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Abstract: The synthesis and characterization of a novel triazine anion pentafluoroosmium(VI)
complex are presented. The single crystal determination of the title compound (hereafter denoted 1)
was carried out at −140 ◦C. Compound 1, C3F4N3OsF5, crystallizes in the monoclinic space group,
P21/n, with unit cell dimensions: a = 8.6809(17) Å, b = 7.6848(15) Å, c = 12.415(3) Å, β = 102.633(4)◦,
V = 808.2(3) Å3, and Z = 4. Synthesis, characterization, X-ray diffraction study along with the
crystal supramolecular analysis of the title complex were carried out. The complex contains the
anionic triazine unit C3N3F4

− acting as a mono dentate ligand to osmium(VI) with five fluoro
ligands in a slightly distorted octahedral geometry around osmium(VI) ion (osmium is denoted
as Os). The C3N3F4

−, triazine anion ring deviates from planarity, only with the C1 being tetrahedral.
The crystal lattice of the title compound displays significant intermolecular X···X interactions, namly
F···F, F···N and F···C. All types of X···X bonding consolidate to form a three-dimensional network.

Keywords: triazine anion; crystal structure; fluoroosmium(VI) complexes; supramolecular crystal;
F···F; F···N; F···C intermolecular interactions

1. Introduction

The employment of osmium(VI) fluoride/antimony(V) fluoride (OsF6/SbF5) as a powerful
oxidizing agent to break the aromaticity of benzene to form radical benzene cations was established
some time ago [1]. This distorted radical cation was characterized using X-ray structural analysis [1].
However, the isolation of the benzene radical cation is a challenge. Seppelt and co-workers obtained
the compoundsC6F6

+Os2F11
− and C6F6

+Sb2F11
− [1,2]. The synthesis and crystal structure of other

substituted benzene cations such as aniline radical cation [3] and radical cation of monocyclic
arenes [4,5] have also been reported. Further research was directed toward the formation of stable
radicals for several organic systems [6–9]. On the other hand, fluorine-containing compounds
are important for life and material sciences [10–12]. Fluorine is comparable to hydrogen atom
in size but, possesses different physical and chemical properties, and capable of forming strong
halogen bonds [13–19]. The latter can be of different motifs, such as F···F, F···N, and F···C
intermolecular interactions.

In an attempt to use other aromatic species in a manner similar to benzene, we encountered
the 2,4,6-trifluoro-1,3,5-triazene ligand (Figure 1). It was expected that this system would proceed
easily to form a radical cation compared to benzene, but a pentafluoroosmium(VI)-complex containing
C3N3F4

− ligand was detected instead. In this report, we are disclosing the successful synthesis, single
crystal X-ray diffraction and crystal supramolecularity of this system.
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Figure 1. The chemical structure of 2,4,6-trifluoro-1,3,5-triazene ligand. 

2. Materials and Methods  

The compound is unstable at room temperature and sensitive to moisture. Therefore, IR and 
UV spectra could not be recorded. Raman spectra showed strong fluorescence in all cases. Yield 
could only be estimated by the amount of colored crystalline material, often in mixtures of colorless 
crystals, which were possibly a starting material. 

Caution: Handling SbF5 and OsF6 requires eye and skin protection. 
The following reagents were purchased from the indicated vendor: C3N3F3 (Sigma-Aldrich 

Chemie GmbH), SbF5 (Fluorochem Ltd.), NH4F (E. Merck), CF3COOH (Merck Schuchardt). The 
triazine was checked by NMR spectroscopy for purity. The solvent sulfuryl fluoride chloride 
(SO2ClF) was prepared by treating a mixture of thionyl chloride (SO2Cl2) and ammonium fluoride 
(NH4F) with trifluoroacetic acid (CF3COOH) [20]. SbF5 was vacuum distilled twice using a glass 
vacuum line with a −30 °C trap. The resulting liquid was clear, colorless, and highly viscous. The 
compound OsF6 was obtained via a reaction of Os powder and F2 in Monel autoclaves at 300 °C [21]. 
Reagents and starting materials must be highly pure since contaminants are oxidized preferentially. 
Reactions were performed in PFA (Poly perfluorovinylether tetrafluoroethylene copolymer) tubes; 
volatile materials (anhydrous SO2ClF, OsF6) were handled in a stainless-steel vacuum line.  

OsF6 (100 mg) and SO2ClF (2 mL) were condensed in a PFA tube containing SbF5 (50 mg). The 
mixture was allowed to warm to 0 °C to ensure a homogenous mixture. The mixture was cooled 
again with the aid of liquid nitrogen. C3N3F3 (100 mg) was condensed into the cooled mixture. The 
mixture was then allowed to warm very slowly to −30 °C, affording a yellow clear solution. At −30 
°C, the excess C3N3F3 and other volatiles were removed under vacuum. After that, SO2ClF (2 mL) 
was condensed in a PFA tube. Recrystallization from −30 °C to −78 °C afforded yellow crystals. Care 
must be taken to ensure that the temperature never exceeds −30 °C throughout the entire procedure. 

Single crystal for X-ray diffraction was performed on a Bruker-AXS, D8 venture, photon 
detector, tube: incotec microfokus (Mo Kα radiation, Bruker, Germany) under oxygen- and 
moisture-free conditions at temperatures below −100 °C using a special device of local design [22]. 
All data collections were performed at −140 °C. After semiempirical absorption corrections, the 
structure was solved by direct methods and refined using the program SHELXTL [23,24]. 
Non-hydrogen atoms were refined anisotropically; H atoms were refined isotropically. Relevant 
data collection and refinement parameters are listed in Table 1. 

Crystallographic data in cif format have been deposited with the Cambridge Crystallographic 
Data Center (CCDC 1508189). Copies of the data can be obtained free of charge from The Director, 
CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK, fax: +44 1223 366033, email: 
deposit@ccdc.cam.ac.uk or on the web at http://www.ccdc.cam.ac.uk. 
  

Figure 1. The chemical structure of 2,4,6-trifluoro-1,3,5-triazene ligand.

2. Materials and Methods

The compound is unstable at room temperature and sensitive to moisture. Therefore, IR and UV
spectra could not be recorded. Raman spectra showed strong fluorescence in all cases. Yield could
only be estimated by the amount of colored crystalline material, often in mixtures of colorless crystals,
which were possibly a starting material.

Caution: Handling SbF5 and OsF6 requires eye and skin protection.
The following reagents were purchased from the indicated vendor: C3N3F3 (Sigma-Aldrich

Chemie GmbH), SbF5 (Fluorochem Ltd.), NH4F (E. Merck), CF3COOH (Merck Schuchardt). The triazine
was checked by NMR spectroscopy for purity. The solvent sulfuryl fluoride chloride (SO2ClF) was
prepared by treating a mixture of thionyl chloride (SO2Cl2) and ammonium fluoride (NH4F) with
trifluoroacetic acid (CF3COOH) [20]. SbF5 was vacuum distilled twice using a glass vacuum line with
a −30 ◦C trap. The resulting liquid was clear, colorless, and highly viscous. The compound OsF6

was obtained via a reaction of Os powder and F2 in Monel autoclaves at 300 ◦C [21]. Reagents and
starting materials must be highly pure since contaminants are oxidized preferentially. Reactions were
performed in PFA (Poly perfluorovinylether tetrafluoroethylene copolymer) tubes; volatile materials
(anhydrous SO2ClF, OsF6) were handled in a stainless-steel vacuum line.

OsF6 (100 mg) and SO2ClF (2 mL) were condensed in a PFA tube containing SbF5 (50 mg).
The mixture was allowed to warm to 0 ◦C to ensure a homogenous mixture. The mixture was
cooled again with the aid of liquid nitrogen. C3N3F3 (100 mg) was condensed into the cooled mixture.
The mixture was then allowed to warm very slowly to −30 ◦C, affording a yellow clear solution.
At −30 ◦C, the excess C3N3F3 and other volatiles were removed under vacuum. After that, SO2ClF
(2 mL) was condensed in a PFA tube. Recrystallization from −30 ◦C to −78 ◦C afforded yellow
crystals. Care must be taken to ensure that the temperature never exceeds −30 ◦C throughout the
entire procedure.

Single crystal for X-ray diffraction was performed on a Bruker-AXS, D8 venture, photon detector,
tube: incotec microfokus (Mo Kα radiation, Bruker, Germany) under oxygen- and moisture-free
conditions at temperatures below −100 ◦C using a special device of local design [22]. All data
collections were performed at −140 ◦C. After semiempirical absorption corrections, the structure was
solved by direct methods and refined using the program SHELXTL [23,24]. Non-hydrogen atoms were
refined anisotropically; H atoms were refined isotropically. Relevant data collection and refinement
parameters are listed in Table 1.

Crystallographic data in cif format have been deposited with the Cambridge Crystallographic
Data Center (CCDC 1508189). Copies of the data can be obtained free of charge from The Director,
CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK, fax: +44 1223 366033, email: deposit@ccdc.cam.ac.uk
or on the web at http://www.ccdc.cam.ac.uk.
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Table 1. X-ray structure experimental details.

CCDC Deposition Number 1508189

Empirical formula; formula weight C3F4N3OsF5; 439.26
Temperature (K) 133(2)

λ (Å) 0.71073
Crystal system; space group Monoclinic; P21/n

Unit cell dimensions

a = 8.6809(17) Å
b = 7.6848(15) Å
c = 12.415(3) Å
β = 102.633(4)◦

V (Å3) 808.2(3)
Z 4

Dcalc. (Mg/m3) 3.610
Absorption coefficient (mm−1) 15.93

F(000) 781
Crystal size (mm3) 0.2 × 0.1 × 0.1

Theta range for data collection 2.6◦ to 30.6◦

Limiting indices −11 ≤ h ≤ 12, −8 ≤ k ≤ 10, −17 ≤ l ≤ 17
Reflections collected 12782

Completeness to theta = 25.125◦ 99.8%
Independent reflections 2474 (R(int) = 0.023)

Observed reflections 2140 (II > 2(I))
Reflections used for refinement 2474

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 2474/0/145
Goodness-of-fit on F2 1.052

R values (I > 2sigma(I)) R1 = 0.0152, wR2 = 0.0356
R values (all data) R1 = 0.0199, wR2 = 0.0374

Largest difference electron densities 1.01 and −1.01 e·Å−3

3. Results and Discussion

3.1. Synthesis of 1

The complex 1 was prepared as outlined in Scheme 1. The proposed complex formation
mechanism involves the addition of a fluoride ion to a carbon center of C3N3F3, forming a C3N3F4

−

anion, which in turn acts as a mono-dentate ligand to the metal center.
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The formation of the triazine anion was reported previously (Scheme 2) from the reaction of CsF
and C3N3F3 without a sufficient characterization [25]. Kingston et al. [26] reported the synthesis of
the same anion using a different strategy, and the product was characterized spectroscopically and by
X-ray structural analysis. Therefore, our method represents a new strategy for the formation of this
anion which forms the foundation for the synthesis of other anionic triazine species.
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−. Reaction 1, Reference [25]; reaction 2,

Reference [26].

3.2. Molecular Structure

The asymmetric unit in 1 contains one independent complex (Figure 2). The molecular complex
has octahedral geometry around an osmium atom. The unique M–F distances are 1.8638(17)–1.8696(17)
Å, while the linear and perpendicular F–Os–F angles are in the ranges of 179.25(8)–178.68(7) and
87.78(8)–91.55(8)◦ (Table 2). These bond distances and angles are within the reported values of
M–F-containing compounds [2,27,28]. The C3/N3 part of the C3N3F4

− ring is planar, only with the C1
atom being tetrahedral. The C–N distances in the ranges of 1.305(4)–1.320(4) and 1.445(4)–1.422(4) are
consistent with the bonds between double C=N and single C–N bonds, indicating a delocalization
of charge in the ring consistent with the anion geometry. This is best described by the resonance
shown in Figure 3. These C–N bond distances and angles are slightly different compared to those of
the free anionic C3N3F4

− [26]. The difference in some distances of C–N and C–F bonds, shown in
Table 2, might be attributed to the fact that the reported anion [26] is a free anion crystallized with
another counter cation which allows the complete delocalization of the charge over the anion, while the
anion in the title compound is bonded through one N atom with Os(VI) and consequently affects
the delocalization of the charge over the anion. This is also evident by the different planarity of the
reported anion C3N3F4

− ring as compared to the bonded one (this work). The C–F bond distances
are different depending on the center to which they bonded. Those bonded to the tetrahedral C1 are
longer than those bonded to the planar sp2 carbons (C2 and C3; Table 2). This fact makes this anion
susceptible to selective substitution (weak C1–F bonds), and this has been used to synthesize the
substituted triazine anions [26].
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Figure 3. Charge delocalization in C3N3F4
− anion.

Table 2. Selected bond lengths (Å), bond and angles (◦) in 1.

Bond Distances Os–F Complex a Os–Faverage Complex

Os–F

1.8696(17)
1.8661(17)
1.8638(17)
1.8687 (17)
1.8686(17)

1.825 b; 1.857 c

Os–N3 2.078(2) a

C3N3F4
− anion a C3N3F4

− anion d

C1–F1 1.332(3) 1.400(4)
C1–F2 1.351(3) 1.383(4)
C1–N1 1.422(4) 1.403(4)
C1–N3 1.445(4) 1.400(4)
N1–C2 1.316(4) 1.277(4)
N2–C3 1.319(4) 1.319(4)
N3–C3 1.320(4) 1.279(4)
C2–N2 1.305(4) 1.329(4)
C2–F3 1.297(3) 1.345(3)
C3–F4 1.298(3) 1.348(3)

N1–C1–N3 112.8(2) 120.4(3)
N1–C2–N2 126.7(3) 132.0(3)
F4–C3–N2 115.3(2) 113.3(3)
N2–C3–N3 128.9(3) 132.2(3)
F4–C3–N3 115.8(2) 114.4(3)
F1–C1–F2 105.3(2) 101.1(2)

a This study; b from Reference [27]; c from Reference [2]; d from Reference [26].

3.3. Crystal Packing

The crystal packing involves extensive halogen···halogen interactions. These interactions assemble
the molecular complexes into a supramolecular three-dimensional lattice [29], as shown in Figure 4,
via F···F, F···N, and F···C intermolecular interactions (Table 3). The F···F (Figure 5a), F···N (Figure 5b),
and F···C (Figure 5c) interactions are in the ranges of 2.834–2.887, 2.771–2.970, and 2.770–2.771 Å,
respectively.
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Table 3. Halogen bond geometry (Å, ◦).

F···F interactions F···F –F···X–

C1–F1···F3i–C2 i 2.834 87, 114
Os–F1···F9ii—C1 ii 2.840 88, 106
Os–F9···F2 iii–C1 iii 2.873 143, 102
Os–F8···F9iv–Os iv 2.887 130, 137
F···N interactions F···N –F···N

Os–F9···N1 v 2.771 153
Os–F8···N1 i 2.857 165

F···C interactions F···C –F···C–
Os–F7···C3 iii 2.770 139, 91
Os–F6···C2 iii 2.771 128, 84

Symmetry codes: (i) −1/2 − x, −1/2 + y, 1.5 − z; (ii) −1/2 + x, 1/2 − y, −1/2 + z; (iii) 1/2 − x, −1/2 + y, 1.5 − z;
(iv) −x, −y, 2 − z; (v) 1/2 + x, 1/2 − y, 1/2 + z.
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4. Conclusions
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