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Transport signatures of interacting fermions in quasi-one-dimensional topological superconductors
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A topological superconducting wire with an effective time-reversal symmetry is known to have aZ8 topological
classification in the presence of interactions. The topological index |n| � 4 counts the number of Majorana end
states, negative n corresponding to end states that are odd under time reversal. If such a wire is weakly coupled
to a normal-metal lead, interactions induce a Kondo-like correlated state if |n| = 4. We show that the Kondo-like
state manifests itself in an anomalous temperature dependence of the zero-bias conductance and by an anomalous
Fano factor for the zero-temperature normally reflected current at finite bias. We also consider the splitting of the
effective Kondo resonance for weak symmetry-breaking perturbations.
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I. INTRODUCTION

Topological superconducting wires in one dimension differ
from their nontopological counterparts by the presence of a
pair of zero-energy Majorana bound states at the two ends
of the wire [1]. Multiple Majorana bound states at each end
do not occur generically, since a pair of Majorana bound
states combines to a standard (Dirac) fermion, with an energy
that is no longer pinned to zero. Additional symmetries may,
however, prevent multiple Majoranas from acquiring a finite
energy and, hence, protect a topological phase with more
than one Majorana bound state at the wire’s ends. In an
effectively spinless system, time-reversal symmetry permits
the coexistence of an arbitrary number of Majoranas at the
same end of the wire, as long as these have the same parity
under time reversal. In a more formal language, for a spinless
system the presence of time-reversal symmetry changes the
topological classification fromZ2 (i.e., the numbers 0 or 1) toZ
[2–4], where the positive/negative numbers refer to Majorana
states that are even/odd under time reversal.

Experimentally, topological superconducting wires can
in principle be engineered in hybrid structures involving
proximity-induced superconductivity in topological insulators
[5], or semiconducting [6,7] and magnetic nanostructures
[8–13]. Recent tunneling spectroscopy experiments indeed
reported possible signatures of Majorana bound states in
semiconductor wires with a strong spin-orbit coupling, prox-
imity coupled to a superconductor [14–16], and in a chain of
magnetic atoms on a superconducting substrate [17].

Although time-reversal symmetry is broken in all these
realizations by an applied magnetic field or by the presence
of magnetic structures, an effective time-reversal symmetry is
predicted to be present as a excellent approximate symmetry
[18,19]. This effective time-reversal operation T squares to
one, i.e., it is of the “spinless” type, which means that
in principle such superconducting wires can host multiple
Majorana bound states at each end. The Majorana end states
can therefore be classified as even or odd under the action
of T . In tunneling spectroscopy experiments the presence
of multiple Majoranas shows up as a zero-bias conductance
peak of height 2|n|e2/h, where n is the number of Majorana
bound states (where a Majorana that is odd under time reversal
is counted as −1). The (still outstanding) observation of a

conductance peak of quantized value 2e2/h counts as strong
evidence for a Majorana state.

In a seminal work, Fidkowski and Kitaev studied the
stability of the topological spinless time-reversal symmetric
superconducting phases in the presence of weak local interac-
tions [20]. They found that in the presence of interactions only
eight distinct phases remain [21–24]: Interactions completely
lift the ground state degeneracy associated with the presence
of n = 8 Majoranas, so that the system becomes topologically
trivial. Alternatively, interacting systems which differ by a
multiple of eight Majorana end states are topologically equiv-
alent. Specifically, with interactions one may continuously
deform a system with four Majorana end states that are even
under time reversal (n = 4) into a superconductor with four
Majorana end states that are odd under time reversal (n = −4).
Since |n| < 4 Majorana bound states at one end correspond
to less than two fermions, the effective low-energy theory
for the interacting system with |n| < 4 is essentially equal to
that for the noninteracting system. Properties of phases with
|n| > 4 follow from the fact that, with interactions, they are
topologically equivalent to phases with |n| � 4. For |n| = 4
interactions lower the fourfold degeneracy of the ground state
of the noninteracting theory (counted at each end) to a twofold
degeneracy.

In a recent publication we have investigated the interacting
phases for a spinless superconducting wire with (effective)
time-reversal symmetry weakly coupled to a normal-metal
lead, which is the geometry relevant for tunneling spectroscopy
experiments [25]. Our main findings were that, while for
|n| < 4 the zero-bias transport properties were unaffected
by interactions, for |n| = 4 the interacting system forms a
Kondo resonance at low temperature. (Properties of phases
with |n| > 4 follow from the fact that with interactions
systems with n and n − 8 are topologically equivalent.) For
generic parameters, zero-temperature transport through this
|n| = 4 Kondo resonance is described by a Fermi-liquid fixed
point, which gives precisely the same zero-bias conductance
G = 8e2/h as in the noninteracting case [25].

In the present article we investigate the transport of
the |n| = 4 topological phases at finite temperature and/or
finite bias. In the limit of low (but finite) temperature and
voltage, we find three differences between the interacting and
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FIG. 1. (a) Sketch of the system. A voltage-biased quasi-one-
dimensional conductor is in contact with a topological supercon-
ductor. Both the conductor and the superconductor have multiple
transverse modes. (b) Schematic picture of the model for the n = 4
channel case. The superconductor is described by its low-energy
Majorana end-states γj , which are tunnel coupled to the scattering
states of the lead.

noninteracting cases: (i) With interactions, the characteristic
energy scale for the dependence on temperature T , voltage V ,
and (effective) magnetic field B is the “Kondo temperature”
TK ∼ √

W�e−W/� , where W is the interaction strength and �

is the level broadening due to the coupling to the normal-metal
contact, whereas this energy scale is � without interactions.
(The effective magnetic field B measures the strength of a
perturbation that breaks the effective time-reversal symme-
try T .) (ii) Without interactions, the zero-bias conductance
G(V = 0,T ) is a monotonously decreasing function of tem-
perature, while the temperature dependence of G(V = 0,T )
is nonmonotonous in the presence of interactions. (iii) The
Fano factor for the interacting system (defined with respect to
the normally reflected current) is F ′ = 10/3, which should be
compared with the value F ′ = 2 for the noninteracting system.
These differences can serve as an experimental signature to
detect the formation of the topological Kondo phase at the end
of a multichannel Majorana wire.

Below, in Sec. II we discuss the details of the model we
consider. In Sec. III we review the zero-temperature transport
properties for all values of the topological index n. The
remaining sections specialize to the case n = 4(mod 8); other
values of n are effectively described by the noninteracting
theory. The high and low temperature limits T � TK and T �
TK are discussed separately, in Secs. IV and V, respectively. In
Sec. VI we consider weak perturbations that break the effective
time-reversal symmetry responsible for the protection of the n

Majorana end states in the noninteracting system. We conclude
in Sec. VII.

II. MODEL

The system we consider is shown schematically in Fig. 1.
It consists of a half-infinite ideal lead, coupled to a half-
infinite multichannel topological superconducting wire with
an antiunitary symmetry T squaring to unity, corresponding
to symmetry class BDI of the Cartan classification [26]. There
are short-range two-fermion interactions in the Majorana wire;

the electrons in the ideal lead are assumed to be noninteracting.
Following common practice in the field, we refer to the
antiunitary effective symmetryT as “time-reversal symmetry,”
although one should keep in mind that the true time-reversal
symmetry is broken in all of the proposals to physically realize
a topological superconducting wire in symmetry class BDI.
The effective time-reversal symmetry is a good approximate
symmetry in generic topological superconductors with a
wire geometry [18,19]. In semiconductor-based platforms
the existence of multiple channels require a Zeeman field
strong enough to induce superconductivity in more than one
transverse mode; in ferromagnet-based platforms, effective
exchange field are much larger and multiple channels appear
naturally in a quasi-one-dimensional geometry [8].

The ideal lead is described by the Hamiltonian

Hlead = H =
∫

dξ
∑

α

ξc
†
ξ,αcξ,α, (1)

where ξ is the energy, measured with respect to the Fermi
level, α is the channel index, and the operators cξ,α and c

†
ξ,α

annihilate and create a scattering state in channel α at energy ξ .
The scattering states are assumed to be even under the effective
time-reversal symmetry,

T cξ,αT −1 = cξ,α. (2)

The low-energy degrees of freedom of the topological super-
conductor wire are encoded in up to four Majorana operators
γα localized near the wire’s boundary. (A larger number
of Majoranas is unstable against local interactions [20], so
that it need not be considered separately.) Microscopically,
the Majorana operators can appear as zero-energy boundary
modes of a Kitaev chain [1], or of a continuum Hamiltonian
for a spinless p-wave superconductor. The presence of the
effective time-reversal symmetry requires the order pararam-
eter to be real, whereby the sign of the order parameter
determines whether the Majorana operators are even or odd
under the effective time-reversal operation. The coexistence of
even and odd Majorana end states is unstable against generic
perturbations of the Hamiltonian, and we may assume that all
Majoranas have the same behavior under time reversal [27].
We denote the number of Majorana operators with n, with the
convention that we choose n positive if the Majoranas are even
under time reversal,

T γαT −1 = γα, (3)

and negative if the Majoranas are odd under time reversal.
The coupling between the normal lead and the topological

superconductor is described by a tunneling Hamiltonian,
which, after suitable basis changes for the scattering channels
in the ideal normal-metal lead and for the Majorana end states,
can be made diagonal in the channel index α,

HT = 1

2

|n|∑
α=1

∫
dξtα(c†ξ,α − cξ,α)γα, (4)

where our normalization of the fermion creation and annihila-
tion operators implies that the tunneling rate

�α = 2π |tα|2. (5)
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We have assumed that the number of transverse channels in
the ideal lead precisely matches the number |n| of Majorana
bound states in the superconductor [28–30].

Finally, upon projecting down to the low-energy Hilbert
space, short-range two-fermion interactions exist only for the
case of four Majoranas, in which case one has the interaction
Hamiltonian

Hint = −Wγ1γ2γ3γ4. (6)

In the absence of coupling to the leads, Eq. (6) is the full
Hamiltonian of the Majoranas.

III. ZERO-TEMPERATURE TRANSPORT

In the absence of interactions, the zero-bias, zero-
temperature conductance G of the system is

G = 2e2

h
|n|. (7)

This result is well known for the case |n| = 1 of a single
Majorana [31,32]. Its generalization to arbitrary n follows from
the observation that n = tr reh together with the fact that reh

is a matrix of rank n and singular values �1 [33], where reh

is the zero-energy reflection matrix for Andreev scattering at
the normal-metal–superconductor interface, together with the
well-known expression G = (2e2/h)tr rehr

†
eh for the conduc-

tance G of a normal-metal–superconductor junction [34–36].
The conductance (7) is independent of the value of the tunnel
amplitudes tα of Eq. (4) [37].

At zero temperature, the inclusion of interactions was found
to have remarkably little effect on the zero-bias conductance
[25]. This observation follows immediately for |n| < 4, be-
cause in that case interactions have zero matrix elements in the
low-energy sector of the Hilbert space. (It takes at least four
Majorana operators for an interaction Hamiltonian.) It also
follows for |n| > 4, but n is not an odd multiple of 4, because
with interactions n values that differ by a multiple of 8 are
topologically equivalent [20], and a generic perturbation of the
Hamiltonian drives the system to a state in which |n| takes its
minimal value in the topological equivalence class [25]. As in
the noninteracting case, this conclusion relies on the limit that
the tunneling amplitudes |tα| ↓ 0, to ensure that “gapped-out”
Majorana states do not contribute to the conductance.

Finally a Majorana wire with |n| = 4 Majorana end states is
characterized by emergent many-body end states, which show
a Kondo-like resonance at zero temperature [25]. For generic
model parameters this Kondo-like resonance is described by a
Fermi-liquid fixed point with a conductance G = 8e2/h. The
same conclusion applies to larger n if n is an odd multiple
of 4.

In this article we will also consider a second transport
property, the shot noise power S = ∫

dt ′〈I (t)I (t − t ′)〉. In
terms of the Andreev reflection matrix reh, the shot noise power
for a normal-metal–superconductor junctions reads [38]

S = 8e3

h
tr rehr

†
eh(1 − rehr

†
eh). (8)

In spite of the presence of interactions, at zero temperature,
this equality can be applied to the present system, because an
effective Fermi-liquid description applies to all values of the

Majorana number n. Since all eigenvalues of rehr
†
eh are one at

zero temperature, we conclude that S = 0 at zero temperature.
In the next two sections we investigate transport away

from the zero temperature limit. Section IV addresses the
conductance G in the limit of high temperatures (but T is
still small enough that the minimal description in terms of |n|
Majorana states remains valid), while Sec. V addresses the
leading finite-T corrections to the zero temperature results for
conductance and shot noise listed here.

IV. HIGH-TEMPERATURE LIMIT

At high temperature the effect of interactions in the
Majorana wire can be treated perturbatively, which allows us
to obtain an analytic expression for the transport properties.
Interaction effects are relevant for |n| = 4 only. In that case
the condition for the validity of the perturbation theory is
that the temperature T be large in comparison to the Kondo
temperature TK ∼ √

W�e−W/� for the equivalent Kondo
problem, see Ref. [25] and Sec. V. For |n| < 4 interaction
effects are absent, and the results derived below continue to be
valid down to zero temperature.

To calculate the current I we start from the expression I =
−eṄ , where N = ∫

dξ
∑

α c
†
ξ,αcξ,α is the number of electrons

in the ideal lead. From the Heisenberg equation of motion one
then obtains

I = ie

�
[N,HT]

= ie

2�

∫
dξ

|n|∑
α=1

tα(cξ,α + c
†
ξ,α)γα. (9)

Taking the expectation value and following a well-established
procedure [39], the current can be expressed in terms of the
lesser and greater Green functions

G
<(>)
α,β (ω) ≡

∫
dteiωtG

<(>)
α,β (t) (10)

of the Majorana states,

G<
α,β (t) = i〈γβ(0)γα(t)〉, G>

α,β (t) = −i〈γα(t)γβ(0)〉. (11)

One finds

I = ie

4�

∑
α,β

∫
dξtαtβ{G<

α,β(ξ )

+ f (ξ − eV )[G>
α,β(ξ ) − G<

α,β(ξ )]}, (12)

with f (ξ ) = 1/(1 + eξ/T ) the Fermi-Dirac distribution func-
tion and V the voltage applied to the normal-metal lead. Using
the fact that the Majorana Green functions have the proper-
ties G

<(>)
α,β (t) = δα,βG<(>)

α,α (t) (see Appendix A), G<
α,α(−ξ ) =

−G>
α,α(ξ ), and G>

α,α(ξ ) − G<
α,α(ξ ) = iImGR

α,α(ξ ), one finds
that the conductance G = ∂I/∂V is given by

G = e2

h

∑
α

�α

∫
dξ Im GR

α,α(ξ )∂ξf (ξ − eV ), (13)

with GR
α,α(ξ ) the (Fourier transformed) retarded Green func-

tion,

GR
α,α(t) = −iθ (t)〈{γα(t),γβ(0)}〉. (14)
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Up to this point the analysis is exact. The calculation of the
retarded Green’s functions for the interacting Majorana end
states involves the approximation that correlations between
the (Majorana) bound states at the end of the topological
superconducting wire and the scattering states in the lead can
be neglected. This is expected to be a valid approximation at
temperatures T � TK, where the thermal fluctuations in the
lead prevent the development of Kondo-like correlations, and
has proven to be a valid approximation for the Kondo problem
[40]. The calculations are reported in Appendix A, where we
find the result

GR
α,α(ω) = 2

ω + i�α − 4W 2

ω+i(�−�α )

, (15)

with

� =
∑

α

�α. (16)

These expressions differ significantly from those obtained for
the standard Kondo model in Ref. [40], and a few remarks
are in order. First, the sign of the interaction W in Eq. (6)
is immaterial, since it changes upon a mere relabeling of the
channels α. This explains the absence of any terms linear in
the interaction parameter W . Second, as the expressions above
correspond to the Green functions in the Majorana basis, they
are manifestly particle hole symmetric, which explains why
there is no dependence on the occupation of any local fermionic
degrees of freedom.

Without interactions one verifies that Eqs. (13) and (15)
reproduce the quantized conductance (7) at zero temperature,
with a thermally broadened conductance peak for temperatures
T � minα �α . Without interactions, the zero-bias conductance
is a monotonously decreasing function of temperature. The
effects of interactions on the conductance at T � TK are
shown in Fig. 2. Upon increasing the interaction strength,
the zero-energy peak characteristic of the noninteracting
system splits into two separate peaks centered at V ∼ ±2W/e.
The width of the peaks is set by ∼ max(T ,�). Interactions
concurrently reduce the height of the peak. When temperature
is increased beyond the interactions strength |W | the double
peak structure is continuously smeared out, and a single broad
peak is observed.

Interactions also affect in a characteristic way the depen-
dence of the zero-bias conductance G(V = 0,T ) on temper-
ature, see Fig. 3. In the weakly interacting limit W � �,
the zero-bias conductance G(V = 0,T ) is a monotonously
decreasing function of temperature, characteristic of a sin-
gle thermally broadened conductance peak of width ∼�.
Conversely, for strong interactions W � �, the conductance
G(V = 0,T ) has a maximum for kBT ∼ W . Above this
temperature, the conductance at finite voltage shows a single
thermally broadened peak, whose height is G(V = 0,T ) ∝
�/kBT . At lower temperatures T < W a split peaks develops,
leading to a zero-bias conductance that decreases when T

decreases, see Fig. 2(b), and the discussion in the preceding
paragraph. As will be discussed in the next section, this
behavior changes at even lower temperatures T � TK, when
a Kondo resonance develops, and the zero bias conductance
rises to the zero-temperature limit G = 8e2/h.

V [Γ/e]

V [Γ/e]

G
[e

2
/
h
]

G
[e

2
/
h
]

(a)

(b)

FIG. 2. Effect of interaction and temperature on the low bias
conductance of a four-channel wire contacted to a normal lead.
(a) Conductance vs applied voltage bias at kBT /� = 0.24 for increas-
ing values of the interaction strength: W/� = 0.03 (full blue curve),
W/� = 0.23 (dashed orange curve), W/� = 0.58 (dot-dashed green
curve), and W/� = 1.71 (dotted red line). Interactions induce a
splitting of the peak into a symmetric double peak with maxima at
eV ∼ ±2W and renormalize the peak(s) height(s). (b) Conductance
vs applied voltage bias for W/� = 1.71 at different temperatures:
kBT /� = 0.24 (full blue curve), kBT /� = 1.2 (dashed orange
curve), and kBT /� = 3.6 (dotted green curve). Temperatures smears
the peaks at kBT ∼ � = 3.6, and spoils the two-peaks feature as soon
as kBT ∼ W . In all plots the tunneling rates of the four channels are
set to �1/� = 0.43, �2/� = 0.31, �3/� = 0.20, �4/� = 0.06.

V. LOW-TEMPERATURE LIMIT

For strong interactions |W | � � the perturbative result of
the previous subsection predicts a zero-bias zero-temperature
conductance far below the quantized limit (7). This is, however,
not the true zero-temperature limit, because Kondo physics sets
in at the scale T ∼ TK with

TK ∼
√

�We−W/� (17)
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G
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T [Γ/kB ]
0

FIG. 3. Temperature dependence of the zero bias conductance
G(V = 0) for different values of the interaction strength, W/� = 2.5
(full blue curve), W/� = 1.75 (dashed orange line), and W/� = 0
(dot-dashed green curve) for high temperature. We sketch also the low
temperature behavior (T � TK) according to Eq. (39) (with α = 1).
The reported nonmonotonous behavior of the zero-bias conductance
as a function of temperature is a characteristic feature induced by
interactions. The values of the tunneling rates are set to �1/� =
0.175, �2/� = 0.225, �3/� = 0.275, �4/� = 0.325.

the corresponding Kondo temperature. To see the origin of the
Kondo physics, it is instructive to follow the original problem
of Sec. II for |n| = 4 through a sequence of mappings [25].

The first mapping is onto a “compactified” Anderson
impurity model [41–43]. Hereto one introduces fermionic
operators for pairs of Majorana states,

f↑ = 1
2 (γ1 + iγ2), f↓ = 1

2 (γ3 + iγ4), (18)

and, similarly, introduces the following linear combination of
the lead fermions:

gL,ξ↑ = 1√
2

(cξ,1 + icξ,2), (19)

gR,ξ,↑ = 1√
2

(−c
†
−ξ,1 − ic

†
−ξ,2), (20)

gL,ξ↓ = 1√
2

(cξ,3 + icξ,4), (21)

gR,ξ,↓ = 1√
2

(−c
†
−ξ,3 − ic

†
−ξ,4). (22)

In terms of these operators, the three terms Hlead, HT, and Hint

contribution to the Hamiltonian become

Hlead =
∫

dξ

2π

∑
β=L,R
σ=↑,↓

ξg
†
β,ξσ gβ,ξσ ,

HT =
∫

dξ
∑
β=L,R
σ=↑,↓

1√
2

(Vσg
†
β,ξσ fσ + Ṽσ g

†
β,ξσ f †

σ + H.c.),

Hint = W (2f
†
↑f↑ − 1)(2f

†
↓f↓ − 1), (23)

with the tunneling amplitudes

V↑ = 1
2 (t1 + t2), V↓ = 1

2 (t3 + t4),

Ṽ↑ = 1
2 (t1 − t2), Ṽ↓ = 1

2 (t3 − t4). (24)

This mapping is followed by a transformation to symmetric
and antisymmetric combinations of the lead fermions,

gL,ξσ = 1√
2

(gS,ξσ + gA,ξσ ),

gR,ξσ = 1√
2

(gS,ξσ − gA,ξσ ), (25)

which decouples the antisymmetric modes from the Majorana
end states,

Hlead =
∫

dξ

2π

∑
β=S,A
σ=↑,↓

ξg
†
β,ξσ gβ,ξσ ,

HT =
∫

dξ
∑

σ=↑,↓
(Vσg

†
S,ξσ fσ + Ṽσ g

†
S,ξσ f †

σ + H.c.). (26)

In this formulation the effective time-reversal symmetry maps
into a particle-hole symmetry for the superconductor end
states,

T fσT −1 = f †
σ . (27)

For the lead fermions the action of the effective time-reversal
symmetry is

T gS,ξσT −1 = −g
†
S,−ξ,σ , (28)

and one easily verifies that each of the three contributions
Hlead, HT, and Hint is invariant under the action of T .

Without the term proportional to Ṽσ this Hamiltonian is
the standard Anderson impurity model, be it without spin
rotation symmetry. The term proportional to Ṽσ describes
anomalous processes, with Andreev reflection instead of
normal scattering. (Note, however, that the transformations
leading to this effective Anderson model mix creation and
annihilation operators, so that normal and Andreev processes
in the language of the lead fermions gβ,ξσ do not necessarily
correspond to normal or Andreev processes in the language of
the original lead fermions cξα .)

To find the transport properties of the model for tempera-
tures T � TK (which is where the perturbation theory of the
previous section fails), one more transformation is needed,
similar to the Schrieffer-Wolff transformation of the standard
Anderson impurity model [44], which maps the problem to a
version of the Kondo Hamiltonian,

HK =
∫

dξ
∑

σ=↑,↓
ξg

†
S,ξσ gS,ξσ

+
∑

α=x,y,z

[Jασα(0) + 
ατα(0)]Sα , (29)

where

σα(0) ≡
∫

dξdξ ′(g†
S,ξ↑,g

†
S,ξ↓)σα

(
cgS,ξ ′↑
gS,ξ ′↓

)
, (30)

τα(0) ≡
∫

dξdξ ′(g†
S,ξ↑,gS,ξ↓)σα

(
cgS,ξ ′↑
g
†
S,ξ ′↓

)
, (31)
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σα , α = x,y,z being the Pauli matrices, and

Jx = (t2t4 + t1t3)/W,

Jy = (t2t3 + t1t4)/W, (32)

Jz = (t1t2 + t3t4)/W,


x = (t2t4 − t1t3)/W,


y = (t2t3 − t1t4)/W, (33)


z = (t1t2 − t3t4)/W.

The Hamiltonian (29) is known as the “compactified two-
channel Kondo model” [41–43] and it has a phenomenology
that closely resembles the standard two-channel Kondo model.
In particular, it has a non-Fermi-liquid fixed point if the
“normal” and “anomalous” couplings Jα and 
α are equal,
whereas it flows to the Fermi-liquid fixed point of the
conventional single-channel Kondo model otherwise. In our
case, the requirement that all four tunneling parameters tα be
positive ensures that the normal couplings Jx , Jy , and Jz in
the Hamiltonian (29) dominate. Therefore, at low temperature
and voltage the model (29) flows to the isotropic Kondo singlet
fixed point, where it is described by a unitary scattering matrix
s = −12 for the symmetric mode of the lead fermions [44],
without Andreev processes. Retracing the transformations of
the present section one then finds that at zero temperature and
voltage the original multichannel Majorana model of Sec. II
is characterized by a unitary reflection matrix which takes
the simple form [25] ree = rhh = 0, rhe = reh = 14 × 4. The
conductance at zero temperature in linear response readily
follows as G = (2e2/h)tr rehr

†
eh = 8e2/h, whereas the shot

noise vanishes, F = 0.
At finite temperature, inelastic scattering renders the

scattering matrix nonunitary. To study the corrections to
the conductance of the interacting Majorana wire at finite
temperature and voltage, we first discuss the transport of the
compactified Anderson model, then discuss the implications
of the mapping to our model of interest.

A. Transport properties of the compactified Anderson model

To analyze the perturbative corrections around the singlet
fixed point it is convenient to rewrite the model (29) in real
space on a discrete lattice as

H =
∑

σ

∑
i,j�0

ti,j g
†
i,σ gj,σ + [J 
σ (0) + 

τ (0)] · 
S, (34)

where the hopping amplitude ti,j is nonzero for nearest
neighbors only, and with the local electron spin and particle-
hole degree of freedom at site i = 0 given by 
σ (0) =
{σx(0),σy(0),σz(0)}, with the definitions in Eqs. (30) and (31)
and 
S = {Sx,Sy,Sz}. Here g

†
i,σ ≡ g

†
S,iσ is the Fourier transform

of g
†
S,ξσ , and creates a symmetric combination of a the lead

fermions with spin σ on site i. We have suppressed the
subscript “S” referring to the symmetric mode.

Since at zero temperature the antiferromagnetic coupling
J > 0 is the dominant term, corrections around the singlet
fixed point can be obtained as a perturbation in the tunnel-
ing ti,0, i.e., at the strong coupling limit D/J � 1, where

D ∼ ti,i+1 is the bandwidth for the lead fermions. This is done
by tracing out the local degrees of freedom of the bound state
of the spin and electron on site 0, in order to obtain an effective
theory for a free fermionic lead [45]. Without the anomalous
term proportional to 
 the leading corrections in a small-D/J

expansion are a correction to the hopping amplitude t0,1 of
order D3/J 2 and a repulsive interaction ∝g

†
1,↑g

†
1,↓g1,↓g1,↑ of

order D4/J 3. The main difference between the present analysis
and that of the standard single channel Kondo problem is the
appearance of the anomalous term proportional to |
| � J in
the perturbative expansion of the effective Hamiltonian.

Accounting for the presence of a nonzero anomalous term
perturbatively, we find to leading order D2
/J 2 no corrections
quadratic in the operators gi,σ and g

†
i,σ . The absence of

quadratic corrections can also follow from the observation
that all six possible local terms 2g

†
1,↑g1,↑ − 1, 2g

†
1,↓g1,↓ − 1,

g
†
1,↑g1,↓ + g

†
1,↓g1,↑, ig

†
1,↑g1,↓ − ig

†
1,↓g1,↑, g

†
1,↑g

†
1,↓ + g1,↓g1,↑,

and ig
†
1,↑g

†
1,↓ − ig1,↓g1,↑ are antisymmetric under application

of the effective time-reversal operation T , see Eq. (28),
whereas corrections to hopping amplitudes require higher
orders in D/J . Thus, the leading corrections from the
anomalous term involve corrections to the prefactors of the
hopping amplitude t0,1 and the repulsive on-site interaction
∝g

†
1,↑g

†
1,↓g1,↓g1,↑. These corrections to the prefactors are a

factor ∼
/J smaller than the prefactors in the absence of
anomalous terms, at 
 = 0. Since these correction terms affect
the deviations from the zero-temperature limit, we conclude
that the inclusion of the anomalous term leads to small
(order 
/J ) modifications of the finite-temperature and finite-
voltage corrections to the zero-temperature limit, whereas it
does not affect the zero-temperature limit itself. In particular,
inclusion of the anomalous term leads to a correction of
(relative) order 
/J to the Kondo temperature TK.

B. Transport properties of interacting chain

1. Current

We now return to the original problem of the multichannel
Majorana chain of Sec. II. We start by considering the current
operator (9) in the multichannel Majorana chain, as well as
current operators in the left and right leads (defined as the rate
of charge flow into the dot) in the Anderson model, Eq. (23),

ĨL = ie

�
√

2

∫
dξ

∑
σ

g
†
L,ξσ (Vσfσ + Ṽσ f †

σ ) + H.c.,

(35)

ĨR = ie

�
√

2

∫
dξ

∑
σ

g
†
R,ξσ (Vσfσ + Ṽσ f †

σ ) + H.c.

Using the mapping between the four-channel Majorana chain
and the Anderson model, we can express ĨR and ĨL in terms of
the current I in the multichannel Majorana model as

I = ĨL − ĨR. (36)

Furthermore, the distribution functions 〈c†ξ,αcξ,α〉 =
f (ξ − eV ) of the voltage biased lead in the original
Majorana model are mapped onto the distribution function of
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the left and right leads as

〈g†
L,ξσ gL,ξσ 〉 =f (ξ − eV ),

(37)
〈g†

R,ξσ gR,ξσ 〉 =f (ξ + eV ),

with all other correlations vanishing. Note that Eq. (37) implies
that in the Anderson model the voltage bias between the left
and right leads is 2V . Equations (36) and (37) show explicitly
how the current I in the multichannel Majorana model can
be calculated from the currents ĨR and ĨL in the Anderson
model (23).

At zero temperature and bias, the Anderson model is
described by the Kondo fixed point, without anomalous terms,
so that one has 〈ĨL〉 = −〈ĨR〉 = 2e2(2V )/h [46,47], from
which it follows that

〈I 〉 = 8e2V/h (38)

at zero temperature and zero bias. At finite temperature
and/or voltage, but without the anomalous terms, the expec-
tation values 〈ĨL〉 and 〈ĨR〉 are suppressed by a factor 1 −
(α/TK)2[(2eV )2/2 + πT 2] [48,49], where α is a coefficient
of order unity and TK is the Kondo temperature, see Eq. (17).
For the four-channel Majorana model this implies that the
conductance is

G = 8e2

h

[
1 −

(
α

TK

)2(1

2
(2eV )2 + πT 2

)]
. (39)

Following the discussion of the previous subsection, inclu-
sion of the anomalous term only quantitatively affects the
finite-temperature/voltage corrections, these corrections being
parametrically small in the ratio 
/J . This means that the
result (39) continues to hold in the presence of the anomalous
terms, though with a small change to the numerical constant α

or, alternatively and equivalently, to the definition of TK.

2. Shot noise

The zero-frequency shot noise power S is

S = lim
τ→∞

1

τ
〈δQ(τ )2〉, (40)

where

δQ(τ ) =
∫ τ

0
dτ ′[I (τ ′) − 〈I 〉] (41)

is the fluctuation of the transported charge for a time interval of
duration τ . Using the relation (36) one has δQ(τ ) = δQ̃L(τ ) −
δQ̃R(τ ), with

δQ̃L,R(τ ) =
∫ τ

0
dτ ′[ĨL,R(τ ′) − 〈ĨL,R〉]. (42)

For the zero-frequency shot noise this implies

S = lim
τ→∞

1

τ
〈2δQ̃R(τ )2 + 2δQ̃L(τ )2 − δQ̃imp(τ )2〉, (43)

with δQ̃imp(τ ) = δQ̃L(τ ) + δQ̃R(τ ) the fluctuation of the
charge on the impurity site in the Anderson model of Eq. (23).

Without the anomalous terms in Eq. (23), the charge
on the impurity site is bounded, so that the third term in
Eq. (43) vanishes after taking the limit τ → ∞. The first

two terms in Eq. (43) are equal and correspond to the
zero-frequency shot noise S̃ in the Anderson model, so that we
conclude

S = 4S̃ = 8e2

h
e|V | 10

3
α2

(
2eV

TK

)2

, (44)

where, in the second line, we substituted the known result for
the zero-frequency shot noise power S̃ in the Anderson model,
see Refs. [48,49].

Following common practice in the study of the Kondo
problem, we define a Fano factor F ′ = S/2e|δI | as the
ratio of the shot noise power S and the difference δI =
I − 8e2V/h of the zero-temperature current I at finite bias
V and the zero-temperature current at vanishing bias (38).
Such a definition is necessary, because the zero-temperature
zero-bias current, used in the standard definition of the Fano
factor, is noiseless. Combining the results obtained above, we
find

F ′ = 10
3 . (45)

The Fano factor F describes the noise properties of particles
that are normally reflected off the superconducting interface.
It may be interpreted as the effective charge (in units of e)
of particles normally reflected in the four-channel Majorana
wire, seen against the background of the current carried by
perfectly Andreev-reflected electrons.

As in the discussion of the average current, to leading order
at low temperature and/or bias the inclusion of the anomalous
terms in Eq. (23) only quantitatively modifies the effective
model parameters, but not the form of the results. Hence, its
effect is a modification of the coefficient α, which is small
if 
/J is small. However, the result for the Fano factor F ′,
which does not depend on the precise value of α, does not
change.

The expressions (39) for the current I and (44) for the
zero-frequency shot noise power S should be compared to
the current and shot noise of a noninteracting four-channel
Majorana wire (see Appendix B),

I =8e2

h
V

[
1 − 1

3

(
eV

�

)2
]
, (46)

S =8e2

h
e|V |4

3

(
eV

�

)2

, (47)

which has Fano factor

F ′ = 2, (48)

corresponding to an effective charge e∗ = 2e of normally
reflected electrons (against the background of Andreev re-
flected electrons). We therefore conclude that the Fano factor
F ′ constitutes a clear experimental signature of the emergent
topological Kondo resonance.

VI. TIME-REVERSAL SYMMETRY BREAKING

The low-temperature transport properties derived in the
previous section are unstable against perturbations that break
the effective time-reversal symmetry. In the absence of time-
reversal symmetry, quadratic terms coupling the Majorana end
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states are possible. We here consider the effect of a generic
time-reversal symmetry-breaking perturbation.

If the number of Majorana end states −3 � n � 3, the low-
energy theory is unaffected by the presence of interactions, and
the analysis of time-reversal breaking perturbations essentially
coincides with that of the noninteracting system [19]. The
effect of generic time-reversal symmetry-breaking terms is
to pairwise gap out Majorana end states, leaving behind a
single zero-energy Majorna end state if n is odd, and none
otherwise. Correspondingly the zero-temperature conductance
will show a quantized value 2e2/h at zero bias in the case of
odd n, whereas the zero-bias conductance is zero if n is even.
The gapped-out Majorana end states give rise to (quantized)
conductance peaks at finite voltage; the effect of a finite
temperature is to thermally smear the conductance.

The case n = ±4 demands a more careful analysis. For
concreteness we consider n = 4, with a generic time-reversal
breaking perturbation

HTRB = i

4∑
α,β=1

Yα,βγαγβ, (49)

with real coefficients Yα,β = −Yβ,α . In the specific imple-
mentation of a spinless p-wave superconducting quantum
wires with multiple transverse modes in the topological phase,
such time-reversal breaking terms emerge from transverse
superconducting pairing [19]. Following the mapping to the
compactified Anderson model in Sec. V, after the introduction
of the fermionic degrees of freedom f↑, f↓ in Eq. (18), the
perturbation in Eq. (49) takes the form

HTRB = (Bz + ε0)f †
↑f↑ − (Bz − ε0)f †

↓f↓

+ (Bx − iBy)f †
↑f↓ + (Bx + iBy)f †

↓f↑

+ (Dx − iDy)f †
↑f

†
↓ + (Dx + iDy)f↓f↑. (50)

where the six parameters Bx , By , Bz, ε0, Dx , and Dy are
expressed in terms of the original six parameters Yα,β . In the
language of the Anderson model, the parameters Bx , By , and
Bz may be interpreted as an external magnetic field, ε0 is
interpreted as a potential that drives the model away from
the symmetric point, and Dx and Dy correspond to a local
superconducting pairing.

As in the previous section, without loss of generality we
assume that the interaction is repulsive W > 0. Then the
two ground states of the isolated dot in the absence of the
time-reversal breaking perturbation are the two states |↑〉, |↓〉
of a singly occupied impurity site. The two excited impurity
states correspond to the empty and doubly occupied impurity
site |0〉, |↑,↓〉. The effect of the terms proportional to Bx , By ,
and Bz is to split the degeneracy of the ground state, while
the superconducting and overall energy terms (Di,ε0) split the
degeneracy of the excited state. The latter perturbations (to
leading order) have no effect on the ground state; they drive
the compactified Anderson model away from the symmetric
point, and become irrelevant when the model is mapped
to the corresponding compactified Kondo problem [25].
The only relevant contribution of the time-reversal breaking
perturbation is therefore from to the terms proportional to Bx ,
By , and Bz. Since the low-energy fixed point of model without

time-reversal symmetry breaking is the isotropic compacti-
fied Kondo model, we can generally assume Bx = By = 0,
Bz = B. Thus, the model in the presence of a time-reversal
symmetry-breaking perturbation can be ultimately mapped,
at low energy, onto the Anderson model with a Zeeman-split
ground state. We are interested in the leading order correction
to the conductance due to this splitting.

The effect of a magnetic field on the standard Anderson
model is well known [45]. At zero temperature, a weak
magnetic field suppresses the conductance by a factor [1 −
(B/TK)2]. Hence, a time-reversal symmetry-breaking pertur-
bation leads to a similar suppression of the zero-temperature
conductance of the four-channel Majorana chain,

G = 8e2

h

[
1 −

(
B

TK

)2
]
. (51)

The corresponding correction for the noninteracting system
in the presence of a time-reversal symmetry-breaking term
Bz = B is

G = 8e2

h

[
1 −

(
B

2�

)2
]
, (52)

where � = 2π |tα|2 = 2π |t |2 is the level broadening for a
channel independent tunneling amplitude [50]. Since gener-
ically TK � �, cf. Eq. (17), in the interacting Majorana
wire the corrections from a time-reversal symmetry-breaking
perturbation are larger than without interactions.

VII. CONCLUSIONS

In this paper we have systematically analyzed the effect
of residual electron-electron interactions on the transport
properties of a topological superconducting wire with an
effective time-reversal symmetry, contacted to an external lead.
Such a wire is known to have a Z8 topological classification,
where the topological index n counts the number of Majorana
end states, negative n corresponding to end states that are
odd under time reversal. Nontrivial interaction effects exist
for the case |n| = 4 (mod 8) only, since other values of n are
effectively described by a noninteracting theory.

For |n| = 4 interactions induce a Kondo-like correlated
state. At temperatures T much larger than the associated
Kondo temperature TK, interactions lead to a splitting of the
zero-bias conductance peak characteristic of the noninteract-
ing system and, hence, a slight decrease of the zero-bias
conductance upon decreasing the temperature in the range
� � T � W (� is the tunnel coupling to the normal-metal
lead, W is the interaction energy). The formation of a Kondo
resonance at temperatures T � TK, however, leads to an
increase of the conductance with decreasing temperature
and restores a zero-temperature and zero-bias conductance
G = 8e2/h that is indistinguishable from the noninteracting
case [25]. For comparison: Without interactions the zero-bias
conductance shows a monotonous increase upon decreasing
the temperature. Although the zero-temperature zero-bias
conductance does not distinguish between the noninteracting
and interacting scenarios, in the Kondo regime T � TK

differences between the two cases exist at low but finite
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temperature or bias differences. The most striking such
difference is the Fano factor F ′, which describes the ratio of the
shot noise power and the normal-reflected current. We found
F ′ = 10/3 in the interacting case, whereas F ′ = 2 without in-
teractions. This difference marks another clear experimentally
detectable difference between the scenarios without and with
interactions.

The anomalous Fano factor F ′ for the case |n| = 4
was obtained via a mapping to the standard Anderson
impurity model. That mapping involves a factor 2 for the
Fano factor, and the Fano factor F ′ = 10/3 follows from
the anomalous Fano factor 5/3 reported for the Anderson
impurity model [48,49]. The derivation of the original result
requires the presence of particle-hole symmetry, which is a
good approximate symmetry in the setting of the Anderson
impurity model. Particle-hole symmetry is manifest in the
interacting Majorana wire we consider here, so that the
present system may be an interesting alternative to ob-
serve the anomalous Fano factor associated with the Kondo
effect.

In Ref. [25] we argued that there are two possible Fermi-
liquid fixed points describing the interacting Majorana wire
with |n| = 4. One of these is reminiscent of the nonin-
teracting system with n = 4, the other one derives from
the noninteracting system with n = −4. For the transport
properties we consider here, conductance and shot noise,
one finds the same low-temperature and low-bias results in
these two cases. Our analysis is not valid for the boundary
between the “n = 4” and “n = −4” parameter regions, where
the low-energy properties of the system are described by
a (non-Fermi-liquid) two-channel Kondo fixed point. How-
ever, the two-channel Kondo scenario requires fine tuning
of system parameters; The mapping to the single-channel
Kondo model used here is valid for generic parameter
choices.

Practical realizations of Majorana wires have been proposed
for hybrid systems involving topological-insulator edges [5],
semiconductor wires [6,7], ferromagnetic structures [8,9],
or arrangements of ferromagnetic atoms [10–13]. Of these,
the topological insulator platform is strictly one dimensional
by nature, which makes it unsuitable for multichannel wire
realizations. A realization with semiconductor wires requires
a Zeeman energy exceeding the splitting between transverse
subbands [51], which can be achieved for wide nanowires.
On the other hand, ferromagnetic nanowires have multiple
channels as soon as they are more than a few atoms in
cross section. In all these proposed realizations, the effective
time-reversal symmetry is not an exact symmetry, although it
is a good approximate symmetry if the wire width W is much
smaller than the coherence length ξ of the proximity-induced
superconducting phase [18,19]. The interactions required to
observe the Kondo-like physics discussed here (interaction
strength larger than the energy scale associated with the
breaking of the effective time-reversal symmetry) arise from
charge fluctuations inherent to Andreev bound states, see,
e.g., Ref. [25]. Since the presence of the superconductor
effectively screens interactions in a normal-metal wire in
its proximity, the interaction strength may be enhanced if
the end of the normal-metal wire (which is where the
Majoranas reside) is not covered by a superconducting
material.
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APPENDIX A: MAJORANA’S GREEN’S FUNCTIONS
AT HIGH TEMPERATURE

We present here the explicit calculation of the Majorana
end-states Green’s functions in the high temperature limit. We
are ultimately interested in the retarded Green’s function in
the energy domain. We start form the corresponding Green’s
functions in time and define

Fα;β(t) = −iθ (t)〈{γα(t),γβ}〉,
Jμ<ν<ζ ;β (t) = −iθ (t)〈{γμ(t)γν(t)γζ (t),γβ}〉.

Repeatedly applying the equations of motions for the
above functions, and neglecting Majorana-Leads four-operator
correlations, we obtain a closed set of equations [40]. In the
frequency domain they read

(ω + iη) Fα;β(ω)

= 2δα,β − i t2
T ,α�̃ − 2

∑
μ<ν<ζ

[W̃α,μ,ν,ζ Jμ<ν<ζ ;β (ω)],

(ω + iη) Jμ<ν<ζ ;β (ω)

= 2(δβ,ζ 〈γμγν〉 − δβ,ν〈γμγζ 〉 + δβ,μ〈γνγζ 〉)
− i

(
t2
T ,μ + t2

T ,ν + t2
T ,ζ

)
�̃ Jμ<ν<ζ ;β (ω)

− 2
∑

α

W̃α,μ,ν,ζ Fα;β (ω),

with

�̃ = 2i
∑

h

(
1

ω + iη − εh

+ 1

ω + iη + εh

)
,

W̃α,μ,ν,ζ = Wα,μ,ν,ζ − Wμ,α,ν,ζ + Wμ,ν,α,ζ − Wμ,ν,ζ,α.

Here Wα,μ,ν,ζ �= 0 only when α < μ < ν < ζ . With four
channels the only nonvanishing entry is W1,2,3,4 = W . This
gives

Fα;β(ω) = 2uα(ω)δα,β + 4Mα;β (ω),

uα(ω) = 1

ω + i�̃t2
α − ∑

μ<ν<ζ

4W̃ 2
α,μ,ν,ζ

ω+i�̃(t2
T ,μ+t2

T ,ν+t2
T ,ζ )

,

Mα;β(ω) = −
∑

μ<ν<ζ

W̃α,μ,ν,ζ

ω + i�̃
(
t2
μ + t2

ν + t2
ζ

)
× (δβ,ζ 〈γμγν〉 − δβ,ν〈γμγζ 〉 + δβ,μ〈γνγζ 〉).

The averages of the two-points-same-time Majorana opera-
tors have to be evaluated in terms of some temperature occupa-
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tion function of the end states. Note that since W̃α,μ,ν,ζ ∝ εαμνζ

where εαμνζ is the Levi-Civita symbol, and Mα;β �= 0 for
β = {μ,ν,ζ }, it follows that Mα;α = 0. Here we include the
interaction also in determining the energy levels of the local
Majorana system. We know that the interaction produces a
level splitting into two doubly degenerate spaces at energy
±W . Assuming thermal occupation of the Majorana’s levels,
we have the following density matrix to average the Majorana’s
two-points-function:

ρ = 1

2

⎛
⎜⎝

f (W ) 0 0 0
0 f (W ) 0 0
0 0 f (−W ) 0
0 0 0 f (−W )

⎞
⎟⎠,

where the matrix is written in the basis |1,0〉, |0,1〉, |1,1〉 |0,0〉,
W > 0, and f (ε) ≡ (1 + eε/T )−1 is the Fermi distribution
function. Note that f (ε) + f (−ε) = 1 guarantees Trρ = 1.
We obtain

〈γμγν〉 ≡ Tr[γμγνρ] = 0 for μ �= ν.

Hence

Mα;β(ω) = 0.

The only nonzero contributions to the Majorana’s Green’s
function are

F1;1 = 2

ω + it2
T ,1�̃ − 4W 2

ω+i(t2
T ,2+t2

T ,3+t2
T ,4)�̃

,

F2;2 = 2

ω + it2
T ,2�̃ − 4W 2

ω+i(t2
T ,1+t2

T ,3+t2
T ,4)�̃

,

F3;3 = 2

ω + it2
T ,3�̃ − 4W 2

ω+i(t2
T ,1+t2

T ,2+t2
T ,4)�̃

,

F4;4 = 2

ω + it2
T ,4�̃ − 4W 2

ω+i(t2
T ,1+t2

T ,2+t2
T ,3)�̃

.

Note that, importantly, the above procedure can be repeated
for the functions −iθ (t)〈 γα(t),γβ〉, −iθ (t)〈 γα,γβ(t)〉, the only
difference being the appearance of 〈γαγβ〉 instead of the δα,β

at the same time points. Therefore, the matrix structure of all
the equations in the channel indices is preserved and, since
〈γαγβ〉 ∝ δα,β , all the Green’s functions G

>(<)
α,β ∝ δα,β .

APPENDIX B: SHOT NOISE FOR
NONINTERACTING MAJORANAS

In the absence of interactions the four channels are
completely decoupled and we may calculate the shot noise
of each channel separately. The expression for the shot noise
in a single-channel normal-metal–superconductor junction is
[38,52]

S = 2e2

h

∫ ∞

0
dε(Iee(ε)2fe(ε)[1 − fe(ε)]

+ Ieh(ε)Ihe(ε){fe(ε)[1 − fh(ε)] + fh(ε)[1 − fe(ε)]}
+ Ihh(ε)2fh(ε)[1 − fh(ε)]), (B1)

where the matrix elements of the current operator Iee(ε),
Ieh(ε), Ihe(ε), and Ihh(ε) are defined through the matrix
relation(Iee(ε) Ieh(ε)

Ihe(ε) Ihh(ε)

)
=

(−1 0

0 1

)
−

(
ree(ε)∗ rhe(ε)∗

reh(ε)∗ rhh(ε)∗

)

×
(−1 0

0 1

)(
ree(ε) reh(ε)

rhe(ε) rhh(ε)

)
, (B2)

fe(ε) is the distribution function for the electrons, and
fh(ε) = 1 − fe(−ε). Combining Eq. (B2) with unitarity of
the Andreev scattering matrix, one finds Iee(ε) = −2|rhe(ε)|2,
Ieh(ε) = Ihe(ε)∗ = −2rhe(ε)∗rhh(ε), and Ihh(ε) = 2|reh(ε)|2.
Omitting contributions proportional to fe(ε)[(1 − fe(ε)] and
fh(ε)[(1 − fh(ε)], which vanish at zero temperature, the shot
noise power is then found to be

S = 8e2

h

∫ ∞

0
dε|rhh(ε)|2|rhe(ε)|2{fe(ε)[1 − fh(ε)]

+ fh(ε)[1 − fe(ε)]}. (B3)

Substituting fe(ε) = 1 if ε < eV , with eV > 0, and 0 other-
wise, one arrives at the final expression

S = 8e2

h

∫ eV

0
dε|rhh(ε)|2|rhe(ε)|2. (B4)

The reflection amplitudes rhh(ε) and reh(ε) for the one-
dimensional Majorana chain have the standard Breit-Wigner
form [32],

ree(ε) = rhh(ε) = ε

ε + i�
, reh(ε) = rhe(ε) = i�

ε + i�
, (B5)

so that the low-bias shot noise becomes

S = 8e3|V |
3h

(
eV

�

)2

, (B6)

plus corrections of higher order in eV/�. This result has to be
multiplied with a factor 4 to obtain the shot noise power (47)
of a four-channel Majorana wire.

Similarly, the current of a single noninteracting Majorana
chain follows as

I = e

h

∫ ∞

0
[Ieefe(ε) + Ihhfh(ε)], (B7)

which in the zero-temperature limit and for bias eV > 0
simplifies to

I = 2e

h

∫ eV

0
dε|rhe(ε)|2. (B8)

Substituting Eq. (B5) for rhe, one then finds

I = 2e2

h
V

[
1 − 1

3

(
eV

�

)2
]
, (B9)

up to corrections of higher order in eV/�. Multiplication by
four gives Eq. (46).
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