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ARTICLE INFO ABSTRACT

Keywords: In many cerebral grey matter structures including the neocortex, spreading depolarization (SD) is the principal me-
Cytotoxic edema chanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons.
ISChem.ia ) Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage,
:prel‘:dmg depression aneurysmal subarachnoid hemorrhage (aSAH) and malignant hemispheric stroke using subdural electrode strips. SD is
troke

observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. Velocity and SD
susceptibility typically correlate positively in various animal models. In patients monitored in neurocritical care, the Co-
Operative Studies on Brain Injury Depolarizations (COSBID) recommends several variables to quantify SD occurrence and
susceptibility, although accurate measures of SD velocity have not been possible. Therefore, we developed an algorithm to
estimate SD velocities based on reconstructing SD trajectories of the wave-front's curvature center from magnetic re-
sonance imaging scans and time-of-SD-arrival-differences between subdural electrode pairs. We then correlated variables
indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correla-
tions supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over
emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase
in tissue undergoing injury.

Subarachnoid hemorrhage
Traumatic brain injury
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Depolarizations; CT, computed tomography; DC, direct current; DWI, diffusion-weighted imaging; E, electrode; ECoG, electrocorticography; FLAIR, fluid-attenuated inversion recovery;
HU, Hounsfield units; ICH, intracerebral hemorrhage; I0S, intrinsic optical signal; MCA, middle cerebral artery; MHS, malignant hemispheric stroke; MPRAGE, magnetization prepared
rapid gradient echo; MRI, magnetic resonance imaging; NO, nitric oxide; PTDDD, peak total SD-induced depression duration of a recording day; R_diff, radius difference; SAH, sub-
arachnoid hemorrhage; SD, spreading depolarization; SPC, slow potential change; TBI, traumatic brain injury; TOAD, time-of-SD-arrival-difference; V_diff, velocity difference; WFNS,
World Federation of Neurosurgical Societies; 3D, three dimensional
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1. Introduction

It is now increasingly recognized that spreading depolarization (SD)
is the principal mechanism of the mass edema of neurons in many grey
matter structures of the brain including the neocortex (Dreier and
Reiffurth, 2017). Its hallmark is the abrupt, near-complete, toxic
breakdown of the transcellular ion gradients, which creates an osmotic
driving force for influx of water (Dreier et al., 2013). Whether or not the
SD-induced mass edema, also termed cytotoxic edema, progresses to-
ward cellular injury, is determined by the local tissue conditions and
their repercussions on mechanisms involved in the SD process. The term
SD continuum describes the changing characteristics of the wave de-
pendent on the local tissue conditions (Dreier and Reiffurth, 2015;
Hartings et al., 2017b). The full SD continuum is, for example, observed
in a single SD wave when it originates in the center of focal ischemia
and subsequently invades first the penumbra and then the surrounding
well-nourished tissue against the gradients of oxygen, glucose and
perfusion.

SD-induced cytotoxic edema is observed in animals using electron
microscopy (Van Harreveld and Khattab, 1967) and the quaternary
ammonium salt method (Mazel et al., 2002; Perez-Pinzon et al., 1995;
Windmuller et al., 2005) as an abrupt decrease of the extracellular
volume fraction and increase in tortuosity, which describes the average
path length for diffusion between two points in the extracellular com-
partment. It is moreover visualized as swelling of the neuronal somata
and dendritic beading using two-photon microscopy (Murphy et al.,
2008; Obeidat et al., 2000; Rungta et al., 2015; Steffensen et al., 2015;
Takano et al., 2007). These structural changes hinder the mobility of
water in both the intra- and extracellular compartment during SD no
matter whether SD passes through well-perfused or ischemic tissue
(Budde and Frank, 2010; Mazel et al., 2002; Perez-Pinzon et al., 1995).
On this basis, SD causes abrupt decline in the apparent diffusion coef-
ficient (ADC) of water in diffusion-weighted magnetic resonance ima-
ging (MRI) scans (Cain et al., 2017; de Crespigny et al., 1998; de
Crespigny et al., 1999). According to Ledo's original notion that SD is
the principal response of neurons to a prolonged episode of cerebral
ischemia (Leao, 1947; Marshall, 1959), this ADC decline represents the
gold standard for diagnosis of acute ischemia in the cortex in clinical
neurology (Dreier and Reiffurth, 2015). It corresponds well with this
notion that electrophysiological evidence of SDs has been found in
practically 100% of patients with malignant hemispheric stroke (MHS)
(Dohmen et al., 2008; Woitzik et al., 2013), 70-80% of patients with
poor-grade aneurysmal subarachnoid hemorrhage (aSAH) (Dreier et al.,
2009; Dreier et al., 2006), 60-70% of patients with intracerebral he-
morrhage (ICH) (Fabricius et al., 2006; Helbok et al., 2017) and
50-60% of patients with severe traumatic brain injury (TBI) (Fabricius
et al., 2006; Hartings et al., 2011a). Animal experiments suggest that,
similar to electrographic seizures, SDs never occur spontaneously in
healthy brain (Dreier and Reiffurth, 2017; Hartings et al., 2017b).

Current gold standard for monitoring SDs in patients with TBI, ICH,
aSAH and MHS is electrocorticography (ECoG) with a collinear sub-
dural electrode strip (Dreier et al., 2017) (Fig. 1A). SD is observed as a
large, abrupt negative electrical potential shift in the direct current
(DC) frequency range of the ECoG below ~0.05 Hz, also called slow
potential change (SPC) (Fig. 1B) (Dreier et al., 2009; Hartings et al.,
2011b; Oliveira-Ferreira et al., 2010). This emanates from differences in
depolarization between soma and dendrites (Makarova et al., 2010).
The energy-dependent local duration of the DC shift indicates the local
duration of mass depolarization and cytotoxic edema and, hence, the
risk of injury at the recording site (Back et al., 1994; Dijkhuizen et al.,
1999; Hinzman et al., 2015; Nallet et al., 1999; Oliveira-Ferreira et al.,
2010). Changes in spontaneous activity are simultaneously recorded in
the alternate current (AC) frequency range of the ECoG above ~ 0.5 Hz.
In electrically active tissue, SD typically leads to cessation of the
spontaneous activity due to sodium channel inactivation, collapse of
ion gradients and suppression of synaptic transmission (Kager et al.,
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2002; Lindquist and Shuttleworth, 2017; Sawant-Pokam et al., 2017).
This has been called spreading depression of cortical activity (Fig. 1B)
(Leao, 1944).

Clusters of SDs are typically linked to complex global and/or focal
neurological deficits (Dreier and Reiffurth, 2015; Dreier et al., 2006).
Serial neuroimaging studies suggested that such clusters are associated
with ischemic lesion progression, especially when accompanied by
prolonged depression of activity (Dreier et al., 2012; Dreier and
Reiffurth, 2015; Dreier et al., 2006). Accordingly, SDs in electrically
inactive (= isoelectric) tissue, so called isoelectric SDs (Fig. 1B), were
associated with poor outcome in patients with TBI (Hartings et al.,
2011a) and, in parallel, SDs with prolonged depression periods were
linked to worse outcome in patients with aSAH (Dreier et al., 2012;
Winkler et al., 2017). Temporal clusters of SDs and persistent depres-
sion of spontaneous cortical activity can afford even remote detection of
ischemic zones because SDs propagate widely (Dreier et al., 2017;
Oliveira-Ferreira et al., 2010; Winkler et al., 2017).

Leao, however, also suggested that a single SD-induced spreading
depression of activity in normal and eloquent brain tissue is the pa-
thophysiological correlate of the mostly harmless migraine aura (Leao
and Morison, 1945). Case series using imaging of changes in regional
cerebral blood flow (rCBF) or its surrogates and magnetoencephalo-
graphy supported this notion (Bowyer et al., 2001; Hadjikhani et al.,
2001; Olesen et al., 1981; Woods et al., 1994). In previous imaging
studies of patients undergoing migraine aura, SD velocities of 2.2 (2.1,
2.5 (1st quartile, 3rd quartile)) and 3.5 = 1.1 mm/min were measured
using either the *3xenon intracarotideal injection method or functional
MRI of changes in the blood oxygen level-dependent (BOLD) signal
(Hadjikhani et al., 2001; Lauritzen et al., 1983). In a study of patients
with MHS undergoing decompressive hemicraniectomy, SD velocities
ranged between 1.7 and 9.2 mm/min using laser speckle imaging of
rCBF and imaging of the intrinsic optical signal (I0S) in the operating
room (Woitzik et al., 2013). However, in patients undergoing neuro-
monitoring in critical care, assessment of SD velocities has not been
possible until now. While time-of-SD-arrival-differences (TOAD) be-
tween adjacent electrodes are known (Strong et al., 2002), the or-
ientation of the SD wavefront relative to the collinear electrode strip
and the length of the propagation path along the brain surface between
electrodes are unknown. Therefore, in order to estimate SD velocity, we
here developed an algorithm for reconstructing SD trajectories of the
wave-front's curvature center based on MRI scans and TOADs between
different electrode pairs. We then compared the median algorithm-es-
timated SD velocities of twelve aSAH patients with different variables
indicating the tissue's susceptibility to SD such as the median interval
between SDs or the peak numbers of SDs, spreading depressions and
isoelectric SDs following the recent recommendations of the Co-Op-
erative Studies on Brain Injury Depolarizations (COSBID) (Dreier et al.,
2017). Statistically significant correlations supported the validity of the
here proposed method.

2. Materials and methods
2.1. General

Seventy aSAH patients were prospectively enrolled in COSBID be-
tween 04/2008 and 09/2012 at two centers (Campus Benjamin
Franklin and Campus Virchow Klinikum, Charité University Medicine
Berlin, Berlin, Germany) according to the following inclusion criteria:
(i) aSAH of World Federation of Neurosurgical Societies (WFNS) grade
I-V; (ii) age (= 18 years); (iii) ruptured saccular aneurysm proven by
computed tomography (CT)-angiography or digital subtraction angio-
graphy; (iv) symptom onset within the preceding 72 h; (v) either sur-
gical treatment of the aneurysm via craniotomy or, in coiled patients,
burr hole trepanation for placement of a ventricular drain or oxygen
sensor, which allows simultaneous placement of a subdural electrode
strip (Bruce and Bizzi, 2000; Dreier et al., 2009; Eross et al., 2009).
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Fig. 1. Methodological basis. (A) Wyler electrode strip placed on the cortical surface during craniotomy in a patient with aSAH. Note the subarachnoid blood clot in the lower left region.
(B) The first two SDs of a cluster are shown. The first SD starts in electrically active tissue. In electrically active tissue, SD induces spreading depression of activity. Such SDs in electrically
active tissue received the epithet “spreading depression”. The second SD starts in tissue that is still electrically inactive after the previous SD. Under this condition, SD is denoted with the
adjective “isoelectric” (Dreier et al., 2017). (C) Patch cut out from the brain and discretized in the form of a mesh. The cortical surface is mathematically modeled using a grid of triangles
in the three-dimensional space (= tessellation). The corners of the triangles are termed ‘vertices’.

Exclusion criteria for patient monitoring were SAH due to other causes
(e.g., trauma, fusiform or mycotic aneurysm), admission in a clinical
state with unfavorable prognosis (e.g., wide, nonreactive pupils for >
1 h), bleeding diathesis or pregnancy, unavailability of the monitoring
equipment and refusal of the patient or legal representative to partici-
pate in the study. The research protocol was approved by the local
ethics committee of the Charité University Medicine Berlin. Either in-
formed consent or surrogate informed consent was obtained for all
patients. Research was conducted in accordance with the Declaration of
Helsinki. The subdural electrode strip was targeted to the vascular
territory of the aneurysm-carrying vessel because this is often covered
with blood and, thus, a predilection site for delayed cerebral ischemia
(Dreier et al., 2017).

Twelve of the 70 patients met further screening criteria for inclusion
in the present study: (vi) at least one MRI without extensive pathology
that would preclude successful cortical surface reconstruction using
FreeSurfer (Martinos Center for Biomedical Imaging, Charlestown, MA,
USA, http://surfer.nmr.mgh.harvard.edu/); (vii) at least one CT scan
that displayed the collinear electrode strip; and (viii) the presence of
SDs hitting at least 3 electrodes of the subdural strip, required for the
algorithm. Demographic data for the 12 patients are shown in Table 1.

Aneurysmal SAH was diagnosed through interdisciplinary assess-
ment of CT scans by a neuroradiologist and a neurosurgeon.
Hemorrhage was graded according to the original Fisher scale (Fisher
et al., 1980), and clinical presentation on admission according to the
WENS scale. A study neurologist or neurosurgeon performed a neuro-
logical and general medical evaluation on admission. Baseline demo-
graphic data and clinical signs and symptoms of the initial hemorrhage
were recorded. The aneurysm was assessed using four-vessel digital
subtraction angiography, or a more restricted study when indicated.

After aneurysm treatment by either clip ligation or endovascular
coil embolization, all patients were transferred to the intensive care
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unit where the continuous neuromonitoring data were acquired for up
to 15 days. Glasgow Coma Score, blood gases, glucose and electrolytes
were documented at least every 6h. A thorough neurological ex-
amination was performed at least daily. Oral nimodipine was given
prophylactically. Transcranial Doppler-sonography was performed
daily as described previously (Dreier et al., 2012). MRI exam protocol
included a T2-weighted fluid-attenuated inversion recovery (FLAIR)
sequence, a T1-weighted sequence pre- and post-gadolinium, a T1-
weighted 3D high resolution sequence (i.e. magnetization prepared
rapid gradient echo (MPRAGE)), and a diffusion weighted imaging
(DWI) sequence. The first MRI was performed 24-48 h after aneurysm
treatment in order to assess the initial structural brain injury, the
second MRI around day 7 and the third one on the day of electrode
withdrawal (~day 15) to assess the occurrence of delayed ischemic
strokes during the ECoG monitoring period. In addition, serial CT scans
were performed at times of clinical deterioration. At the conclusion of
the monitoring period, the electrode strip was removed at the bedside
by gentle traction.

2.2. ECoG acquisition

ECoG was recorded with a subdural collinear electrode strip car-
rying six disk-shaped platinum electrodes, each 4 mm in total diameter
with 2 mm diameter of the contact surface and 10 mm distance be-
tween electrode centers (Ad-Tech Medical, Racine, Wisconsin, USA).
The strip was placed on cortex after craniotomy (Fig. 1A) or through an
extended burr-hole and connected to a GT-205 amplifier
(0.01-100 Hz). The near-DC/AC-ECoG signal was sampled at 200 Hz
with a PowerLab 16/SP analog/digital converter and LabChart software
(all by ADInstruments, New South Wales, Australia). In parallel the
electrode strip was connected to a DC-coupled BrainAmp amplifier
(0-100 Hz) (Brain Products GmbH, Munich, Germany) and the
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recorded DC/AC-ECoG data imported into the LabChart software. All
recorded signals were analyzed using monopolar montage against a
subdermal platinum needle electrode placed over the hemisphere ip-
silateral to the recording strip. DC/AC-ECoG data were used whenever
possible. However, they were replaced by the near-DC/AC-ECoG data in
case of recording problems, such as, for example, saturation of the DC
amplifier due to drifting. Following current recommendations, SDs in
electrically active tissue received the epithet “spreading depression”. By
contrast, SDs measured in a zone of electrically inactive tissue were
denoted with the adjective “isoelectric” (Fig. 1B) (Dreier et al., 2017).

2.3. Overview of the modeling approach

In order to reconstruct the potential SD trajectories and velocities
based on the TOADs, we chose to restrict the trajectories to the ones for
which the following assumptions held: (1) following the typically ob-
served pattern in animal experiments (Dahlem and Miiller, 2004;
Kaufmann et al., 2017; Kneer et al., 2014; Santos et al., 2014; Scholl
et al., 2017), the shape of the SD wave-front can be approximated by a
circular arc that propagates tangentially along the discretized brain
surface; (2) the radius of this arc is fairly constant; (3) the velocity of
the arc's center is fairly constant; (4) the SD center travels on geodesics
(shortest paths) from the point where it reaches one electrode to the
point at which it reaches the next electrode in temporal succession.

The trajectory reconstruction was a model fitting procedure that
searched in the class of models consistent with the assumptions as given
above. These assumptions are simplifying. Therefore, there were real
cases in which no model existed for the observed data and the trajectory
reconstruction hence failed. In practically all successful searches the
assumptions were not constraining enough to reduce the ambiguity to
the point where a single trajectory fit the data; therefore, the re-
construction produced groups of many potential trajectories. In this
context, we use “simulation” to describe the process of iterative ex-
tension (from electrode to electrode, in the order a given SD reached the
electrodes) of the set of potential trajectories, because it corresponds to
simulating/extending all those trajectories in parallel - not completing
one trajectory to the last electrode hit before starting describing the key
points of the next possible trajectory. The logical parallelism im-
plemented by grouping the partial trajectories by their end point ac-
celerates the search of the valid, observations-conform trajectories in
the huge space of the geometrical trajectories. Assumption number (4)
above is very strong, and is equivalent to requiring that the SD wave-
front travelled at the lowest velocity to explain the observed TOADs.
Without this assumption, any trajectory would be possible, although
many of those would require high velocities that are not biologically
plausible.

Between each two electrodes A and B (identified by their position
on the cortex), hit in succession by the SD, all trajectories on the dis-
cretized cortical surface were (virtually) retained that were between the
vertex (Fig. 1C) a in the neighborhood of A and the vertex b in the
neighborhood of B (a and b were candidate positions for the center of
the SD), provided that the distance between a and A approximately
matched the distance between b and B (their difference was upper-
bounded by a search parameter, R_diff). This condition enforced the
second assumption above. The velocity estimated for the trajectory
segment a-b was given by the times the SD hit A and B and the geodesic
distance on the cortical surface between a and b, according to our
fourth assumption.

Trajectory segments a-b (first electrode pair) and b-c (second
electrode pair) were joined into an a-c trajectory if and only if their
velocities approximately matched (maximum difference was upper-
bounded by a search parameter, V_diff). This filtering enforced our
third assumption. The process was repeated iteratively, extending the
partial trajectories with every new electrode-to-electrode hop and re-
taining only those trajectories for which a suitable extension existed.
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2.4. Imaging data preprocessing

Cortical reconstruction, including both gyri and sulci, was per-
formed with FreeSurfer. In brief, this processing comprises removal of
non-brain tissue (Segonne et al., 2004), automated Talairach transfor-
mation, segmentation of the subcortical white matter and deep grey
matter volumetric structures (Fischl et al., 2002), intensity normal-
ization, tessellation of the grey/white matter boundary, topology cor-
rection and surface deformation (Dale et al., 1999; Fischl and Dale,
2000) to produce representations of cortical thickness, which are cal-
culated as the closest distance from the grey/white matter boundary to
the grey matter/cerebrospinal fluid boundary at each vertex on the
surface. The reconstructed discrete brain surface generated by Free-
Surfer remains identical to the geometry of the resampled MRI images.
The reconstructed cortical surface can then be converted into a geo-
metric mesh by exporting it as an ASCII file with FreeSurfer's single-line
command. The structure of such ASCII files is very similar to the off-
format, which we used for the simulation after simple conversion with
Matlab. As a result, the cortical surface is mathematically modeled by a
grid of unequal triangles (= tessellation) (Fig. 1C). Such a surface is
termed a discrete non-Euclidean or discrete two-manifold surface. The
distance between two points (vertices) on a two-manifold surface is
given as the shortest distance along the surface, called geodesic dis-
tance. We used Matlab (MathWorks Inc., Natick, MA, USA) for data
processing and simulation, and the Dijkstra shortest path algorithm
(contained in the BOOST Graphic Library (BGL) toolbox) for computing
geodesic distances.

The electrodes from the CT images were obtained by simple
thresholding since the brain tissue ranges between 20 and
120 Hounsfield Units (HU) and metallic parts have values over 3000
HU. The surface of isolated electrodes was geometrically reconstructed
by Matlab's ‘isosurface’ function. To localize the electrodes on the
geometric mesh representing the cortical surface, we first rigidly co-
registered the CT scan with electrodes to the MRI scan reoriented and
resampled with FreeSurfer. Secondly, we estimated the centroids of
every reconstructed electrode using Matlab's ‘regionprops’ function.
Finally, we identified the vertices on the cortical mesh with the closest
Euclidean distance to the centroids. The final result was a discrete
cortical surface in form of a triangulated mesh with the known elec-
trode positions. This provided the spatial information for the simula-
tion.

2.5. Geometric data preprocessing

We up-sampled the geometric mesh because of the rounding error
that resulted from the inequality of triangles. To reduce the long
computation time we ran the simulation using a patch (Fig. 1C). This
patch was cut from the cortical mesh with 30 mm radius around each
electrode. To ensure that the space between electrodes and any point on
the patch's edge was never smaller than 30 mm, we computed the
shortest paths between each neighboring electrode and checked the
distances for every vertex on the path. Every patch was up-sampled by
doubling the number of the vertices twice (Table 1) according to the
spline interpolated 4-split method (Shirman, 1990). Up-sampling
slightly increased the number of could-fit solutions and improved the
results from the path search by Dijkstra's algorithm. The increase in
number of vertices by up-sampling for factor K also increased the
computation time required by a polynomial algorithm of order P for K'P
times. The original mesh generated by FreeSurfer often contains small
unnaturally edgy areas. We applied the Laplace operator to smooth the
curvature and set the parameters in order to retain the original lengths
of the edges and, thus, the original topology (Desbrun et al., 1999).
Only the angles between edges were changed so that the smoothing
predominantly affected the global curvature. From a vertex selected as
a disc's center, we calculated shortest paths to every other vertex of the
patch.
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é = 2.6. SD trajectory search procedure — parameters and details
¥ 2
< 0 The search for candidate trajectories of a given SD was performed in
.E § R~ a stepwise fashion by considering sub-trajectories for each pair of
neighboring electrodes that showed a time difference between SPC
onsets indicating a time of arrival delay of the respective SD (= TOAD).
The number of steps varied depending on the number of TOADs which
- ranged between two and five, or, respectively, a minimum of three and
o -‘g’ R a maximum of six active electrodes. A variable wave-front between sub-
é ‘q;: é E N 2 § trajectory sets was possible within the limits given by the maximally
allowed wave-front curvature radius difference (R_diff as introduced
above) and wave-front velocity difference (V_diff as introduced above),
respectively. Since the path search presumed a constant curvature ra-
dius and velocity of the wave-front within a single sub-trajectory, R_diff
g _ T 9 9 and V_diff allowed the simulation to compensate for small changes in
3 "’g N -J~| velocity, wave-front curvature and spatial shear between two neigh-
== ©oyoe boring sub-trajectory sets and a given electrode. A stepwise search for
the sets of sub-trajectories between individual electrode pairs also al-
lowed the simulation to compensate for more complex shapes of tra-
g jectories than the simple ones based exclusively on the shortest path
) _ 2 8 X search.
g §NE g § § Pre-set maxima of R_diff and V_diff were used to filter the con-
ml <2 - o @« necting candidates belonging to two consecutive sub-trajectory sets.
Candidates exceeding either of these two parameters were excluded.
Given a sufficiently large maximum radius, the region adjacent to each
electrode was considered with all vertices within the preset disk radius.
& & P The bipartite distances between each pair of vertices were pre-com-
g3 f:o 5 ‘é- g g -gan o puted and the trajectories were then iteratively “grown” starting from
=385 88 SRS zero-length partial trajectories and proceeding stepwise according to
the order of incidence. The zero-length trajectory seeds were all the
vertices in the region of the first electrode hit by the SD (step 1). At step
N all vertices around the corresponding electrode were considered as
® T, possible disk centers separately for each velocity subrange. All possible
g g f}g ' E‘ Tluesege pairs between currently possible partial trajectory endings around the
STEE2E83E| 232323 (N — D)th hit electrode and the vertices in the region of the Nth hit
electrode were considered with exclusion of pairs at which (i) the
segment velocity did not fit the fixed velocity subrange, or (ii) the
distance to the (N — 1)th electrode differed too greatly from the dis-
) & 2 o 1 tance to the Nth electr.ode. .
= o @ = The accepted velocity range was set between 0 and 15 mm/min per
§ § 5 § § § sub-trajectory set with a tolerance range V_diff between the sets. V_diff
was set in turn at three different values (0.25, 0.5, and 1 mm/min). The
accepted wave-front curvature radius was set between 0 and 5 mm per
single set with a tolerance range R_diff between the sets. R_diff was set
at two different values (0.5 and 1 mm). Finer granulation of V_diff
3= - e » values was not necessary since the number of solutions dropped dra-
§ g % § g matically at lower tolerance values. The wave-front radii of the simu-
lation tended to be very conservative in contrast to the velocity between
the sub-trajectory sets. The reason to set a lower limit for R _diff at
0.5 mm was the average edge length at around 0.25 mm as shown in
" Table 1. The upper limits for both V_diff (in mm/min) and R_diff (in
E _ HooH o H mm) were set at value 1. We repeatedly simulated for every pair of
e E BREIBY control parameters V_diff and R_diff, respectively. These numerical
o= fededs choices were a trade-off between computation time and the method's
sensitivity. Furthermore, the selected upper limit was a trade-off be-
tween realistic and unrealistic trajectory candidates based on our
knowledge from animal experiments. Every trajectory found was pos-
_ sible under the modeling assumptions and consistent with the observed
g = § E f TOADs between electrode pairs.
=1 <2 D The velocity of every SD was then calculated as a weighted ar-
3 ithmetic mean of the estimated velocities over the electrode-to-elec-
§ trode segments, with the TOADs as weights. The SD velocity over an
§ electrode-to-electrode segment was calculated as the arithmetic mean
- of the sub-trajectories' velocities on that segment, after quantization
% 2 S = v toward the central values of the velocity sub-ranges. The velocity sub-
&

ranges were defined for V_diff = 1 mm/min as = 1 mm/min intervals

529



D. Milakara et al.

around fifteen central values from 1 to 15 mm/min in 1 mm/min steps,
resulting in 2 mm/min intervals with 50% overlap between every two
neighbor ones.

2.7. Validation of results

In order to validate the explanatory accuracy of the simulation
model, we withheld part of the available information by removing one
of the electrode hits by a given SD and estimated the electrode hit times
on a random selection of 100 trajectories from the ones proposed,
taking the predicted SD radius and the predicted SD propagation ve-
locity into account. Some of the trajectories generated for this reduced
set of electrodes could no longer make a hit on the withheld electrode.
The first measure of quality of the modeling was the percentage of cases
where the predicted trajectory still predicted the withheld electrode
being reached by the SD area during its propagation. The second
measure of quality concerned the precision with which the electrode hit
time matched the observed time for the withheld electrode corrected
for velocity. This can be given as a spatial error between the trajectory
from the actual simulation and the validation trajectory.

2.8. Statistics

Data are given as median (1st, 3rd quartile). In the figures, the
whiskers (error bars) above and below the box indicate the 90th and
10th percentiles. Statistical tests are given in the text. P < 0.05 was
accepted as statistically significant. Note that only measurements
averaged over patients can be considered independent. To get statisti-
cally valid results, two strategies were applied: (1) Characteristics of
SDs of the same patient were summarized by medians calculated pa-
tientwise. Thus, significances are not inflated by possible cluster effects

Table 2

Neurolmage: Clinical 16 (2017) 524-538

of measurements within the same patient. (2) In some cases, pooled
analyses with “n” equal to the number of SDs were performed in ad-
dition when this provided additional information about the structure of
the data as explained in the discussion. In these analyses linear mixed
models were then applied with patient as random factor. To approach
normal distribution, values were logarithmically transformed for these
analyses related to SDs.

Standard ECoG analyses (Dreier et al., 2017) were performed by
MW, blinded to the clinical courses, neuroimaging findings and simu-
lation results. VK assessed the serial neuroimages for type of lesion,
location with respect to electrode strip and time point of infarct or
hemorrhage occurrence, blinded to the clinical courses, ECoG analyses
and simulation results. DM determined the TOADs and analyzed the DC
data under supervision of JD, and developed the algorithm in colla-
boration with CG and MD. DM's analysis of the DC shifts was based on
the recently published criteria by Hartings and colleagues (Hartings
et al., 2017a). DM, MW and VK were blinded to each other. JD and PM
performed the statistical analysis.

3. Results

In 12 patients, our simulations found potential trajectories (‘could
fit’ solutions) for 374 of 611 SDs (61.2%) using V_diff = 1 mm/min and
R_diff = 1 mm. Using lower tolerance values the number of successful
simulations decreased (Table 2). The median count of ‘could fit’ solu-
tions per SD was 4.18 x 10'® (Ist quartile, 3rd quartile: 1.43 x 10'2,
3.58 x 10'® trajectories). Fig. 2 shows the results of the trajectory
search for three SDs in patient 1. In these examples, overlapping ‘could
fit’ trajectories are color-coded as a heatmap.

For the 374 SDs, the median of the trajectory velocity was 3.6 (2.9,
5.2) mm/min. Since the simulation found ‘could fit’ trajectories for only

This table shows the number of successfully reconstructed SD events per subject and per combination of simulation parameters. R_diff represents the maximally allowed absolute
difference for the curvature radius of a wave-front between any candidate in the preceding and any candidate in the succeeding sub-trajectory set. V_diff represents the maximum absolute
velocity difference in otherwise the same way as R_diff does. A sub-trajectory set is related to the surface between a pair of consecutively activated electrodes in which the trajectory
reconstruction is possible according to the propagation model. The upper half of the table labeled as ‘full hit-sequence’ contains SD reconstruction counts based upon the time-lags, so
called TOADs, directly adopted from the ECoG recordings by the labeling of SD events. The lower half labeled as ‘reduced hit-sequence’ contains results based upon the hit-sequences with

removed branches.

Subject Simulated SDs R diff = 1 R diff = 1 R_diff = 1 R_diff = 0.5 R_diff = 0.5 R_diff = 0.5
v diff =1 V_diff = 0.5 V_diff = 0.25 Vv diff = 1 V_diff = 0.5 V_diff = 0.25
Full hit-sequences
1 129 66 (51.2%) 54 (41.9%) 42 (32.6%) 66 (51.2%) 53 (41.1%) 36 (27.9%)
2 7 2 (28.6%) 2 (28.6%) 2 (28.6%) 2 (28.6%) 2 (28.6%) 2 (28.6%)
3 86 64 (74.4%) 31 (36.0%) 26 (30.2%) 64 (74.4%) 30 (34.9%) 26 (30.2%)
4 25 23 (92.0%) 20 (80.0%) 20 (80.0%) 22 (88.0%) 20 (80.0%) 20 (80.0%)
5 45 25 (55.6%) 24 (53.3%) 24 (53.3%) 26 (57.8%) 24 (53.3%) 23 (51.1%)
6 41 32 (78.0%) 30 (73.2%) 30 (73.2%) 32 (78.0%) 30 (73.2%) 29 (70.7%)
7 5 4 (80.0%) 3 (60.0%) 2 (40.0%) 4 (80.0%) 2 40.0%) 2 (40.0%)
8 31 30 (96.8%) 29 (93.5%) 26 (83.9%) 30 (96.8%) 28 (90.3%) 26 (83.9%)
9 72 27 (37.5%) 25 (34.7%) 20 (27.8%) 27 (37.5%) 25 (34.7%) 20 (27.8%)
10 124 67 (54.0%) 65 (52.4%) 61 (49.2%) 67 (54.0%) 64 (51.6%) 60 (48.4%)
11 25 15 (60.0%) 13 (52.0%) 12 (48.0%) 15 (60.0%) 13 (52.0%) 12 (48.0%)
12 21 19 (90.5%) 18 (85.7%) 18 (85.7%) 19 (90.5%) 18 (85.7%) 18 (85.7%)
All 611 374 (61.2%) 314 (51.4%) 283 (46.3%) 374 (61.2%) 309 (50.6%) 274 (44.8%)

Reduced hit-sequences

1 129 112 (86.8%) 105 (81.4%)
2 7 4 (57.1%) 4 (57.1%)

3 86 65 (75.6%) 32 (37.2%)
4 25 23 (92.0%) 21 (84.0%)
5 45 40 (88.9%) 39 (86.7%)
6 41 27 (65.9%) 26 (63.4%)
7 5 4 (80.0%) 3 (60.0%)

8 31 31 (100.0%) 30 (96.8%)
9 72 52 (72.2%) 50 (69.4%)
10 124 98 (79.0%) 92 (74.2%)
11 25 25 (100.0%) 24 (96%)
12 21 21 (100.0%) 21 (100%)
All 611 502 (82.2%) 447 (73.2%)

94 (72.9%)
3 (42.9%)
26 (30.2%)
21 (84.0%)
39 (86.7%)
26 (63.4%)
2 (40%)

27 (87.1%)
45 (62.5%)
87 (70.2%)
24 (96.0%)
21 (100.0%)
415 (67.9%)

112 (86.8%)
4 (57.1%)
65 (75.6%)
22 (88.0%)
41 (91.1%)
27 (65.9%)
4 (80.0%)
31 (100.0%)
53 (73.6%)
97 (78.2%)
25 (100.0%)
21 (100.0%)
502 (82.2%)

104 (80.6%)
4 (57.1%)
31 (36.0%)
21 (84.0%)
39 (86.7%)
26 (63.4%)
2 (40.0%)
29 (93.5%)
50 (69.4%)
92 (74.2%)
24 (96.0%)
21 (100.0%)
443 (72.5%)

88 (68.2%)
3 (42.9%)
26 (30.2%)
21 (84.0%)
38 (84.4%)
25 (61.0%)
2 (40.0%)
27 (87.1%)
45 (62.5%)
85 (68.5%)
23 (92.0%)
21 (100.0%)
404 (66.1%)
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Fig. 2. Simulations of SD trajectories using full-hit se-
quences. In the upper left corner, the processing pipeline up
to the trajectory search is shown. In the upper right corner,
the reconstructed surface of patient 1's brain is given in-
cluding the subdural electrodes 1-6 and the patch around
the electrodes. The next row demonstrates the trajectory
search for three example SDs of patient 1 in the patch.
Overlapping ‘could fit’ trajectories are color-coded as a
heatmap in % relative to the total number of ‘could fit’
trajectories. This means that the higher the number of
‘could fit’ solutions including a given vertex on the brain
surface for an electrode pair, the lighter the color of the
respective vertex in the heatmap. In the lowest row, the
original DC recordings of the three example SDs are given.
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SD
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/""’/\'\'\ ,_///_J\?E___
SD
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T T 1 T T T 1 T
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61.2% of the total number of SDs, we also ran the simulation with
simplified SDs whenever branching or even more complex, non-long-
itudinal hit-sequences occurred (Fig. 3A). Branching describes a type of
SD in which the depolarization first arrived on any of the electrodes in
the middle of the strip (electrode 2 (E2), E3, E4 or E5) and continued
from there in two different directions. In cases of branching, we re-
moved either the shorter branch or the one that occurred later when the
two branches were of the same length. Under this condition, the
number of SDs in which the simulation found ‘could fit’ solutions rose
from 374 to 502 of 611 (82.2%) for V_diff = 1 mm/min and
R_diff = 1 mm (Table 2). For these reduced hit-sequences, the median
count of ‘could fit’ solutions per SD was 1.43 x 10'2 (1.01 x 10'%,
3.60 x 10'° trajectories). The median velocity was similar to the one
based on the full hit-sequences (3.6 (2.8, 4.8) mm/min). The velocity
histograms in Fig. 3C represent the velocities of all successfully simu-
lated SDs from all subjects at the tolerance values R_diff = 1 mm and
V_diff = 1 mm/min for the reduced hit-sequences.

The validation procedure was then performed for all subjects and all
successfully simulated SDs using one hundred randomly selected tra-
jectories per electrode triad within a single SD. The number of valida-
tion steps for a single SD depended on the total number of active
electrodes. Validation results were solely related to the middle elec-
trodes from the electrode triads. The results from the single steps of the
validation procedure were aggregated with equal weights. As the first
measure of quality we calculated the fraction of successful validations
relative to the total number of validation attempts. This was 90.4%
(338 out of 374 SDs) for the full hit-sequences and 94.8% (476 out of
502 SDs) for the reduced ones. The second measure of quality was the
spatial error between the validation trajectories and the trajectories
from either the full or reduced hit-sequence simulations. The spatial
error was — 2.2 (— 0.1, — 4.2, n = 338) mm with respect to the full hit-
sequences and —1.9 (0.2, —4.1, n = 476) mm with respect to the
reduced ones.

531

T T 1
10 20 30

The third and most important measure of quality was the biological
validation using variables that were not involved in the simulation
procedure. For this purpose, we investigated whether the median esti-
mated velocities based on the full and reduced hit-sequences correlated
with typical variables related to the tissue's susceptibility to SD. Notably
a high negative correlation was found between the median SD velocity
based on the reduced hit-sequences and the median interval between
SD and the previous SD (Fig. 4A). Significant correlations were also
found with the peak total SD-induced depression duration of a re-
cording day (PTDDD) (Dreier et al., 2017) (Fig. 4C) and the peak
numbers of SDs (Fig. 4D), spreading depressions (Fig. 4E) and iso-
electric SDs (Fig. 4F) of a recording day. No significant correlation was
found with age. The median SD velocities based on the full hit-se-
quences correlated significantly with the median interval between SD
and the previous SD (Spearman rank order correlation coefficient:
—0.58, P < 0.045, n = 12 patients) and the peak number of SDs of a
recording day (Spearman rank order correlation coefficient: 0.62,
P = 0.031, n = 12 patients) but not with the other variables (number
of correlations = 3). The median wave-front velocities assuming an
ideal linear spread along the recording strip, using either the inter-
electrode space of 10 mm or the shortest path along the brain surface,
did not correlate with any of these variables (Fig. 4B).

We also investigated whether SD velocities based on the reduced
hit-sequences and the SD interval between SD and the previous SD
correlated when all successfully simulated SDs were pooled. Though
this correlation was statistically significant, it was relatively weak
(Spearman rank order correlation coefficient: —0.10, P = 0.035,
n = 497 SDs). Moreover, in the double logarithmic linear mixed model,
taking into account single SDs and correcting for cluster effects, influ-
ences of speed and SD interval were not significant (P = 0.113).

The median longest DC shift among all electrodes of a given SD was
3.7 (3.2, 4.4) min, the median longest DC rise time was 1.6 (1.4, 2.0)
min and the median largest DC amplitude 5.9 (4.1, 7.2) mV (n = 12
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B Comparison of data from Woitzik et al. (2013) to velocity
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Fig. 3. Simulation-estimated velocity based on the reduced hit-sequences. (A) Simple branching of SDs was frequently observed. For example in the upper SD, the full hit-sequence E2-E3-
E4-E1-E5-E6 is a twin sequence starting at E2. From E2, one of the wave's branches hits E3-E4-E5-E6 and the other one E1. In cases of branching, we removed either the shorter branch or
the one that occurred later when the two branches were of the same length. In this case, E1 was removed. For this reduced hit-sequence, the trajectory search was successful. The lower SD
from the same patient shows a more complex type of branching. In this case, no trajectories were found for either full or reduced hit-sequences. This example SD is particularly interesting
because the unique moment was recorded at which it subdivided and appeared in form of a double peak DC shift in E2. Such double peak DC shifts could be longer than 4 min, though
they might not indicate local energy compromise. In the context of branching, we would like to refer previous videos of SDs in the gyrencephalic brain of swine in which this is visualized
using I0S imaging (Santos et al., 2014; Scholl et al., 2017). Neuroimaging excluded in this case that E1, E2 or E3 sampled from two adjacent gyri. (B) Using laser speckle imaging of rCBF
and I0S imaging in the operating room, Woitzik and colleagues recorded SD velocities between 1.7 and 9.2 mm/min in patients undergoing decompressive hemicraniectomy (Woitzik
et al., 2013). These historical data were fitted here to normal distribution and are compared with the simulation-estimated velocities of spreading depressions and isoelectric SDs based on
the reduced hit-sequences. (C) Frequency distributions of the simulation-estimated velocities for the reduced hit-sequences.

patients). DC duration and DC rise time showed a strongly positive
correlation (Fig. 4G). This was also highly significant for the pooled
data (Fig. 4H); the linear mixed model revealed a highly significant
effect (P < 10~ '%°). Only the pooled data showed significant corre-
lations of the DC shift amplitude with the DC shift duration (Spearman
rank order correlation coefficient: 0.20, linear mixed model:
P < 0.0001, n = 509 SDs). The correlation between DC shift ampli-
tude and DC rise time was not significant in the linear mixed model
(P = 0.092, n = 509 SDs).

Velocities of isoelectric SDs and spreading depressions were not
significantly different (3.9 (3.0, 4.8, n = 9 patients) versus 3.1 (2.6,
3.8, n = 12 patients) mm/min, reduced hit-sequences). Also their ve-
locity distributions were similar. They showed a good fit with previous
measurements of SD velocities in patients with MHS undergoing de-
compressive hemicraniectomy Fig. 3B) (Woitzik et al., 2013). Iso-
electric SDs demonstrated a significantly lower SD-SD interval than
spreading depressions in electrically active cortex (29.6 (26.6, 53.7,
n = 10 patients) min versus 113.7 (44.3, 178.7, n = 12 patients) min,
P = 0.011, Mann-Whitney Rank Sum Test) similar to previous ob-
servations in patients with aSAH (Winkler et al., 2017). Moreover, they
showed a significantly higher number of DC shifts lasting longer than
4 min (124 out of 174 isoelectric SDs (71.3%) versus 80 out of 336
spreading depressions (23.8%), P < 0.001, Chi-Square Test) similar to
previous observations in patients with aSAH and TBI (Hartings et al.,
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2011b; Oliveira-Ferreira et al., 2010).

Isoelectric SDs with DC shifts > 4 min were only observed in pa-
tients in whom the electrode strip was overlying either a primary or
secondary focal brain lesion (n = 7) but not in patients in whom the
electrode strip was located remote from focal brain lesions (n = 5)
(P = 0.010, Mann-Whitney Rank Sum Test, Fig. 5B, Table 1). The si-
mulation based on the reduced hit-sequences failed to find possible SD
trajectories in a significantly higher proportion of these isoelectric SDs
with DC shift durations > 4 min compared with the remaining SDs
(P < 0.001, Chi-Square Test, Fig. 5C). This suggests a higher propor-
tion of SDs with more complex propagation patterns in this subgroup.
Figs. 5D and 6 illustrate these results using example SDs measured in
the recording area during the evolution of delayed ischemic infarcts.
The median velocity of isoelectric SDs with DC shifts > 4 min was 3.4
(2.5, 3.9, n = 6 patients) mm/min and not different to that of the re-
maining SDs.

In addition to the occurrence of isoelectric SDs with DC shift
durations > 4 min, recording areas with primary or secondary focal
brain lesions (n = 7 patients) also differed significantly from recording
areas remote from focal brain lesions (n = 5 patients) in the PTDDD
(502.4 (355.2, 875.6) versus 179.0 (158.5, 206.5), P < 0.018, Mann-
Whitney Rank Sum Test), whereas differences in the other variables, as
shown in Fig. 5A, did not reach statistical significance.
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A Spearman rank order correlation coefficient: -0.804

E Spearman rank order correlation coefficient: 0.650
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Fig. 4. Statistical analyses of the simulation-estimated velocity
based on the reduced hit-sequences. (A) A significant correlation of

P <0.001 P=0.020
500 — n =12 patients 40 - n =12 patients median velocity (based on the reduced hit-sequences) and median
m.'E . interval between SD and previous SD was found. (B) By contrast,
4004 ° £ " o there was no correlation of median interval between SD and pre-
- 2 -
E £ g vious SD with the median velocity based on an ideal linear spread
=1 = o . . . . .
g 300 . ..g 2 ° along the recording strip (using the inter-electrode space of
T 50 . L . .
K] % 20 ° 10 mm). This is noteworthy because this type of velocity has been
200 . . P sps
g . € g P o used in all previous COSBID publications that reported SD velocities
1] .
@ 400 * b 2% 10 4 S to indicate the spread of the wave. Significant correlations of the
- o o
. . 8 ‘g median velocity (based on the reduced hit-sequences) were also
0 . * . |. |' v ’ = 0 . . . . . found with (C) the PTDDD, (D) the peak number of SDs, (E) the
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4. Discussion completely inhibits the a,/as isoforms and partially inhibits the a;
isoform (Major et al., 2017). This not only evened out the difference in
SD susceptibility between the two areas but also facilitated the invasion
of SD from area CA1 to area CA3 (Haglund and Schwartzkroin, 1990). A
significantly increased SD velocity in parallel with an increased sus-
ceptibility to SD was found in genetically modified mice, in which as-
trocyte-directed inactivation of Cx43 decreased astrocytic gap junc-
tional communication (Theis et al., 2003). A similar correlation was
also found in mouse models of familial hemiplegic migraine type 1, a
rare Mendelian model disease of migraine with aura (Cain et al., 2017
van den Maagdenberg et al., 2004). Further, this link was noted in
acquired metabolic disruptions. For example, pathologically low con-
centrations of nitric oxide (NO) enhanced the susceptibility to SD in
vivo and in brain slices in rodents (Petzold et al., 2008; Petzold et al.,
2005), and conversely, elevated NO reduced the propagation velocity of

Collinear subdural electrode strips are used in neurocritical care
rather than electrode grids though grids would ease the calculation of
SD velocities. This is because strips can be removed at the bedside by
gentle traction whereas withdrawal of grids requires another neuro-
surgical intervention in the operating room with the known potential
risks for the patient. Yet in order to estimate SD velocities in neuro-
critical care, an algorithm was developed here. For the biological va-
lidation of this, we exploited the well-established relationship between
SD velocity and the tissue's susceptibility to SD based on animal ex-
periments. For example, the hippocampal area CA3 of immature rabbits
is less susceptible to SD than area CA1, which was attributed to a higher
Na,K-ATPase activity of area CA3 (Haglund et al., 1985). The Na,K-
ATPase blocker ouabain was then applied at a concentration in which it
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Fig. 5. Comparison between recording areas undergoing structural damage (n = 7 patient) and recording areas distant from zones undergoing structural damage (n = 5 patients). (A)
Among the standard variables recommended by the COSBID group (Dreier et al., 2017), a significant difference was found only for PTDDD. However, the statistical power of these tests
was low. (B) Isoelectric SDs with DC shifts > 4 min were only observed in patients in whom the electrode strip was overlying either a primary or secondary focal brain lesion. This
corresponds well with the animal literature (Hartings et al., 2017b). (C) The simulation based on the reduced hit-sequences failed to find possible SD trajectories in a significantly higher
proportion of isoelectric SDs with DC shift durations > 4 min compared with the remaining SDs. (D) The third SD of three consecutive SDs in a cluster of isoelectric SDs with DC shift
durations > 4 min is an example, taken from patient 10, that illustrates the statistical results in (C). The simulation failed to find possible SD trajectories in this SD, no matter whether
full or reduced hit-sequences were used. The first three traces show short-lasting spreading ischemias in response to the SDs (Dreier et al., 2009). Regional CBF was measured with a
subdural opto-electrode strip that allowed the simultaneous measurement of ECoG and rCBF using laser-Doppler flowmetry (Perimed AB, Jérfilla, Sweden) (Dreier et al., 2009;
Drenckhahn et al., 2016). Cerebral perfusion pressure results from the subtraction of the intracranial pressure (monitored via ventricular drainage catheter) from the mean arterial
pressure (catheter in the radial artery). Tissue partial pressure of oxygen was recorded using an intraparenchymal sensor (Licox CC1P1, Integra Lifesciences Corporation, Plainsboro, NJ,
USA) (Bosche et al., 2010; Dreier et al., 2009; Hinzman et al., 2014; Winkler et al., 2017). ** indicates that the P-value or probability value for the statistical comparisons given in the
figure is < 0.01 when the null hypothesis is true; *** indicates that it is < 0.001 when the null hypothesis is true (cf. body text for the applied statistical tests).

SD in the chicken retina (Ulmer et al., 1995). Because of the experi- diffuse to adjacent neurons where they trigger a self-propagating re-
mentally and clinically well-established decline in NO availability fol- generative process. This concept entails the re-induction of SD at every
lowing aSAH, the latter may have particular relevance to the patient spot in the tissue reached by the SD wave and might therefore well
population investigated in this study (Dreier, 2011; Pluta et al., 2009). explain why SD velocity and susceptibility correlate.

Also various drugs including anesthetics with concurrent effects on SD
velocity and susceptibility might have relevance to our patient popu-
lation (Dhir et al., 2012; Kudo et al., 2008; Marrannes et al., 1988). The 4.1. SD propagation shows anisotropy
same applies to female hormones and their modulatory effects because

the majority of aSAH patients are women (Eikermann-Haerter et al., The propagation of SD usually shows deviations from concentricity
2009). Finally, SD velocity and susceptibility showed concurrent in both liss- and gyrencephalic brains (Kaufmann et al., 2017; Santos
changes with age. Thus, young rats were more prone to develop SDs et al., 2017). An apparent tropism of SD for superficial layers, rather
and SD velocities were higher (Hablitz and Heinemann, 1989; than deeper layers of cortex, has been repeatedly reported (Basarsky
Maslarova et al., 2011; Menyhart et al., 2015). In the present study, the et al., 1998; Bogdanov et al.,, 2011; Grafstein, 1956; Herreras and
influence of age was however not statistically significant. This may Somjen, 1993; Richter and Lehmenkuhler, 1993). Cytoarchitectonic
have several reasons: only adults were included, the study was rela- peculiarities also affect the propagation in the horizontal plane (Chen
tively small and other modulatory factors may be stronger in this se- et al., 2006; Eiselt et al., 2004; Ledo and Morison, 1945). The exact
verely diseased patient population. mechanisms underlying this anisotropy have remained enigmatic but

The propagation process of SD is discussed controversially as re- myelin content, neuron-astrocyte ratio and vascular anatomy have all
viewed recently (Dreier and Reiffurth, 2015). Accordingly, also the been advanced as possible explanations (Fujita et al., 2016; Merkler
question of how SD velocity and susceptibility are mechanistically et al., 2009; Santos et al., 2014). The present observations in humans
linked has not been fully elucidated. However, the propagation process are in line with this anisotropy in animals. In particular, we found a
is generally regarded as a reaction/diffusion rather than a simple dif- relatively high proportion of SDs that branch or propagate hetero-
fusion mechanism (Zandt et al., 2013). It is thus assumed that neurons geneously, as found previously with imaging of the gyrencephalic swine
release neuroactive substances such as potassium or glutamate, which brain (Santos et al., 2014). The frequency of branching necessitated use

of the algorithm with the reduced rather than the full SD hit-sequences.
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Intervals between repeated SD waves also vary with propagation
patterns and susceptibility. For instance, the first SD in the otherwise
healthy gyrencephalic brain of cats usually spreads with an elliptical wa-
vefront over the ipsilateral cerebral hemisphere whereas succeeding SDs
often remained within the originating gyrus, were slower, more frag-
mented and varied in number (James et al., 1999). A similar decline in
susceptibility to SD after the first event was also observed in rodents (Chen
et al., 2006; Kaufmann et al., 2017; Sukhotinsky et al., 2011). Accordingly,
imaging studies in migraineurs suggested that an isolated SD often affects
large parts of the hemisphere (Hadjikhani et al., 2001; Lauritzen, 1994;
Olesen et al., 1981; Woods et al., 1994) although the representation fields
responsible for the visual percept seem to be relatively small (Dahlem and
Hadjikhani, 2009). However, repeated SDs in humans were often re-
stricted to a single gyrus as assessed with laser speckle imaging in the
operating room in patients with MHS (Woitzik et al., 2013).

Nonetheless, velocity and interval to the previous SD correlated
only weakly in our study when every SD was considered in form of a
pooled SD-related (versus patient-related) analysis. A strong correlation
was merely found between these variables in the patient-related ana-
lysis based on medians, thus averaging the data. This result supports
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Fig. 6. Development of a delayed ischemic infarct after aSAH in pa-
tient 3. Upper: Diffusion-weighted MRI (DWI) shows an infarct in the
posterior territory of the left middle cerebral artery (MCA) on day 3
(upper left image). On day 7, a new delayed ischemic infarct is vi-
sualized in the left anterior MCA territory including the recording
area (lower left image). In the middle images, the ischemic lesions are
marked in blue (A = early and B = delayed infarct). The blue regions
of interest originate from DWI (b = 1000) images superimposed onto
geometrically discretized (triangular mesh) whole brain taken as
MPRAGE sequence from the same subject. The region of interest
threshold was set at 2/3 of the maximum value. On the right side, the
reconstructed brain surfaces are depicted. Also on the reconstructed
cortical surfaces, the DWI lesions are marked in blue. The subdural
recording strip was projected from a CT onto the cortical surface
(yellow electrodes 1 to 6). Note that, apart from electrode 1, all
electrodes overlay the new delayed infarct. Lower: DC/AC-ECoG re-
cordings of the two initial SDs of a cluster that occurred on day 4 after
aSAH between the two MRIs of days 3 and 7. Based on our knowledge
of the electrophysiological signature of stroke in animal experiments,
the cluster was presumably the correlate of the new infarct. Whereas
the simulation found possible trajectories for the first SD, it failed to
do so for the second one. This provides another example illustrating
that the simulation did not find possible SD trajectories in a sig-
nificantly higher proportion of isoelectric SDs with DC shift dura-
tions > 4 min compared with the remaining SDs. Also note that the
SDs are superimposed on a negative ultraslow potential (red arrows)
as explained recently (Dreier et al., 2017). Traces are similar to Fig. 5.
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strong constitutional (e.g. genetic, disease- or drug-related) components
with general influence on both variables rather than a direct depen-
dence between these two variables. In this context it is worth noting
that the recorded interval to the preceding SD depends above all on the
local conditions where a given SD arises (Dreier et al., 2017; Winkler
et al., 2017), but depends only secondarily on the transmission of the
SD from its site of origin to the recording site. By contrast, the recorded
velocity is merely determined by the conditions at the recording site.
In contrast to the correlation of velocity and interval to the previous SD,
not only medians of DC durations and DC rise times but also pooled data
showed highly significant correlation. This suggests a direct dependence of
these two variables, which are merely determined by the local tissue
conditions at the recording site. This statistical result is consistent with
observations that the ultraslow negative potential of prolonged SDs does
not usually ascend abruptly in subdural recordings (Dreier et al., 2017).

4.2. More complex propagation patterns of isoelectric SDs with prolonged
DC shifts

It has been established in numerous animal studies that the local
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duration of the DC shift is energy-dependent, indicates the local dura-
tion of the cytotoxic edema and, hence, the risk of injury at the re-
cording site (Back et al., 1994; Dijkhuizen et al., 1999; Hartings et al.,
2003; Nallet et al., 1999; Oliveira-Ferreira et al., 2010). Moreover, it
has been noted for decades that zones with prolonged negative DC
shifts become electrically inactive (Astrup et al., 1981; Hossmann,
1994; Koroleva and Bures, 1996; Oliveira-Ferreira et al., 2010). For the
first time, we here provide corresponding statistical evidence in pa-
tients, based on MRI findings and ECoG recordings, that isoelectric SDs
with prolonged DC shifts exclusively occur in recording areas under-
going irreversible damage. The velocity of such SDs was not sig-
nificantly different from the velocity of other SDs. Largely overlapping
SD velocities between well-nourished and energetically compromised
tissue correspond well with previous in vitro and in vivo studies in
rodents (Aitken et al., 1998; Bere et al., 2014a; Farkas et al., 2010;
Jarvis et al., 2001). These findings render it unlikely that changes in SD
velocity are useful as an early warning sign of impending ischemia in
the individual patient. However, trajectory reconstruction of those SDs
failed significantly more often, according to the notion based on animal
experiments that their propagation paths can become exceedingly
complex (Bere et al., 2014b; Nakamura et al., 2010; Scholl et al., 2017).
In concert with other parameters such as the SD frequency and the
durations of depressions and DC shifts (Dreier et al., 2017), this could
possibly be used as a tool to monitor alarming development in the in-
dividual patient. The strongest deviation from concentricity is their
reverberation due to continuous cycling. This was first demonstrated in
rats in vivo by Shibata and Bures who performed a surgical lesion of the
cortex to impose a pathway of cyclical propagation (Shibata and Bures,
1972). A similar approach also resulted in cycling in the isolated
chicken retina (Martins-Ferreira et al., 1974). Cycling of SD was
moreover observed around electrically stimulated areas, epileptic foci
or ischemic zones (Koroleva and Bures, 1979; Nakamura et al., 2010). It
has been advanced as an explanation for the periodicity in clusters of
SDs (Nakamura et al., 2010; Santos et al., 2017; Scholl et al., 2017).

4.3. Limitations

A limitation of our study was the small size with 12 patients. This
was due to the fact that the MRI segmentation sequence of FreeSurfer is
optimized for analyzing human brains free of pathology. However, an
exceedingly large number of the 70 screened patients had significant
pathologies including grey matter edema or missing parts of the skull.
This often rendered FreeSurfer unable to geometrically reconstruct the
cortical surface. Even manual correction of the segmentation frequently
failed. Moreover, the simulation required at least three active elec-
trodes but patients often showed either no SDs or SDs hitting less than
three recording electrodes.

We should also like to indicate that we only used a simple arc as
wave front on the discretized brain surface although the front of SD
typically shows a depolarized zone of time-varying width both in liss-
and gyrencephalic animal cortex whose spatial extent locally depends
(i) on the time necessary for the energy-dependent repolarization after
the local SD onset, (ii) on the local velocity, and (ii) probably also on
the curvature of the local gyrification pattern (Dahlem and Miiller,
2004; Kaufmann et al., 2017; Kneer et al., 2014; Santos et al., 2014;
Scholl et al., 2017). It is, however, unlikely that the widths of the de-
polarized zones significantly impact on the velocities because, in ani-
mals, SDs under normoxic and hypoxic conditions strongly differ in
widths of the depolarized zones but SD velocities are similar (Aitken
et al., 1998). Yet the shape of the wave fronts might still deviate more
from a simple arc in zones undergoing injury. This could be among the
reasons why the simulation more often failed to find possible SD tra-
jectories for isoelectric SDs with DC shifts > 4 min than for other SDs.

The class of trajectories that we considered was limited according to
the four assumptions we made. Whereas the first three assumptions
have a biological justification, assumption (4) that the trajectory can
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abandon a geodesic (“change direction”) only when the SD hits an
electrode is rather artificial and is a compromise between the limited
data available for model fitting and the richness of the models.
Another limitation was that the onset of SD at a given electrode can
be subjective. However, all simulations were completed before the
statistical analysis started. Further, simulation and statistical analysis
were performed by different investigators so that the statistical analysis
could not influence the TOADs on which the simulations were based.

5. Conclusions

We established a novel algorithm enabling the estimation of SD
velocities in patients monitored in neurocritical care. The validity of the
algorithm was supported by the fact that the fundamental relationship
between SD velocity and susceptibility was similar to that reported in
experimental animals. Our findings establish the opportunity to exploit
this variable as part of the multimodal assessment in neurocritical care.
For example, it was found in previous studies that the peak number of
SDs of a recording day was significantly higher in patients who later
developed post-hemorrhagic epilepsy (Dreier et al., 2012) and that
isoelectric SDs and a high PTDDD were associated with poor patient
outcome (Dreier et al., 2012; Hartings et al., 2011a; Winkler et al.,
2017). Based on the correlations identified here, it would be interesting
to investigate whether a high median SD velocity is also associated with
these risks. However, in order to render this variable available to a
larger patient population, better methods for geometrical reconstruc-
tion of brains with severe pathology would be required.

Acknowledgements

This work was supported by the Bundesministerium fiir Bildung und
Forschung (Center for Stroke Research Berlin, 01 EO 0801; BCCN
01GQ1001C B2) and NeuroCure SESAH (EXC 257/2) to Dr. Dreier JP
and Deutsche Forschungsgemeinschaft (DFG DR 323/5-1) to Drs. Dreier
JP, Martus P, and Woitzik J and Mayfield Education and Research
Foundation to Dr. Hartings JA.

References

Aitken, P.G., Tombaugh, G.C., Turner, D.A., Somjen, G.G., 1998. Similar propagation of
SD and hypoxic SD-like depolarization in rat hippocampus recorded optically and
electrically. J. Neurophysiol. 80, 1514-1521.

Astrup, J., Siesjo, B.K., Symon, L., 1981. Thresholds in cerebral ischemia - the ischemic
penumbra. Stroke 12, 723-725.

Back, T., Kohno, K., Hossmann, K.A., 1994. Cortical negative DC deflections following
middle cerebral artery occlusion and KCl-induced spreading depression: effect on
blood flow, tissue oxygenation, and electroencephalogram. J. Cereb. Blood Flow
Metab. 14, 12-19.

Basarsky, T.A., Duffy, S.N., Andrew, R.D., MacVicar, B.A., 1998. Imaging spreading de-
pression and associated intracellular calcium waves in brain slices. J. Neurosci. 18,
7189-7199.

Bere, Z., Obrenovitch, T.P., Bari, F., Farkas, E., 2014a. Ischemia-induced depolarizations
and associated hemodynamic responses in incomplete global forebrain ischemia in
rats. Neuroscience 260, 217-226.

Bere, Z., Obrenovitch, T.P., Kozak, G., Bari, F., Farkas, E., 2014b. Imaging reveals the
focal area of spreading depolarizations and a variety of hemodynamic responses in a
rat microembolic stroke model. J. Cereb. Blood Flow Metab. 34, 1695-1705.

Bogdanov, V.B., Multon, S., Chauvel, V., Bogdanova, O.V., Prodanov, D., Makarchuk,
M.Y., Schoenen, J., 2011. Migraine preventive drugs differentially affect cortical
spreading depression in rat. Neurobiol. Dis. 41, 430-435.

Bosche, B., Graf, R., Ernestus, R.I., Dohmen, C., Reithmeier, T., Brinker, G., Strong, A.J.,
Dreier, J.P., Woitzik, J., 2010. Recurrent spreading depolarizations after SAH de-
crease oxygen availability in human cerebral cortex. Ann. Neurol. 67, 607-617.

Bowyer, S.M., Aurora, K.S., Moran, J.E., Tepley, N., Welch, K.M., 2001.
Magnetoencephalographic fields from patients with spontaneous and induced mi-
graine aura. Ann. Neurol. 50, 582-587.

Bruce, D.A.,, Bizzi, J.W., 2000. Surgical technique for the insertion of grids and strips for
invasive monitoring in children with intractable epilepsy. Childs Nerv. Syst. 16,
724-730.

Budde, M.D., Frank, J.A., 2010. Neurite beading is sufficient to decrease the apparent dif-
fusion coefficient after ischemic stroke. Proc. Natl. Acad. Sci. U. S. A. 107, 14472-14477.

Cain, S.M., Bohnet, B., LeDue, J.M., Yung, A.C., Garcia, E., Tyson, J.R., Alles, S.R.H., Han,
H., Van den Maagdenberg, A.M., Kozlowski, P., MacVicar, B.A., Snutch, T.P., 2017. In
vivo imaging reveals that pregabalin inhibits cortical spreading depression and


http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0005
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0005
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0005
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0010
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0010
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0015
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0015
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0015
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0015
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0020
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0020
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0020
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0025
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0025
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0025
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0030
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0030
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0030
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0035
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0035
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0035
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0040
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0040
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0040
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0045
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0045
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0045
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0050
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0050
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0050
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0055
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0055
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0060
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0060
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0060

D. Milakara et al.

propagation to subcortical brain structures. Proc. Natl. Acad. Sci. U. S. A. 114,
2401-2406.

Chen, S., Li, P., Luo, W., Gong, H., Zeng, S., Luo, Q., 2006. Time-varying spreading de-
pression waves in rat cortex revealed by optical intrinsic signal imaging. Neurosci.
Lett. 396, 132-136.

Dahlem, M.A., Hadjikhani, N., 2009. Migraine aura: retracting particle-like waves in
weakly susceptible cortex. PLoS One 4, e5007.

Dahlem, M.A., Miiller, S.C., 2004. Reaction-diffusion waves in neuronal tissue and the
window of cortical excitability. Ann. Phys. 13, 442-449.

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical surface-based analysis. I. Segmentation
and surface reconstruction. Neurolmage 9, 179-194.

de Crespigny, A., Rother, J., van Bruggen, N., Beaulieu, C., Moseley, M.E., 1998. Magnetic
resonance imaging assessment of cerebral hemodynamics during spreading depres-
sion in rats. J. Cereb. Blood Flow Metab. 18, 1008-1017.

de Crespigny, A.J., Rother, J., Beaulieu, C., Moseley, M.E., Hoehn, M., 1999. Rapid
monitoring of diffusion, DC potential, and blood oxygenation changes during global
ischemia. Effects of hypoglycemia, hyperglycemia, and TTX. Stroke 30, 2212-2222.

Desbrun, M., Meyer, M., Schréder, P., Barr, A.H., 1999. Implicit fairing of irregular me-
shes using diffusion and curvature flow. In: SIGGRAPH 99 Conference Proceedings,
pp. 317-324.

Dhir, A., Lossin, C., Rogawski, M.A., 2012. Propofol hemisuccinate suppresses cortical
spreading depression. Neurosci. Lett. 514, 67-70.

Dijkhuizen, R.M., Beekwilder, J.P., van der Worp, H.B., Berkelbach van der Sprenkel,
J.W., Tulleken, K.A., Nicolay, K., 1999. Correlation between tissue depolarizations
and damage in focal ischemic rat brain. Brain Res. 840, 194-205.

Dohmen, C., Sakowitz, O.W., Fabricius, M., Bosche, B., Reithmeier, T., Ernestus, R.1.,
Brinker, G., Dreier, J.P., Woitzik, J., Strong, A.J., Graf, R., 2008. Spreading depolar-
izations occur in human ischemic stroke with high incidence. Ann. Neurol. 63, 720-728.

Dreier, J.P., 2011. The role of spreading depression, spreading depolarization and
spreading ischemia in neurological disease. Nat. Med. 17, 439-447.

Dreier, J.P., Reiffurth, C., 2015. The stroke-migraine depolarization continuum. Neuron
86, 902-922.

Dreier, J.P., Reiffurth, C., 2017. Exploitation of the spreading depolarization-induced
cytotoxic edema for high-resolution, 3D mapping of its heterogeneous propagation
paths. Proc. Natl. Acad. Sci. U. S. A. 114, 2112-2114.

Dreier, J.P., Woitzik, J., Fabricius, M., Bhatia, R., Major, S., Drenckhahn, C., Lehmann,
T.N., Sarrafzadeh, A., Willumsen, L., Hartings, J.A., Sakowitz, O.W., Seemann, J.H.,
Thieme, A., Lauritzen, M., Strong, A.J., 2006. Delayed ischaemic neurological deficits
after subarachnoid haemorrhage are associated with clusters of spreading depolar-
izations. Brain 129, 3224-3237.

Dreier, J.P., Major, S., Manning, A., Woitzik, J., Drenckhahn, C., Steinbrink, J., Tolias, C.,
Oliveira-Ferreira, A.L, Fabricius, M., Hartings, J.A., Vajkoczy, P., Lauritzen, M.,
Dirnagl, U., Bohner, G., Strong, A.J., 2009. Cortical spreading ischaemia is a novel
process involved in ischaemic damage in patients with aneurysmal subarachnoid
haemorrhage. Brain 132, 1866-1881.

Dreier, J.P., Major, S., Pannek, H.W., Woitzik, J., Scheel, M., Wiesenthal, D., Martus, P.,
Winkler, M.K., Hartings, J.A., Fabricius, M., Speckmann, E.J., Gorji, A., 2012.
Spreading convulsions, spreading depolarization and epileptogenesis in human cer-
ebral cortex. Brain 135, 259-275.

Dreier, J.P., Isele, T., Reiffurth, C., Offenhauser, N., Kirov, S.A., Dahlem, M.A., Herreras,
0., 2013. Is spreading depolarization characterized by an abrupt, massive release of
Gibbs free energy from the human brain cortex? Neuroscientist 19, 25-42.

Dreier, J.P., Fabricius, M., Ayata, C., Sakowitz, O.W., William Shuttleworth, C., Dohmen,
C., Graf, R., Vajkoczy, P., Helbok, R., Suzuki, M., Schiefecker, A.J., Major, S., Winkler,
M.K., Kang, E.J., Milakara, D., Oliveira-Ferreira, A.L, Reiffurth, C., Revankar, G.S.,
Sugimoto, K., Dengler, N.F., Hecht, N., Foreman, B., Feyen, B., Kondziella, D.,
Friberg, C.K., Piilgaard, H., Rosenthal, E.S., Westover, M.B., Maslarova, A., Santos, E.,
Hertle, D., Sanchez-Porras, R., Jewell, S.L., Balanca, B., Platz, J., Hinzman, J.M.,
Luckl, J., Schoknecht, K., Scholl, M., Drenckhahn, C., Feuerstein, D., Eriksen, N.,
Horst, V., Bretz, J.S., Jahnke, P., Scheel, M., Bohner, G., Rostrup, E., Pakkenberg, B.,
Heinemann, U., Claassen, J., Carlson, A.P., Kowoll, C.M., Lublinsky, S., Chassidim, Y.,
Shelef, I., Friedman, A., Brinker, G., Reiner, M., Kirov, S.A., Andrew, R.D., Farkas, E.,
Guresir, E., Vatter, H., Chung, L.S., Brennan, K.C., Lieutaud, T., Marinesco, S., Maas,
A.L, Sahuquillo, J., Dahlem, M.A., Richter, F., Herreras, O., Boutelle, M.G., Okonkwo,
D.O., Bullock, M.R., Witte, O.W., Martus, P., van den Maagdenberg, A.M., Ferrari,
M.D., Dijkhuizen, R.M., Shutter, L.A., Andaluz, N., Schulte, A.P., MacVicar, B.,
Watanabe, T., Woitzik, J., Lauritzen, M., Strong, A.J., Hartings, J.A., 2017.
Recording, analysis, and interpretation of spreading depolarizations in neurointen-
sive care: review and recommendations of the COSBID research group. J. Cereb.
Blood Flow Metab. 37, 1595-1625.

Drenckhahn, C., Windler, C., Major, S., Kang, E.J., Scheel, M., Vajkoczy, P., Hartings, J.A.,
Woitzik, J., Dreier, J.P., group, C.s, 2016. Complications in aneurysmal subarachnoid
hemorrhage patients with and without subdural electrode strip for electro-
corticography. J. Clin. Neurophysiol. 33, 250-259.

Eikermann-Haerter, K., Dilekoz, E., Kudo, C., Savitz, S.I., Waeber, C., Baum, M.J., Ferrari,
M.D., van den Maagdenberg, A.M., Moskowitz, M.A., Ayata, C., 2009. Genetic and
hormonal factors modulate spreading depression and transient hemiparesis in mouse
models of familial hemiplegic migraine type 1. J. Clin. Invest. 119, 99-109.

Eiselt, M., Giessler, F., Platzek, D., Haueisen, J., Zwiener, U., Rother, J., 2004.
Inhomogeneous propagation of cortical spreading depression-detection by electro-
and magnetoencephalography in rats. Brain Res. 1028, 83-91.

Eross, L., Bago, A.G., Entz, L., Fabo, D., Halasz, P., Balogh, A., Fedorcsak, 1., 2009.
Neuronavigation and fluoroscopy-assisted subdural strip electrode positioning: a
simple method to increase intraoperative accuracy of strip localization in epilepsy
surgery. J. Neurosurg. 110, 327-331.

Fabricius, M., Fuhr, S., Bhatia, R., Boutelle, M., Hashemi, P., Strong, A.J., Lauritzen, M.,

537

Neurolmage: Clinical 16 (2017) 524-538

2006. Cortical spreading depression and peri-infarct depolarization in acutely injured
human cerebral cortex. Brain 129, 778-790.

Farkas, E., Bari, F., Obrenovitch, T.P., 2010. Multi-modal imaging of anoxic depolariza-
tion and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex.
NeuroImage 51, 734-742.

Fischl, B., Dale, A.M., 2000. Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proc. Natl. Acad. Sci. U. S. A. 97, 11050-11055.

Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., van der Kouwe,
A., Killiany, R., Kennedy, D., Klaveness, S., Montillo, A., Makris, N., Rosen, B., Dale,
A.M., 2002. Whole brain segmentation: automated labeling of neuroanatomical
structures in the human brain. Neuron 33, 341-355.

Fisher, C.M., Kistler, J.P., Davis, J.M., 1980. Relation of cerebral vasospasm to sub-
arachnoid hemorrhage visualized by computerized tomographic scanning.
Neurosurgery 6, 1-9.

Fujita, S., Mizoguchi, N., Aoki, R., Cui, Y., Koshikawa, N., Kobayashi, M., 2016.
Cytoarchitecture-dependent decrease in propagation velocity of cortical spreading
depression in the rat insular cortex revealed by optical imaging. Cereb. Cortex 26,
1580-1589.

Grafstein, B., 1956. Locus of propagation of spreading cortical depression. J.
Neurophysiol. 19, 308-316.

Hablitz, J.J., Heinemann, U., 1989. Alterations in the microenvironment during spreading
depression associated with epileptiform activity in the immature neocortex. Brain
Res. Dev. Brain Res. 46, 243-252.

Hadjikhani, N., Sanchez Del Rio, M., Wu, O., Schwartz, D., Bakker, D., Fischl, B., Kwong,
K.K., Cutrer, F.M., Rosen, B.R., Tootell, R.B., Sorensen, A.G., Moskowitz, M.A., 2001.
Mechanisms of migraine aura revealed by functional MRI in human visual cortex.
Proc. Natl. Acad. Sci. U. S. A. 98, 4687-4692.

Haglund, M.M., Schwartzkroin, P.A., 1990. Role of Na-K pump potassium regulation and
IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J.
Neurophysiol. 63, 225-239.

Haglund, M.M., Stahl, W.L., Kunkel, D.D., Schwartzkroin, P.A., 1985. Developmental and
regional differences in the localization of Na,K-ATPase activity in the rabbit hippo-
campus. Brain Res. 343, 198-203.

Hartings, J.A., Rolli, M.L., Lu, X.C., Tortella, F.C., 2003. Delayed secondary phase of peri-
infarct depolarizations after focal cerebral ischemia: relation to infarct growth and
neuroprotection. J. Neurosci. 23, 11602-11610.

Hartings, J.A., Bullock, M.R., Okonkwo, D.O., Murray, L.S., Murray, G.D., Fabricius, M.,
Maas, A.L, Woitzik, J., Sakowitz, O., Mathern, B., Roozenbeek, B., Lingsma, H.,
Dreier, J.P., Puccio, A.M., Shutter, L.A., Pahl, C., Strong, A.J., 2011a. Spreading
depolarisations and outcome after traumatic brain injury: a prospective observational
study. Lancet Neurol. 10, 1058-1064.

Hartings, J.A., Watanabe, T., Bullock, M.R., Okonkwo, D.O., Fabricius, M., Woitzik, J.,
Dreier, J.P., Puccio, A., Shutter, L.A., Pahl, C., Strong, A.J., 2011b. Spreading de-
polarizations have prolonged direct current shifts and are associated with poor out-
come in brain trauma. Brain 134, 1529-1540.

Hartings, J.A., Li, C., Hinzman, J.M., Shuttleworth, C.W., Ernst, G.L., Dreier, J.P., Wilson,
J.A., Andaluz, N., Foreman, B., Carlson, A.P., 2017a. Direct current electro-
corticography for clinical neuromonitoring of spreading depolarizations. J. Cereb.
Blood Flow Metab. 37, 1857-1870.

Hartings, J.A., Shuttleworth, C.W., Kirov, S.A., Ayata, C., Hinzman, J.M., Foreman, B.,
Andrew, R.D., Boutelle, M.G., Brennan, K.C., Carlson, A.P., Dahlem, M.A.,
Drenckhahn, C., Dohmen, C., Fabricius, M., Farkas, E., Feuerstein, D., Graf, R.,
Helbok, R., Lauritzen, M., Major, S., Oliveira-Ferreira, A.L, Richter, F., Rosenthal,
E.S., Sakowitz, O.W., Sanchez-Porras, R., Santos, E., Scholl, M., Strong, A.J., Urbach,
A., Westover, M.B., Winkler, M.K., Witte, O.W., Woitzik, J., Dreier, J.P., 2017b. The
continuum of spreading depolarizations in acute cortical lesion development: ex-
amining Leao's legacy. J. Cereb. Blood Flow Metab. 37, 1571-1594.

Helbok, R., Schiefecker, A.J., Friberg, C., Beer, R., Kofler, M., Rhomberg, P., Unterberger,
1., Gizewski, E., Hauerberg, J., Moller, K., Lackner, P., Broessner, G., Pfausler, B.,
Ortler, M., Thome, C., Schmutzhard, E., Fabricius, M., 2017. Spreading depolariza-
tions in patients with spontaneous intracerebral hemorrhage: association with peri-
hematomal edema progression. J. Cereb. Blood Flow Metab. 37, 1871-1882.

Herreras, O., Somjen, G.G., 1993. Propagation of spreading depression among dendrites
and somata of the same cell population. Brain Res. 610, 276-282.

Hinzman, J.M., Andaluz, N., Shutter, L.A., Okonkwo, D.O., Pahl, C., Strong, A.J., Dreier,
J.P., Hartings, J.A., 2014. Inverse neurovascular coupling to cortical spreading de-
polarizations in severe brain trauma. Brain 137, 2960-2972.

Hinzman, J.M., DiNapoli, V.A., Mahoney, E.J., Gerhardt, G.A., Hartings, J.A., 2015.
Spreading depolarizations mediate excitotoxicity in the development of acute cortical
lesions. Exp. Neurol. 267, 243-253.

Hossmann, K.A., 1994. Viability thresholds and the penumbra of focal ischemia. Ann.
Neurol. 36, 557-565.

James, M.F., Smith, M.L, Bockhorst, K.H., Hall, L.D., Houston, G.C., Papadakis, N.G.,
Smith, J.M., Williams, A.J., Xing, D., Parsons, A.A., Huang, C.L., Carpenter, T.A.,
1999. Cortical spreading depression in the gyrencephalic feline brain studied by
magnetic resonance imaging. J. Physiol. 519 (Pt 2), 415-425.

Jarvis, C.R., Anderson, T.R., Andrew, R.D., 2001. Anoxic depolarization mediates acute
damage independent of glutamate in neocortical brain slices. Cereb. Cortex 11, 249-259.

Kager, H., Wadman, W.J., Somjen, G.G., 2002. Conditions for the triggering of spreading
depression studied with computer simulations. J. Neurophysiol. 88, 2700-2712.

Kaufmann, D., Theriot, J.J., Zyuzin, J., Service, C.A., Chang, J.C., Tang, Y.T., Bogdanov,
V.B., Multon, S., Schoenen, J., Ju, Y.S., Brennan, K.C., 2017. Heterogeneous in-
cidence and propagation of spreading depolarizations. J. Cereb. Blood Flow Metab.
37, 1748-1762.

Kneer, F., Scholl, E., Dahlem, M.A., 2014. Nucleation of reaction-diffusion waves on
curved surfaces. New J. Phys. 16, 053010.


http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0060
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0060
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0065
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0065
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0065
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0070
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0070
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0075
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0075
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0080
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0080
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0085
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0085
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0085
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0090
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0090
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0090
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0095
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0095
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0095
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0100
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0100
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0105
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0105
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0105
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0110
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0110
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0110
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0115
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0115
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0120
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0120
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0125
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0125
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0125
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0130
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0130
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0130
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0130
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0130
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0135
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0135
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0135
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0135
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0135
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0140
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0140
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0140
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0140
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0145
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0145
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0145
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0150
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0155
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0155
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0155
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0155
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0160
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0160
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0160
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0160
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0165
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0165
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0165
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0170
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0170
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0170
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0170
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0175
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0175
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0175
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0180
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0180
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0180
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0185
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0185
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0190
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0190
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0190
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0190
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0195
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0195
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0195
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0200
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0200
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0200
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0200
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0205
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0205
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0210
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0210
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0210
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0215
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0215
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0215
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0215
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0220
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0220
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0220
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0225
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0225
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0225
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0230
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0230
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0230
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0235
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0235
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0235
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0235
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0235
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0240
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0240
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0240
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0240
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0245
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0245
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0245
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0245
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0250
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0250
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0250
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0250
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0250
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0250
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0250
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0250
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0255
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0255
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0255
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0255
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0255
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0260
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0260
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0265
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0265
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0265
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0270
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0270
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0270
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0275
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0275
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0280
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0280
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0280
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0280
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0285
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0285
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0290
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0290
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0295
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0295
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0295
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0295
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0300
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0300

D. Milakara et al.

Koroleva, V.I., Bures, J., 1979. Circulation of cortical spreading depression around elec-
trically stimulated areas and epileptic foci in the neocortex of rats. Brain Res. 173,
209-215.

Koroleva, V.I., Bures, J., 1996. The use of spreading depression waves for acute and long-
term monitoring of the penumbra zone of focal ischemic damage in rats. Proc. Natl.
Acad. Sci. U. S. A. 93, 3710-3714.

Kudo, C., Nozari, A., Moskowitz, M.A., Ayata, C., 2008. The impact of anesthetics and
hyperoxia on cortical spreading depression. Exp. Neurol. 212, 201-206.

Lauritzen, M., 1994. Pathophysiology of the migraine aura. The spreading depression
theory. Brain 117 (Pt 1), 199-210.

Lauritzen, M., Skyhoj Olsen, T., Lassen, N.A., Paulson, O.B., 1983. Changes in regional
cerebral blood flow during the course of classic migraine attacks. Ann. Neurol. 13,
633-641.

Leao, A.A.P., 1944. Spreading depression of activity in the cerebral cortex. J.
Neurophysiol. 7, 359-390.

Leao, A.A.P., 1947. Further observations on the spreading depression of activity in the
cerebral cortex. J. Neurophysiol. 10, 409-414.

Leao, A.A.P., Morison, R.S., 1945. Propagation of spreading cortical depression. J.
Neurophysiol. 8, 33-45.

Lindquist, B.E., Shuttleworth, C.W., 2017. Evidence that adenosine contributes to Leao's
spreading depression in vivo. J. Cereb. Blood Flow Metab. 37, 1656-1669.

Major, S., Petzold, G.C., Reiffurth, C., Windmuller, O., Foddis, M., Lindauer, U., Kang,
E.J., Dreier, J.P., 2017. A role of the sodium pump in spreading ischemia in rats. J.
Cereb. Blood Flow Metab. 37, 1687-1705.

Makarova, J., Makarov, V.A., Herreras, O., 2010. Generation of sustained field potentials
by gradients of polarization within single neurons: a macroscopic model of spreading
depression. J. Neurophysiol. 103, 2446-2457.

Marrannes, R., Willems, R., De Prins, E., Wauquier, A., 1988. Evidence for a role of the N-
methyl-p-aspartate (NMDA) receptor in cortical spreading depression in the rat. Brain
Res. 457, 226-240.

Marshall, W.H., 1959. Spreading cortical depression of Leao. Physiol. Rev. 39, 239-279.

Martins-Ferreira, H., De Oliveira Castro, G., Struchiner, C.J., Rodrigues, P.S., 1974.
Circling spreading depression in isolated chick retina. J. Neurophysiol. 37, 773-784.

Maslarova, A., Alam, M., Reiffurth, C., Lapilover, E., Gorji, A., Dreier, J.P., 2011.
Chronically epileptic human and rat neocortex display a similar resistance against
spreading depolarization in vitro. Stroke 42, 2917-2922.

Mazel, T., Richter, F., Vargova, L., Sykova, E., 2002. Changes in extracellular space vo-
lume and geometry induced by cortical spreading depression in immature and adult
rats. Physiol. Res. 51 (Suppl. 1), S85-93.

Menyhart, A., Makra, P., Szepes, B.E., Toth, O.M., Hertelendy, P., Bari, F., Farkas, E.,
2015. High incidence of adverse cerebral blood flow responses to spreading depo-
larization in the aged ischemic rat brain. Neurobiol. Aging 36, 3269-3277.

Merkler, D., Klinker, F., Jurgens, T., Glaser, R., Paulus, W., Brinkmann, B.G., Sereda,
M.W., Stadelmann-Nessler, C., Guedes, R.C., Bruck, W., Liebetanz, D., 2009.
Propagation of spreading depression inversely correlates with cortical myelin con-
tent. Ann. Neurol. 66, 355-365.

Murphy, T.H., Li, P., Betts, K., Liu, R., 2008. Two-photon imaging of stroke onset in vivo
reveals that NMDA-receptor independent ischemic depolarization is the major cause
of rapid reversible damage to dendrites and spines. J. Neurosci. 28, 1756-1772.

Nakamura, H., Strong, A.J., Dohmen, C., Sakowitz, O.W., Vollmar, S., Sue, M., Kracht, L.,
Hashemi, P., Bhatia, R., Yoshimine, T., Dreier, J.P., Dunn, A.K., Graf, R., 2010.
Spreading depolarizations cycle around and enlarge focal ischaemic brain lesions.
Brain 133, 1994-2006.

Nallet, H., MacKenzie, E.T., Roussel, S., 1999. The nature of penumbral depolarizations
following focal cerebral ischemia in the rat. Brain Res. 842, 148-158.

Obeidat, A.S., Jarvis, C.R., Andrew, R.D., 2000. Glutamate does not mediate acute neu-
ronal damage after spreading depression induced by O2/glucose deprivation in the
hippocampal slice. J. Cereb. Blood Flow Metab. 20, 412-422.

Olesen, J., Larsen, B., Lauritzen, M., 1981. Focal hyperemia followed by spreading oli-
gemia and impaired activation of rCBF in classic migraine. Ann. Neurol. 9, 344-352.

Oliveira-Ferreira, A.L., Milakara, D., Alam, M., Jorks, D., Major, S., Hartings, J.A., Liickl,
J., Martus, P., Graf, R., Dohmen, C., Bohner, G., Woitzik, J., Dreier, J.P., 2010.
Experimental and preliminary clinical evidence of an ischemic zone with prolonged
negative DC shifts surrounded by a normally perfused tissue belt with persistent
electrocorticographic depression. J. Cereb. Blood Flow Metab. 30, 1504-1519.

Perez-Pinzon, M.A., Tao, L., Nicholson, C., 1995. Extracellular potassium, volume frac-
tion, and tortuosity in rat hippocampal CA1, CA3, and cortical slices during ischemia.
J. Neurophysiol. 74, 565-573.

Petzold, G.C., Windmuller, O., Haack, S., Major, S., Buchheim, K., Megow, D., Gabriel, S.,
Lehmann, T.N., Drenckhahn, C., Peters, O., Meierkord, H., Heinemann, U., Dirnagl,
U., Dreier, J.P., 2005. Increased extracellular K + concentration reduces the efficacy
of N-methyl-p-aspartate receptor antagonists to block spreading depression-like de-
polarizations and spreading ischemia. Stroke 36, 1270-1277.

Petzold, G.C., Haack, S., von Bohlen Und Halbach, O., Priller, J., Lehmann, T.N.,
Heinemann, U., Dirnagl, U., Dreier, J.P., 2008. Nitric oxide modulates spreading

538

Neurolmage: Clinical 16 (2017) 524-538

depolarization threshold in the human and rodent cortex. Stroke 39, 1292-1299.

Pluta, R.M., Hansen-Schwartz, J., Dreier, J., Vajkoczy, P., Macdonald, R.L., Nishizawa, S.,
Kasuya, H., Wellman, G., Keller, E., Zauner, A., Dorsch, N., Clark, J., Ono, S., Kiris, T.,
Leroux, P., Zhang, J.H., 2009. Cerebral vasospasm following subarachnoid hemor-
rhage: time for a new world of thought. Neurol. Res. 31, 151-158.

Richter, F., Lehmenkuhler, A., 1993. Spreading depression can be restricted to distinct
depths of the rat cerebral cortex. Neurosci. Lett. 152, 65-68.

Rungta, R.L., Choi, H.B., Tyson, J.R., Malik, A., Dissing-Olesen, L., Lin, P.J., Cain, S.M.,
Cullis, P.R., Snutch, T.P., MacVicar, B.A., 2015. The cellular mechanisms of neuronal
swelling underlying cytotoxic edema. Cell 161, 610-621.

Santos, E., Scholl, M., Sanchez-Porras, R., Dahlem, M.A., Silos, H., Unterberg, A.,
Dickhaus, H., Sakowitz, O.W., 2014. Radial, spiral and reverberating waves of
spreading depolarization occur in the gyrencephalic brain. NeuroImage 99, 244-255.

Santos, E., Sanchez-Porras, R., Sakowitz, O.W., Dreier, J.P., Dahlem, M.A., 2017.
Heterogeneous propagation of spreading depolarizations in the lissencephalic and
gyrencephalic brain. J. Cereb. Blood Flow Metab., 271678X16689801.

Sawant-Pokam, P.M., Suryavanshi, P., Mendez, J.M., Dudek, F.E., Brennan, K.C., 2017.
Mechanisms of neuronal silencing after cortical spreading depression. Cereb. Cortex
27, 1311-1325.

Scholl, M.J., Santos, E., Sanchez-Porras, R., Kentar, M., Gramer, M., Silos, H., Zheng, Z.,
Gang, Y., Strong, A.J., Graf, R., Unterberg, A., Sakowitz, O.W., Dickhaus, H., 2017.
Large field-of-view movement-compensated intrinsic optical signal imaging for the
characterization of the haemodynamic response to spreading depolarizations in large
gyrencephalic brains. J. Cereb. Blood Flow Metab. 37, 1706-1719.

Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B., 2004. A
hybrid approach to the skull stripping problem in MRI. Neurolmage 22, 1060-1075.

Shibata, M., Bures, J., 1972. Reverberation of cortical spreading depression along closed-
loop pathways in rat cerebral cortex. J. Neurophysiol. 35, 381-388.

Shirman, L.A., 1990. Construction of Smooth Curves and Surfaces From Polyhedral
Models. University of California, Berkeley.

Steffensen, A.B., Sword, J., Croom, D., Kirov, S.A., MacAulay, N., 2015. Chloride co-
transporters as a molecular mechanism underlying spreading depolarization-induced
dendritic beading. J. Neurosci. 35, 12172-12187.

Strong, A.J., Fabricius, M., Boutelle, M.G., Hibbins, S.J., Hopwood, S.E., Jones, R., Parkin,
M.C., Lauritzen, M., 2002. Spreading and synchronous depressions of cortical activity
in acutely injured human brain. Stroke 33, 2738-2743.

Sukhotinsky, I., Dilekoz, E., Wang, Y., Qin, T., Eikermann-Haerter, K., Waeber, C., Ayata,
C., 2011. Chronic daily cortical spreading depressions suppress spreading depression
susceptibility. Cephalalgia 31, 1601-1608.

Takano, T., Tian, G.F., Peng, W., Lou, N., Lovatt, D., Hansen, A.J., Kasischke, K.A.,
Nedergaard, M., 2007. Cortical spreading depression causes and coincides with tissue
hypoxia. Nat. Neurosci. 10, 754-762.

Theis, M., Jauch, R., Zhuo, L., Speidel, D., Wallraff, A., Doring, B., Frisch, C., Sohl, G.,
Teubner, B., Euwens, C., Huston, J., Steinhauser, C., Messing, A., Heinemann, U.,
Willecke, K., 2003. Accelerated hippocampal spreading depression and enhanced
locomotory activity in mice with astrocyte-directed inactivation of connexin43. J.
Neurosci. 23, 766-776.

Ulmer, H.J., de Lima, V.M., Hanke, W., 1995. Effects of nitric oxide on the retinal
spreading depression. Brain Res. 691, 239-242.

van den Maagdenberg, A.M., Pietrobon, D., Pizzorusso, T., Kaja, S., Broos, L.A., Cesetti,
T., van de Ven, R.C., Tottene, A., van der Kaa, J., Plomp, J.J., Frants, R.R., Ferrari,
M.D., 2004. A Cacnala knockin migraine mouse model with increased susceptibility
to cortical spreading depression. Neuron 41, 701-710.

Van Harreveld, A., Khattab, F.I., 1967. Changes in cortical extracellular space during
spreading depression investigated with the electron microscope. J. Neurophysiol. 30,
911-929.

Windmuller, O., Lindauer, U., Foddis, M., Einhaupl, K.M., Dirnagl, U., Heinemann, U.,
Dreier, J.P., 2005. Ion changes in spreading ischaemia induce rat middle cerebral
artery constriction in the absence of NO. Brain 128, 2042-2051.

Winkler, M.K., Dengler, N., Hecht, N., Hartings, J.A., Kang, E.J., Major, S., Martus, P.,
Vajkoczy, P., Woitzik, J., Dreier, J.P., 2017. Oxygen availability and spreading de-
polarizations provide complementary prognostic information in neuromonitoring of
aneurysmal subarachnoid hemorrhage patients. J. Cereb. Blood Flow Metab. 37,
1841-1856.

Woitzik, J., Hecht, N., Pinczolits, A., Sandow, N., Major, S., Winkler, M.K., Weber-
Carstens, S., Dohmen, C., Graf, R., Strong, A.J., Dreier, J.P., Vajkoczy, P., 2013.
Propagation of cortical spreading depolarization in the human cortex after malignant
stroke. Neurology 80, 1095-1102.

Woods, R.P., Iacoboni, M., Mazziotta, J.C., 1994. Brief report: bilateral spreading cerebral
hypoperfusion during spontaneous migraine headache. N. Engl. J. Med. 331,
1689-1692.

Zandt, B.J., ten Haken, B., van Putten, M.J., 2013. Diffusing substances during spreading
depolarization: analytical expressions for propagation speed, triggering, and con-
centration time courses. J. Neurosci. 33, 5915-5923.


http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0305
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0305
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0305
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0310
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0310
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0310
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0315
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0315
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0320
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0320
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0325
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0325
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0325
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0330
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0330
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0335
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0335
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0340
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0340
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0345
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0345
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0350
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0350
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0350
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0355
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0355
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0355
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0360
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0360
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0360
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0365
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0370
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0370
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0375
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0375
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0375
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0380
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0380
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0380
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0385
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0385
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0385
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0390
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0390
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0390
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0390
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0395
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0395
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0395
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0400
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0400
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0400
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0400
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0405
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0405
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0410
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0410
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0410
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0415
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0415
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0420
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0420
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0420
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0420
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0420
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0425
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0425
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0425
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0430
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0430
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0430
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0430
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0430
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0435
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0435
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0435
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0440
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0440
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0440
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0440
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0445
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0445
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0450
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0450
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0450
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0455
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0455
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0455
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0460
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0460
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0460
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0465
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0465
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0465
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0470
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0470
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0470
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0470
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0470
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0475
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0475
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0480
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0480
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0485
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0485
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0490
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0490
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0490
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0495
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0495
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0495
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0500
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0500
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0500
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0505
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0505
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0505
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0510
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0510
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0510
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0510
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0510
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0515
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0515
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0520
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0520
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0520
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0520
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0525
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0525
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0525
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0530
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0530
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0530
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0535
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0535
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0535
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0535
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0535
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0540
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0540
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0540
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0540
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0545
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0545
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0545
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0550
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0550
http://refhub.elsevier.com/S2213-1582(17)30220-6/rf0550

	Simulation of spreading depolarization trajectories in cerebral cortex: Correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage
	Introduction
	Materials and methods
	General
	ECoG acquisition
	Overview of the modeling approach
	Imaging data preprocessing
	Geometric data preprocessing
	SD trajectory search procedure – parameters and details
	Validation of results
	Statistics

	Results
	Discussion
	SD propagation shows anisotropy
	More complex propagation patterns of isoelectric SDs with prolonged DC shifts
	Limitations

	Conclusions
	Acknowledgements
	References




