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Abstract

Differential co-expression network analyses have recently become an important step in the

investigation of cellular differentiation and dysfunctional gene-regulation in cell and tissue

disease-states. The resulting networks have been analyzed to identify and understand path-

ways associated with disorders, or to infer molecular interactions. However, existing meth-

ods for differential co-expression network analysis are unable to distinguish between

various forms of differential co-expression. To close this gap, here we define the three differ-

ent kinds (conserved, specific, and differentiated) of differential co-expression and present a

systematic framework, CSD, for differential co-expression network analysis that incorpo-

rates these interactions on an equal footing. In addition, our method includes a subsampling

strategy to estimate the variance of co-expressions. Our framework is applicable to a wide

variety of cases, such as the study of differential co-expression networks between healthy

and disease states, before and after treatments, or between species. Applying the CSD

approach to a published gene-expression data set of cerebral cortex and basal ganglia sam-

ples from healthy individuals, we find that the resulting CSD network is enriched in genes

associated with cognitive function, signaling pathways involving compounds with well-

known roles in the central nervous system, as well as certain neurological diseases. From

the CSD analysis, we identify a set of prominent hubs of differential co-expression, whose

neighborhood contains a substantial number of genes associated with glioblastoma. The

resulting gene-sets identified by our CSD analysis also contain many genes that so far have

not been recognized as having a role in glioblastoma, but are good candidates for further

studies. CSD may thus aid in hypothesis-generation for functional disease-associations.
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Author summary

With the ever increasing availability of large sets of gene expression data, much effort has

been directed towards studying shared expression patterns between different genes. We

have developed a general method for studying the variation of gene co-expression

between two different conditions, which allows for a more detailed description and classi-

fication of interactions than previous methods. Applying our method to compare data

from two different parts of the brain (the cortex and the basal ganglia), we find that it

identifies genes known to be involved in key brain functions. Our analysis also identifies

connections between a variety of genes previously known to be involved in the progres-

sion of glioma. Our method can also be applied in studies comparing between healthy and

disease states, treatment and controls, among others.

Introduction

How can genomic information that is the same in each cell of an individual be translated into

a variety of cell and tissue types? It is clear that gene-regulatory mechanisms must play a lead-

ing role in differentiation processes. Transcription factors (TF) belong to the class of proteins

that are able to regulate the expression of other genes. However, it is the combinatorial interac-

tions of TFs at the promoter of a gene that determine if that gene is activated, repressed, or not

regulated at all [1]. For instance during development, a tightly coordinated cascade of TFs is

responsible for the activation and repression of genes that determine cell fate. The same is true

for tissue specificity.

The ever-increasing availability of genome-scale microarray and sequencing data has led to

the development of an array of methods to investigate cells and tissues at the systems level.

One class of such methods, gene co-expression analyses, has found wide use by combining

microarray studies with network theory [2–9]. Investigations using a variety of network meth-

ods have found that co-expression patterns often are correlated with biologically relevant pro-

cesses, such as protein-protein interactions, regulatory cascades, and biological pathways [10–

16]. Because of the frequently observed relationship between co-expression and function, co-

expression analyses have been used in a variety of applications. Examples include functional

annotation of genes [17], identification of pathways associated with diseases, such as Alzhei-

mer’s [18] and autism spectrum disorder [19], as well as inference of molecular interactions

[20]. It should be noted, however, that co-expressed gene pairs do not necessarily reflect direct

biological interactions: Even direct transcriptional relationships may simply be the result of

accidentally matched DNA motifs without any particular function [5]. In order to facilitate the

study of gene co-expression, a variety of computational tools, notably WGCNA ([21]), have

been made publicly available for general use.

A more recent development is the study of differential co-expression networks, which seeks

to identify condition-specific co-expression patterns often associated with dysfunctional regu-

lation [22, 23]. Many methods have been developed to generate such networks based on the

implementation of different principles. In broad terms, the differential co-expression network

methods can be divided into two groups. In the first group, the approaches typically generate

co-expression networks that are specific to each condition studied [24–26]. Here, genes are

connected by links if their co-expression score fulfills a set of statistical criteria for significance.

It is a fairly straightforward matter to compare the resulting networks and subsequently, to

extract interactions that are present in only one of the conditions or to identify genes subject

to extensive rewiring.
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The second group of methods is instead focused on assigning a score for each possible gene

pair, after which the score is used as input in a process to determine whether there is a signifi-

cant change in co-expression between the (possibly multiple) conditions. These scores may be

as mathematically simple as the difference between a gene-pair’s Pearson or Spearman correla-

tion over the conditions [27], or it may include additional steps to normalize the data [28–30].

Some of these methods determine group-wise co-expression by use of e.g. hierarchical cluster-

ing on correlation matrices [31] or decomposition of dependencies into global and group-spe-

cific components [32].

As the term “differential” suggests, the aim of both groups of methods is to identify differ-
ences in collective co-expression patterns in order to elucidate processes specifically relevant to

a given condition. One example application of differential co-expression analysis is to identify

target genes for treatment of a particular disorder (e.g. a specific type of cancer) by identifying

genetic interactions potentially linked to harmful outcomes [29]. These interactions, or some

of the interacting genes, may be disabled through appropriate means. However, should any of

those genes also be involved in processes that are important under normal conditions, the sug-

gested approach might run the risk of incidentally harming healthy cells and tissues. Conse-

quently, the identification of genes that are potential disease-targets should be refined in such

a way that it is possible to determine both conserved and differential co-expression in order to

get a more comprehensive understanding of involved mechanisms.

While the various methods differ in the measures by which they identify differential co-

expression, there is also considerable variety in what sort of data they produce. Some methods

only seek to identify prominent differentially co-expressed genes, without considering the

genes with which they are connected [26, 33]. Of the methods that seek to identify inter-gene

relationships, some primarily focus on identifying communities or modules of genes that are

collectively closely connected [28, 30, 34], while others provide a more general network of dif-

ferentially co-expressed genes. The latter methods can be divided into unweighted networks

[25] (also known as hard thresholding), in which all links are considered equal as long as they

fulfill given criteria, or weighted [33] (also known as soft thresholding), where links are given a

numerical score quantifying their prominence. These edge weights typically represent the

magnitude of change in correlation between conditions. Unweighted networks can readily be

converted into weighted networks by determining a specific cut-off value for the edge weight,

and uniformly setting the weight of all edges above this cut-off to 1, while the remaining edge

weights are set to 0. It has been proposed that gene co-expression networks should follow

scale-free topologies [35], but this requirement is not universally imposed.

Just as the various approaches to differential gene co-expression differ in how co-expression

is determined, there are fundamentally distinct types of differential co-expression to consider.

While some methods characterize differential co-expression by correlations exclusive to a

given condition and others by net changes in pairwise correlations, it is important to acknowl-

edge that these two scenarios are not entirely interchangeable. To illustrate this point, we con-

sider the following example: Assume that a pair of genes exhibit positively correlated

expression under condition α and uncorrelated expression under condition β. In this case,

both classes of approaches should, in principle, be able to identify a differential co-expression.

If we instead consider a pair of genes whose expression is positively correlated under condi-

tion α and negatively correlated under condition β, the two classes of methods will return dif-

ferent results: Methods based on net change in pairwise correlations should readily identify

this gene pair as differentially co-expressed, and find the pair to be even more strongly linked

than in the first example since the net change now may be larger. In contrast, methods based

on determining differential co-expression by comparing unsigned co-expression networks

from individual conditions [25, 26] would not find the pair of genes to be differentially co-
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expressed, provided that the absolute values of the correlations are not too dissimilar. How-

ever, current “net change” methods will not be able to qualitatively distinguish between the

case of positive correlation under condition α and no correlation under condition β, and the

case of positive correlation under condition α and negative correlation under condition β,

even though they are fundamentally different in the type of genetic correlation. In the first

case, differential co-expression might suggest concerted action between the genes under condi-

tion α and independent operation under condition β. In the second case, differential co-

expression suggests interactions under both conditions, but with possibly different mecha-

nisms in play.

Here, we will make a distinction between the two forms of differential co-expression in

order to clearly distinguish between these two qualitatively different cases: Specific co-expres-

sion, which we will denote S, in which a gene pair is correlated under only one condition. This

corresponds to the first example. Differentiated co-expression, denoted D, in which a gene

pair is correlated in both tissues, but with opposing signs: In one condition, the correlation is

positive and in the other condition it is negative. This corresponds to the second example. We

propose a differential co-expression framework that allows the simultaneous determination

and quantification of both conserved co-expressions, C, and the S- and D-types of differential

co-expression patterns. Thus, a gene pair that is significantly co-expressed in one tissue may

either be similarly co-expressed (C), co-expressed but with an opposite sign (D), or not show

any significant co-expression when studied in another tissue (S).

In order to provide a more complete framework for differential co-expression analysis, we

have developed an approach, called CSD (“Conserved, Specific, Differentiated”), to categorize

gene pairs according to mathematically defined scores which will allow us to construct a uni-

fied differential co-expression network from experimental data. A systematic comparison

between this new method and pre-existing methods is presented under Materials and Meth-

ods. We apply the method using two types of tissues: cerebral cortex and basal ganglia from a

published data set containing samples from a large number of human individuals [36]. From

this network, we identify potential key sets of interactions and groups of genes which may help

explain functional differences across these two tissues.

Materials and methods

Gene expression data set

We have used the differential co-expression profiles in the GTEx V4 data set [36], focusing on

tissue groups that (1) exhibit a high degree of similarity (as established by Pierson et al. [37]),

and (2) for which the GTEx data set contains a sufficiently large number of samples.

Our data set 1 named cortex, consists of the GTEx groups: Brain—Cortex, Brain—Anterior

cingulate cortex (BA24), and Brain—Frontal cortex (BA9). Our data set 2 named basal ganglia
consists of the GTEx tissue types: Brain—Caudate (basal ganglia), Brain—Nucleus accumbens

(basal ganglia), and Brain—Putamen (basal ganglia). These groupings add up to 73 data points

for cortex, and 92 data points for the basal ganglia.

The GTEx V4 data set contains expression data for a total 55,993 loci. We have restricted

our analysis to protein-coding open reading frames (as annotated in Ensembl), leaving a set of

18,453 genes (see S4 Text).

Estimated variance in gene co-expression

We calculate the pairwise gene co-expression scores ρij,k as Spearman rank-correlations for the

pair of genes i and j in tissue k over all the gene expression data points N. As our analysis bases

itself on identifying changes in ρij,k between conditions, we need to determine the extent of the

CSD method for differential co-expression network analysis
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variability of ρij,k within a condition due to confounding factors. While methods exist to evalu-

ate the variance of computed Spearman correlations, we need to account for the fact that spe-

cific confounding factors may change the “actual” correlation within specific subpopulations

of samples in a given condition.

To illustrate the problem, consider a hypothetical gene-pair shown to exhibit moderate co-

expression in a specific type of tissue across a whole population. Upon detailed review of the

data, it turns out that this gene-pair displays very high co-expression for some particular sub-

groups of the population (for instance, certain age groups, or in individuals suffering from cer-

tain diseases). At the same time, this pair is not showing a strong co-expression outside of

these subgroups. In this hypothetical case, it would be difficult to tell if an observed difference

in co-expression in another tissue and another population relates to differences between the

tissues, or is due to confounding factors.

On the other hand, if the genes are consistently (but not particularly strongly) co-expressed

across all possible groupings of individuals, we can say with greater confidence that the corre-

lation reflects genuine control related to the condition (in this case, a tissue type). Conse-

quently, we may attribute any difference of co-expression (if similarly consistent) in another

population and another condition to the differences between the conditions.

In order to determine the variance in co-expression within each given tissue, we compute

the Spearman rank-correlation rlij;k for each independent sub-sample l of size n drawn from the

N data points. We use the standard error of the mean, σij,k calculated from the set of rlij;k values,

as a measure of intra-tissue co-expression variation. In order to achieve as many sub-samples

as possible, increasing the chance of matching with particular confounding conditions, and

accurately determine σij,k while ensuring independence between the different sub-samples, we

implement the following approach for selecting sub-samples:

1. The N data points (per gene) for the full sample are ordered and sequentially numbered.

2. The N data points are divided into sub-samples of size n. For instance, if N = 100 data points

with a chosen sub-sample size n = 8, we initially create 12 sub-samples of size n, consisting

of the data points 1-8, 9-16, 17-24 etc.

3. Beginning with data point N = 1 as initiating data point n�, we sequentially iterate through

the data points, adding to the current sub-sample any data point that has not previously co-

occurred in a sub-sample with any of the points already in the current sub-sample.

4. When the size of the current sub-sample reaches n, we re-initiate a new sub-sample with

initiating data point n� and repeat step 3.

5. When no valid sub-sample of size n can be drawn with n� as the initiating data point, we

choose n� = n� + 1 as the next initiating data point and repeat from step 3.

6. The approach is completed when n� = N and no more allowed sub-samples of size n can be

constructed.

An example of the application of this algorithm is presented in S1 Text. When implement-

ing this algorithm, we are ensured that two data points only co-occur once in a sub-sample.

Note that, it is quite beneficial to select a sub-sample size n such that n2 = N, as this greatly

increases the amount of possible sub-samples that will be generated. On the other hand, a

small sub-sample size n makes for a coarse Spearman correlations, i.e. to achieve three-digit

accuracy, a sub-sample size of 7 is recommended. Consequently, N = 49 data points is a recom-

mended minimum in order to determine the standard error of the correlation ρij,k within a

given tissue (or more generally, a given condition) within reasonable accuracy. We recognize

CSD method for differential co-expression network analysis
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that for certain conditions (such as those involving rare diseases or large animals which may

be difficult to acquire and maintain) this requirement might not be realistically fulfilled. In this

case, subsampling may be omitted, and σij,k set to 0 for that condition (or 1, if subsampling

isn’t possible for either condition).

Additionally, while sub-sampling may be omitted in the event of few available data points,

there would still need to be enough data points available to accurately determine the base corre-

lation for the set. In order to determine a reasonable minimum, one should keep in mind that

for two factually uncorrelated random sequences of N data points, there is still a likelihood 1/N!

that the computed Spearman correlation is 1. As real-life gene expression data frequently involve

thousands of genes, and thus millions of gene pairs, a small N can thus lead to a substantial num-

ber of false positives, no matter how stringent the required Spearman correlation. For instance,

if we have a data set containing 1000 genes, and 8 expression values for each, we would expect at

least 103(103 − 1)/(2 � 8!)� 12 perfectly correlated gene pairs by pure chance in addition to any

factually correlated gene pairs. While the confidence with which any perfect (or near perfect)

correlation can be said to be biologically relevant depends on the total number of observed cor-

relations, users should be aware of these caveats when trying to draw conclusions based on small

sample sizes. Additionally, as gene expression is an inherently stochastic process, studies involv-

ing small sample sizes are susceptible to a variety of concerns with regards to noise and the

resulting uncertainty in observations. Several of these are discussed in further depth in S2 Text.

Based on our analysis presented in S2 Text, we hold that for comparisons on the order of thou-

sands of genes, N = 49 data points remains a reasonably safe minimum requirement.

Next, we remark upon the fact that ρij,k and its sub-sample variation σij,k are dependent: As

a general rule, gene pairs with absolute correlations close to unity tend to exhibit smaller varia-

tion in co-expression between sub-samples. We present two possible explanations for this, one

biological and one mathematical: If a large correlation for a pair of genes is important to cellu-

lar function, both gene products should be consistently present in nearly the same ratio in all

of the sub-samples, e.g. through a process of tight gene regulation. Consequently, the observed

variation in the co-expression pattern will be small. Strong correlations should therefore be

more frequently associated with low variation between samples.

The mathematical explanation is based on the following observation: A large sub-sample

variation σij,k means that the sub-sample averages rlij;k must follow a broad distribution. How-

ever, it is impossible for sub-sample averages to be larger than unity. Thus, when ρij,k is near

unity, variation is limited in the sub-sample averages rlij;k.
Finally, an important thing to keep in mind is that as the Spearman rank correlation is less

accurate for small sample sizes, a choice of larger subsample size will generally bring the sub-

sample correlations closer to the full-sample correlation. Consequently, σij,k will generally be

lower for higher subsample sizes. Because of this, it is important that the chosen sub-sample

size is the same for both conditions studied in order to avoid an unbalanced contribution from

one of the conditions to the denominator of Eqs 1–3.

Gene relationship scores

In order to enable a systematic comparison of co-expressions, we introduce three pair-wise

comparative gene co-expression scores which are computed for each pair of genes i and j in

two different tissues. In general, these expressions may be applied to sets of data points from

two different tissues, conditions or organisms:

Cij ¼
jrij;1 þ rij;2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ij;1 þ s2

ij;2

q ; ð1Þ

CSD method for differential co-expression network analysis
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Sij ¼
jjrij;1j � jrij;2jj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ij;1 þ s2

ij;2

q : ð2Þ

Dij ¼
jrij;1j þ jrij;2j � jrij;1 þ rij;2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
ij;1 þ s2

ij;2

q ; ð3Þ

Here, Cij quantifies the extent to which co-expressions for genes i and j are conserved, i.e. simi-

lar in both tissues. Sij quantifies specific correlations: gene pairs which are strongly (positively

or negatively) correlated in one tissue while showing no noticeable correlation in the other.

Finally, Dij describes the extent to which co-expressions are differentiated: Dij is large for pairs

of genes showing strong absolute correlations in both tissues or conditions, but where the

nature of this correlation (positive or negative) changes between the two tissues. As the numer-

ators for each of the expressions Cij, Sij and Dij are necessarily positive (being absolute values),

and the denominator being a positive number potentially arbitrarily close to 0, Cij, Sij and Dij

may assume any value from 0 (included) to infinity. However, as they follow widely different

distributions, the three scores are not directly comparable within each other. In order to inte-

grate the three types of co-expression into a common network, further steps are necessary in

order to determine appropriate cut-off thresholds. We describe these in detail in the next

section.

Fig 1 provides a schematic visual representation of the three co-expression patterns detected

by our method. Our scores are designed in such a way that they assume large values within

their respective areas (for instance, C-scores are large within the blue areas), while remaining

small outside. Increasing the cut-off value for a given score is equivalent to shrinking the corre-

sponding area of interest (restricting it near the corners for C and D, and along the middle of

the edges for S). Since these areas converge on different points as the cut-off increases, a given

gene pair may not exhibit large values for more than one score. Consequently, we can choose

cut-off values for each score in order to uniquely classify relevant gene pairs according to the

appropriate categories.

Consolidated comparative gene co-expression network

In order to generate a network for the combined gene co-expression categories, the different

ranges of the scores Cij, Sij and Dij necessitate a systematic approach for combining these inter-

action measures. For each of the three co-expression score types, we wish to determine suitable

threshold values kC;S;Dp in such a way that these values correspond to the same importance level

p. Thus, we will keep all gene co-expression scores Cij > kCp , and discard those below this

threshold. Similarly for Sij and Dij with their respective cut-offs. However, the three different

interaction scores show distributions that have noticeably different means, medians, variances

and general shapes (see S1 Fig). Consequently, determining whether pairs exhibit significant

change or conservation based on either a common fixed-value cut-off or a given distance from

the three means is incompatible with a meaningful comparison of significance across

categories.

Instead, we determined the importance value of a random variable X based on the likeli-

hood of obtaining said value from the underlying distribution: If the distribution is based on

M data points (in our case, the number of different gene-pairs), we draw m samples si from the

data set, and each si has the size L�M. We determine the threshold value Xp as the average of

CSD method for differential co-expression network analysis
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the maximal values per sample:

Xp ¼
1

m

Xm

i¼1

maxfsigX: ð4Þ

The associated importance level is determined as p = 1/L. Thus, by choosing a common p for

the gene relationship scores, we obtain a set of consistent cut-off values XC;S;D
p which we use to

extract separate C-, S- and D-links that are combined in a final network. It should be noted

that this p is not a significance threshold, as it is determined by the distribution of the scores

for a given data set, not by testing the data against a null hypothesis. Instead, its purpose is to

map the scores Cij, Sij and Dij on to a common scale, to allow for meaningful comparison

between them.

Measurement of node homogeneity

In the consolidated network, nodes may connect to their neighbors by either C, S or D link-

type. In order to distinguish between nodes predominantly involved in one type of interaction

and those with multiple different types of connections, we introduce the concept of node

Fig 1. Gene co-expression score surfaces. General representation of the regions of interest for differential

co-expression relationship scores C, S, and D. Here, ρ1 and ρ2 denote the Spearman rank-correlation of the

expression of a given gene pair under condition 1 and condition 2, respectively. Colored regions correspond

the three kinds of co-expression: blue is conserved C (strong co-expression in both conditions, no sign

change), green is specific S (strong co-expression under only one condition), red is differentiated D (strong

co-expression in both conditions, but with opposite signs). The colored letters indicate the scores associated

with each colored region.

https://doi.org/10.1371/journal.pcbi.1005739.g001
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homogeneity H:

Hi ¼

X

j2fC;S;Dg

kj;i
ki

� �2

; ð5Þ

using an expression introduced in a different context [38]. Here, kC,i, kS,i and kD,i denote node

i’s number of C, S and D-type interactions, respectively, and ki is the nodes degree (total num-

ber of connections). We note that in the extreme cases, H = 1 indicates a node with only one

type of connections, while H = 1/3 (the lowest possible value) indicates a node with an even

distribution of C, S and D-type connections.

Disease association and KEGG pathway enrichment analysis

In order to determine enrichment of specific OMIM disease terms and KEGG pathways in our

networks, we used Enrichr [39, 40] (http://amp.pharm.mssm.edu/Enrichr/) to obtain associ-

ated terms for each gene in the GTEx data set. This was a necessary step to establish accurate

enrichment values, as Enrichr in itself does not provide for user-specified background gene

lists. We then performed (Bonferroni-corrected) hypergeometric tests using NumPy (Python)

for each of the 90 disease terms and 293 pathways listed in the Enrichr library to determine the

significance of the number of associated genes in a given network.

Software

In order to perform our analysis, we developed a set of software in-house, which has been

made publicly available for download (https://github.com/andre-voigt/CSD). The code for

computing Spearman correlations and variance was written in C++, with the remainder (com-

putation of C, S, and D, estimation of cut-off, and network generation) implemented in

Python. We used Cytoscape [41] to visualize the network, and NetworkX [42] to perform net-

work analyses. External software used for the remaining analysis is listed in S3 Text.

Runtime, from expression data to the finished network may take anywhere from a few min-

utes to several hours for realistic data sets (scaling approximately quadratically with both the

number of genes and the number of data points.). As an example, for a data set consisting of

1550 genes and 100 sample points per gene, complete run time is approximately 45 minutes

on an Intel Xenon X5690 CPU.

Results

Comparison with existing differential co-expression methods

Table 1 provides a qualitative comparison between CSD and nine previously published meth-

ods for differential co-expression analysis that span a variety of method implementations. The

defining characteristic of CSD is the classification of two types of differential co-expression (S-

type; the loss of co-expression in one condition, and D-type; sign change) as well as the inte-

gration of conserved co-expression links in a composite network. Of the other listed methods,

only the DCe method [33] recognizes S-type and D-type links as distinct forms of differential

co-expression: it uses two different measures to determine the significance of co-expression

change, one for same sign in both conditions and another when the sign changes between con-

ditions. However, the DCe method does not distinguish between the two link-types in the final

network analysis.

The other listed methods either do not recognize the difference between D- and S-type

links, or altogether omit D-type links from their differential co-expression analysis. Note that

CSD method for differential co-expression network analysis
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the CSD method explicitly includes conserved interactions in its resulting network, whereas

C-type links are not included in the DCe method [33].

Validation on simulated gene expression data

In order to critically validate our method’s ability to detect regulatory changes, we applied it to

synthetic gene-expression data-sets with known, pre-defined regulatory interactions. As an

initial test, we used a published synthetic gene data set from Zhang et. al. [43]. This has previ-

ously been used as a benchmark for relevant methods [27, 34]. This data set consists of 20

genes, and the two conditions are defined by changing 10 of the interactions, i.e. specifying 10

differentially expressed interactions. In particular, 5 of the interactions are present only in con-

dition 1, and 5 (other) links are present only in condition 2. We recognize all of these 10 links

as S-type links within our framework, and the specified network contains no D-type links. In

S1 Table, we provide detailed results of our analysis, listing the 10 top-scoring gene pairs for

C-type and S-type links, as well as the top 10 S-equivalent links found by DCGL along with a

classification scheme for each pair. The relevant categories in this classification, based on their

connections in the reference regulatory network, are as follows: direct C (immediate neighbors

in both conditions), direct S (immediate neighbors in one condition only), indirect C (con-

nected through one intermediary link in both condition), indirect S (connected through inter-

mediary links specific to one condition). While other interaction schemes are possible, they do

not occur among the top 10 links in either test.

Using our CSD-method to compute S-scores for all gene pairs, we find that the 10 direct

differential interactions (DDIs) are assigned to 9 of the 10 top scores, with an indirect link

[SWI4_SWI6, CLB6] incorrectly assigned the 8th place. The only DDI not making it into the

top 10 is the [CLB6, MBP1_SWI6], scoring at 11th place. In contrast, the DCe method identi-

fies 6 of the 10 DDIs amongst its top 10 scoring S-equivalent links, and with one non-differen-

tially co-expressed link at the 10th place. DCe does identify 2 of the 10 DDIs ([MPB1_SWI5,

CLB6] and [MBP1_SWI6, CLB6]) as “switched opposites” (equivalent to D-type in our termi-

nology), but the last two selected links ([PHO2, CLB5] and [PHO2, CLB6]) are not identified

as differentially co-expressed under standard parameters.

Similar testing of our method focusing on the conserved links identifies 4 of the direct con-

served links among the top 10 C-scores, with the remainder consisting of genes separated by a

single intermediary gene. However, we note that since correlations are transitive, it is entirely

Table 1. Summary overview and characterization of differential co-expression methods. We characterize the presented methods by 5 tests: 1. Detects

loss of co-expression. 2. Detects sign change. 3. Differentiates loss of co-expression from sign change. 4. Differentiates sign change and conservation. 5. Inte-

grates conserved co-expression.

Method Operating principle Focus 1. 2. 3. 4. 5. Main output

CSD Direct score Link Yes Yes Yes Yes Yes Full network

DCGL (DCe) [33] Direct score Link Yes Yes Yes Yes No Gene rankings, full differential network

DCGL (DCp) [33] Direct score Gene Yes Yes No Yes No Gene rankings

DiffCoEx [31] Direct score Link Yes Yes No Yes No Network modules

BMHT [34] Direct score Link Yes Yes No Yes No Network cliques, gene rankings

Choi (2005) [25] Network comparison Link Yes No Yes No No Full network, network clusters

Reverter (2006) [26] Network comparison Gene Yes No Yes No No Gene rankings

DICER [28] Direct score Link Yes Yes No Yes No Network modules

Gao (2013) [29] Direct score Link Yes Yes No Yes No Full differential network

DiffCorr [30] Direct score, network comparison Link, Module Yes Yes No Yes No Full differential network, differential clusters

https://doi.org/10.1371/journal.pcbi.1005739.t001
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within reason that gene pairs indirectly linked in the regulatory network (but with strong co-

expression along the intermediate steps) also show strong co-expression.

As this data set is unsuitable for thorough vetting of the CSD method due to the lack of D-

type differential interactions, we used GeneNetWeaver [44, 45] to generate synthetic gene-

expression data from networks containing both conserved, specific and differentiated links.

Starting with a general regulatory reconstruction of E. coli (containing 1565 genes and 3758

edges) [44, 45], we randomly modified 10% of the interactions (5% removed, 5% switched

from activator to repressor, or vice versa). We generated 200 synthetic gene-expression data-

samples for both the original and the modified network. This process was repeated 20 times

(generating new randomized networks and new synthetic expression data with 200 samples

for both conditions each time), yielding 20 distinct sets of C, S and D-scores.

To assess the quality of our method’s ranking of links, we tested true-positive and false-pos-

itive rates for C, S and D-type interactions by comparing the ranked lists of C, S, and D-type

scores for the links in the known test networks. We quantify the quality by receiver operating

characteristics (ROC) curves. We also calculated ROC curves for the DCe method on the same

networks and with the same synthetic gene-expression data as input. We used the DCGL pack-

age as a benchmark, as it is, to our knowledge, the only published method that is able to distin-

guish between S- and D-type links (and also demonstrates good performance in comparison

to many existing methods [27]).

Fig 2 shows the comparative ROC curves for the CSD and DCe methods. We find that on

these data sets, CSD is substantially better at detecting D-type co-expression. However, despite

the S-score’s success in identifying differentially expressed genes in the Zhang data set [43], it

shows weaker performance than DCe on data generated in GeneNetWeaver [44, 45]. While we

do not have any relevant method for which we can compare the performance of the C-score,

we note that it’s general predictive power is higher than that of any of the other metrics.

The DCe method classifies genes detected as differentially co-expressed as either S-equiva-

lent or D-equivalent, depending on sign change in the underlying correlation, with the conse-

quence that DCe curves do not extend across the whole range in Fig 2: Since a gene pair may

only belong to one category in DCe, it is not possible to relax test requirements in such a way

that one category contains all gene pairs. Notably, even under the most inclusive test require-

ments, the D-equivalent category can only contain on average� 20% of gene pairs that show

differently signed correlations between the two conditions.

We observe that in general, the tested differential co-expression analysis methods do have

substantial difficulties in accurately detecting individual regulatory perturbations for these

types of network, and that even the best-performing measures in Fig 2 have a great deal of the-

oretical room for improvement in performance. This is generally the case for the existing

methods [27]. A natural explanation for the difficulties in detecting individual changes lies in

the fact that, empirical regulatory systems form complex networks, in which a given gene may

be subjected to a multitude of regulatory impulses. Many of these input signals are shared with

other genes, and regulatory cascades are common. Consequently, the loss of a regulatory inter-

action may not lead to a discernible change in co-expression correlations if these genes remain

connected to shared regulators. On the other hand, an observed change in correlation between

two genes may be the result of changes in regulatory mechanisms between intermediary genes

in the regulatory network.

Differential gene co-expression network in brain

We selected the expression data from cortex and basal ganglia from the GTEx dataset to gener-

ate a CSD network. Using an importance level of p = 10−5 on the 18453 expressed genes, we

CSD method for differential co-expression network analysis
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obtained a network consisting of 1814 nodes (genes) and 2351 edges (Fig 3). Here, transcrip-

tion-factor genes are indicated by triangle-node symbol. The network contains an even mix of

edge types (767 are C-type, 806 are S-type, and 778 are D-type). A link to detailed data files

describing the network can be found in S4 Text.

Fig 3 shows that the majority of the network is interconnected, forming a giant component

consisting of 1333 (73.8%) nodes and 2024 (86.1%) edges. In addition to the giant component,

we find 3 intermediately-sized connected components (respectively containing: 38 nodes and

47 edges, 30 nodes and 41 edges, 13 nodes and 13 edges). The remaining nodes form smaller

connected components: 2 components of 5 nodes and 4 edges, 8 of 4 nodes and 3 edges, 28

triplets (all with 2 edges), and 137 isolated pairs. In Fig 3, we have highlighted the names and

positions of the six genes with most connections in the networks. The top-3 list of most con-

nected nodes consists of FOXO1 (k = 240 connections), ATP11C (k = 130 connections), and

CARHSP1 (k = 120 connections), with a significant drop in connectivity to the fourth-most

connected nodes (PBX3, k = 48).

A quick look at Fig 3 provides important insight concerning a key aspect of the network. It

could be argued that, if conserved and differentiated interactions were functionally decoupled,

and thus belonged to entirely separate parts of the genetic network, an integrated approach

might not be particularly necessary, or even useful. In contrast, we find a highly interconnected

network, with core regions densely interconnected by all three types of interactions. However,

while the different interaction classes do not form separate networks, there is a distinct ten-

dency for links with the same score type (either being C, S or D) to group together.

We investigated the propensity of nodes to be connected with links of different types by cal-

culating the homogeneity-score H (Eq (5)) for each node. Fig 4(a) shows a box-plot of H as

Fig 2. Receiver operating characteristic (ROC) curves for differential gene co-expression scores.

ROC curves for the C, S and D-scores, and equivalent scores in the DCe method averaged over 20

independent simulations. The dashed black diagonal corresponds to Sensitivity = 1 − Specificity. Note that the

DCe curves do not extend across the whole range, since DCe classifies genes detected as differentially co-

expressed into either S-equivalent or D-equivalent, depending on sign change in the underlying correlation.

Since a gene pair may only belong to one category in DCe, it is not possible to relax test requirements in such

a way that one category contains all gene pairs. Notably, even under the most inclusive test requirements, the

D-equivalent category can only contain on average� 20% of gene pairs that show differently signed

correlations between the two conditions.

https://doi.org/10.1371/journal.pcbi.1005739.g002
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function of degree. Of the 1333 nodes in the giant component, 333 (just short of half of the 701

nodes with at least 2 neighbors) have interactions of at least two of the three different types,

and 56 (approximately 1 in 8 of the 404 nodes with at least 3 neighbors) have interactions of all

three types (Fig 4(c)). Interestingly, Fig 4(a) suggests that highly connected genes are domi-

nated by specific types of interactions, as shown in Table 2. Here, of the top 5 hubs for each cat-

egory, all but one of the C-hubs and one of the D-hubs have homogeneity scores over 0.9. On

the other end of the degree distribution, we note that nodes with very few (less than 4) neigh-

bors also tend to have somewhat more homogeneous neighborhoods than nodes with interme-

diate connectivity.

Obviously, for nodes with only one neighbor, H = 1, while for nodes with only two neigh-

bors, H must be equal to either 1 or 0.5 (whereas the lower bound on H for k� 3 is 1/3).

If we classify any gene with 3� k� 10 as an intermediate gene, and genes with k> 10 as a

hub, we find that intermediate genes are significantly less homogeneous than hubs (t-test,

p = 3.8 � 10−5). Looking over the combined set of intermediate and hub genes, higher degree

nodes are positively correlated with increased homogeneity (Spearman ρ = 0.082, p = 0.085;

for all genes with k� 4, ρ = 0.2, p = 8.2 � 10−4).

Fig 3. Overview of the CSD network. Visualization of the aggregate CSD-type network generated using a

sample size of L = 105. Triangular nodes indicate transcription factors. Prominent hubs (nodes with more than

40 neighbors) are colored black, enlarged and labeled for emphasis. Edges are colored by type: blue is C-

type, green is S-type, red is D-type.

https://doi.org/10.1371/journal.pcbi.1005739.g003
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Fig 4. Node homogeneity and mixing of interactions. a) Box plot of gene homogeneity scores H according to node degree. Red

bars denote the median H for nodes of the specified degree, and red squares denote the mean. Bottom and top ends of the boxes

represent the first and third quartiles, respectively. The end of the whiskers correspond to min/max values of H at that degree. b)

Ternary heatmap, detailing the fractions of specified interactions kj,i/ki with j 2 {C, S, D} per gene: Corners correspond to

homogeneous nodes, i.e. nodes with only one type of interaction. The sides correspond to nodes with two types of interactions

(scale is fraction × 10), e.g. kC = 0 along the side marked D. The blue cross is an aid, with coordinates (C * 60%, S * 30%,

D * 10%. c) Venn diagram showing the relative quantities of genes involved in each type of interaction.

https://doi.org/10.1371/journal.pcbi.1005739.g004

Table 2. Network hubs for each type of interaction. k denotes node degree (total number of connections),

while kC, kS and kD denote the number of connections of each type (kC + kS + kD = k). H denotes node homo-

geneity, as defined in Eq 5.

Top 5 C k kC kS kD H

UBQLN1

TRIM37

FAXC

PPP3CB

ATP6V1C1

23

17

15

14

15

22

17

15

14

13

1

0

0

0

2

0

0

0

0

0

0.92

1

1

1

0.77

Top 5 S k kC kS kD H

GPR101

POU3F4

ECE2

DESI2

DIRAS3

45

44

35

30

30

0

0

0

0

0

45

44

35

30

27

0

0

0

0

0

1.0

1.0

1.0

1.0

1.0

Top 5 D k kC kS kD H

FOXO1

ATP11C

CARHSP1

PBX3

DDO

240

130

120

48

21

0

0

0

0

0

3

3

2

11

0

237

127

118

37

21

0.98

0.95

0.98

0.64

1

https://doi.org/10.1371/journal.pcbi.1005739.t002
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How are the different link-types spread among the nodes? Fig 4(b) is a ternary heatmap

showing a histogram of the three fractions kj,i/ki, with j 2 {C, S, D} for each node. Conse-

quently, entries at the corners account for all nodes with H = 1 (see panel (a)), whereas entries

at either of the sides correspond to the nodes of Fig 3 connected with only two kinds of links.

For entries in the interior, the corresponding nodes are connected to all three kinds of links.

For a given point on the triangle, the corresponding proportion of interactions of type X is

determined by following the line parallel to the base X = 0 until reaching the base labeled X. To

illustrate this, we have provided an example by marking the tile corresponding to a mix of

approximately 60% C, 30% S and 10% D (density of 19 nodes) by a blue cross. As the densities

at the corners (representing nodes containing only one type of interaction) are far higher than

anywhere else, the color scale has been truncated at the highest non-corner value (0% C, 50%

D, 50% S, 64 nodes). Whereas the Venn-diagram (Fig 4(c)) details the number of nodes with a

given mixture of links, the ternary heatmap shows how the links are mixed at the nodes. Panel

(b) shows that the majority of the nodes connected to the three link types are dominated by C-

specific (fractions above 0.6), and some S-specific (near 0.3), but only with a few D-specific

interactions (fraction near 0.1).

Robustness and features of interaction network to choice of kp

We evaluated the consequence of different cut-off values kp for the structure of interaction spe-

cific networks by generating separate C-, S- and D-networks for a range of importance values p
2 [10−6, 10−4]. For each interaction type network, we calculated their degree distribution,

degree assortativity and max k-core number, and identified the top-10 most connected genes

in each network. Fig 5 shows that while the C-networks exhibit greater positive degree assorta-

tivity than randomized networks with the same degree distribution, S and D networks are dis-

assortative with respect to degree. We also find that the C-type network exhibits a higher

maximum k-core value than randomized networks at the same degree distribution, while S-

and D generally exhibit lower maximum k-cores (S6 Fig). Both of these traits indicate that C-

Fig 5. Robustness of network topology. a) Degree assortativity for the consolidated comparative gene co-expression network, generated for different

importance levels. Lines denote the difference between maximum k-core in the empirical network at the selected threshold (arrow tip) and mean degree

assortativity across 100 random networks with degree distributions similar to the empirical network (arrow tail). b) Similar to a), but for networks consisting

of interactions of each individual type (C, S, and D). Empirical C-networks show positive assortativity as well as higher than random k-core, indicating an

affinity between tightly connected nodes and a “rich club”-structure, while the empirical S- and D-networks show negative assortativity and lower than

random k-core, indicating a hub-and-spoke type network structure.

https://doi.org/10.1371/journal.pcbi.1005739.g005
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networks are dominated by reasonably densely interconnected sets of genes of the same type

(with highly connected genes generally connecting to other highly connecting genes, and

sparsely connected genes generally connecting to sparsely connected genes), while the S- and

D-networks follow a hub-and-spoke topology, where certain prominent genes connect to a

large number of neighbors, which themselves connect to one or a few prominent nodes.

We have verified that the selection of a specific cutoff in the indicated range has little effect

on the topology of the resulting network, and in the case of S and D, the relative ranking of

prominent hubs remains relatively constant (S2 Table). Due to the comparatively small differ-

ences in connectivity of main hubs in the C-network, the changes in node rank are more pro-

nounced, although the relative connectivity (node degree relative to the most-connected hub)

remains stable. This allows us to select cutoffs for C, S and D to yield reasonably tractable net-

works, while ensuring that the specific cutoff chosen does not have a dramatic effect on key

aspects of the resulting network and our presented analysis.

We note that the topological differences between the C, S, and D-networks revolve around

three main characteristics: degree distribution, assortativity and clustering (defined as the pro-

portion of common neighbors between two directly linked genes). In general terms, the C-net-

work is tightly knit, with high clustering and a rather narrow degree distribution (with less

prominent hubs). The D-network is opposite, where most D-links connect high-degree

(k> 20) genes with otherwise isolated or near-isolated genes k� 3. Additionally, the clustering

coefficient in the D-network is zero, and no genes that are directly connected to each other by

a D-link are also connect to a common neighbor through other D-links. The S-network lies

somewhere in between these two characteristics: its hubs are more prominent than those of

the D-network, but less than those of the C-network, and its clustering coefficient is also some-

where in between.

The differences in clustering are the result of mathematical factors—specifically, the transi-

tivity of strong correlations. Considering three genes i, j and k, it follows from the nature of

correlations that if |ρij|� |ρik|� 1, then ρjk� ρijρik. Because of this, if ρij and ρik remain strong

and constant between conditions, then so must ρij, naturally creating “triangles” in the C-net-

work. Assortativity is also a natural consequence of this—if gene i is strongly correlated with

gene j, then j will generally tend to be correlated with i’s neighbors—therefore, if i has many

neighbors, j is likely to have many neighbors as well.

Similarily, should ρij and ρik simultaneously switch signs, it is mathematically not possible

that ρjk also switches signs, as three genes may not all be strongly negatively correlated with

each other. In fact, the D-network can be approximately characterized as a so-called bipartite

network (ignoring any potential weakening of the transitive effect over longer distances and

weaker links). A bipartite network is defined as a network in which each node can be catego-

rized into either of two groups, and where there are no direct links between two nodes belong-

ing to the same group. As a direct result, a bipartite network cannot contain closed triads, and

therefore has a clustering coefficient of 0.

In the case of the D-network, however, transitivity of correlations does not, by itself, ade-

quately explain the extreme disassortativity we observe. In as much as the D-network necessar-

ily forms a bipartite network, we noticed that the two characteristic groups roughly

correspond to hubs and non-hubs. This is not a mathematical necessity—one can readily find

bipartite networks in which the majority of direct connections are between hubs (or between

non-hubs), or with a very narrow degree distribution. We could, for instance, create a co-

expression network consisting of a giant component divided into two groups of equal size, and

each node connects to each of the nodes in the other groups; we could then add any number of

isolated connected gene pairs. This would constitute a bipartite network consistent with a cor-

relation network, but highly assortative.
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A possible explanation for the disassortativity of the D-network could reside in an argu-

ment from parsimony—that the underlying regulatory switches would happen at the individ-

ual gene level, that these are reasonably rare, and that changes to one or a few genes in a cluster

would not substantially affect the relationship between the other genes in that cluster. In this

case, the few perturbed genes would show D-type connections to the majority of the genes that

remained constant, while the unperturbed genes would connect only to the few perturbed

genes.

Functional enrichment

In order to establish whether the observed network relates to possible functional aspects of the

invetigated tissues, we performed GO biological process enrichment analysis using GOrilla

[46, 47] (http://cbl-gorilla.cs.technion.ac.il/) on 4 networks: separately for the C, S and D-type

networks generated with a draw size of 105 pairs, as well as the combined network obtained by

merging the individual C, S, and D-networks.

For each of the 4 networks, we found significant enrichment for a variety of biological pro-

cesses (S2, S3 and S4 Figs). In all cases processes related to nervous functions are enriched,

ranging from specific concepts (e.g. regulation of neuron projection development) to general

ones (cognition, behavior). Of these, GO categories for ‘anterograde trans-synaptic signaling’

is particularly prominent, showing highly significant enrichment in each of the 4 networks. It

is reassuring for our method to find these GO categories as being over-represented, since we

analyzed data from brain tissues.

Among the remaining enriched terms, we mainly find processes related to cellular differen-

tiation and localization, metabolism, transport and signaling. While these processes are not

important for brain functions only, their enrichment in the network seems far from surprising

in a co-expression network of brain tissues, given the exceptional energy requirements of the

brain.

PBX3: A variable-connection hub

While most prominent hubs in our network tend to connect to their neighbors through only

one type of edge, a few genes exhibit a substantial number of connections of different types

(see Fig 4). The most prominent of these is the transcription factor PBX3. In developing

macaque brains, PBX3 expression is upregulated in the basal ganglia and the cerebral cortex,

suggesting a possible role in brain development [48]. However, PBX3 is mostly known as an

oncogene involved in a variety of cancer types. One of these is pilocytic astrocytoma [49] (PA)

—a form of glioma most commonly occurring in the cerebellum or areas near the brainstem

(which include the basal ganglia), but not in the cerebral cortex [50], and more frequent

among children and young adults [49]. The fact that our network analysis points out PBX3 as

a hub with connections of different types, might hint at a molecular explanation for the differ-

ential occurrence of PA in these two tissues we analyzed.

Looking at PBX3’s neighborhood, we find several other genes with similar characteristics.

First, all connections this network represents are strongly positive correlations in basal ganglia.

Accordingly, S-type connections correspond to weak absolute correlations in the cortex, while

D-type connections correspond to strong negative correlations in the cortex. Out of 48 neigh-

bors, 8 are suspected of influencing the development of glioma. Of these 8 genes, 6 (SULT4A1

[51], NDRG4 [52, 53], GAP43 [54, 55], BEX1 [56], HINT1 [57], LZTS1 [58]) are believed to

act as tumor suppressants, while the remaining two, PKM [59] and VIPR1 [60–62], have been

found to be overexpressed in glioma. Several of these genes also appear to play an important

role in mammalian brain development and cell differentiation, where the genes VIPR1 [63],
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NDRG4 [64, 65], BEX1 [66] and GAP43 [67] have been found to exhibit increased expression

in the brain of young rats or monkeys.

KEGG pathway enrichment

Using the 2016 KEGG Pathway database through Enrichr [39, 40] (http://amp.pharm.mssm.

edu/Enrichr/), we searched our network for overrepresented terms. Detailed results are pro-

vided in S3 Table. The whole network shows significant enrichment for categories including

dopaminergic synapse (S, D), oxytocin signaling (S, D), adrenergic signaling (D), glutamater-

gic synapse (D), endocannabinoid signaling (D) and GABAergic synapse (D). The C-network

shows fewer significantly enriched pathways—the most prominent being the synaptic vesicle

cycle pathway.

We note that the most enriched pathways revolve around chemical compounds well known

for their role on the nervous system. This is not unexpected, as our data come from two types

of brain tissue. Interestingly, these pathways are not particularly well-represented in the C-net-

work, but are ubiquitous in both the S- and D-networks. This might indicate that while these

compounds play important roles across the nervous system, there might be significant regula-

tory differences between different types of brain tissue.

Relation to protein interaction networks

In an effort to find possible causal links behind observed CSD-links, we searched the human

protein interaction network (PIN) for connections between nodes in our network. Since CSD-

links are based on co-expression analyses, it is not a given that these (often) indirect relation-

ships should be reflected in direct interactions in the PIN. However, as protein-protein inter-

actions are functionally dependent on both proteins being expressed simultaneously, we

would expect these to be a potential source of C-type interactions. The PIN used for the search

was compiled from three sources: the Center for Cancer System Biology’s human interactome

project (HI-II-14) [68], CCSB’s literature data set (Lit-BM-13) [68], and BioGRID [69]. As the

BioGRID data set is not particularly stringent when including an interaction, we decided to

only include BioGRID interactions backed by at least two sources. The resulting combined

PIN contains 49972 interactions for 10349 genes. 9417 of these genes are also present in the

original GTEx expression data—approximately 51% of the total number of genes in the GTEx

data set. Of the 1798 genes present in the combined CSD network, 1063 (59%) are connected

to at least one other gene in the combined PIN. This shows a moderate over-representation

(factor 1.16, p< 10−6) of PIN genes in the CSD-network.

Interestingly, 7 gene pairs are directly linked by edges in both the PIN and the CSD network

(see Table 3). While this is a small section of either network, it is still a substantially larger over-

lap than would be expected by random chance: comparing 105 randomized versions of the

Table 3. Gene pairs directly connected in both the PPI and CSD networks.

Gene A Gene B Type of CSD interaction

C1QA C1QB C

CARHSP1 PNMA1 D

CD74 HLA-DRA C

HCK WAS C

HERC3 UBQLN2 C

RPS11 RPS3 C

S100A8 S100A9 C

https://doi.org/10.1371/journal.pcbi.1005739.t003
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CSD network (each made by random selection of 1798 genes and 2351 gene pairs from the

18453 genes in the GTEx data) with the PIN as the null case, we find an expectancy of edge

overlap on average to be� 0.4, with a single case of 6 overlapping edges as the maximum

observed overlap. Accordingly, the observed overlap between the actual CSD network and the

PIN is approximately 18.7 times greater than the null hypothesis (p< 10−5). Further, we note

that of these overlapping pairs, 6 are C-type edges in the CSD network (the last pair being D-

type).

In order to investigate more indirect links, we also computed shortest paths across the PIN

for each pair of nodes directly connected in the CSD-network, in order to establish whether

other CSD-type connections could relate to protein interactions. We found that the genes in

the differential co-expression network are more closely connected to each other than average

in the PIN, with an average path distance of 3.95 (against 4.04 for the whole network). While

the magnitude of this effect is small, it is highly significant with p� 10−3 and z = 6.29 (based

on the standard deviation of the mean distance of similarly sized random samples of the whole

PIN). This suggests that the protein-protein interactions may explain certain connections in

the CSD, although they are most likely not the main factor.

In order to find possibly relevant mediating genes, we sorted the nodes in our PIN accord-

ing to the number of shortest paths (between genes directly connected in the CSD network)

they appeared in, with the added caveat that those paths consisted of at most 3 steps (meaning

there could be at most 2 intermediate genes in the PIN). The purpose of the 3-step limit being

to eliminate highly indirect connections in the PIN, which are less likely to reflect an actual

functional relationship.

The most prominent intermediate genes in the PIN network include ESR1, AKT1, MDM2,

TRAF1, UBE2I, SIRT1 and PPP1CA. Most of these genes are known to be involved in pro-

cesses which should be relevant to the differentiation and function of neural tissue, such as reg-

ulation of gene expression (ESR1, AKT1, UBE2I, SIRT1, PPP1CA) and metabolic/catabolic

processes (AKT1, MDM2, UBE2I, SIRT1, SKP2, PPP1CA). In more specific detail, ESR1 and

TRAF1 are both involved in regulation of NF-kB signaling—ESR1 as an inhibitor and TRAF1

as an activator. NF-kB is known to be involved in synaptic plasticity, learning, and memory,

and may be activated by synaptic transmission. Promoter hypermethylation at ESR1 [70],

expression of TRAF1 [71] and mutations in NF-kB [72] are all known to be associated with the

emergence of glioma. AKT1 is known to interact with forkhead box transcription factors [73]

(which include FOXO1, the most highly connected node in the differential co-expression net-

work) in order to regulate cell growth and apoptosis. As FOXO1 connects to several of the can-

cer-associated genes adjacent to PBX3 (though not to PBX3 directly), the relative prominence

of both FOXO1 and AKT1 might reflect a potential tumor-inhibiting effect in combination

with PBX3 and its neighbors.

Disease association

As we were able to identify a number of key neurological process amongst the genes present in

our networks, we sought to investigate if there could be any links between differential co-

expression and inheritable disease. Using the extended OMIM disease association data set, we

found no significant enrichment for disease-associated genes in general in the combined net-

work (p = 0.417) or in the C-only or D-only networks (p = 0.175 and p = 0.649, respectively).

However, we did find an over-representation (by a factor of 1.35) of disease-associated genes

amongst genes in the S-network (non-corrected p = 0.00458). Using Enrichr [39, 40] (http://

amp.pharm.mssm.edu/Enrichr/) to search the C, S, D- and combined networks for specific

OMIM disease associations, we find substantial enrichment for one of two disease families,
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depending on the kind of network. The S-network shows an over-representation of genes asso-

ciated to epilepsy, with 8 genes in the network, while only 1.7 genes would be expected by

chance (4.65-fold enrichment, p< 0.4 � 10−3). The D-network shows enrichment for ataxia,

with 6 genes (expected number 1.1, 5.4-fold enrichment, p< 8 � 10−3), and more specifically,

spinocerebellar ataxia, with 5 genes (expected number, 0.62, 8-fold enrichment, p< 2 � 10−3).

While both terms are rather broad and may refer to any of a variety of diseases with different

underlying mechanisms, they both involve defects in motor functions, which are controlled by

basal ganglia and cerebellum.

Noting that three of the four dominant hubs exhibit protein interactions with a number of

glioma-related genes, as well as the presence of several glioma-related genes in PBX3’s neigh-

borhood, we mapped out their immediate network (see Fig 6). Furthermore, we performed an

exhaustive literature search to identify whether any of FOXO1 or CARHSP1’s immediate

neighbors also exhibited particular expression patterns related to glioma. In fact, in the com-

bined neighborhoods of FOXO1, CARHSP1 and PBX3, we find 104 such genes (out of a total

of 340 in said neighborhoods) (see Table 4 for a detailed listing). For most of these genes (59),

increased expression is associated with beneficial outcomes, while 45 genes have their activity

linked to increased proliferation, invasiveness and general mortality. The hubs themselves are

all associated with aggressive forms of glioma. As previously mentioned, PBX3 is known to be

upregulated in PA [49], while increased CARHSP1 expression is linked to necrosis and

Fig 6. Network hubs and glioma associations. Neighborhood of the glioma-associated hubs FOXO1,

CARHSP1 and PBX3. Every represented gene connects to at least one of the hubs. Non-hub genes are

grouped according to the hubs they connect to (and by interaction type), as well as regulation in glioma.

Transcription factors are denoted by triangular labels, other genes with circles. Purple nodes represent genes

whose activity is positively linked to harmful outcomes in glioma, while the activity of yellow node is linked to

more benign outcomes. White nodes represent genes without established links between activity and glioma.

Red links are D-type connections, while green ones are S-type. There are no D-type connections linking two

non-hub genes to each other.

https://doi.org/10.1371/journal.pcbi.1005739.g006
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microvascular proliferation (MVP) [74]. On the other hand, FOXO1 is known to prevent cell

proliferation in glioblastoma [75].

We also note that the gene-glioma associations presented come from a variety of previously

performed studies, and that there is no guarantee that the literature contains an exhaustive list

of genes involved in glioma. It is therefore quite possible that there are genes important to gli-

oma development whose role has not yet been discovered, and consequently, would not have

been identified here. The substantial presence of known glioma-associated genes in the neigh-

borhood of FOXO1, PBX3 and CARHSP1 may indicate the additional presence of genes with

currently unidentified roles in glioma. We therefore present the exhaustive neighborhoods of

FOXO1, PBX3 and CARHSP in S4 Table Text as candidate genes for further study.

Discussion

In this paper, we describe a new method for identifying differential co-expression relationships

between genes when comparing two tissues. In contrast to previous methods, our method

allows the detection of genes that play critical roles in context-specific function, based on simi-

larities and differences in co-expression patterns. We demonstrate the power of our new

method by analyzing the network of cortex and basal ganglia tissues, which is revealed to be

associated with a variety of important aspects of brain function. In particular, we find substan-

tial enrichment of (1) GO terms such as anterograde synaptic signaling, cognition, and neural

development, (2) hereditary links to the neurological diseases ataxia and epilepsy, and (3)

genes associated with pathways involving compounds important to brain function, such as

adrenaline, dopamine and oxytocin.

Furthermore, we find indications for the hub PBX3 to be involved in the occurrence of

PA—which occasionally occurs in basal ganglia but not in the cortex. In addition, we suggest

Table 4. Glioma-associated nodes in the neighborhood of FOXO1, CARHSP and PBX3. Associations between gene activity and glioma (as found in liter-

ature) are divided into two general groups: Positive associations denote any gene where increased expression is generally linked to harmful outcomes for the

patient. This includes genes which are overexpressed in glioma as opposed to healthy tissue, where increased expression in glioma is correlated with higher

mortality, or where the gene is more highly expressed in higher grade gliomas. Negative associations denote genes where higher expression is generally

linked to beneficial outcomes for the patient.

Neighboring hub

(s)

Positive Negative

FOXO1 MBTPS1 [76], RBP4 [77], HN1 [78], SSTR2 [79], LNX1 [80],

ENO2 [81], CDK5 [82], ABCC1 [83], EFNB3 [84], SMYD3 [85],

HABP4 [86], PFKM [87], ITPR1 [88], NNAT [89], CYFIP2 [90],

ARG2 [91], ARF3 [92], HSPA12A [93], MYO10 [94],

DCTN2 [95], ACTR3B [96], MTCH1 [97], SLC1A6 [98], NBEA

[99], MAP2K4 [100], TNPO2 [101], MOAP1 [102], ARPP21 [103],

CADM3 [104], KCNA4 [105], SVOP [106], REPS2 [107], SLIT2

[108], PANX1 [109], CCT7 [110], KCNMA1 [111], CACNA2D3

[112], KCNV1 [113], PIK3CB [114], NPTX1 [98], CDH18 [115],

GLS2 [116], NRIP3 [98], TACC2 [117], CALM3 [118], NELL2

[119], CBX7 [120], MTA3 [121], AJAP1 [122, 123], PARK2 [124],

PI4KA [125]

CARHSP1 MADD [126], STXBP1 [127], TMX4 [128], GLS [116], KCNK3

[129], MAP2 [130], YWHAB [131], PANK2 [132], UCK2 [133],

ATXN10 [134], ATP1A1 [135], EPB41L4B [136], DRP2 [137],

CALM1 [138], CHAF1B [139]

ST6GALNAC5 [140], OLFM3 [141], PCDH8 [142], PRPF19 [143],

CHGB [144], DUSP4 [145], SLC32A1 [146], PPP1R14C [147],

MACROD2 [148], ATP6V1B2 [149], YWHAH [97], CERS6 [150],

SCG2 [151], GRM7 [152]

PBX3 BEX1 [56], HINT1 [57], LZTS1 [58]

FOXO1

+ CARHSP1

PAK1 [153], PPME1 [154], PGK1 [155], UCHL1 [156], SYNGR1

[157], MAP2K5 [158], TPI1 [159]

RNF41 [160], RTN1 [123, 161], SGSM1 [162], SGSM1 [162],

BTBD10 [163], DLG3 [164]

FOXO1 + PBX3 VIPR1 [60–62], CCKBR [165], PKM [59] SNRPN [166]

CARHSP1 + PBX3 SULT4A1 [51]

FOXO1

+ CARHSP1

+ PBX3

FBXO16 [167] NDRG4 [52, 53], GAP43 [54, 55]

https://doi.org/10.1371/journal.pcbi.1005739.t004
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that the general preponderance of GO terms with clear relevance to brain development and

function indicates that the resulting network represents genuine and meaningful relationships

between the genes present in the network.

While the gene expression data used in this study came from the same source, this is not a

requirement for the method to be viable. Since the networks are based on the non-parametric

Spearman rank-correlation (which relies only on the relative rank of each data point within its

set) calculated within each of the compared data sets, it is not necessary for the expression val-

ues in the different sets to be normalized against each other. In fact, one could compare a tissue

with log-scale expression values (e.g. coming from microarrays) against one where the expres-

sion values follow a linear scale (e.g. RNA-Seq data), without any impact on the resulting

network.

It should be noted, however, that the networks obtained by this method do not correspond

to protein-protein interaction networks or even gene regulatory networks, and that the pres-

ence of a link between two genes in the differential co-expression network does not necessarily

reflect any direct biological interaction between the two. In fact, a link is only evidence of a

coinciding pattern: two co-expressed genes may both be regulated by a common transcription

factor, or may be similarly affected by outside factors (for instance, nutrient availability).

We note that triple-type nodes (involved in all three types of interactions) are dominated by

C-type interactions and a very small share of D-type interactions. We also note that the leading

D-type hubs have far more connections than those of the other types. This may suggest that

the D-type regulatory change between tissues demonstrates a much more concentrated effect:

even if the underlying changes are focused near only a few key genes, a disproportionately

large amount of interacting genes could be affected.

The key topological difference between the C-type network on one hand (highly assortative

and with a substantial densely connected core) and the S- and D-type networks on the other

(with a few dominant hubs, especially in the case of D) also indicate a possible difference

regarding the regulatory mechanisms involved. Hence, we speculate that a tightly co-regulated

cluster of genes might involve more redundant (and thereby robust) regulatory mechanisms

and therefore be less likely to change. In contrast, genes with more centralized neighborhoods

may be more likely to see large changes in co-expression patterns due to perturbations at the

individual gene levels. An alternative hypothesis is that the strong prominence of hubs in the

D-network comes as a result of regulatory changes mostly involving a few genes within large

co-expressed clusters, whereby the few perturbed genes would form D-type links with the

remainder of said clusters.

We take particular note of a set of gene clusters, centered around the transcription factors

FOXO1, CARHSP1 and PBX3. These consist of multiple genes believed to be of major impor-

tance to both neural development and the emergence of glioma. While it is known that defects

in genes controlling growth and differentiation is a common factor in cancers, to the best of

the authors’ knowledge, no association between these specific genes has previously been deter-

mined. However, it is difficult to present conclusions about the underlying cause of the

observed co-expression patterns as certain. While the FOXO1/PBX3/CARHSP1-centered gene

clusters suggest a functional link between several glioma-associated genes, it does not, for

instance, automatically follow that misregulation of (or by) PBX3 is the key driver in glioma

development.

While it is hard to determine a definite cause behind these connections at the gene level, a

comparative study between the CSD network and the PIN offers one possible explanation. We

find that in the PIN, both PBX3 and CARHSP1 are indirectly connected to each other (as well

as several of their other neighbors in the CSD-network) through the intermediary of TRAF1,

whose overexpression is also associated with the emergence of glioma [71]. We also find
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similar intermediary protein interactions through ESR1, AKT1 and SIRT1, whose activity are

also associated with glioma [70, 168, 169]. Additionally, AKT1 is known to interact with

FOXO1 (the most prominent hub in the CSD network) to inhibit apoptosis [73]. FOXO1 and

AKT1, along with MDM2 (another common intermediary gene in the PIN) have previously

been identified in differential co-expression studies of glioblastoma [170].

The prominence of glioma-related cells in these clusters is somewhat unexpected, as our

comparison is not between cancerous and non-cancerous data sets, but rather of two (nomi-

nally healthy) different parts of the brain. However, we note a substantial overlap between gli-

oma-associated genes and genes particularly expressed in developing (embryonic and juvenile)

brains. Additionally, GO enrichment tests using the Gene Ontology Consortium database

(www.geneontology.org) [171] return an 1.8-fold enrichment (Bonferroni-corrected p = 2.1 �

10−2) for the term “nervous system development” amongst the 340 genes in the neighborhood

of FOXO1/CARHSP1/PBX3, and a 2.7-fold enrichment (corrected p = 1.2 � 10−3) for the same

term among the 104 genes for which we found associations with glioma. The latter 104-gene

set also shows significant enrichment for more specific subterms of “nervous system develop-

ment”, including “neuron differentiation” (3.5-fold, p = 4.9 � 10−3), “neuron projection morpho-

genesis” (5.4-fold, p = 2.3 � 10−2) and “axonogenesis” (6.26-fold, p = 1.45 � 10−2). The observed

connection between these genes may therefore reflect a role in the differentiation of stem cells

into specific types of brain tissue. Hence, it is plausible that perturbations in these differentiating

mechanisms result in differentiation of brain cells into cancerous tissue, which would explain

why so many of these genes emerge in studies involving gene expression in glioma.

The scope of the method for differential co-expression network analysis presented in this

paper is not restricted to only comparing two different tissues within a given organism. In fact,

it may be used to compare any two sets of gene expression data for which a comparison might

be reasonable: the only criterion is the existence of a viable one-to-one match between the

genes in each data set. Possible applications of our method include comparing gene expres-

sions between healthy and sick individuals, comparing samples from experiments with before/

after treatments, comparing organisms subjected to different external environments and com-

paring closely related species with known orthologs.
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