiltonian in
Eq. 5.21. The Kubo-transformed correlation function of the operators Â and B̂ is defined
by:

KAB(t) = 1
βZ

∫ β

0
dλ
[
e−(β−λ)ĤÂe−λĤeiĤt/~B̂e−iĤt/~

]
(5.22)
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where Z is the canonical partition function:

Z = tr
[
e−βĤ

]
(5.23)

The RPMD approximation is given by [31]:

c̃AB(t) ≈ 1
(2π~)9PNZP

∫ ∫
dP p0d

P r0e
−βPHP (p0,r0) 1

N

N∑
i=1

AiP (r0)Bi
P (rt) (5.24)

where ZP is the canonical partition function, and rt indicates the time evolution of the
positions at time t. The functions AP (r) and BP (r) are calculated by averaging over the
positions of the beads in the polymer rings.

AP (r) = 1
P

P∑
j=1

A(rj)

BP (r) = 1
P

P∑
j=1

B(rj)
(5.25)

There are no thermostats used in RPMD simulations since the beads in the polymer ring are
treated as dynamical variables. Thus, the RPMD simulations are performed under NVE
conditions where the starting configurations are either taken from massively thermostated
PIMD simulations [77] or re-sampling of momenta from Maxwell-Boltzmann distribution
is performed [32] after every few picoseconds.

Centroid Molecular Dynamics

Centroid Molecular Dynamics (CMD) [13] provides an approximation to real time
quantum dynamics. Centroid is a quasiclassical object that is defined as an average over
all the beads in a ring polymer.

xc = 1
P

P∑
i=1

xi

pc = 1
P

P∑
i=1

pi

(5.26)

The normal mode transformation is the most optimal choice for performing CMD simu-
lations, since the centroid separates out as the first normal mode coordinate defined in
Eq. 5.7. The evolution of the centroid is governed by the following equations:

ẋc = pc
m

(5.27)

and,

mcẍc = −∂Vo(xc)
∂xc

(5.28)
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where mc is the physical mass and Vo is the potential of mean force generated by the
dynamics of the non-centroid modes. The rigorous CMD procedure involves sampling of
the phase space pertaining to the non-centroid modes at each position of the centroid. This
is computationally highly expensive, and thus one uses adiabatic decoupling to separate the
fictitious motion of the non-centroid modes from the physical motion of the centroid. This
version of Centroid Molecular Dynamics is called Adiabatic Centroid Molecular Dynamics
(ACMD) [74,77,118]. The adiabatic decoupling is achieved by reducing the masses of the
non-centroid modes by a factor γ2, where 0 < γ2 < 1. The effect is that the motion of the
centroid is comparatively slower compared to the the non-centroid modes, which implies
that the centroid moves on the potential of mean force generated “on-the-fly” by rest of
the modes. Thus, the choice of masses in CMD is:

m
(i)′

j = γ2mjλ
i
j , i = 2, . . . , P

m1′
j = mj

(5.29)

where γ is the adiabaticity factor. There exists another formulation of ACMD, called par-
tially ACMD [30,38], with the only difference that larger values of γ are used in PACMD.
Due to a partial separation between the non-centroid and centroid modes, PACMD is
computationally less expensive than RPMD. It was shown in Ref. [38] that the dynamical
properties for liquid parahydrogen were similar in both ACMD and PACMD methods. In
this work, we have implemented PACMD in GC-AdResS. From now on, we will refer to
PACMD as CMD. The dynamics of the non-centroid modes in CMD is artificial and is
carried out to sample Vo(xc). This requires a canonical sampling over the non-centroid
modes, which is achieved by coupling the internal modes to a thermostat for rapid equi-
libration [77, 118]. Since the dynamics of the centroid mode is Newtonian, there are no
thermostats attached to the centroid. The Kubo transformed quantum time correlation
between two operators Â and B̂ is approximated by [77]:

CAB(t) = 1
Z

∫
dxcdpc

2π~ A(xc(0))B(xc(t))e−βHc (5.30)

where Hc = p2
c/2m+Vo(xc) is the Hamiltonian governing the evolution of centroids on the

potential Vo(xc) created by the internal modes. Since in GC-AdResS, one needs to calculate
the thermodynamic force before starting any production run, it becomes important to
investigate the technical aspects of how to merge different PI formalisms in GC-AdResS.

5.3 Path Integral Molecular Dynamics in GC-AdResS

In this section, we discuss the computational and theoretical aspects of combining various
PI schemes with GC-AdResS. The section is divided into four parts: In the first part,
we report the changes that were made in force-based AdResS to incorporate different
PI techniques. We also discuss why the latest version of AdResS, i.e. GC-AdResS is
conceptually more robust than the earlier versions, in context of PI techniques in MD
simulations. In the second part, we verify “numerically” as to why one does not require
a global Hamiltonian formalism for PI-GC-AdResS simulations. In the third part, we
discuss how the thermodynamic force is calculated in GC-AdResS method and in the
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last part, we extend the definition of Kubo-transformed correlation functions to grand-
canonical ensembles and discuss how such functions are calculated in RPMD-GC-AdresS
and CMD-GC-AdResS simulations.

5.3.1 Theory

The basic idea behind AdResS can be extended to incorporate PI techniques employed in
MD simulations as well. In fact, there is an exact mapping between a quantum mechanical
particle and a classical ring polymer, the dynamics of polymer ring is nothing else than
the dynamics of classical degrees of freedom. Thus, all the tools of standard AdResS can
be used in straightforward way with just one modification [81–83].

Fαβ = w(Xα)w(Xα)FPIαβ + [1− w(Xα)w(Xα)]F cmαβ (5.31)

Here, FPIαβ is the intermolecular force between beads of the rings representing the atoms of
molecule α and β. Figure 5.1 shows the schematic representation of PIMD-GC-AdResS,
where path-integral polymer rings are interfaced with coarse-grained spheres. In the force-
based AdResS approach, one cannot express the coupling between the path-integral poly-
mer rings and the coarse-grained particles in the Hamiltonian form. However, in the pre-
vious work involving tetrahedral test system and low-temperature parahydrogen [81–83],
PIMD/AdResS was able to reproduce the structural properties obtained from the reference
reference PIMD simulations. Since PIMD is based on a rigorous Hamiltonian framework,
and as mentioned before, the coupling between the path-integral explicit region and the
coarse-grained reservoir cannot be expressed via a rigorous Hamiltonian, the procedure in
Refs. [81–83] was empirical, which could only be verified a posteriori. The detailed dis-
cussion on this subject has already been done in Chapter 4. Here, we will only discuss
those aspects which are relevant for this particular study. The reason why the procedure
in Refs. [81–83] is successful is because in terms of energetic contribution, the coupling
between the path-integral polymer rings and rest of the system is negligible, under the
condition that the coarse-grained region is much larger than both the explicit and hybrid
regions, and the explicit region is much larger than the hybrid region. However even in the
“worst case” scenario, where all the regions are comparable to each other in size, we have
numerically verified that the results are satisfactory. The latest version of AdResS (GC-
AdResS) gives a good justification as to why such a setup of PI-GC-AdResS is robust from
a conceptual point of view. According to the model of Bergmann and Lebowitz [7,52,53], in
case of grand ensemble, one does not require an explicit coupling between the path-integral
subregion and rest of the system. The necessary and sufficient condition is the knowledge
of distribution of molecules in the reservoir i.e. the molecular density (at first order).
Infact, the interaction of the molecules of the path-integral subregion with the molecules
in the reservoir does not play any relevant role as far as the conceptual development of
the method is concerned, but it allows for an efficient implementation of the algorithm.
Such an interaction plays a role of a “capping” potential, which ensures that two molecules
entering into the PI region do not overlap in space. Thus, in GC-AdResS, the Hamiltonian
to be considered is the Hamiltonian of the explicit path-integral subregion; i.e. the quant-
ized path-integral Hamiltonian embedded in a reservoir without any perturbation term. It
should be noted here that while Bergmann-Lebowitz model provides a strong conceptual
structure to PI-GC-AdResS, it is not a strict requirement for justifying the existence of an
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Figure 5.1: Schematic representation of the PIMD-GC-AdResS scheme; CG indicates the
coarse-grained region, HY the hybrid region where the molecule changes its resolution via a
space-dependent, slowly varying, function w(x) and EX (or PI) is the path-integral region
(that is the region of interest) that consists of path-integral polymer rings. The standard
set up with the thermostat that acts globally on the whole system, used in the calculation
of static properties via PIMD method.

accurate Hamiltonian in the explicit region. In the next section, we show that the interac-
tion energy for the molecules in the explicit region is one order of magnitude larger than
the interaction energy between molecules in the explicit region and rest of the system, for
the systems considered in this work, which is a “worst-case” scenario.

5.3.2 Energy contribution to the coupling term

If we consider the i-th molecule in the explicit PI (EX) region (at position r i and weighting
function w(r i) = 1), then the force acting on the particle can be written down as the sum of
two parts: one is the force generated by the interaction of molecule i with other molecules
in the explicit region:

F i,j = FPI
i,j , ∀j ∈ EX (5.32)

and the second is the force generated by the interaction of molecule i with molecules in
the hybrid region (HY) and the coarse-grained region (CG).

F i,j = w(rj)FPI
i,j + [1− w(rj)]FCG

i,j ,∀j ∈ HY + CG. (5.33)

From Eq. 5.32, it follows:
F i =

∑
j 6=i

FPI
i,j =

∑
j 6=i
∇iU ijPI (5.34)

where ∇i is the gradient w.r.t. molecule i and U ijPI represents the bead-bead interaction
within molecules i and j. Eq. 5.33 represents the coupling force between molecules of the
explicit region and rest of the system, i.e. an external force. Eq. 5.33 can also be written
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Figure 5.2: Schematic representation of the RPMD-GC-AdResS scheme; CG indicates the
coarse-grained region, HY the hybrid region where the molecule changes its resolution via a
space-dependent, slowly varying, function w(x) and EX (or PI) is the path-integral region
(that is the region of interest) that consists of path-integral polymer rings. The “local”
thermostat technique employed in this work in the calculation of dynamical properties via
RPMD method.

as:

F i =
∑

j∈HY+CG
[w(rj)FPI

i,j +[1−w(rj)]FCG
i,j ] =

∑
j∈HY+CG

[w(rj)∇iU ijPI +[1−w(rj)]∇iUCG].

(5.35)
The energy of the i− th molecule at a certain time t associated with force in Eq. 5.34 can
be written as:

WPI−PI(t) =
∑
i<j

U ijPI ; i, j ∈ PI (5.36)

This corresponds to the interaction energy between molecules of the EX region. The energy
of the i− th molecule at a certain time t associated with force in Eq. 5.35 can be written
as:

W i
P I−Res(t) =

∑
j∈HY+CG

[w(rj)U ijPI + [1− w(rj)]U ijCG], (5.37)

where Res = HY + CG. The total energy of coupling is given by:

WPI−Res(t) =
∑
i∈PI

W i
P I−Res(t) . (5.38)

If
|WPI−PI(t)| − |WPI−Res(t)|

|WPI−PI(t)|
≈ 1;∀t (5.39)

then it seems reasonable to approximate the total energy of the EX region by the quantized
Hamiltonian in the EX region; thus we can numerically justify the Hamiltonian formalism
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Figure 5.3: Schematic representation of the CMD-GC-AdResS scheme; CG indicates the
coarse-grained region, HY the hybrid region where the molecule changes its resolution via a
space-dependent, slowly varying, function w(x) and EX (or PI) is the path-integral region
(that is the region of interest) that consists of path-integral polymer rings. The thermostat
does not act on the centroid modes in the path-integral region; this setup is used for the
calculation of dynamical properties via CMD method.
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in PI-GC-AdResS. Figure 5.4 shows the difference in energy is atleast an order of magnitude
at every t, for two different systems considered in this work. The first system corresponds
to PIMD-GC-AdResS simulation and the second system corresponds to the RPMD-GC-
AdResS simulation. The CMD-GC-AdResS simulation has the same behaviour as PIMD-
GC-AdResS system since they have the same thermodynamic conditions. It should be
noted that we have performed simulations where the technical conditions (i.e. size of the
atomistic, coarse-grained and hybrid regions) are not optimal and still the condition in
Eq. 5.39 holds. The relation in Eq. 5.39 would certainly hold with the standard technical
conditions as prescribed by the theory.

5.3.3 Calculation of the thermodynamic force in Path Integral-GC-AdResS

The concept of thermodynamic force has already been discussed in the previous chapters,
here we will only discuss the technical details of how the thermodynamic force can be cal-
culated in PI-GC-AdResS simulations. The thermodynamic force Fth(x) can be expressed
as:

Fth(x) = M

ρo
∇P (x) (5.40)

where M is the mass of the molecule and P (x) is the pressure which characterizes different
resolutions (for the initial configuration). We can approximate P (x) in terms of linear
interpolation of the molecular number density:

P (x) = Patom + M

ρoκ
[ρo − ρ(x)] (5.41)

where ρo is the target density, κ is the compressibility and ρ(x) is the density generated if
there is no thermodynamic force used in the simulation. The thermodynamic force is then
calculated using an iterative procedure:

F thk+1(x) = F thk (x)− Mα

[ρo]2κ
∇ρk(x) (5.42)

After each iteration, we obtain a density profile ρ(x) which is different from the ρ(x)
obtained from the previous iteration. The process converges once the density is equal to
the target density ρo. Once the equilibration steps are completed (i.e. calculation of the
thermodynamic force), one can start the production run using Fth(x) obtained after the
final iteration. The calculation of thermodynamic force in PI-GC-AdResS is based on the
same theoretical concepts introduced in Refs. [27,114] for classical systems, i.e. balance of
grand-potential for interfaced open boundary systems:[

Pquantum + ρo

∫
∆
Fth(r)dr

]
V = PCGV (5.43)

where ρo is the target density of the reference path-integral system. As for the classical
case, P (x) can be written as:

P (x) = Pquantum + Ma

ρoκ
[ρo − ρ(x)] (5.44)
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Figure 5.4: Comparison of WPI−PI(t) with WPI−Res(t). Inset: The relative amount
of the interaction between the PI region and the rest of the system along the traject-
ory: |WPI−PI(t)|−|WPI−Res(t)|

|WPI−PI(t)| ; the contribution is, at most 10%. Calculations are done with
PIMD-GC-AdResS simulation (top) and RPMD-GC-AdResS (bottom).
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While this approach is efficient for classical system; in case of path integral, it is highly
inefficient to run a PI-GC-AdResS simulation to calculate the thermodynamic force, before
the actual production run, as path-integral simulations are inherently expensive. In this
work, we have proposed an empirical strategy to obtain Fth(x), which requires minimal
computational effort. In case of PIMD-GC-AdResS and CMD-GC-AdResS methods where
the simulation temperature is just the physical (standard) temperature, the calculation of
thermodynamic force is straightforward. Since thermodynamic force calculation is based
on the balance of pressure in the explicit PI and coarse-grained region, and since the ther-
modynamic conditions (state point) are same for the classical and path-integral systems,
we expect that Fth(x) calculated for classical systems would provide thermodynamic equi-
librium for path-integral systems as well (or be very close, at least). For verification, we
have calculated Fth(x) for liquid water by considering systems with different number of
beads per polymer ring (P = 1, 4, 6, 8 and 10, where P = 1 represents the classical limit). It
can be seen from Figure 5.5 that the thermodynamic force remains essentially the same in
all the systems. Thus, in PIMD-GC-AdResS and CMD-GC-AdResS approaches, once can
use the thermodynamic force calculated from classical systems, if nuclear quantum effects
on the pressure of the system are small. We use this thermodynamic force in production
runs in PIMD-GC-AdResS simulations of liquid water (using P = 32), and find that the
density in the transition region is similar to the reference density. In case of RPMD, the
situation is a bit more complicated, since the simulation temperature is artificial (and the
effective thermodynamic state point) and thus changes as the number of beads is changed.
In this case, there will not be any option other than running a RPMD-GC-AdResS sim-
ulation with P = 32 and calculate the thermodynamic force before the actual production
run. In this work, we have avoided such an expensive calculation by calculating Fth(x) for
systems with different number of beads (P = 1, 4, 6, 8 and 10) and extrapolating thermo-
dynamic force for P = 32, using space dependent factors calculated from thermodynamic
force for smaller values of P (Figure 5.6). We use this thermodynamic force in production
runs in RPMD-GC-AdResS simulations of liquid water and find that the density of water
molecules in the transition region differs at worst by 3% relative to the target density; this
is a satisfactory confirmation of the validity of this procedure.

5.3.4 Equilibrium time correlation functions: Theoretical and Compu-
tational aspects

In this section, we discuss how equilibrium time correlation functions are calculated in
RPMD-GC-AdResS and CMD-GC-AdResS. We also discuss the role of thermostat in GC-
AdResS for the calculation of dynamical properties.

Time correlation functions in Ring Polymer Molecular Dynamics-GC-AdResS

The RPMD approximation to the Kubo-transformed correlation function of the operators
Â and B̂ is given by Eq. 5.24. The equation needs to be rewritten within the formalism of
grand-canonical ensemble, if one wants to calculate the correlation functions using RPMD
within GC-AdResS. In grand-canonical ensemble, the Kubo-transformed correlation func-
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Figure 5.5: Thermodynamic force calculated in PIMD-GC-AdResS and CMD-GC-AdResS
simulation for systems with different number of ring polymer beads per particle.

tion of the operators Â and B̂ is defined by:

c̃AB(t) ≈ 1
ZGCP

∑
N

1
(2π~)9PNN !

∫ ∫
dP p0(N)dP r0(N)e−βP [HP (N)(p0(N),r0(N))−µN ]

× 1
N ′

N
′∑

i=1
AiP (r0(N))Bi

P (rt(r0(N)))
(5.45)

where µ is the chemical potential and N
′ is the number of molecules that stay within

the path-integral subregion for the time duration considered, i.e. number of molecules at
time ‘0’ that remain correlated at time ‘t’; ZGCP =

∑
N e

βµNZP is the grand-canonical
partition function and HP (N) is the Hamiltonian of the path integral subregion and N
is the instantaneous number of molecules. It should be noted that in GC-AdResS, µ
is calculated on-the-fly during the equilibration phase, and thus, a priori knowledge of
µ is not required. We have used the same numerical procedure as in Chapter 4 where
equilibrium time correlations were calculated in open subsystems using classical MD. This
procedure is based on the description of the reservoir in Bergmann-Lebowitz model [7,52,
53], which states that as the molecule enters into the reservoir, it looses its microscopic
identity, and thus, its corresponding correlations. Therefore, if a molecule at time to
enters into the reservoir at time t, then the contribution of this molecule outside the time
duration [to, t + to] to the correlation functions shall be neglected. In Chapter 4, it was
shown that such a principle is physically consistent on the basis of results of classical MD.
Since RPMD simulations are performed in NVE conditions, we use the “local-thermostat”
procedure [113] in GC-AdResS so as to keep the dynamics of the beads Newtonian in the
PI region. In this procedure, we use the thermostat only in the hybrid and coarse-grained
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Figure 5.6: Thermodynamic force calculated in RPMD-GC-AdResS for systems with dif-
ferent number of ring polymer beads per particle. The force is calculated for different num-
ber of polymer ring beads. The thermodynamic force for P = 32 is extrapolated by using
space-dependent scaling factors calculated using thermodynamic force for P = 1, 4, 6, 8
and 10.

regions, while no thermostats are used in the explicit PI region. This makes sure that
molecules which are present in the explicit PI subregion are not subjected to the dynamical
perturbation caused by the thermostat. Figure 5.2 shows a schematic representation of the
RPMD-GC-AdResS system.

Time correlation functions in Centroid Molecular Dynamics-GC-AdResS

The direct extension of Eq. 5.30 to the case of an open boundary system/grand-canonical-
like ensemble is:

CAB(t) = 1
QGC

∑
N

1
N !

∫
dxNc dp

N
c

2π~ A(xNc (0))B(xN
′

c (t))e−β[HNc (xNc ,pNc )−µN] (5.46)

where QGC is the grand-canonical partition function, µ is the chemical potential, N is the
number of path centroids (which is now a variable number in the system) and HNc is the
Hamiltonian governing the evolution of centroids with N , instantaneous number of path
centroids. The number of centroids N ′ at time t = t

′
> 0 is likely to be different from the

number of centroids N at time t = 0. We use the correspondence between the Bergmann
and Lebowitz model [7, 52, 53] and GC-AdResS to interpret the quantity B(xNc (t)) in this
context. For the calculation of equilibrium time correlation functions, we have used the
same procedure as described in the previous section. As discussed in Section 5.2.2, the
centroids are not coupled to any thermostat. In the context of AdResS, this would simply
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translate to having a thermostat in the coarse-grained and hybrid regions, while in explicit
region, no thermostats are attached to the centroid mode, while non-centroid modes move
under the action of the thermostat. Figure 5.3 shows the CMD-GC-AdResS system and
the application of the thermostat in different regions.

5.4 Numerical Results

In this section, we report the technical details and the comparison between results ob-
tained from reference PI and PI-GC-AdResS simulations. The section is divided into
four parts, the first part reports the technical setup used to calculate the structural and
dynamical properties in PI simulations; the second part reports issues regarding employ-
ment of a Langevin Thermostat in PIMD simulations; and the third part report results of
static (i.e molecular number density across the system, radial distribution functions and
the particle number probability distribution) and dynamic (equilibrium time correlation
functions) properties calculated using PIMD/RPMD/CMD GC-AdResS simulations. It
must be noted that all the properties are calculated only within the explicit PI subregion
in PI-GC-AdResS simulations and in an equivalent subregion in reference PI simulations.
The subsystem of a large reference PI simulation box is a natural grand-canonical en-
semble; thus, if the subsystem of AdResS reproduces the results of reference PI subsystem,
then we can state that the PI subregion in AdResS samples the phase space according to
grand-canonical distribution.

5.4.1 Technical Setup

All path integral simulations are performed by home-modified GROMACS [93] and the
thermodynamic force in GC-AdResS simulations is calculated using VOTCA [98] The
quantum model for liquid water used in this work is q-SPC/FW [72]. It was shown that
the thermodynamic and dynamical properties calculated using this water model agree quite
well with the experiment data. The number of water molecules in system are 1320, and
the box dimensions are 5.8 × 2.6 × 2.6 nm3, corresponding to a density 990 kgm−3. In
AdResS simulations, the resolution of the molecules changes along x-axis, as depicted in
Figure 5.1. The transition region, which has dimensions 2.6× 2.6× 2.6 nm3 is fixed in all
the simulations. In the coarse-grained region, we use a generic WCA potential given by
Eq. 3.60. The values of σ and ε are taken to be 0.30 nm and 0.65 kJ/mol respectively. We
use 32 ring polymer beads in all the simulations, which is sufficient to obtain converged
results for both static and dynamical properties. Reaction field method is used to compute
the electrostatic properties with dielectric constant for water equal to 80. These technical
details are common to all the different PI techniques (PIMD, RPMD, CMD) studied in
this work. In the following sections, we report the technical details that are specific to each
of these techniques.

Path Integral Molecular Dynamics

We use three different sizes of explicit region (PI = 0.5, 1.2 and 2.4) in GC-AdResS sim-
ulation to demonstrate the computational and conceptual robustness of the method. The
smallest size represents the limiting case of statistically relevant number of molecules in
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the path-integral subregion while the largest size represents the limiting case of the size
of the reservoir which may not fulfil the condition of being statistically large enough. All
the static properties are computed from 250 ps long trajectories. The simulations are
performed at 298 K. The time step used in PIMD simulations is 0.1 fs.

Ring Polymer Molecular Dynamics

We perform RPMD simulations with starting configurations taken every 8 ps along PIMD
trajectories. A total of 25 trajectories each of length 25 ps are generated. For the first
5 ps, we keep the thermostat switched on, in order to adjust the velocities as masses are
different in PIMD and RPMD methods. We have followed the procedure proposed in
Ref. [77]. After this initial equilibration run, the thermostat is switched off, and the NVE
trajectories generated are used to compute various time correlation functions. We use the
same strategy for RPMD-GC-AdResS simulations; the only difference is that the initial
configurations are now taken every 8 ps from PIMD-GC-AdResS trajectories. For the first
5 ps, the thermostat acts in the explicit as well as the hybrid and coarse-grained regions.
After the short equilibration run, the thermostat is switched off in the explicit region, while
the hybrid and coarse-grained region are kept under the action of the thermostat for the
production run. The RPMD simulations are performed at temperature 298×32 = 9536 K
A time step of 0.1 fs has been used in all RPMD simulations. We calculate the velocity
auto correlation functions and first and second order orientational correlation functions.
The explicit formulae for RPMD approximation to Kubo-transformed correlation functions
are given in Ref. [65]. We also calculate the diffusion constant and the lth order relaxation
times. The diffusion coefficient is obtained from the time integral of the velocity auto-
correlation function:

D = 1
3

∫ ∞
0

Cvv(t)dt (5.47)

The lth order relaxation times are obtained from the time integrals of the corresponding
orientational correlation functions:

τnl =
∫ ∞

0
Cnl dt (5.48)

The time correlation functions are calculated in the explicit region in the last 20 ps, i.e.
excluding the equilibration run. The correlation functions are calculated up to 10 ps
by averaging over the 25 trajectories. Since the orientational correlation functions are
calculated for 10 ps, an exponential tail was fitted to the correlation functions for computing
the integral.

Centroid Molecular Dynamics

An adiabaticity parameter of γ2 = P−(P+1)/(P−1) [30] is used, and a time step of 0.1 fs is
found to be sufficient for this adiabaticity parameter. The starting configurations are taken
every 8 ps along a PIMD trajectory. We initiate 25 ps long CMD trajectories from the
saved configurations. All the modes are coupled to a thermostat for first 5 ps. After this
initial warm up run, we decouple the centroid mode from the thermostat while non-centroid
modes move under the action of thermostat. In the CMD-GC-AdResS simulations, this
translates to having a thermostat coupled to the whole system for the first 5 ps, following
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which the thermostat is coupled to all the modes in coarse-grained and hybrid regions and
only non-centroid modes in the explicit path-integral region. The time correlation functions
are calculated in the explicit region in the last 20 ps. The functions are calculated up to 10
ps by averaging over the 25 trajectories. The explicit formulae for the correlation functions
can be found in in Ref. [72].

5.4.2 Thermostat issue in Path Integral Molecular Dynamics simulations

Massive thermostating is required in the PIMD simulations since the forces arising due
to the high frequencies in the polymer ring and the forces due to the potential U(x)
are weakly coupled [107]. Tuckerman et al. [108] coupled each normal mode variable to
separate Nose-Hoover chains, thereby ensuring proper ergodic sampling of the phase space.
Manolopoulos et. al [14] developed specific Langevin equations for thermostat, that are
tuned to sample all the internal modes of the ring polymer quite efficiently. However, in
this work we choose the standard Langevin equations of thermostat with time scale 0.1 ps,
which is strong enough for sampling the phase space effectively, though it may not be be
the most efficient choice from computational point of view. The reason is that in the initial
stage of validating PIMD-GC-AdResS, we need to show that the properties obtained in
the reference PIMD simulations are reproduced exactly in AdResS. Since we use the same
thermostat conditions in both the simulations, there should not be any discrepancy arising
due to the thermostat. However, we have verified that the static properties calculated in
our reference PIMD simulation agree very well with those available in literature.

5.4.3 Results

Path Integral Molecular Dynamics

We compare molecular number density, quantum (bead-bead) radial distribution functions
and the particle number probability distribution in reference PIMD and PIMD-GC-AdResS
simulations. Figure 5.7 shows the molecular density calculated over the whole box. It can
be seen that the agreement is highly satisfactory and that the fluctuations are of the same
order in PIMD-GC-AdResS simulations as in reference PIMD simulations. This was an
important test to verify that the subregion samples the correct grand-canonical distribution
following the mathematical formulation in Ref. [111]. For further verification, we have
calculated the particle number probability distribution functions in the PI subregion in
GC-AdResS and in an equivalent subregion in reference PIMD simulations, which are
shown in Figure 5.8. It can be seen that GC-AdResS and reference PIMD distributions
agree quite well with each other and the shape of both the curves is Gaussian, as one
would expect. This again highlights the fact that AdResS samples the phase space of
the subregion in a correct way. However, it must be noted that there is a systematic
shift in the probability distribution functions by two-three particles. One explanation is
that in PIMD-GC-AdResS, the density is not exactly flat across the box, since we have
used an empirical approach to calculate the thermodynamic force instead of the standard
one, as explained in Section 5.3.3. Such a shift seems to correlate with the width of the
distribution, i.e. extension of the PI region. An explanation of the effect is that in AdResS
for larger PI regions the frequency in space of small density fluctuations is larger than for
smaller PI regions. The discrepancy is, however, numerically negligible which does not
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affect the quantum (or bead-bead) radial distribution functions. The radial distribution
function (g(r)) represents two-body correlation function which is one order higher than
the molecular density. It differs considerably when quantum models for liquid water are
used [32, 72]. We have calculated the quantum g(r)’s in the PI subregion in GC-AdResS
and in an equivalent subregion in reference PIMD simulations. Figure 5.9 to Figure 5.11
show that that GC-AdResS is able to exactly reproduce the results obtained from reference
PIMD simulations.
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Figure 5.7: Molecular number density calculated with PIMD-GC-AdResS for different size
of quantum subregion. Results are compared with the density obtained in a reference path
integral simulation.

Ring Polymer Molecular Dynamics

We calculate the static properties (molecular number density, radial distribution functions)
using RPMD and compare them with the properties calculated in RPMD-GC-AdResS
simulations for the most relevant case, PI = 1.2 nm. It can be seen from figure 5.12 that the
density in the hybrid region differs by around 3-5%, as compared to the reference density.
As discussed in Section 5.3.3, this discrepancy occurs due to the empirical calculation
of the thermodynamic force which does not ensure a perfect flat density across the box.
However, the error is negligible and it does not influence the quantum radial distributions
(shown in Figure 5.14) at all. Figure 5.13 shows the number of molecules that remain
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Figure 5.8: Particle number probability distribution functions calculated in the explicit PI
subregion in PIMD-GC-AdResS compared with the functions calculated in an equivalent
subregion in reference PIMD simulation, for different size of quantum subregion. The shape
of both curves is a Gaussian (reference black continuous curve) in all the three different
simulations.

within the explicit path-integral region ‘ν’ as a function of time. This is calculated as
following: we label all the molecules in the trajectory at time ‘0’ and calculate how many
of those labeled molecules are present at time ‘t’. This is an important quantity that
describes the movement of the molecules in and out of the explicit path-integral region.
This quantity is calculated in RPMD-GC-AdResS and reference RPMD simulations. It can
be seen that the two curves overlap. This result confirms, once again, that GC-AdResS
subregion has the same average dynamical behaviour as the reference RPMD subregion.
This shows that RPMD-GC-AdResS is able to sample basic properties of a grand-canonical
ensemble. We also calculate the velocity auto-correlation and the first and second order
orientational correlation (dipole moment axis is chosen as the inertial axis of the molecule)
functions [65] in RPMD-GC-AdResS and reference RPMD simulations. From a physical
point of view, it must be clarified that the functions calculated in subregion are local in
space and time if compared to the functions calculated over the whole box. Figure 5.15
show the three correlation functions calculated in the explicit region and Table 5.2 reports
the local diffusion constant (D (Å2

ps−1)) and lth order relaxation times (τµ1 (ps) and τµ2
(ps)). It can be seen that the local diffusion constant is same in RPMD-GC-AdResS and
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Figure 5.9: From left to right: quantum (bead-bead) oxygen-oxygen, oxygen-hydrogen and
hydrogen-hydrogen radial distribution functions calculated with PIMD-GC-AdResS com-
pared with the results obtained for an equivalent subsystem (PI = 0.5nm) in a reference
path integral simulation.

reference RPMD simulations, while there is a discrepancy of 10% in the 1st order relaxation
time. The difference is not significant, however it must be reported. Thus, GC-AdResS
can be considered a robust computational method to calculate quantum-based static and
dynamic properties of liquid water, and as a result, for systems where water plays a major
role.

Centroid Molecular Dynamics

We calculate the static properties (molecular number density, radial distribution functions)
using CMD and compare them with the properties calculated in CMD-GC-AdResS simu-
lations where the size of the explicit region is PI = 1.2 nm. Figure 5.16 shows the centroid
density for liquid water. The agreement between the reference results and AdResS results
is highly satisfactory. We also calculate the number of molecules that stay within the
explicit path-integral region ‘ν’ as a function of time, as described in the previous section.
We calculate this property in the explicit region in CMD-GC-AdResS and an equivalent
subregion in reference CMD simulations. The agreement is highly satisfactory. This result
indirectly shows the Grand Canonical-like character of GC-AdResS. Figure 5.18 shows the
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Figure 5.10: From left to right: quantum (bead-bead) oxygen-oxygen, oxygen-hydrogen
and hydrogen-hydrogen radial distribution functions calculated with PIMD-GC-AdResS
compared with the results obtained for an equivalent subsystem (PI = 1.2nm) in a refer-
ence path integral simulation.

centroid RDF’s calculated in the explicit region in CMD-GC-AdResS and an equivalent
region in reference CMD simulations. It should be noted that centroid RDF’s are not
same as the quantum (bead-bead) RDF’s and a deconvolution procedure [9] is used to
convert centroid RDF’s to the actual quantum RDF’s. However, it is an important numer-
ical quantity to show that the explicit path-integral region in AdResS reproduces detailed
structural properties in a proper way. It can be seen that the curves overlap which shows
the robustness of the method in reproducing the two-body distribution functions. Fig-
ure 5.19 shows the velocity auto-correlation function, first and second order orientational
correlation functions (dipole moment axis is chosen as the inertial axis of the molecule) [72]
calculated in the explicit region in CMD-GC-AdResS and an equivalent region in reference
CMD simulations and Table 5.2 reports the the local diffusion constant (D (Å2

ps−1)) and
lth order relaxation times (τµ1 (ps) and τµ2 (ps)). It can be seen that the local diffusion
constant is same in both CMD-GC-AdResS and reference CMD results, while there is some
discrepancy in the 1st order relaxation time, as observed with RPMD simulations. We also
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Figure 5.11: From left to right: quantum (bead-bead) oxygen-oxygen, oxygen-hydrogen
and hydrogen-hydrogen radial distribution functions calculated with PIMD-GC-AdResS
compared with the results obtained for an equivalent subsystem (PI = 2.4nm) in a refer-
ence path integral simulation.

calculate the infrared absorption coefficient α(ω) using the following relation [72]:

α(ω) =
[

4π2ω

3V ~cn(ω)

]
(1− e−β~ω) 1

2π ×
∫ +∞

−∞
e−iωt〈M(0)M(t)〉dt, (5.49)

where 〈M(0)M(t)〉 is the total dipole moment auto-correlation function, c is the speed of
light, V is the volume of the box and n(ω) is the refractive index of the system at frequency
ω. Figure 5.20 shows the infrared spectrum calculated in the path-integral subregion in
CMD-GC-AdResS and reference CMD simulations. The agreement is remarkable, and
strongly supports the numerical and conceptual solidity of the method since the spectrum
is a quantity of primary importance also from an experimental point of view.

In general, it should be pointed out that the current PI-GC-AdResS simulations are not
performed under optimal conditions, i.e. a very large reservoir and (ideally) a relatively
small hybrid region. The computational set up employed in this work represents a “worst
case scenario” that tests the technical frontiers of the method; it is natural to expect
that when theoretical conditions are fully met then the level of accuracy can only rise (as
shown in Chapter 4). However, already under non optimal conditions the results are highly
satisfactory.
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Figure 5.12: Molecular number density calculated with RPMD-GC-AdResS for different
size of quantum subregion. Results are compared with the density obtained in a reference
path integral simulation.
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Table 5.1: Local diffusion constant and lth order relaxation times for liquid water calcu-
lated in explicit region of RPMD-GC-AdResS and an equivalent subregion in the reference
RPMD simulations.

Parameter Reference RPMD AdResS RPMD
D (Å2

ps−1) 0.30 0.30
τµ1 (ps) 3.9 3.6
τµ2 (ps) 1.2 1.1
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Figure 5.14: From left to right: quantum (bead-bead) oxygen-oxygen, oxygen-hydrogen
and hydrogen-hydrogen radial distribution functions calculated with RPMD-GC-AdResS
compared with the results obtained for an equivalent subsystem (PI = 1.2nm) in a refer-
ence RPMD simulation.

Table 5.2: Local diffusion constant and lth order relaxation times for liquid water calculated
in explicit region of CMD-GC-AdResS and an equivalent subregion in the reference CMD
simulations.

Parameter Reference CMD AdResS CMD
D (Å2

ps−1) 0.32 0.32
τµ1 (ps) 4.0 3.7
τµ2 (ps) 1.3 1.2
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Figure 5.15: Kubo-transformed equilibrium time correlation functions calculated in ex-
plicit PI region of RPMD-GC-AdResS and an equivalent subregion in reference RPMD
simulation. For the first order correlation function, an exponential tail has been fitted
beyond 10 ps.
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a function of time. This quantity is calculated in reference CMD and CMD-GC-AdResS
simulations.
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5.5 Conclusions

We have implemented different PI schemes in the grand-canonical version of AdResS, i.e.
GC-AdResS, where the (open) region of interest treated at PI resolution is in contact
with a generic reservoir of energy and particles. We have reported the theoretical and
computational aspects of combining the three methods. We have performed simulations of
liquid water using all the different formalisms of PI. The results regarding the static and
dynamic properties are highly satisfactory and qualify PI-GC-AdResS as a robust method
for “large-scale” PI simulations which are currently prohibitive.



Chapter 6

Summary and Outlook

6.1 Summary

In this thesis, grand-canonical adaptive resolution method (GC-AdResS) was extended to
incorporate different path-integral (PI) techniques, which are used to model systems where
nuclear quantum effects have considerable role. Prior to such an implementation, it was
validated that GC-AdResS is a robust method for the calculation of equilibrium structural
and thermodynamic properties for classical MD systems. In Chapter 3, it was shown that
in GC-AdResS, the excess chemical potential is automatically calculated during the equi-
libration phase, i.e. the calculation of thermodynamic force. The excess chemical potential
was calculated for a wide variety of liquids and mixtures, and the results agree quite well
with the values obtained using thermodynamic integration. It was shown that there is no
need for specific coarse-grained models and one can obtain very accurate results with a gen-
eric Weeks-Chandler-Andersen (WCA) potential in the coarse-grained region. In Chapter
4, the correspondence between the Bergmann-Lebowitz (BL) model for grand-ensemble
and GC-AdResS was made. The BL model not only gave a theoretical justification to
the simulation of open boundary systems, but it also provided a theoretical definition of
equilibrium time correlation functions in open boundary systems. The simulations of li-
quid water were performed using GC-AdResS and equilibrium time correlation functions
were calculated in the explicit PI region. The results were compared with the results from
reference classical MD simulations. It was shown that GC-AdresS simulations perfectly re-
produces the results of the reference full-atomistic simulations. Finally, in Chapter 5, three
different path-integral (PI) techniques employed in MD simulations were discussed. The
technical aspects of the implementation of these techniques in GC-AdResS were reported
in detail. Since the PI formalism maps an atom onto a polymer ring containing classical
fictitious beads, the concepts developed in Chapters 3 and 4 for classical MD were applied
straightforwardly. The static and dynamical properties of liquid water were calculated in
PI-GC-AdResS simulations and reference PI simulations. It was shown that the results of
PI-GC-AdResS simulations are fully consistent with results from reference PI simulations.

6.2 Outlook

Since the PI techniques have been implemented successfully in GC-AdResS, one can now
apply PI-GC-AdResS methods to solvation of molecules in water, considering in the region
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of high resolution, the nuclear quantum effects and surround the solvation region with
a generic reservoir as that constructed in GC-AdResS. The delocalization of hydrogen
atom may affect the hydrogen bonding network in the solvation shells. The hydrogen
bonding network may become more flexible which may lead to different solvation properties
and different conformational states of the solvated molecules. Thus, one can investigate
whether or not the inclusion of nuclear quantum effects play an important role in the
solvation process. If one finds considerable differences with the classical MD results, then
it becomes necessary to consider the relevance of nuclear quantum effects in different
solvation processes. Furthermore, it may stimulate development of quantum force fields.
The PI-GC-AdResS setup can be employed as a tool of analysis by systematically varying
the size of the high resolution region and checking whether the given property changes
when compared to the results of reference PI simulations. This approach allows for an
unambiguous identification of essential (quantum) degrees of freedom required for a given
property. The reservoir in GC-AdResS is very generic and it acts as a thermodynamic
bath, thus all the quantum degrees of freedom are exclusively present in the quantum
region. For classical systems, this kind of approach has already been used to investigate
the locality/non-locality of the hydrogen bonding network for water around a series of
fullerene molecules [49]. One can perform the same study using PI formalism in the
high-resolution region. This should add the effect of quantum description to the classical
locality/non-locality given by classical GC-AdResS.



Chapter 7

Zusammenfassung

Mit der von Richard Feynman entwickelte Pfadintegral (PI)-Formulierung können Kern-
Quanteneffekte, die durch die Delokalisierung leichter Atomkerne auftreten, mit den Meth-
oden der Molekulardynamik (MD) behandelt werden. Allerdings ist PIMD aufgrund des
hohen Rechenaufwands auf kleine Systeme und kurze Zeitskalen beschränkt. In dieser
Dissertation wird eine Erweiterung der kürzlich entwickelten “Grand Canonical AdResS”-
Methode (GC-AdResS) durch verschiedene PIMD-Algorithmen behandelt. Hierbei wird
der PI-Formalismus auf eine relativ kleine Region angewandt, die in eine grosses Reservoir
eingebettet ist, in dem die gleichen Moleküle in einem “coarse-grained”-Model behandelt
werden. Um die strukturellen und dynamischen Eigenschaften in dem Quantengleichgewicht
zu berechnen, müssen zunächst diese Eigenschaften für offener Systeme definiert werden.
Hierzu zeigen wir die Genauigkeit der GC-AdResS in Verbindung mit klassischen MD,
indem wir das chemische Überschusspotential berechnen. Wir zeigen die Entsprechung
zwischen dem Bergmann-Lebowitz (BL) Modell für offener Systeme und GC-AdResS, und
verwenden die Prinzipien des BL-Modells, um die Gleichgewichts-Zeitkorrelationfunktionen
für offener Systeme zu definieren. Diese berechnen wir für flüssiges Wasserd und zu zeigen,
dass GC-AdresS die gleichen Ergebnisse wie MD bei vollständig atomistischer Auflösung er-
gibt. In der Pfadintegral-Formulierung wird jedes Atom als Ring von “fiktiven” klassischen
Partikeln repräsentiert. Somit können wir die zuvor entwickelten theoretischen Konzepte
anwenden, um die Quanteneigenschaften von Wasser zu untersuchen. Hierzu kombinieren
wir GC-AdResS mit drei verschiedene PI-Methoden: PIMD, “Ring-polymer” MD (RPMD)
und “Centroid”-MD (CMD). Wir zeigen, dass die Ergebnisse aller drei Methoden mit denen
einer reinen PI-Simulation konsistent sind.
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