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We consider the effect of electron-electron interactions on a voltage biased quantum point contact
in the tunneling regime used as a detector of a nearby qubit. We model the leads of the quan-
tum point contact as Luttinger liquids, incorporate the effects of finite temperature and analyze
the detection-induced decoherence rate and the detector efficiency, Q. We find that interactions
generically reduce the induced decoherence along with the detector’s efficiency, and strongly affect
the relative strength of the decoherence induced by tunneling and that induced by interactions with
the local density. With increasing interaction strength, the regime of quantum-limited detection
(Q — 1) is shifted to increasingly lower temperatures or higher bias voltages respectively. For small
to moderate interaction strengths, @) is a monotonously decreasing function of temperature as in the
non-interacting case. Surprisingly, for sufficiently strong interactions we identify an intermediate
temperature regime where the efficiency of the detector increases with rising temperature.

I. INTRODUCTION

Detecting the state of a quantum system is an invasive
process, which necessarily modifies the system itself. In
a continuous measurement description the information
on the system’s state is gradually encoded in a classi-
cal (macroscopic) signal of a detector, which at the same
time induces a modification of the state of the system™*2.
In the simplest case of measuring an observable A of a
two-level system, where the detector distinguishes the
two eigenstates of A, the process is characterized by a
measurement time, 77, after which the detector’s sig-
nals for the different eigenstates can be resolved from
the detector’s noise. From the system’s point of view the
detector back-action corresponds to a stochastic compo-
nent of the state evolution, which asymptotically drives
the system towards one of the measured eigenstates. In
average, this back-action is quantified by the detector-
induced decoherence time, Tqech, after which the system is
in an incoherent mixture of eigenstates of A. The funda-
mental disturbance associated to measurement in quan-
tum mechanics is quantified by the fact that 7gecn < 7as-
When the decoherence rate coincides with the rate of ac-
quisition of information, back-action is minimal, which
is referred to as quantum-limited detection. This con-
tinuous description of a quantum measurement is in fact
appropriate for current readout methods of a variety of
qubits and quantum devices3 9,

The significance of quantum-limited detection is appar-
ent in single shot measurements, as opposed to averaged
measurement results. In a single shot measurement a
quantum-limited detector induces a stochastic evolution
of the system without any decoherence, and therefore a
pure state remains as such during the measurement27l
decoherence appears only as a result of averaging over the
detectors’s outcome. This observation is at the basis of a
number of techniques for quantum devices control21Y
precision measurement 4 and quantum information
processingm®7,  The experimental implementation of

these techniques besides quantum optics? has been initi-
ated in superconducting qubits where feedback loops'®
and single trajectories mapping'® have been reported.
Quantum-limited detection is therefore of interest in solid
state systems at large, where spin, charge, and topo-
logically protected degrees of freedom are exploited for
new quantum devices. A number of different detection
schemes exist in these contexts. For example charge sen-
sors based on transport through semiconductor devices,
like quantum point contacts (QPCs), are used and pro-
posed as sensors for e.g. charge®20H26l gpin2728  and
topologically protected qubits??.

Motivated by the evolution of measurement process in
solid state systems, we analyze here the effect of interac-
tions on quantum measurement, focusing on the detec-
tor’s efficiency. Electron-electron interactions are gener-
ally important in solid state systems. Specifically, we
consider a charge qubit sensed by a nearby quantum
point contact in the tunneling regime, which directly
models charge sensing in experiments, and can emerge
as an effective description of certain detection schemes of
superconducting qubits®’. We consider two effects of the
electrostatic coupling of the QPC to the charge state of
the qubit: (i) a state-dependent tunneling term and (ii)
a state-dependent coupling to the local density>l. In the
absence of interactions, the QPC is a quantum-limited
detector for sufficiently low temperature. Both thermal
fluctuations and local density couplings drive the detec-
tor away from its quantum limit working point @333, We
find that repulsive electron-electron interactions generi-
cally reduce both the rates of induced decoherence and
of acquisition of information with respect to their non-
interacting counterpart, although in different amounts.
This difference is due purely to the local density inter-
action term, which contributes to decoherence but does
not participate in the current and hence provides no in-
formation on the system’s state. For increasing strong
interactions, the renormalization of the rates leads to the
need of lower temperatures in order to reach the quan-
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FIG. 1. (Color online) Sketch of the system under consider-

ation. A double quantum dot is capacitively coupled (wavy
lines) to a tunnel junction between two Luttinger liquids. Two
charge configurations |1) (blue solid), |2) (red shady), for an
electron shared between the two dots induce different tunnel
barriers, hence different currents, through the junction. The
electron in the double dot can generically be in a coherent
superposition of these two states, as controlled by external
gate voltages, as sketched in the inset.

tum limit of detection. In this case interactions provide
us with a slower detector. Remarkably, for sufficiently
strong interactions we find an intermediate temperature
regime where, as opposed to the noninteracting case, the
measurement efficiency improves with increasing temper-
ature.

The manuscript is organized as follows. In Sec. [[I] we
define the model and present the Hamiltonian of the sys-
tem in the Luttinger formalism. Sections [[I]] and [[V] are
devoted to calculating the rates of decoherence and acqui-
sition of information respectively. The decoherence rate
is obtained by considering the reduced density matrix of
the charge qubit in the presence of the QPC. We show
that the two coupling mechanisms to the environment are
separable and calculate the tunneling contribution via a
cumulant expansion. The rate of acquisition of informa-
tion is obtained by considering the full counting statistics
of the problem. The effects of electronic interactions on
the detection efficiency of the QPC are analyzed in Sec.
[Vl The conclusions are presented in Sec. [VIl Lengthy
calculations have been relegated to the Appendix.

II. MODEL

We consider a double quantum dot (DQD) which real-
izes a charge qubit, in proximity of a QPC. The QPC is
formed by a tunneling barrier between two semi-infinite
1D quantum wires consisting of spinless interacting elec-
trons, as depicted in Fig[l] We treat the wires as Lut-
tinger liquids.

The charge configuration of the DQD affects the tun-
neling of electrons at the QPC between right (R) and
left (L) Luttinger liquids. Hence the current through the

QPC acts as a charge detector of the double quantum
dot. The total Hamiltonian of our problem consists of
three terms

Hs = Hpr + Hop + Hing, (1)

where Hpj represents the Hamiltonian of both left and
right Luttinger liquids, Hgp that of the DQD and Hin
the interaction between these. If we consider the QPC
to be located at x = 0,
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where 0pry and ¢ (g) are the usual charge and phase
fields in the bosonic representation of the Luttinger liquid
on the left (right) side of the QPC, g is the dimensionless
interaction parameter (which for repulsive interactions
fulfills 0 < g < 1, being g = 1 the noninteracting limit)
and v, is the group velocity of collective plasmonic exci-
tations. We have chosen the coordinate systems on both
left and right such that z increases from —oo to zero,
where the QPC is located. We have also set A = 1, which
holds hereafter along with kg = 1.

The Hamiltonian of the DQD is

Hop = Z Enchen + 7 (cJ{CQ + cgcl> , (3)

n=1,2

where ¢, (c,) are fermionic operators of creation-
(destruction) of an electron in the n-th quantum dot
(n = 1,2), e, are the electronic level energies (with re-
spect to the Fermi energy of an external electronic reser-
voir, which is chosen to be equal to zero) and -y is the
tunneling amplitude between the dot’s levels. In the fol-
lowing we assume that the DQD is, besides the nearby
QPC, isolated from the electronic environment, with a
total extra electron shared between the two dots. In this
case only the energy difference €5 — &1 = € is physical.
We define further the fields 4+ = 1/2[0 £ 0g], and
v+ = 1/2[pr £+ vg] and model the interaction term as

(cf. Appendix
Hin = Y [agAnOaby + Ay cos (20— + eVt)]|o—och cn »
n=1,2
(4)

where \,, represents the electrostatic coupling between
the quantum dot and the Luttinger liquid leads at z = 0,
and A, characterizes the tunneling at the QPC. Both
quantities are assumed to be real and positive, and de-
pend on the state of the DQD, n. The parameter ag is the
short-distance cutoff that goes to zero in the continuum
limit. This provides a high-energy cutoff to the model,
Ay = vg/ap. Therefore in our further analysis all energies
fulﬁll E <« Ay and all times ¢ > 1/A,. V is an externally
applied voltage bias between left and right Luttinger lig-
uids. In the limit of weak tunneling which concerns us



here, this potential difference can be described by a local
voltage drop at the QPC sité?#35 In what follows we
denote the fields evaluated at x = 0 by simply omitting
the spatial argument.

Note that in the choice of the interaction Hamiltonian
we have implicitly identified the states [1) = ¢}|0) and

|2) = c£|0> as the charge eigenstates of the measure-
ment device. The detector signal for these two states
and the induced decoherence on their coherent superpo-
sition characterize the tunnel-coupled Luttinger liquids
as a detector.

III. DECOHERENCE

In this section we calculate the decoherence rate caused
by the tunnel-coupled Luttinger liquids on the DQD. To
do so we assume that at ¢ = 0 the DQD is initialized in a
coherent state |¢g) = «|1) + 5]|2) and is decoupled from
the detector (i.e. Hin = 0). The state of the detector
is determined by the Hamiltonian Hy; in Eq. and
by the temperature T and applied voltage bias V. For
t > 0, the coupling Hiy is suddenly switched on and
the evolution is determined by the DQD interaction with
the QPC. Importantly, we assume a vanishing inter-dot
tunneling v = 0 in Eq. since we are interested in
the pure decoherence induced by the detector (without
relaxation processes). Let us note that physically v #
0 is needed to create the initial coherent superposition
|do), and « can be consistently assumed arbitrarily small
so that the effect of the inter-dot tunneling is negligible
throughout the relevant time scales of system-detector
interactions (¢t < 1/7). Alternatively, assuming total
control of the experimental setup??23, ~ can be set to
zero after preparing the coherent state.

To quantify the measurement-induced decoherence we
analyze the DQD reduced density matrix p, where the
degrees of freedom of the environment (in this case, the
LL) have been traced out. The initial density matrix
p(0) = |do){¢o| at ¢ = 0 evolves at time t t0 pumn(t) =
e~em=en)ty (O) (U (t)U,n(t)), where m,n = 1,2,
Hopln) = ealn), Un (1) = Teexp{~i fy driiy) (1)},
and (...) denotes the quantum-statistical average over
Hpr at temperature T. T; (T;) denote time- (anti-time-
) ordering operators, and H (s) = (n|Hins(s)|n), where
Hint corresponds to Hi,s written in the interaction repre-
sentation with respect to Hrr. By using the equation of
motion for the bosonic fields, it can be shown that H},

in Eq. can be written in terms of phase fields only
(see Appendix ,

n(t) = —gi’;w) + A cos[2p_(t) +eVE]. ()

To calculate the time evolution of the reduced density
matrix, we first note that the fields ¢, and ¢_ com-
mute at equal times, [p4(t), o (t)] = 0, which allows in

the following to evaluate their vacuum expectation values
separately. We obtain

Prn(t) = Pl () = e 7 Em = p o (0) Zinn (8) Zimn (E)
(6)

with

Z.Q(An*knl)[v-;_(ff)*kf’-{_(ﬂ)]
Zoum = <e vg > , (7)
Zyn = (Un(£,0) " U (£,0)) (8)

with Upn(1,0) = Toe—ihm Ji dreos2o-(M+eV7] The two
factors Zmn and Z,,, correspond to the local density in-
teraction and tunneling induced backaction respectively.
The only non trivial evolution of the reduced density ma-
trix is in its off-diagonal terms with m # n, which take,
up to a time-independent prefactor, the form

Z1o X e [TO+iA@)] t (9)

212 - e—[f‘(t)+iA(t)]t. (10)

We identify the respective contributions to the induced
energy shift, A(t) and A(t), and decoherence, I'(t) and
['(t). These are generically time dependent quantities.
In the following we will focus separately on these con-
tributions to the induced total decoherence T'io(t) =
['(t)+TI(t), which characterize the properties of the QPC
as a detector.

A. Local density contribution

The term Zj3=Z5; corresponds to a local change in
the electrostatic potential caused by the DQD (see Ap-
pendix , a fact known to lead to an “orthogonality
catastrophe” in fermionic systems. The term orthogonal-
ity catastrophe refers to the vanishing, in the thermody-
namic limit, of the overlap between the system’s ground
states before and after the change in the potential%. The
average in Z15 involves only the ¢ -dependent part of the
free LL Hamiltonian. Since the latter is quadratic (c.f.
Eqgs. and ), we can directly write

(o=rp ]2
Zio(t) = e [ R {er-er @) gy

The two-point correlation function of ¢y is computed
in Appendix [B] In the long-time limit ¢ > 1/T, T'(t) is
independent of time and we find the local density induced
decoherence rate is given by

r= ng {(AQA_QM]Q . (12)

This result is consistent with the known noninteracting
(g = 1) orthogonality exponent in Luttinger systems>=7.,
Hence we see that for repulsive interactions, the factor
g < 1 decreases this decoherence rate with respect to the



noninteracting case. In a fermionic picture, the orthog-
onality catastrophe can be seen as a consequence of a
“shake up” of the Fermi sea due to a change in the local
potential. Intuitively, for strong repulsive interactions
the electrons will redistribute after the potential change
in order to minimize the interaction, consequently mini-
mizing the effect of the shake up. As expected, larger
temperatures lead to a higher decoherence rate. The
limit T — 0 leads to the known powerlaw decay of the co-
herence factor Z,,,, and hence to logarithmic corrections
to the total decoherence rate ot (t). It should be noted
that this result corresponds to an equilibrium (eV = 0)
contribution to the orthogonality catastrophe. This is
due to the separable character of the reduced density
matrix in the weak tunneling limit [c.f. Eq. @] In this
limit nonequilibirum effects are entirely contained in the
tunneling term, as calculated in the next subsection.

B. Tunneling term

The effect of the change in the transmission of the QPC
due to the charge state of the DQD is encoded in Z;3 =
Z5,. We evaluate this quantity via a cumulant expansion.
For simplicity of notation we introduce the function

Ag(ry (1) = cos |2¢0_(T) +eVT + ? ,  (13)

where £ is a counting field whose role will be elucidated
in the next section; for the remainder of this section we
set £ = 0.

We evaluate the time ordered products to obtain

Z1o(t) = 14+ Ao / dr / dr'(Ag(T) Ao (7))
3 / dr / dr' (Ao(7) Ao (7)) (14)

7)\2\/(17'/ dr'(Ao(1) Ao (7)) .

As shown in Appendix we can express Zjs(t) in
terms of the well known time-ordered correlator®® f7 (7 —
) = (Tie*#-(Me~2ie-(7)) " In the long time limit
t > 1/T,1/eV, we obtain the contribution to the de-
coherence

I(t) ~ % (/\2 - /\1>2 Re {Jo}, (15)

where Jo = [;% ds fT(s) cos (eV s) [see Eq (CH)]. Jc is
evaluated in Appendix |E| [Eq. . and yields the ex-
plicit expression for the (time independent) decoherence
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FIG. 2. (Color Online) Detection induced decoherence: total
decoherence I'iot = r + T (solid color) and tunneling induced
decoherence I' (shaded color) as a function of (a) voltage bias
and (b) temperature —c.f. Eqs. (I5),(12). All plots are for
increasing interaction strength g = 1; 0.9; 0.6; 0.5; 0.3 from
light to dark red and from continuous to coarsely dashed.
The local density induced decoherence rate I' in our model
is independent of bias and proportional to temperature, c.f.
Eq. (12). Hence it produces just a constant shift of the total
rate Fmt in (a) while it modifies the slope in (b). We have
set - = 0.01 in panel (a) and < = 0.01 in panel (b). In all

plOtS )\2 — A1 = )\2 >\1 = A)\
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- N2
_ (/\2 —)\1> 2T 2/g—-1
I = ( i ) (16)
4A, Ay
T (L +igs) P
r(3)

g
where I'(z) is the gamma function (note the cursive font,
not to be confused with the local density induced deco-
herence rate I'). The behavior of I" is plotted in Fig.
as a function of bias voltage and temperature for differ-
ent values of the interaction strength g. As expected,

I" increases both as a function of bias and tempera-
ture, reflecting the increase in shot and thermal noise

X

cosh(eV/2T),
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FIG. 3. (Color Online) Log-plot of the ratio between local
density- and tunneling-induced decoherence as a function of
(a) bias voltage and (b) temperature, cf. Eqs. (12), (I5). For
increasing interaction strength g = 1; 0.9; 0.6; 0.5; 0.3 from
light to dark red and from continuous to coarsely dashed.

A, =0.0lin (a) and §7 = 0.01in (b), Aa—A1 = do—A1 = A\

respectively. Upon increasing the interaction strength
(corresponding to decreasing g) however the decoher-
ence generally decreases, i.e. electron-electron interac-
tions reduce the measurement induced backaction. Intu-
itively, this can be seen as a consequence of an increased
“anti-bunching” of the electrons with increasing repul-
sive interactions, which leads to a suppression of tun-
neling events between the two sides of the QPC. Since
the tunneling processes control the system detector cou-
pling, their suppression results in a reduced back-action
onto the DQD. For ¢ = 1 Eq. recovers the known
result for the decoherence induced by noninteracting elec-
trons in the tunneling regime. In particular, for ' < eV,

I' ~ 4:2}/2 (ty — t1)? B33 where t,, are the tunneling
F

strengths introduced in Eq. .

C. Total decoherence

From the results presented in the two previous subsec-
tions, we see that the total decoherence I'yy; is generically

suppressed by increasing repulsive interactions. This is
plotted in Fig. Albeit both I" and T" are suppressed,
this suppression is much stronger in the tunneling in-
duced decoherence T', leading to a variation of the ratio
T'/T by several orders of magnitude depending on interac-
tions as shown in Fig. @ For instance, for eV < T' < Ay,
we can analytically approximate

2 2-2
— g
Lo (M) 2 <7rT> Vi, an
r A=A/ VT A
showing a strong dependence of the ratio on the interac-
tions (I' < Ay). The strength of this effect is suppressed
at larger voltage bias or temperature.

The reason behind this behavior is the decreasing
strength of the tunneling term in Eq. as compared
to the local density interaction one in the effective low
energy behavior. The decoherence is generically dictated
by the low frequency correlations of the bath coupled to
the system®?4 (in our case the Luttinger liquid detec-
tor), hence by the dynamics of the low frequency modes
of the bath. When tracing out the fast (high energy)
modes of the Luttinger liquid detector, the effective low
energy tunneling term is suppressed as compared to the
local density term. This suppression is more prominent
for stronger repulsively interacting systems, as shown by
Kane and Fisher32442  This leads to a divergent ratio
/T - oo when T — 0 and eV — 0 simultaneously.
When going to higher temperatures or higher voltages
the relative strength of the two contributions evolves to-
wards comparable values (set by the bare constants A,

An).

IV. FULL COUNTING STATISTICS AND RATE
OF ACQUISITION OF INFORMATION

The backaction of the detector on the measured system
has to be compared with the ability of the detector to
discriminate the different charge states of the DQD. For
a given charge eigenstate (n = 1,2) of the double dot,
the response of the detector is fully characterized by the
probability distribution P, (N, t) of a charge ¢ = eN to be
transmitted through the tunnel junction in a fixed time
interval . The rate of acquisition of information on the
charge state of the DQD is quantified by the statistical
quantity=3

M(t) = e WOt =N"/Pi(N,t)Py(N, 1), (18)
N

which measures how distinguishable the two distributions
are.

The probability distribution P, (V,t) is equivalently
and conveniently characterized by the corresponding gen-
erating function x,(£,t) = Y5 Pu(N,t)eY, the so
called Full Counting Statistics (FCS). The generating
function can be expressed directly in terms of quantum



averages of the tunneling operatord>

Xa(&,t) = mEDT = <TK exp {Z)‘n/ dTAf(T>(T)}> ’
Ck
(19)

where the time ordering Tx occurs on the Keldysh con-
tour Cx and &(r) = +££ is the counting field intro-
duced in Eq. . The FCS of interacting electrons is
known in some cases, e.g. in quantum dots or diffusive
conductors??. Here wre consider instead Luttinger lig-
uids. In the present situation of a tunneling Hamiltonian,
the counting field enters as a phase of the tunneling op-
erators®3 ¢ — te€(M)/2 ¢+ 5 *e~%€(1)/2 In this case the
counting field is a pure quantum field, i.e. &(7) = £ is
anti-symmetric on the forward and backward branch of
the Keldysh contour.

The generating function x,(£) in Eq. is a general-
ization of Z,,(t) in Eq. which includes the quantum
field (7). Similarly as we did in the previous section for
Z15(t), we evaluate x,(€) to second order in a cumulant
expansion. In the long-time limit (¢ > 1/7,1/eV), the
Markovian nature of the electron transfer processes guar-
antees that the leading contribution to the cumulant gen-
erating function is linear in time, i.e. W, (&,t) = W, (€)
is independent of t. We obtain

W, (€) = A2 [(cos€ = 1) Re {Jo} —isinIm {Js}], (20)

where Jg = [ ds f7(s)sin (eV s) is calculated in Ap-
pendix [D] In this limit the rate of acquisition of informa-

tion W (t) can be expressed directly in terms of W, (¢)

a533

1
W(t)=W =~ —3 miﬂg}{Wl(—ix) + Wa(+iz)}, (21)
xe
where W can be directly evaluated from Eq. (20) to be

W =~ Re{Jc} S\Jr — \/(RQ{JC}S\+)2 _ (Im{Js} 5\7)27

with Am = (A2 —A2)/2, AL = (A2 +A2)/2and 0 < A_ <
A¢. From the expression for Jg in Appendix[D] we obtain

W =Re{Jc} [)\+ - \/Ai — (tanh[eV/2T] )\)2} . (22)

In the next section we discuss the implications of this
result for the quantum measurement process. We note
here that the acquisition of information is independent of
the local density interaction contributions (parametrized
by An), since these do not affect the current and hence do
not contribute to the gain of knowledge about the charge
state of the DQD.

V. EFFECTS ON QUANTUM-LIMITED
DETECTION

The efficiency of the quantum measurement is charac-
terized by the ratio

Q=W/Tio, =W/(L+T) < 1. (23)

This definition takes only into account the decoherence
on the measured system due to the measurement process,
following the approach used for non-interacting detec-
tors. Q = 1 corresponds to a quantum-limited detector.
External, system-dependent decoherence mechanisms are
outside the scope of this paper.

The efficiency @ is properly defined for sufficiently long
times ¢t > 1/T,1/eV, where Z,,,(t) and Z,,,(t) are ex-
ponentially decaying in time and W (t) = W. With the
help of Egs. and we conveniently rewrite Q as

% [1 _ \/1 — (142_77’]2 tanh(eV/ZT)>2
(1 + F/f)

where 77 = (A2 — A1)/(A1 4 A2) characterizes how strong
the electron tunneling is influenced by the different oc-
cupation of the DQD. It can be shown that () < 1 and
finite for n — 0. ~

From Egs. and , we note that W o« T' «
Re{Jc}, where all interaction effects (characterized by
g) are contained in the function Re{J¢}. Therefore, in
the absence of a local density contribution (A; = Ag, so
I' =0) Q is independent of g and hence interactions have
no effect on the quality of the detection process. The
efficiency @ for I' = 0 is plotted in Fig. [f{a) and (b). In
particular, for T' < eV (and T' # 0), the detector is quan-
tum limited, @ — 1, and remains such in the presence of
interactions. Repulsive interactions do have an effect in
reducing the backaction (cf. Fig. , but the rate of ac-
quisition of information is reduced by an equal amount.
All in all in absence of a local density interaction, inter-
actions leave the detector still quantum-limited, but slow
down the detection process. As for non-interacting QPC
detectors, the efficiency of the detection is controlled only
by eV/T , and in the limit of high temperature, thermal
fluctuations induce unwanted backaction unaccompanied
by information gain, driving the detector away from its
quantum limit [cf. Fig. [fa) and [4b)].

Therefore the local density interaction is essential to
appreciate the effect of interactions. Omnce it is taken
into account, lower temperatures are required to bring
the detector to the quantum limit, even in the absence
of interactions (see Fig. [4]). This is due to the fact that
this term provides no information gain, but still induces
decoherence onto the system®. We showed in Sec.
that both decoherence due to the local density interac-
tions and due to tunneling are diminished by interac-
tions, but in a very unequal way. The suppression of the
tunneling-induced decoherence I' due to electron-electron
interactions is much more pronounced than that of the
decoherence caused by the local density contribution, I.
Since W I, the acquisition of information is suppressed
in the same manner. This leads to a strong suppression
of the measurement efficiency @ [Eq. ] for repulsive
interactions with respect to the noninteracting case. In-
teraction effects do not eliminate the monotonously in-
creasing dependence on the voltage bias of @ [cf. Fig.
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FIG. 4. (Color Online) Detector efficiency for the noninter-
acting case. Total efficiency Qot = W/Ttot (solid line) and
efficiency without decoherence due to the local density in-
teraction, Q = W/I' (shaded line) as function of (a) bias
voltage and (b) temperature. Qp is independent of g and
therefore valid also for the interacting case. With n = 0.5,
A2 — A1 = A2 — Aq, % =0.01 in (a), and % =0.01 in (b).

(a)], but can delay the saturation to the quantum limit
@ = 1 to very high voltages or very low temperatures for
strongly repulsively interacting systems.

Surprisingly the temperature dependence of ) shows
an interesting nonmonotonous feature depending on
interactions.  For a noninteracting system, @ is a
monotonously decreasing function of temperature, re-
flecting the fact that increasing thermal fluctuations in-
duce extra decoherence without a corresponding gain
of information about the system’s state [cf. Fig.
(b)]. However we find that for strong interactions and
at high temperatures with respect to the bias, @ in-
creases with T in an intermediate regime. Specifically,

r<;>2<xlxz>2>“ < Ay, we
)

AEI
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FIG. 5. (Color Online) Total detector efficiency @ for the
interacting case, as function of the applied bias (a) and tem-
perature (b). Different curves from light to dark red and
from continuous to coarsely dashed are for increasing inter-
action strengths, g = 1; 0.9; 0.6; 0.5; 0.3. The figures show
strong dependence of @@ on g once orthogonality effects are
considered. The inset in (b) shows a zoom in of the regime of
crossover between monotonous and non-monotonous temper-
ature dependence for g ~ 0.5 (g = 0.55; 0.525; 0.5; 0.475; 0.45
from light to dark blue and from continuous to coarsely
dashed). We used n = 0.5, A2 — A1 = A2 — A1, and Alg =0.01

in (a), and % =0.01 in (b).

have
(5\1 - 5\2)2 r (5)2
=+ 1 (2)

9 2/g—2 )
(AZ) [eV]2T5 4.

(25)

The expression shows a crossover between an increasing
and a decreasing function of T for g ~ 1/2 [cf. also inset
in Fig. [§| (b)]. This feature emerges from the competi-
tion between two effects of increasing temperature: (i)
an increase of thermal fluctuations and (ii) a increasing
prominence of the tunneling term compared to the local
density one [cf. Fig. |3| (b)]. To highlight these com-
peting effects we can write the efficiency in Eq.
as @ = Qo/(1 + I‘/f‘), so that Qg is a monotonously



decreasing function of temperature. At low energies, de-
coherence is dominated by the local density term due
to supression of tunneling, and we can roughly write
Q ~ Qo(I'/T"). While the thermal fluctuations reduce @,
the growing prominence of the tunneling term increases
the weight of the “information carrying” part of the in-
teraction Hamiltonian, hence increasing . When (ii)
is dominant compared to (i), @ increases with temper-
ature. This is controlled by the parameters of the de-
tector. In particular, since the temperature dependence
of the relative strength between local density and tun-
neling contributions in the detector is strong for strong
interaction, the increasing behavior of @ with T is pos-
sible only for sufficiently small g. The inset in Fig.
(b) shows a zoom into the critical regime of the crossover
between monotonous and non-monotonous temperature
dependence.

VI. CONCLUSIONS AND OUTLOOK

In this paper we analyzed the effects of interactions
on the efficiency of quantum detection. We executed our
analysis for two voltage biased electron reservoirs con-
nected by a tunnel junction, whose current serves as a
charge detector of a proximate charge qubit. We included
electron-electron interactions by modeling the leads as
Luttinger liquids and incorporated the effects of local
density fluctuations due to the charge qubit, besides its
effect on the tunneling amplitude. The model is of inter-
est both for charge sensing schemes used in experiments
and as a theoretical paradigm case study.

We found that interactions reduce the induced deco-
herence on the measured system, along with the rate
of acquisition of information. In the absence of a local
density interaction term, both acquisition of information
and tunneling induced decoherence are suppressed in the
same manner by interactions. In this case interactions do
not alter the efficiency of the detector, which tends to be
quantum-limited at low temperature, but slow down its
response. Once the local density induced decoherence is
considered, interactions do play a role for the efficiency,
reducing it with respect to the non-interacting case.

The relative contributions of tunneling and local den-
sity induced decoherence are strongly affected by inter-
actions, and the local density contribution can dominate
at low temperature and voltage bias for strong interac-
tions. This is a consequence of the downwards renormal-
ization of the tunneling term for repulsive interactions at
low energies. The same renormalization is responsible for
the slower rate of acquisition of information in the inter-
acting case. This renormalization is less pronounced for
increasing energy, resulting in a tendence to an increased
acquisition of information rate. As a result of the in-
terplay between these effects, we have identified an inter-
mediate temperature regime where, for sufficiently strong
interactions (¢ < 1/2), the detector efficiency increases
with temperature. This has to be contrasted with the

weakly interacting case where increasing thermal fluctu-
ations monotonously reduce the detector’s efficiency. As
a function of the voltage bias, repulsive interactions delay
the quantum limit @) = 1 to increasingly higher voltages
(or lower temperatures). This is a pure consequence of
the local density interaction.

Our models captures the effects of interactions in the
simplest experimentally relevant configuration. As such,
it has limitations and poses interesting future challenges,
which we outline briefly here. Our results allow us to
assess the efficiency of the detector due to processes in-
herent to the measurement itself, which are unavoidable
as long as the system is coupled to the detector for read-
out. The readout efficiency will also be affected by other
external decoherence mechanisms extraneous to the mea-
surement process. These have to be dealt with separately
and are system-specific. For instance, one can come up
with more efficient qubit designs or environment engi-
neering to minimize the coupling to specific decoherence
sources. Moreover, in our model we assumed full control
of the tunneling matrix element between the dots, which
allowed us to set v smaller than all the other energies
in the model after preparing the initial coherent state.
Our results are valid for ¢ < 1/ such that we can ef-
fectively consider v = 0. Experimentally, the required
degree of control is available for charge qubits, though
with more sophisticated designs than a double quantum
dot?t23 and for spin qubits whose spin state is read
by quantum point contacts via spin-to-charge conversion
mechanisms??28, The protocol we analyze has to be con-
sidered as a test for the detector’s properties. In fact,
based on results for noninteracting systems®, there are
reasons to expect that the parameters for which the de-
tector is found to be quantum-limited in our manuscript,
make the detector quantum-limited also in presence of
inter-dot tunneling. The argument is that the efficiency
is a property of the measurement process and the detec-
tor, not of the qubit’s dynamics. A proper analysis of the
dot-detector coupling in the presence of finite inter-dot
tunneling is a key future point to address, especially be-
cause this is the regime where measurement-based control
of the qubit dynamics can operate. One can anticipate
for instance that pure decoherence will be accompanied
by relaxation processes. We have also modeled the DQD
as single level dots with single occupation, which is the
simplest experimentally relevant case. Considering dou-
ble occupation requires a treatment with a larger qubit
Hilbert space and therefore addressing the coherences of
different off-diagonal terms, which is outside of the scope
of this manuscript but would be an interesting follow
up problem. Lastly, the nonmonotonic behavior of the
efficiency Q with temperature is present for strong in-
teractions, g < 1/2. Although this is an experimentally
challenging regime, recent experiments in different plat-
forms have shown evidence of Luttinger liquid behavior
with interactions up to g ~ 0.246:48|
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Appendix A: Coupling Hamiltonian

We model the electrostatic coupling of the DQD to the interacting QPC to include two effects: a coupling of the
electron on the DQD to the local electronic density at the end (z = 0) of the two Luttinger liquid leads that depends
on the charge state of the DQD, and a state-dependent tunneling between the two sides of the QPC. To derive the
interaction Hamiltonian Eq. we start from the fermionic representation

Hint = Z Qn - \Ijl,j\llc’j(oat) : c;rzcn
n,j,c (Al)
+ [tn LW Uy R(0,8) L UL U (0,8) 1] e,

where \IJIJ (z,t) [P, (x,1)] creates (anihilates) an electron at position z and time ¢, with chirality ¢ = 1,2 and on
side j = L, R [note that ¢ = 1 (¢ = 2) indicates moving towards (away from) the QPC]. n = 1,2 indicates the state
of the DQD and : - - : normal ordering. These fermionic fields can be written in terms of the bosonic operators as

o Ne,j eickp;ceq:ith/Qei(céj +¢;) (A?)

V.=
7 vV 271’(10

where all fields are evaluated at (z,t). 7., are Klein factors, kr the Fermi momentum, the F in the exponential
corresponds to R (-) and L (+) and eV = pr, — ug.

We consider the tunneling term as a perturbation on the two (L,R) disconnected LL systems. Without tunneling,
the QPC acts as a strong impurity which imposes that the density fluctuations vanish at * = 0. This boundary
condition results in#%42

HL(JJ:O,t):eR(J):O,t):O. (A?))

Using this condition together with ¢,, = ¢} and substituting Eq. into Eq. we obtain straightforwardly the
second term in Eq. (), with A =t/ (Tag).

It is furthermore convenient to write the bosonic fields in the interaction representation, in which the bosonic fields
evolve according to the free Hamiltonian Hyy, Eq. and switch to the description in terms of sum and difference
fields 0L = 1/2[0L £ 0g], and ¢ = 1/2[pL £ ¢gr|. Using the commutators (o = %)

0a(0): 00 ()] = T 00z — )i N
00 (2). Dy (07)] = — 8 = 0" (84)
we obtain the free Heisenberg equation of motion
i (,t) = —%g@cei(x,t) , (A5)
(1) = —gu,uips(a,1). (A6)

The first term in Eq. (Al]), which is the density-density electrostatic interaction between the dot and the LL at
x = 0, can easily be bosonized using the identity p; = >, : \I/i,j\I/CJ = 0,0;/m for the normal ordered density

i.e. the dGIISity of charge fluctuations). Usmg ]D(] A5 we can express (910 in terms of ¢, and we obtain the first
J Pj
interaction term in Eq " with )\n = 204

Tag

Finally, Eq. (A5) allows us to write H?, = (n|Hin|n) in terms of phase fields only
~ An . ~
A0 (1) = ~90% 6 (8) + A cos 2 (1) + V1], (A7
9

with Ay = vy/ag the high energy cutoff.
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Appendix B: Calculation of Z(t)

The detector’s contribution to the evolution of the off diagonal terms of the density matrix is expressed in terms of

averages of the detector’s fileds in Eqs. (1114). We compute here these averages <(<pi (t) — o+ (0))2> An alternative

calculation of the same average can be found in Ref. 38l In order to proceed, it is useful to write the phase fields in
terms of bosonic operators in the interacting basis,

elklao/z ‘
(@,?) \/; {e P o (8) — ey 1 (t)} , (B1)
k70

where we have introduced the standard high-energy cut-off exp (— |k| ap/2). The bosonic creation [destruction] oper-
ators b,z (t) [bx (t)] are of the form

bl 4 () = bl | (0) e™vatlkl,
bi,+ (t) = by + (0) e~ atlkl (B2)

where b,L 4 (0) and by + (0) fulfill standard bosonic commutation relations (o, o’ = £)

[01.0(0), 0] 0 (0)] = b (B3)

The free Hamiltonian of the Luttinger liquid in this representation is simply

Hip= Y vglk|bio (0) b (0) (B4)
a==1;k=0
and the vacuum expectation value
(b, (0) brr o (0)) = 125 (k) O O, (B5)

where ny, (k) = [exp (vy |k| /T) — 1]7" is the usual Bose-Einstein distribution at temperature T', with kg = 1.
Using Egs. (B1))- (B5)), we can perform the vacuum expectation value by going to the continuum limit

<[soi<ﬂ—soi< >12> 17
_p / e~ 2y (k) + 1] [1 — cos (vghs)] .

where P denotes the principal value of the integral.
We can divide the integral into a zero temperature quantum term, and a thermal term proportional to np(vgk).
The quantum term can be calculated to be
Vg T 2
1+ < > ] . (B7)
ao

P / =0 [1 — cos (vgk 7)] np(vgk) (BS)

_L F(1+E) -
_iog T(I—i5+ ) F(A+i5+4o) )’ (BY)

where I" is the gamma function. In the limit 3> <1 (8 =1/T') we obtain
g9

> dk
77/0 ?e*“(’k [1 — cos (vgkT)] = flog

For the thermal contribution in turn we obtain

oo 1 sinh ( ZF
77/ dr [1 — cos (vgkT)|np(vgk) = = log W(Tﬁ) . (B10)
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For obtaining Eq. (B10) we used I'(1 — 2)I'(1 + z) = 2zI'(2)I'(1 — z) = zw/sin(7z). Putting together the two
contributions we obtain

oo\ 2 sinh (%)
I(r) = =log |1+ ( ! ) +log | ———~ (B11)
2 ap B
[ 7ae
~ —log — P , (B12)
sinh (%)
where we approximated 7 > %2 = Ag_l. Going to large times 7 > 3
BA, T
I(7) =1 — —. B1
() o | 52] + % (B13)
_1[90n=2m)]? _ 2
Inserting the average into Z,,(t) = e s [ ((er (=02 0)7) leads to
s, ~Ew=]
2 9
Zmn(t) ~ (9) e—Ft’ (B14)
2m

with the decoherence rate I' as given in Eq. .

Appendix C: Calculation of Zi5(t) and xn (€, 1)

We evaluate here the expressions in Egs. we make use of the fact that in expressions of the form
(e®2i9+(T) e £2i0+) only “neutral” configurations of the kind

f(T _ 7_/) _ <e2i<p,('r)€72iap,(‘r’)> _ <672i<p,('r)62iap,(‘r’)> (Cl)
do not vanish®8. Therefore from Eq.

. PYP)
212(t)%1+ 172

/t dr /t dr' f(r — ") cos [eV(T — 7)]

%/dT/ dr' f(r — ") cos [eV(T — 7)] (C2)

>\22/dr/ dr' f(r —7")cos[eV(r — 7).

Introducing new variables s = 7 — 7/ and r = (7 + 7') /2, we can perform the integral over r to obtain

. N o/ - t
Zia(t) = 1+ > ()\2 = )\1) / ds (t — s) f(s) cos(eV s)
. )Y (C3)

+ % (5\1 - 5\2) / ds (t — s) f(s) cos(eV s).

—t
We note that
F(—8) = (299 20(0)y — (2i0(0) o= 2i(s))

C4
— <€2igp(s)e—2ig@(0)>* — f(S)*, ( )
where in the first equality we make use of the fact that the two-time correlation function depends only on the time
difference. In the long time limit (¢ > 1/eV), we retain only the dominant contribution for t — oo, i.e. the terms with
the integrand o ¢ in Eq. (C3). Using f(—s) = f(s)* we can re-write the integral in the positive domain s > 0 and
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then replace f(s) by the time-ordered correlator f7(s) = (Te?%#(5)e=2%(0)) which is well known in the literature3s.
We obtain
(A2 — A1)
2
XZ . 5\2 oo
+ z% t / dsTm{f7(s)} cos(eV s).
0

Zip(t) =1 — t /000 dsRe{f7(s)} cos(eV s)

(C5)

Re-exponentiating this expression in the form of Eq. (L0 and disregarding the induced level shift A, which leaves
the measurement properties of the device unaffected, leads to Eq. in the main text.

The calculation for the FCS function W, (¢,t) proceeds in the same manner, replacing Ag — A¢ in Eq. with
Ag defined in Eq. and taking Ay = Ao = \,,. We obtain

_ 5‘% ¢ ¢ ’ ’ —ig ieV(r—1")
Wn(f,t)t—7/0d7'/0 de(T—T)Re[(e —1)6 } , (C6)

which in the long time limit ¢ > 1/eV leads to Eq. in the main text.

Appendix D: Calculation of Re{Jc} and Im {Js}

In this section we calculate the time integrals Jo and Jg in Eq. and (20). We use the well known form for the
time-ordered correlation function®® for positive times

. rag 2/9
PO ) - (D1)
(— sinh {%(s — i0+)D
Taop 2/
(ﬁ%) g oi(m—04)/g (D2)

- |sinh2[%t]|1/9

Alternatively, this result can be obtained from noting that f(r — 7/) = 6751(777/)62[“’*(T)””*(T/)], where I(s) was
calculated in App. [Bl With this we can evaluate the real part of Jo, needed for the decoherence Eq. . Explicitly,

Re{Jc} = /OOO dsRe{fT(s)} cos(eV s)

1 ™\ [mag\ 9 [ 1 - L
= _ _ - ds ——— (eeVs ieVs
Qaﬁ(g) (5%) DA Sﬁnmgﬂwg(e et )

= 1cos (W) (27m0>2/g B F% _ i%e\/)[‘(l - %) N F(é + i%eV)F(l — %)
! 2 2 2 re+ilev
= - cos (ﬂ-) ( 7TCL0> ﬁf(l — —)2Re (5 1 2776 ) D3)

where we dropped the positive infinitesimal 0, and used

e 1 - 1 2
/ ds— L gt o2 Pp( ;B 1 2 (D4)
0 sinh[5t]2/9 27 27 g g

with B(z,y) = Fp(z(cgzﬂf;) Using the general identity of the I'-function I'(z)I'(1 — x) = 57— and some trigonometric

identities, we can write this as

9 It iy T (% +isg )
2 cos (W) I'(1--)Re (g T 27&;\), = (g 2 T) cosh(eV/2T), (D5)
g g\ (= +ixy) r(2)
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which leads to

2
) | cosh(eV/2T), (D6)

1 : eV

2rag \ 7 B - (gJFZzﬂT

ﬂ’l)g 2 r (2)
g

in accordance with the results in Ref. @5l From here the form of the decoherence rate T’ Eq. directly follows.
Similarily, Im {Jg} can be calculated to be

Re {Jo} = ;(

Im{Js} = /000 ds Im { f7(s) sin(eV 5) }

2/g [eS)
1 1o
:_(ﬂao> sm<”> / ds—— L (gievs _ gievsy
Bug 9/ Jo | sinh [%t”l/g 2i

_ (77) (2m0>2/9 B (TG —igeeV)I(1=2) T3 +igeV)I(1-2)
' 9/ \ Bug 2\ r(1-1-ilev) r-21+izev)

2/g r(t+ilev
=sin <7T> (27m0> ﬁf(l - g)Im G T 2?5 )
g ng 2m g F(l — 5 =+ ’LﬁeV)

Using again I'(z)['(1 —xz) =

ﬁ and some trigonometric identities, we can write this as

I +isy [T (5 +ier ) I?
—2sin (”) r—2)m ¥ . 2’,’7(;\), = (g : T) sinh(eV /2T, (D7)
g g A\ -1+igh) r(2)

which sets the form of Im{Js}

1 . e
Im{Js} = 3 ( — sinh(eV/2T). (D8)

Bug
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