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Abstract: Building upon work by Matsumoto, we show that the quantum relative entropy with
full-rank second argument is determined by four simple axioms: (i) Continuity in the first
argument; (ii) the validity of the data-processing inequality; (iii) additivity under tensor products;
and (iv) super-additivity. This observation has immediate implications for quantum thermodynamics,
which we discuss. Specifically, we demonstrate that, under reasonable restrictions, the free energy
is singled out as a measure of athermality. In particular, we consider an extended class of
Gibbs-preserving maps as free operations in a resource-theoretic framework, in which a catalyst
is allowed to build up correlations with the system at hand. The free energy is the only extensive and
continuous function that is monotonic under such free operations.
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1. Introduction

The quantum relative entropy captures the statistical distinguishability of two quantum states.
For two states ρ and σ supported on the same Hilbert space it is defined as

S(ρ||σ) = tr (ρ log ρ− ρ log σ) , (1)

whenever supp(ρ) ⊆ supp(σ) and set to infinity otherwise. This quantity has a clear interpretation in the
statistical discrimination of ρ from σ, appearing as an error rate in quantum hypothesis testing [1–3],
a result commonly known as Stein’s Lemma. It is hence no surprise that this quantity appears in
a plethora of places in contemporary quantum physics. This is particularly true in the context of
quantum information theory [4]. In the relative entropy of entanglement it quantifies the entanglement
content of a general quantum state [5]. More generally, it appears in conversion rates in so-called
resource theories [6,7]. Relatedly, it takes center stage in the problem of (approximately) recovering
quantum information [8]. But the applications are not confined to quantum information theory.
In many-body physics, it provides bounds on the clustering of correlations in space in terms of the
mutual information [9,10]. In quantum thermodynamics [11], which is the context that is in the focus
of attention in this note, its interpretation as the non-equilibrium free energy gives an upper bound
to how much work can be extracted from a non-equilibrium system and is important in answering
how to operationally define work in the quantum regime in the first place [12]. Not the least, it has
appeared in the context of the Anti-de Sitter/Conformal field theory correspondence (AdS/CFT)
correspondence [13], again drawing from and building upon the above mentioned applications.

In this note, we restrict to the case where the second argument σ has full rank and only consider
finite dimensional Hilbert spaces. Essentially by re-interpreting and building upon a Theorem by
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Matsumoto [14], we will show that the quantum relative entropy (1) is (up to a constant factor) the only
function featuring the following four properties:

1. Continuity: For fixed σ, the map ρ 7→ S(ρ||σ) is continuous [15].
2. Data-processing inequality: For any quantum channel T we have,

S(T(ρ)||T(σ)) ≤ S(ρ||σ). (2)

3. Additivity:
S(ρ1 ⊗ ρ2||σ1 ⊗ σ2) = S(ρ1||σ1) + S(ρ2||σ2). (3)

4. Super-additivity: For any bipartite state ρ1,2 with marginals ρ1, ρ2 we have

S(ρ1,2||σ1 ⊗ σ2) ≥ S(ρ1||σ1) + S(ρ2||σ2). (4)

No subset of these properties characterizes the relative entropy uniquely, but the Properties 1 to 3
are, for example, also fulfilled by the Renyi-divergences [16].

The uniqueness of the quantum relative entropy under Properties 1–4 has significant implications
for quantum thermodynamics (QT), which we elaborate upon. The formalism of QT has recently been
recast in within the framework of a resource theory [6,17,18], so one in which quantum states that
are different from Gibbs states (at a fixed environment temperature) are considered resources. We will
refer here to this kind of resource as athermality. Within this resource theory one is, among other
problems, interested in finding bona fide measures of athermality. These are functions that quantify
the amount of athermality of a given system. A requirement for a function reasonably quantifying
the degree of athermality is that the it does not increase under the free operations of the resource theory.
The problem of identifying such functions has been studied intensively in the last years for different
classes of free operations, providing families of valid measures that are regarded as generalizations
of the free energy [7,19–21]. They share the property that they are all based of generalizations of
the quantum relative entropy (1).

In this work, we will use the uniqueness result on the quantum relative entropy to show that
the usual non-equilibrium free energy emerges as the unique continuous and extensive measure of
athermality under a certain meaningful choice of free operations. In this sense, we also provide a fresh
link of resource-theoretic considerations in quantum thermodynamics to more traditional descriptions
of thermodynamic processes in the quantum regime.

2. Axiomatic Derivation of Quantum Relative Entropy

We start by formally stating the main technical result.

Theorem 1. (Uniqueness Theorem). Let f be a function on pairs of quantum states acting on the same finite
dimensional Hilbert space, with the second argument having full rank. Suppose f fulfills Properties 1–4. Then it
is given by

f (ρ, σ) = C tr (ρ log ρ− ρ log σ) := CS(ρ‖σ), (5)

for some constant C > 0.

The proof relies on a characterization of the relative entropy in terms of different properties laid out
in Ref. [14]. To state it, we first require a Definition: Let (ρ, σ) be a pair of states on a finite-dimensional
Hilbert spaceH and {ρ′n} be a sequence of states on the Hilbert spacesH⊗n. We define a function f on
pairs of quantum states to be lower asymptotically semi-continuous (l.a.s.) with respect to σ if

lim
n→∞

∥∥ρ⊗n − ρ′n
∥∥

1 = 0 (6)
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implies

lim inf
n→∞

1
n
( f (ρ′n, σ⊗n)− f (ρ⊗n, σ⊗n)) ≥ 0. (7)

Then Matsumoto’s Theorem [14] for the relative entropy can be stated in the following way.

Theorem 2. (Matsumoto). Let f fulfill the data-processing inequality, additivity and be lower asymptotically
semi-continuous with respect to all σ. Then f ∝ S.

The proof of Theorem 1 follows from the subsequent Lemma, which in turn implies that
the Properties 1–4 give rise to the conditions of Theorem 2.

Lemma 1. (Lower asymptotically semi-continuity). Let f be a function on pairs of quantum states with
the following properties,

• The map ρ 7→ f (ρ, σ) is continuous for any fixed σ.
• Additivity: f (ρ1 ⊗ ρ2, σ1 ⊗ σ2) = ∑2

i=1 f (ρi, σi).
• Super-additivity:

f (ρ1,2, σ1 ⊗ σ2) ≥ f (ρ1 ⊗ ρ2, σ1 ⊗ σ2). (8)

Then f is lower asymptotically semi-continuous with respect to any σ.

Proof. Let {ρ′n} be a sequence of states such that ‖ρ′n − ρ⊗n‖1 → 0. Since the trace norm fulfills
the data-processing inequality, we know that ||ρ′n,i − ρ||1 → 0, where ρ′n,i denotes the marginal of ρ′n on
the i-th tensor-factor. Hence, the marginals converge to ρ. From the properties of f , we furthermore
see that

1
n
(

f (ρ′n, σ⊗n)− f (ρ⊗n, σ⊗n)
)

≥ 1
n ∑

i

(
f (ρ′n,i, σ)− f (ρ, σ)

)
≥ min

i
{ f (ρ′n,i, σ)} − f (ρ, σ)

n→∞−→ 0, (9)

where the limit follows from continuity and the second line from additivity and super-additivity.

3. Uniqueness of the Free Energy

The results of the previous section, in particular Theorem 1, can be applied to the resource theory
of β-athermality. We formulate it as a resource theory of pairs of a quantum state and a Hamiltonian
(ρ, H) that we call object. An object (ρ, H) is said to have the resource of β-athermality if it fulfills

ρ 6= ωβ,H (10)

where ωβ,H is the Gibbs state for the Hamiltonian H and inverse temperature β > 0, given by

ωβ,H :=
e−βH

tr(e−βH)
. (11)

In this way, the resource theory of β-atermality is concerned with the quantification of how
far quantum states are out of thermal equilibrium at temperature 1/β [6] and how such states can
be used to implement certain operations. Concerning the set of free operations, we will be considering
here the most general set of operations that do not create resourceful states from states featuring
fewer resources. The last statement implicitly assumes that there is a way to measure how far out of
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equilibrium a given system is. Indeed, we will later see that our main results can be understood as
a statement about the uniqueness of the free energy among all such measures.

In order to progress, let us first define the so-called Gibbs-preserving maps (GP) which are quantum
channels that have Gibbs state (11) as a fixed point. More formally, a GP-channel relative to the
Hamiltonian H is defined as a trace-preserving completely positive map Gβ with the property that

Gβ(ωβ,H) = ωβ,H. (12)

Note that formulated as above, GP channels only induce transitions that change the quantum
state but not the Hamiltonian H. This can be extended by simply considering functions G that act
on the object, possibly changing also the Hamiltonian, but which at the same time do not create
β-athermality. In this way, we define a GP-map as a function (ρ, H) 7→ (σ, K) = Gβ(ρ, H) such that

Gβ(ωβ,H, H) = (ωβ,K, K). (13)

This condition can equivalently be cast into the following form: One may define the set of GP
channels as GH

β (ωβ,H) = ωβ,K(H) for all H, and the map between Hamiltonians as Ḡ(H) = K so that

G(ρ, H) = (GH
β (ρ), Ḡ(H)). (14)

With this notation, condition (13) is simply given by

GH
β (ωβ,H) = ωβ,Ḡ(H). (15)

GP-maps G are not only a natural extension of GP-channels G for the case where Hamiltonians
are modified, but one can also see that any GP-map can be implemented if one is given access to
GP-channels and an ancillary system in a Gibbs state. This is formalized by the following Lemma
taken from [12].

Lemma 2. (Implementation of GP maps [12]). Any map Gβ fulfilling (13) acting on a system S can
be implemented by adding an ancillary system A in the Gibbs state (ωβ,K, K) and applying a GP channel
G to the entire compound. More formally, we find that

Gβ(ρS, HS) := (σ, K) =
(

trS(Gβ(ρ⊗ωβ,K)), K
)
. (16)

Once we have established the set of GP maps for the objects, we will now introduce the notion of
catalyst in this framework. This is done analogously to the case of catalysts for other sets of operations
such as thermal operations [7,18,22,23]. In the following, we will also frequently drop the β-subscript
from GP-maps for simplicity of notation.

3.1. Catalysts and Correlations

We will now turn to defining the transitions between objects that can be performed with GP maps
and the use of what is called a “catalyst” in this context. This is simply an ancillary quantum system
that is left in the same state (in a sense that will be made precise later) after the transition is performed,
rendering the metaphor of an actual catalyst quite appropriate.

Definition 1. (Catalytic free transition). We say that the transition

(ρS, HS)→ (σS, KS) (17)
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is a catalytic free transition if there exist a GP map G and a system A described by the object (γA, RA) such that

G
(
(ρS, HS)⊗ (γA, RA)

)
= (σS, KS)⊗ (γA, RA). (18)

We will in this case simply denote it by

(ρS, HS)
c
> (σS, KS). (19)

Here, we are employing the convenient notation

(ρS, HS)⊗ (γA, RA) := (ρS ⊗ γA, HS ⊗ 1A + 1S ⊗ RA) (20)

to describe tensor products of objects. In the remainder of this work, we will simply write
HS ⊗ 1A + 1S ⊗ RA := HS + RA. Importantly, we are assuming that the catalyst A is left in the same
state and Hamiltonian and also uncorrelated from S. The role of the correlations of the catalysts and
its role in quantum thermodynamics has been first noted in [22]. There, one considers a catalysts
consisting of k subsystems and one merely demands that the marginal state of each subsystem is left
untouched. We define it here formally for the case of GP maps.

Definition 2. (Marginal-catalytic free transition [22]). We say that the transition

(ρS, HS)→ (σS, KS) (21)

is a marginal-catalytic free transition if there exist a GP map G and systems A1, . . . , Ak described by the object
(γA, RA) = ⊗k

i=1(γ
i, Ri) such that

G
(
(ρS, HS)⊗ (γA, RA)

)
= (σS, KS)⊗ (γ̃A, RA), (22)

where tr|Ai
(γ̃A) = tr|Ai

(γA) for all i ∈ (1, . . . , k). We will in this case simply denote it by

(ρS, HS)
mc
> (σS, KS). (23)

Note that in this case the system A does not remain unchanged, but only its local marginals.
In this sense, it is not truly a catalyst, but a catalyst on its reduced states. It is natural to expect that this
indeed allows for a larger set of transitions, since the system A is “used up” by employing the initial
lack of correlations as a resource.

We will now consider a family of transitions that also introduces correlations, but for which
the catalyst is, unlike in Definition 2, left entirely untouched. In this case, correlations are built up
between the system and the catalyst. In this way, the catalyst is re-usable as long as it is employed
in order to implement a transition on a new system. We call this transitions, originally introduced
in [12], correlated-catalytic free transitions:

Definition 3. (Correlated-catalytic free transition). We say that the transition

(ρS, HS)→ (σS, KS) (24)

is a correlated-catalytic free transition if there exist a GP map G and a system A described by the object (γA, RA)

such that
G
(
(ρS, HS)⊗ (γA, RA)

)
= (η, KS + RA), (25)

where trA(η) = σS and trS(η) = γA. We will in this case simply denote it by

(ρS, HS)
cc
> (σS, KS). (26)
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We will now show that the non-equilibrium free energy is the only function, under reasonable
assumptions, that does not increase under operations of the form of Definitions 2 and 3.

3.2. Free Energy as a Unique Measure of Non-Equilibrium

We will call a measure of non-equilibrium a function that quantifies how far a given object
(ρ, H) is from its equilibrium object (ωβ,H, H). The minimal requirement on such a measure is that
it is non-increasing under free transitions. The larger the set of free transitions, the more restricted
is the allowed set of measures. One of the most well-studied measures of non-equilibrium is based on
the quantum relative entropy. It is related to the free energy as

∆Fβ(ρ, H) :=
1
β

S(ρ‖ωβ,H) = Fβ(ρ, H)− Fβ(ωβ,H, H) (27)

where Fβ(ρ, H) = tr(ρH)− β−1S(ρ) with S being the von Neumann (and not the relative) entropy.
In particular, for a thermal state ωβ,H we obtain the equilibrium free energy Fβ(ωβ,H, H) = − 1

β ln Zβ,H ,

with Zβ,H = tr(e−βH) the partition function. The measure ∆Fβ fulfills the following properties that we
express here for a generic measure denoted by Mβ:

I. Continuity: For fixed Hamiltonian H, the map ρ 7→ Mβ(ρ, H) is continuous.
II. Additivity:

Mβ(ρ1 ⊗ ρ2, H1 + H2) = Mβ(ρ1, H1) + Mβ(ρ2, H2).

III. Monotonicity:

(a) Monotonicity:
Mβ(ρ, H) ≥ Mβ(σ, K) if G(ρ, H) = (σ, K).

(b) Catalytic monotonicity:

Mβ(ρ, H) ≥ Mβ(σ, K) if (ρ, H)
c
> (σ, K).

(c) Marginal-catalytic monotonicity:

Mβ(ρ, H) ≥ Mβ(σ, K) if (ρ, H)
mc
> (σ, K).

(d) Correlated-catalytic monotonicity:

Mβ(ρ, H) ≥ Mβ(σ, K) if (ρ, H)
cc
> (σ, K).

All those properties apply for all states and Hamiltonians involved. The fact that ∆Fβ fulfills I.
and II. follows from the continuity and additivity properties of the quantum relative entropy. The other
properties can be related to the data processing inequality and super-additivity as we will see
in Theorem 3. Before that, let us note that for any function Mβ on objects, we can define a functionMβ

on pairs of quantum states asMβ(ρ, ωβ,H) = Mβ(ρ, H). At the same time, it is true that any full-rank
state σ can be thought of as the Gibbs-state of the modular Hamiltonian

Hσ := − 1
β

log σ + C, (28)

for any C ∈ R. With this notation, all objects of the form (σ, Hσ) are Gibbs-objects. Importantly,
the modular Hamiltonian Hσ is only defined up to an additive constant. It turns out however,
that the properties II. and III. imply that Mβ(ρ, H) = Mβ(ρ, H + C1) for any C ∈ R (see Appendix A
for a proof). Any additive measure of athermality is hence automatically gauge-invariant in this sense.

Thus, the functionsMβ and Mβ are in a one-to-one correspondence. With this equivalence, we say
that a measureMβ is super-additive if, for any bipartite quantum states, it fulfills

Mβ(ρ1,2, σ1 ⊗ σ2) ≥Mβ(tr2(ρ)⊗ tr1(ρ), σ1 ⊗ σ2) (29)
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and additive if it fulfills

Mβ(ρ1 ⊗ ρ2, σ1 ⊗ σ2) =Mβ(ρ1, σ1) +Mβ(ρ2, σ2). (30)

Also,Mβ is said to fulfill the data processing inequality if

Mβ(T(ρ), T(σ)) ≤Mβ(ρ, σ) (31)

for all ρ, all σ being full-rank and for all quantum channels T.
At this point, a note of caution is appropriate. We have previously defined the functionMβ only

in the specific case where the second argument has full rank. There clearly are quantum-channels T
that reduce the rank of full-rank states, in which caseMβ(T(ρ), T(σ)) may at first seem undefined.
This is not a problem, however. To see this, we make use of the following fact about quantum channels:

Lemma 3. (Rank-decreasing quantum channels). Let T : B(H)→ B(H′) be a quantum channel and σ any
full-rank state. If T(σ) is only supported on a subspace P ⊆ H′, then T(ρ) is supported only within P for any ρ.

Proof. The proof is given in the appendix.

By the previous Lemma, we see that any quantum channel that maps a full-rank state σ into a state
T(σ) without full rank simply maps all states to the smaller Hilbert space P = supp(T(σ)) and should
be considered as a map from states onH to states on P instead. Since the functionMβ is defined on
all finite-dimensional Hilbert spaces, we can simply assume that it acts on B(P)×B(P) in this case.
In yet other words, the functionMβ(ρ, σ) is always defined if supp(ρ) ⊆ supp(σ) by restricting it to
supp(σ),

Mβ(ρ, σ) =Mβ(ρ|supp(σ), σ|supp(σ)). (32)

We can then show the following equivalence between properties of Mβ andMβ.

Theorem 3. (Equivalence of Mβ andMβ). There exist the following two equivalences between the properties
of the measures of athermality Mβ(ρ, H) and the corresponding functionMβ(ρ, σ).

• The measure Mβ fulfills additivity II. and marginal-catalytic monotonicity III.c ⇐⇒ Mβ

is super-additive (29), additive (30) and fulfills the data-processing inequality (31).
• The measure Mβ fulfills additivity II. and correlated-catalytic monotonicity III.d ⇐⇒ Mβ

is super-additive (29), additive (30) and fulfills the data-processing inequality (31).

The proof of this Theorem, together with a more detailed set of the implications between
the properties of Mβ and the corresponding functionMβ, is provided in the appendix.

The previous Theorem simply tells us that any additive measure of athermality Mβ that does not
increase under marginal-catalytic operations (Definition 2) or also under correlated-catalytic operations
(Definition 3) is in one to one correspondence with a functionMβ that is additive, super-additive
and fulfills the data processing inequality. This has as a first consequence that the measure ∆Fβ

fulfills indeed Properties I.–III. More importantly, using our re-formulation of Matsumoto’s result
of Theorem 1, we can show that ∆Fβ is, up to a constant factor, the only measure of athermality that
fulfills I.–III. This is the content of our main result, which follows from Theorem 3.

Result 1. (Uniqueness of monotones). Any monotone for marginal-catalytic transitions or correlated-catalytic
transitions at environment temperature β that is additive and depends continuously on the density matrix
is proportional to ∆Fβ.

The implications of this result are that the free energy difference ∆Fβ is the only bona fide quantifier
of athermality under the most general set of free operations that do not create the resource.
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4. Connection to Entropy Production in Master Equations

Before coming to our conclusions, let us briefly comment on the connection of this work with more
traditional approaches to non-equilibrium thermodynamics. In many applications, the dynamics of
quantum systems out of equilibrium are modelled by a quantum dynamical semi-group (see, e.g., [24]
and references within), i.e.,

ρ(t) = Et(ρ(0)), Et+s = Et ◦ Es, E0 = 1, (33)

where Et is a quanum channel for all t ≥ 0. Here we have expressed everything in quantum
language—for the classical setting simply replace the quantum channel Et with a stochastic matrix and
the density matrix ρ(t) with a probability distribution to obtain a classical master equation.

For the dynamics to reflect a thermal contact to an environment one usually at least assumes that
the dynamics has the thermal state ωβ,H of the system Hamiltonian H as a fixed point: Et(ωβ,H) = ωβ,H
for all t ≥ 0. It was a seminal observation [25–27] that in such a case one can define an entropy
production function

σ(t) := − d
dt

S(ρ(t)‖ωβ,H), (34)

which, due to the data-processing inequality, is always non-negative: σ(t) ≥ 0. It then seems natural to
interpret this as an expression of the second law of thermodynamics about the entropy that is produced
in the system.

From the modern perspective of quantum information theory, the same inequality would
be true if we replaced the relative entropy in the definition of the entropy production by any other
positive divergence between quantum states that fulfills the data-processing inequality, such as,
e.g., other Renyi-divergences appearing in the Second Laws of [19]. In the language of a resource
theory introduced above, any monotone of Gibbs-preserving maps would provide a similar inequality.

Note also that in the setting of open quantum systems correlated-catalytic free transitions
are incorporated very naturally. The reason is that in an open system framework the environment
surrounding the system under control does not enter the description anymore. Hence all information
about correlations with external systems is lost and it is natural to allow for the build-up of correlations
between the system and possible external catalysts present in the environment. The results presented
in this work then provide further justification of using the relative entropy as the standard measure for
entropy production.

5. Discussion and Outlook

In this work, we have investigated the question which properties uniquely determine the
quantum relative entropy among all function on pairs of quantum states. Our re-formulation of
Matsumoto’s result highlights the role of super-additivity as a key property in the axiomatic derivation
of the quantum relative entropy. The role of super-additivity in the arena of quantum thermodynamics
has been shown to be related to the build up of correlations between the system at hand and a catalyst,
which in turn represents the components of the machine that come back to their initial state after
the cyclic process.

We have shown how the relative entropy and non-equilibrium free energy uniquely emerge from
considerations about how to treat catalysts and their correlations in the resource theoretic approach to
quantum thermodynamics. Usually, notions of relative entropy are employed to capture asymptotic
weakly correlated settings (thermodynamic limit), thus when acting on many uncorrelated copies
of a system (see [28] for a recent discussion of asymptotic thermodynamics from the point of view
of resource theories). Importantly, and in contrast, in our approach they emerge without having to
invoke any thermodynamic limit, but rather follow from properties of monotones in the single-shot
setting. However, they are precisely singled out by the fact that we disregard correlations in the
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setting of marginal-catalytic and correlated-catalytic free transitions. It thus seems that the crucial
feature of for the emergence of free energy is the disregarding of correlations. Note that this fits well to
how these quantities appear in notions of macroscopic thermodynamics: Macroscopic equilibrium
thermodynamics usually emerges in large systems which are well within thermodynamic phases.
In such phases, correlations decay exponentially in space. Hence, the correlations of an object with
its surrounding scale like its surface-area and not like their volume. Macroscopic objects are then
essentially uncorrelated with other objects due to their small surface-to-volume ratio.

In this work, we have distinguished two ways of creating correlations with the catalyst,
the marginal-catalytic one of Definition 2 and the correlated-catalytic one of Definition 3. The first
represents the situation where the components of the machine become correlated among themselves,
while the second represents the case where the machine builds up correlation with the system upon
which the machine induces a transition. Although these two sets both give rise to the free energy
difference as a unique measure of athermality, we consider the latter as a much more adequate set of
operations to incorporate correlations in thermodynamics. The reason for this is that the correlations
build up between the catalyst and the system do not prevent one from re-using the catalyst to
implement again a transition of the same kind on another system. It is an additional contribution of
this work to flesh out this difference.

We end the discussion by posing an interesting open question. This is to investigate how to
characterize all the possible thermodynamic transitions that can be implemented with correlated-catalysts.
In [12] we have seen that indeed the operations of Definition 3 are more powerful than the ones of 1 (see
also [29]). At the same time, it has recently been shown in [30] that a variant of Definition 3 allows to
extract work from passive states. The question remains whether all the transitions that do not increase
the free energy difference ∆Fβ are possible, as they indeed are for the ones of Definition 2, as shown
in [22]. If this is indeed true also for correlated-catalysts, one would have found an interpretation
of the free energy as a unique criterium for the second law of thermodynamics. If it is not true,
then it is necessary to consider genuinely new monotones, which are not additive or not continuous.
Both options would be interesting from the perspective of the further development of quantum
thermodynamics.
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Appendix A. Gauge Invariance of Mβ

Here, we show that any measure of athermality fulfilling properties I.–III. is gauge-invariant
in the sense that Mβ(ρ, H) = Mβ(ρ, H + C1) for all c ∈ R. To see this, first note that since tracing out
and adding a thermal ancilla are free transitions, Mβ(ωβ,H, H) = 0 for any H.

A simple calculation using additivity then also shows gauge-invariance:

Mβ(ρ, H + C1) = Mβ

(
(ρ, H + C1)⊗ (ωβ,K, K)

)
= Mβ

(
ρ⊗ωβ,K, H⊗ 1+ C1⊗ 1+ 1⊗ K

)
= Mβ

(
(ρ, H)⊗ (ωβ,K, K + C1)

)
= Mβ

(
(ρ, H)⊗ (ωβ,K+C1, K + C1)

)
= Mβ(ρ, H),

where we have made use of the gauge invariance of Gibbs states.
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Appendix B. Rank-Decreasing Quantum Channels

In this appendix we prove the validity of Lemma 3 of the main-text. We have to show that
given a channel T : B(H) → B(H′) and a full-rank state σ such that supp(T(σ)) ⊂ P, we also
have supp(T(ρ)) ⊂ P for all states ρ. Here, P is an arbitrary subspace of the total Hilbert space
H′. Let σ = ∑i qi|i〉〈i| be the eigen-decomposition of σ. Since T maps positive operators to positive
operators, and the support of the sum of positive operators is the union of the supports of the operators
we conclude that T(|i〉〈i|) is supported in P for all i. We thus only need to show that also operators
of the form T(|i〉〈j|) are supported on P. Now consider any density operator ρ = d + r where d
is the diagonal part of ρ (in the eigenbasis of σ) and r the rest. We know that tr(T(d)) = 1 since T
is trace-preserving. Hence tr(T(r)) = 0. Let us now assume (to arrive at a contradiction) that T(r) has
support within the subspace Q = 1− P. Since T maps positive operators to positive operators,

0 ≤ QT(ρ)Q = QT(r)Q. (A1)

Thus we conclude on the one hand that QT(r)Q ≥ 0. On the other hand, we know that

1 = tr(T(ρ)) ≥ tr(PT(ρ)) = 1+ tr(PT(r)). (A2)

Hence, tr(P(T(r))) = 0. Since T is trace-preserving we also have

tr(PT(r)) = − tr(QT(r)) = 0. (A3)

Hence QT(r)Q = 0 and also QT(ρ)Q = 0. By positivity and Hermiticity of T(ρ) we also get
PT(ρ)Q = 0 and QT(ρ)P = 0. We thus conclude that T(ρ) = PT(ρ)P, which finishes the proof.

Appendix C. Proof of Theorem 3 and Other Equivalences

We will show a more complete set of equivalences than the ones of Theorem 3, which corresponds
simply to (iii) and (iv).

Lemma A1. (Alternative equivalences). The following properties are equivalent:

(i) Mβ fulfills monotonicity III.a ⇐⇒ Mβ fulfills the data-processing inequality (DPI) (31).
(ii) Mβ fulfills catalytic monotonicity III.b and additivity II. ⇐⇒ Mβ fulfills additivity (30) and

the DPI (31).
(iii) Mβ fulfills marginal-catalytic monotonicity III.c and additivity II. ⇐⇒ Mβ fulfills super-additivity (29),

additivity (30) and the DPI (31).
(iv) Mβ fulfills correlated-catalytic monotonicity III.d and additivity II. ⇐⇒ Mβ fulfills super-additivity (29),

additivity (30) and the DPI (31).

Proof. Let us first show (i) (⇒). Let T be any given quantum-channel. We have to show that
Mβ(T(ρ), T(σ)) ≤ Mβ(ρ, σ). But by the previous discussion, T(σ) can always be considered to be
full-rank. Therefore, the Hamiltonian HT(σ) exists and the map (ρ, Hσ) 7→ (T(ρ), HT(σ)) is automatically
a GP-map. We therefore obtain

Mβ(T(ρ), T(σ)) = Mβ(T(ρ), HT(σ))

I I I.a
≤ Mβ(ρ, Hσ) =Mβ(ρ, σ). (A4)
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(i) (⇐) follows as

Mβ(σ, K) = Mβ(G(ρ, ωβ,H))

= Mβ(GH
β (ρ), ωβ,Ḡ(H))

(15)
= Mβ(GH

β (ρ),GH
β (ωβ,H))

(31)
≤ Mβ(ρ, H). (A5)

The proof of (ii) (⇒) is trivial given (i), since III.c⇒III.a and it follows straightforwardly

that II. ⇒ (30). The proof of (ii) (⇐) follows from noting that (ρ, H)
c
> (σ, K) implies that there

exist G so that
G(ρ⊗ γ, H + R) = (σ, K)⊗ (γ, R). (A6)

Hence, we find that

Mβ(σ, ωβ,K) + Mβ(γ, ωβ,R)
(30)
= Mβ(σ⊗ γ, ωβ,K ⊗ωβ,R)

(31)
≤ Mβ(ρ, ωβ,H) +Mβ(γ, ωβ,R), (A7)

which implies straightforwardly Mβ(ρ, H) ≥ Mβ(σ, K), that is, III.b.
Now we show (iii) (⇒). Note that III.c implies III.b, since a correlated catalyst is a particular case

of using a catalyst. Together with the equivalences (i) and (ii), we should only show super-additivity
of Equation (29). This follows from the fact that

(ρ1,2, H1 + H2)
mc
> (ρ1 ⊗ ρ2, H1 + H2). (A8)

To show this, let us choose as catalyst γ = ρ1 ⊗ ρ2. The GP map performing the transition is just
a swap between the initial system and the catalyst. Hence, the final system is (σ, K) = (ρ1 ⊗ ρ2, H1 + H2)

and the final catalyst γ̃ = (ρ1,2, H1 + H2), which clearly fulfills the conditions of Definition 2. To see (iii)
(⇐), we first note that (30) and (31) already imply III.b and II. It thus remains to show that adding (29)
also implies III.c. This follows since super-additivity ofMβ (29) together with additivity (30) implies

Mβ(γ̃A, RA) =Mβ(γ̃A,⊗iωβ,Ri)

≥∑
i
Mβ(γ

i, Ri)

= Mβ(⊗i(γ
i, Ri) = ∑

i
Mβ(γ

i, Ri). (A9)

Finally, let us turn to iv). Again, since correlated catalytic transitions include catalytic transitions,
the only non-trivial property left to show here is that III.d and II. also imply (29). To see this consider
an initial object (ρ1,2, H1 + H2) together with the catalyst (ρ2, H2) and use a similar trick as for marginal
catalytic transitions. Since a swap between the second system of the initial object and the catalyst
is a Gibbs-preserving transition which leaves the catalyst correlated but otherwise unchanged, we know
that Mβ(ρ1,2, H1 + H2) ≥ Mβ(ρ1 ⊗ ρ2, H1 + H2). Using this we obtain

Mβ(ρ1,2, ωβ,H1 ⊗ωβ,H2) = Mβ(ρ1,2, H1 + H2)

≥ Mβ(ρ1 ⊗ ρ2, H1 + H2)

=Mβ(ρ1 ⊗ ρ2, H1 + H2), (A10)

which completes the argument.
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