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The problem of accounting for the quantum degrees of freedom in passing from massive higher-spin 
potentials to massless ones, and the inverse problem of “fattening” massless tensor potentials of helicity 
±h to their massive s = |h| counterparts, are solved – in a perfectly ghost-free approach – using “string-
localized fields”.
This approach allows to overcome the Weinberg–Witten impediment against the existence of massless 
|h| ≥ 2 energy–momentum tensors, and to qualitatively and quantitatively resolve the van Dam–Veltman–
Zakharov discontinuity concerning, e.g., very light gravitons, in the limit m → 0.
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1. Introduction

In relativistic quantum field theory, the quantization of interact-
ing massless or massive classical potentials of higher spin (s ≥ 1) 
either violates Hilbert space positivity which is an indispensable 
attribute of the probability interpretation of quantum theory, or 
leads to a violation of the power counting bound of renormaliz-
ability whose maintenance requires again a violation of positivity.

In order to save positivity for those quantum fields which cor-
respond to classically gauge invariant observables, one usually for-
mally extends the theory by adding degrees of freedom in the 
form of negative metric Stückelberg fields and “ghosts” without 
a counterpart in classical gauge theories. The justification for this 
quantum gauge setting is that one can extract from the indefinite 
metric Krein space a Hilbert space that the gauge invariant opera-
tors generate from the vacuum.

This situation is satisfactory as far as the vacuum sector and 
the perturbative construction of a unitary gauge-invariant S-matrix 
are concerned. However the theory remains incomplete in that it 
provides no physical interpolating fields that mediate between the 
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causal localization of the field theory and the analytic structure of 
the S-matrix in terms of fields that connect charged states with the 
vacuum. Expressed differently, gauge theory allows to compute the 
perturbative S-matrix, but cannot construct its off-shell extension 
on a Hilbert space.

There are two famous results about the higher-spin massless 
case. The first is the Weinberg–Witten theorem [24] which states 
that for s ≥ 2, no point-localized stress-energy tensor exists such 
that the Poincaré generators are moments of its zero-components. 
This result also obstructs the semiclassical coupling of massless 
higher-spin matter to gravity.

The second is the DVZ observation due to van Dam and Velt-
man [25] and to Zakharov [28], that in interacting models with 
s ≥ 2, scattering amplitudes are discontinuous in the mass at 
m = 0, i.e., the scattering of matter through exchange of mass-
less gravitons (say) is significantly different from the scattering via 
gravitons of a very small mass.

Both problems can be addressed, without being plagued by 
the positivity troubles of gauge theories, with the help of “string-
localized quantum fields” defined in the physical Hilbert space. 
The latter may be regarded as a fresh start to Mandelstam’s at-
tempts [12] to reformulate gauge theories as full-fledged theories 
in which all fields live on the Hilbert space of the field strength. 
The new point of view was triggered by a new approach to Wign-
er’s infinite-spin representation [17], that proved to be useful also 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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for finite spin. String-localized potentials for finite spin s are in-
tegrals over their field strengths along a “string” x + R

+
0 e, see 

Eq. (1.1), Eq. (2.2), or Eq. (3.3), where e is a (spacelike) direction. 
This evidently does not change the particle content. The main ben-
efit of these potentials is their improved UV dimension dUV = 1
rather than dUV = s + 1, admitting renormalizable interactions that 
are otherwise excluded by power-counting.

A point-localized massive spin s potential can be split up into a 
string-localized potential that has a massless limit, and derivatives 
of one or more so-called “escort fields”. The role of the latter is 
to separate off derivative terms from the interaction Lagrangean or 
from conserved currents, that do not contribute to the S-matrix or 
to charges and Poincaré generators, respectively. They thus “carry 
away” all non-renormalizable UV fluctuations and singularities in 
the limit m → 0.

How this works, may be illustrated in the case of QED [21,
22,13]: The coupling to the indefinite Maxwell potential AF (“F” 
stands for “Feynman gauge”) is replaced by a coupling jμ AP

μ to the 
massive Proca potential AP. This avoids negative-norm states, but 
the interaction is non-renormalizable because of the UV dimen-
sion 2 of the Proca potential. Now, the decomposition (see Sect. 2) 
AP

μ(x) = Aμ(x, e) − m−1 ∂μa(x, e) into a string-localized potential 
and its escort is brought to bear: Aμ(x, e) has UV dimension 1 and 
is regular at m = 0. The UV-divergent part of the interaction is car-
ried away by the escort field: −m−1 jμ∂μa(e) = −∂μ(m−1 jμa(e))
is a total derivative and may be discarded from the interaction 
Lagrangean. The remaining string-localized (but equivalent to the 
point-localized) interaction jμ Aμ(e) has UV dimension 4, and re-
mains renormalizable at m = 0.

The ongoing analysis of perturbation theory with string-local-
ized interactions [8,13,16] gives strong evidence that the result-
ing theory is order-by-order renormalizable, and equivalent to the 
“usual” QED. The scattering matrix can be made independent of 
the string direction e, provided a suitable renormalization con-
dition is satisfied. In that case, interacting observable fields are 
string-independent and hence local. These conditions can be seen 
as an analogue of Ward identities imposed in order to ensure BRST 
invariance in point-localized but indefinite approaches [20,5], see 
also footnote 1 in Sect. 6. Indeed, the conditions can also be formu-
lated in a cohomological manner. Yet, the precise relation between 
gauge invariance and string-independence remains to be explored.

We give more details, especially on the preservation of causal-
ity, for the (much easier) case of the coupling of a massive vector 
field to an external source in Sect. 2.1.

Whereas string-localized perturbation theory is still in its in-
fancy, the problems of massless currents and energy-momentum 
tensors as well as the continuous passage from free massive fields 
to their massless helicity counterparts can be completely solved. 
The presentation of this solution is the principal aim of this let-
ter, including also the opposite direction, sometimes (in connection 
with the Higgs mechanism) referred to as “fattening”.

1.1. Overview of results

We outline the general picture for arbitrary integer spin s, re-
ferring to [15] for further details. As the case s = 2 already exhibits 
all the features of the general case, we focus on s = 1 and s = 2 in 
Sect. 2 and Sect. 3.

The 2-point functions of covariant massless potentials are in-
definite polynomials in the metric tensor ημν , while their field 
strengths (curl in all indices) are positive. (By “positive”, it is 
understood “positive-semidefinite”, accounting for null states due 
to equations of motion like ∂μ Fμν = 0.) Alternatively, the field 
strengths can be constructed, without reference to a potential, di-
rectly on the Fock space over the unitary massless helicity h = ±s
Wigner representations of the Poincaré group. This is exposed in 
standard textbooks, e.g., [23]. One can construct potentials in the 
Coulomb gauge on the same Hilbert space, but one gets into con-
flict with Poincaré covariance: Lorentz transformations result in an 
operator-valued gauge transformation due to the affine nature of 
the Wigner phase. When the potentials are required for interac-
tions, and one has to compromise between positivity or Lorentz 
invariance, preference is usually given to covariance.

For some early treatments of massive free tensor fields of 
higher spin, see [4,7]. We freely adopt the name “Proca” for all 
spins s ≥ 1. The Proca potentials are symmetric traceless and con-
served tensors AP

μ1...μs
(x) of rank s. Their 2-point functions ob-

tained from the (m, s) Wigner representation [23] are polynomials 
in the positive projection orthogonal to the momentum (sign con-
vention η00 = +1)

−πμν(p) = −ημν + pμpν

m2

with coefficients dictated by symmetry and tracelessness. The mo-
menta in the numerator cause the UV dimension dUV = s + 1 and, 
by power counting, jeopardize the renormalizability of minimal 
couplings to currents.

The potentials evidently admit no massless limit. Only their 
field strengths F [μ1ν1]...[μsνs] exist at m = 0 because the curls kill 
the terms with momentum factors.

We define symmetric free tensor fields A(r)
μ1...μr (x, e) of rank 0 ≤

r ≤ s on the Fock space of the massive field strengths such that

• All A(r) have UV dimension dUV = 1 and are regular in the 
massless limit.

• The potential AP can be decomposed in a way that (i) all con-
tributions of UV dimension > 1 are isolated as derivatives of the 
“escort” fields A(r) of lower rank r < s, and (ii) the singular be-
haviour at m → 0 is manifest in the expansion coefficients (inverse 
powers of m).

• The massive fields A(r) are coupled among each other through 
their traces and divergences. In the massless limit, they become 
traceless and conserved, and their field equations and 2-point 
functions decouple.

• At m = 0, the escort A(0) is the canonical massless scalar ϕ . 
The tensors A(r>0) are potentials for the field strengths of helic-
ity h = ±r [23]. They were previously constructed [18] without an 
approximation from m > 0.

• Conversely, the given massless potential A(s) of any helic-
ity h = ±s can be made massive (“fattening”) in the same way 
as for scalar and Dirac fields, namely by simply changing the dis-
persion relation p0 = ωm(�p). The fattened field brings along with 
it all lower rank fields A(r) by virtue of the coupling through the 
divergence. We give a surprisingly simple formula involving only 
derivatives, to restore the exact Proca potential AP from the fat-
tened A(s) .

• The massless limit shows the way to construct a stress-energy 
tensor for the massless fields that decouples into a direct sum of 
mutually commuting stress-energy tensors T (r) for the helicity po-
tentials A(r) .

• None of these constructions refers to a classical action prin-
ciple. The quantization is manifest and without ghosts from the 
outset.

The massless limit describes the exact splitting of the (m, s)
Wigner representation into massless helicity representations with 
h = ±r (r = 1, . . . , s) and h = 0.

In particular, the number 2s + 1 of one-particle states at fixed 
momentum is preserved. In contrast, the “fattening” of the mass-
less potential of helicity s increases the number of one-particle 
states, because its 2-point function is a semi-definite quadratic 
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form of rank 2 that becomes rank 2s + 1 under the deformation 
of the dispersion relation.

These facts yield the obvious explanation of the DVZ discon-
tinuity [25,28] in linearized gravity coupled to external sources: 
The spin 2 Proca potential AP (or its analog in the indefinite Feyn-
man gauge) is not continuously connected with a massless helicity 
h = ±2 potential. At each positive mass, the former has contribu-
tions from all r ≤ 2. Rejecting at m = 0 the helicities |h| < 2 causes 
the discontinuity. We shall exhibit in Sect. 3 that in the ghost-free 
setting, at m = 0 only the helicities h = ±2 (the linearized massless 
gravity) and h = 0 survive in the coupling to the external source. 
The h = ±2 part is the linearized massless gravity. The additional 
scalar ϕ(x) is the massless limit of the scalar escort field A(0)(x, e)
and couples to the trace of the stress-energy tensor.

These results state the preservation of degrees of freedom (of 
free fields coupled to external sources) in a ghost-free language. 
The DVZ discontinuity arises by dropping the scalar “by hand” at 
m = 0. In contrast, there exist several ideas to explain how the 
scalar, and hence the discontinuity, could be instead dynamically 
suppressed in the presence of suitable interactions. Notably, Vain-
shtein [26] has presented a model with a non-perturbative screen-
ing mechanism that is effective only at small distances. It would 
be extremely rewarding to see how this screening emerges in a 
ghost-free approach. Other authors appeal to curvature effects or 
extra dimensions, cf. the review [9]. We hope that our physical ap-
proach to free fields will also contribute to a better understanding 
of the interacting models.

The stated properties of the massless potentials and stress-
energy tensors are clearly at variance with many No-Go theorems, 
including the Weinberg–Witten theorem. This is possible because 
they are string-localized. Their 2-point functions involve, instead 
of the singular (as m → 0) tensor πμν(p) or indefinite tensor ημν , 
a suitable tensor Eμν(p) whose substitution into the 2-point func-
tions (i) preserves positivity, (ii) does not affect the field strengths, 
and (iii) has a regular limit m → 0.

The No-Go theorems may be attributed to the fact that such a 
tensor Eμν(p) does not exist, if it is allowed to be a function of 
the momentum only. Instead,

E(e, e′)μν(p) := ημν − pμeν

(pe)+
− e′

μpν

(pe′)+
+ (ee′)pμpν

(pe)+(pe′)+
(where i/(k)+ = i/(k + i0) is the Fourier transform of the Heaviside 
function) are distributions in p and two four-vectors e, e′ . If Eμν

is substituted for πμν or ημν , the potentials depend on e, but the 
field strengths will not.

In momentum space, the integration

X(x, e) ≡ (Ie X)(x) :=
∞∫

0

dλ X(x + λe) (1.1)

produces the denominators i((pe) + i0)−1 in the creation part and 
−i((pe) − i0)−1 in the annihilation part. Thus, fields whose 2-point 
functions are polynomials in Eμν are necessarily localized along 
the “string” x +R

+
0 e.

String-localization requires some comments. First, it is not a 
feature of the associated particles, but of the fields that may be 
used to couple them to other particles. (The only exception are 
particles in the infinite-spin representations [17,10], that are be-
yond the scope of this letter.)

Eq. (1.1) (and its generalizations involving several integral op-
erations Ie) imply the Poincaré transformations of string-localized 
fields

Ua,	 Aμ1...μr (x, e)U∗
a,	 = (∏

	νi
μi

)
Aν1...νr (a + 	x,	e), (1.2)
i

i.e., the direction of the string is transformed along with its apex x
and the tensor components of the field tensor.

There is no conflict with the principle of causality, which is 
as imperative in relativistic quantum field theory as Hilbert space 
positivity. String-localized fields satisfy causal commutation rela-
tions according to their localization: two fields commute whenever 
their strings are pointwise spacelike separated. There are suffi-
ciently many spacelike separated pairs of spacelike or lightlike 
strings to construct scattering states by asymptotic cluster prop-
erties (Haag–Ruelle theory). For this reason, scattering theory re-
quires e2 ≤ 0.

String-localized interactions admit couplings of physically mas-
sive tensor potentials without spontaneous symmetry breaking (cf. 
Sect. 6). Instead, when coupling self-interacting massive vector 
bosons (like W and Z bosons) via their string-localized potentials, 
the string-independence can only be achieved with the help of 
a boson with properties like the Higgs, including a quartic self-
interaction [22]. Its role is, however, not the generation of the 
mass, but the preservation of the renormalizability and locality.

Examples of new renormalizable interactions in the string-
localized setting could be the coupling of matter to gravitons 
through the string-localized potentials A(2) , and perhaps the self-
coupling of gravitons.

In the sequel, we give more details for spin 1 and 2. All dis-
played linear relations between fields follow from their definitions 
by integrals and derivatives of point-localized fields, e.g., by in-
spection of their integral representations in terms of creation and 
annihilation operators.

We write 2-point functions throughout as

(
, X(x)Y (y)
) =
∫

dμm(p) · e−ip(x−y) · m M X,Y (p),

where dμm(p) = d4 p
(2π)3 δ(p2 − m2)θ(p0).

2. Spin one

The 2-point function of the massless Feynman gauge potential

0M AF
μ,AF

ν = −ημν

is indefinite. Its curl Fμν = ∂μ Aν − ∂ν Aμ is the Maxwell field with 
positive 2-point function

0M Fμν,Fκλ = −pμpκ ηνλ + pμpλ ηνκ + pν pκ ημλ − pν pλ ημκ .

The massive Proca potential satisfies ∂μ AP
μ = 0. Its positive 

2-point function is

m M AP
μ,AP

ν = −πμν(p). (2.1)

The curl kills the term pμpν/m2, so the field strength is regular at 
m = 0. The field equation ∂μ Fμν = −m2 AP

ν gives back the potential 
in terms of its field strength.

Only for s = 1, the massless limit can be achieved with point-
localized fields: by inspection of their 2-point functions, mAP

μ is 
regular at m = 0, where it decouples from Fμν and becomes the 
derivative of the canonical scalar free field ϕ with 0M∂μϕ,∂νϕ =
pμpν .

In the string-localized setting, the massless scalar emerges 
without derivative. We define

A(1)
μ (x, e) ≡ Aμ(x, e) := (

Ie Fμν

)
(x)eν ≡

∫ ∞

0
dλ Fμν(x + λe)eν,

(2.2)

A(0)(x, e) ≡ a(x, e) := −m−1 ∂μ Aμ(x, e). (2.3)
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Aμ(e) is regular in the massless limit because Fμν is. That a(e) is 
also regular can be seen from

m M Aμ(−e),Aν (e′) = −E(e, e′)μν(p), (2.4)

which implies by the definition of a(e)

m Ma(−e),Aν (e′) = O (m), m Ma(−e),a(e′) = 1 + O (m2).

(As the fields are distributions also in e [14], we have to admit in-
dependent string directions e, e′ . The choice “−e” is a convenience 
paying off for higher spin [15].)

At m = 0, the fields a and Aμ decouple, and converge to the 
massless scalar and (as the terms O (p/(pe)) in Eq. (2.4) do not 
contribute to Fμν ) to a string-localized massless potential for the 
Maxwell field strength.

In addition, one gets the decomposition underlying the QED ex-
ample in Sect. 1

AP
μ(x) = Aμ(x, e) − m−1 ∂μa(x, e). (2.5)

The taming of the UV behaviour is seen from Eq. (2.4): the mo-
mentum factors in the denominators of E(e, e′) balance those in 
the numerators [14].

The string-localized field Aμ(x, e) for e = (1, �0) coincides with 
the Coulomb gauge field AC

μ . The well-known non-locality of the 
Coulomb gauge potential reflects the fact that two timelike strings 
are never spacelike separated. Its failure of covariance (when e0 is 
fixed) is due to Eq. (1.2) which requires an additional gauge trans-
formation to bring 	e0 back to e0.

It may also be interesting to notice that one can average the 
potential Aμ(x, e) in e over the spacelike sphere with e0 = 0. The 
resulting field is again the Coulomb gauge potential.

Similarly, for fixed spacelike e, Aμ(e) coincides with an axial 
gauge potential satisfying eμ Aμ = 0. However, this relation is not 
used as a gauge condition to reduce the degrees of freedom before 
quantization, but instead the potentials for all e coexist simultane-
ously on the Fock space of the field strength, and they covariantly 
transform into each other according to Eq. (1.2). By specifying the 
2-point function for spacelike e as a distribution rather than a 
function with a singularity, the manifestly string-localized repre-
sentation Eq. (2.2) of the axial gauges is revealed, and the mutual 
commutativity of axial gauge fields for different directions is dis-
covered.

2.1. Preservation of causality

One might worry that a string-localized interaction Lagrangean 
could spoil the causality of the resulting perturbation theory. We 
sketch here why this does not happen. We choose the easiest and 
most transparent example: the interaction of a massive vector field 
with a conserved external (classical) current jμ(x). It is essential 
that the string-dependence of the interaction Lagrangean is a total 
derivative:

Lint(x, e) = Aμ(x, e) jμ(x) = AP
μ(x) jμ(x) + ∂μ

(
φ(x, e) jμ(x)

)
(2.6)

so that the classical action, and hence the lowest order of the S-
matrix, is independent of e. (In the massless case, neither AP nor 
φ(x, e) = m−1a(x, e) exist, but the variation of Lint(e) w.r.t. eκ is 
still a total derivative, because ∂eκ Aμ(x, e) = ∂μ(Ie Aκ )(x), where Ie

is the integral along the string as in Eq. (2.2). This crucial feature 
is shared by many other interactions of interest [21,22,8], cf. ex-
amples in Sect. 6, where the renormalizability conditions in higher 
orders are less trivial than in the present external source problem.)
In order that the causal S-matrix

Se[g j] := T exp i

∫
d4x g(x) Aμ(x, e) jμ(x)

is independent of e in the limit g → const , the decomposition 
Eq. (2.6) must continue to hold “under the time-ordering”. This 
can be formulated as a condition on the string-localized Feyn-
man propagator i(
, T Aμ(x, e)Aμ′ (x′, e′)
), which is quite non-
trivial because the time-ordering must be taken along the strings 
x +R

+
0 e, x′ +R

+
0 e′ , and the singularities at intersections of strings 

have to be carefully analyzed and renormalized [14,13]. The condi-
tion can be fulfilled and gives the unique answer

i(
, T Aμ(x, e)Aμ′(x′, e′)
)

= (−ημμ′ − ∂μeμ′ Ie + ∂μ′e′
μ I−e′ + (ee′)∂μ∂μ′ Ie I−e′)G F (x − x′),

where G F (x − x′) is the scalar Feynman propagator.
We proceed by computing the interacting potential in the set-

ting of causal perturbation theory based on Bogoliubov’s formula 
[2]

Aint
μ (x, e) := Se0 [ j]−1 −iδ

δ f μ(x, e)
Se0 [ j, f ]

∣∣∣
f =0

where Se0 [ j, f ] = T exp i 
∫

d4x
(

Aμ(x, e0) jμ(x) + ∫
dσ(e)Aμ(x, e)×

f μ(x, e)
)
. In this approach, renormalization amounts to the proper 

definition (as distributions) of propagators and their products. As 
it can be done in position space, it is best suited to control causal-
ity. In the external source problem, no further renormalization is 
necessary. Namely, by Wick’s Theorem, we get

Aint
μ (x, e) = Aμ(x, e) +

∫
d4x′ g(x) Gret

μ,μ′(x, e; x′, e0) jμ
′
(x′)

where the string-localized retarded Green function Gret =
i(
, (T [A A′] − A′ A)
) equals

Gret
μ,μ′(x, e; x′, e0) = (−ημμ′ − ∂μeμ′ Ie + ∂μ′e0μ I−e0

+ (ee0)∂μ∂μ′ Ie I−e0)Gret(x − x′).
The contributions depending on e0 vanish in the limit g → const , 
because jμ is conserved, hence Aint

μ (x, e) is independent of e0. The 
remaining contributions can be written as

Aint
μ (x, e) = Aμ(x, e) + (

Acl
μ(x) + ∂μφcl(x, e)

) · 1

where

Acl
μ(x) = −g

∫
d4x Gret(x − x′) jμ(x′),

φcl(x, e) = −g

∫
d4x Gret(x − x′) j(x′, e)

are classical fields with sources jμ(x) and j(x, e) = eμ

∫ ∞
0 dλ jμ(x +

λe), respectively. The field strength is then manifestly independent 
of e, and coincides with the solution in the point-localized setting 
– except that the latter has a δ-function ambiguity for the Feyn-
man propagator of the Proca field due to its bad U V behaviour. In 
the string-localized setting, the ambiguity is fixed (= 0). For more 
details, and for the QED case with a quantum source, see [13].

3. Spin two

The case s = 2 is largely analogous, but the decoupling at m = 0
requires a second step.

The positive 2-point function of the massless field strength 
F [μκ][νλ] can be represented as the curl of the (auxiliary) indefi-
nite 2-point function of the Feynman gauge potential



J. Mund et al. / Physics Letters B 773 (2017) 625–631 629
0M AF
μν,AF

κλ = 1

2

[
ημκηνλ + ημνηκλ

] − 1

2
ημνηκλ. (3.1)

The coefficient − 1
2 of the last term ensures that there are precisely 

two helicity states.
The symmetric, traceless and conserved massive Proca 2-point 

function is

m M AP
μν,AP

κλ = 1

2

[
πμκπνλ + πμλπκν

] − 1

3
πμνπκλ. (3.2)

The coefficient − 1
3 of the last term ensures the vanishing of the 

trace. The formulae for the massive and massless field strengths 
differ only by this coefficient. In particular, the massless field 
strength is not the limit of the massive field strength as m → 0.

In the string-localized setting, we define the massive potential

Aμν(x, e) := (
I2
e F [μκ][νλ]

)
(x)eκeλ (3.3)

with Ie as in Eq. (2.2) iterated twice, and its escort fields

a(1)
μ (x, e) := −m−1 ∂ν Aμν(x, e),

a(0)(x, e) := −m−1 ∂μa(1)
μ (x, e). (3.4)

Eq. (3.2) implies

m M Aμν(−e),Aκλ(e′) = 1

2

[
E(e, e′)μκ E(e, e′)νλ + (κ ↔ λ)

]

− 1

3
E(e, e)μν E(e′, e′)κλ, (3.5)

and one obtains the escort correlations with Eq. (3.4). The corre-
lations between even and odd rank fields are O (m) and decouple 
in the massless limit. The odd–odd and even–even correlations be-
come

0Ma(1)
μ (−e),a(1)

ν (e′) = −1

2
E(e, e′)μν(p),

0M Aμν(−e),a(0)(e′) = −1

3
E(e, e)μν(p), (3.6)

0Ma(0)(−e),a(0)(e′) = 2

3

up to O (m2). Aμν(e) and a(e) do not decouple at m = 0, in fact 
one has ημν Aμν(e) = −a(e). In order to decouple the fields, notice 
that the operator

Eμν(e, e) = ημν + (eν∂μ + eμ∂ν)Ie + e2∂μ∂ν I2
e

acts in momentum space on the creation and annihilation parts 
by multiplication with E(e, e)μν(p) and with E(e, e)μν(−p) =
E(−e, −e)μν(p), respectively. Thus,

A(2)
μν(e) := Aμν(e) + 1

2
Eμν(e, e)a(0)(e) (3.7)

decouples from a(0) , and its 2-point function is the same as 
Eq. (3.5) but with the proper coefficient − 1

2 rather than − 1
3 for 

the last term. Thus, taken at m = 0, A(2) is a string-localized po-
tential for the massless field strength to which it is related by the 
same formula as Eq. (3.3). It is, unlike other potentials, positive, 
traceless and conserved.

In the massless limit, A(0)(e) = √
3/2 a(0)(e) becomes the 

e-independent massless scalar field by Eq. (3.6). A(1)
μ := √

2 a(1)
μ

is the same string-localized Maxwell potential as obtained from 
s = 1.
The generalization of Eq. (2.5),

AP
μν(x) = A(2)

μν(x, e) − √
1/6 Eμν(e, e) A(0)(x, e) − (3.8)

−
√

1/2

m

(
∂μ A(1)

ν + ∂ν A(1)
μ

)
(x, e)

+
√

2/3

m2
∂μ∂ν A(0)(x, e),

quantifies the singular lower helicity contributions to AP.
Now, turning to the DVZ problem, we may couple linearized 

massive gravity in a Minkowski background to a conserved stress-
energy source by

S int(e) =
∫

d4x Aμν(x, e)T μν(x). (3.9)

Because by Eq. (3.8), Aμν(e) differs from AP
μν only by derivatives, 

the action is independent of e. At m > 0, all five states of the gravi-
ton couple to the source. In the limit m → 0, we have by Eq. (3.7)

Aμν(x, e) = A(2)
μν(x, e) − √

1/6ημν ϕ(x) + derivatives,

where ϕ(x) = √
3/2 limm→0 a(0)(x, e) is the massless scalar field 

decoupled from the helicity-2 potential A(2)(x, e). Thus,

lim
m→0

S int(e) =
∫

d4x A(2)
μν(x, e)T μν(x) − √

1/6
∫

d4xϕ(x) T μ
μ(x).

(3.10)

The first term satisfies the L-Q condition (see Sect. 6) and there-
fore equals the e-independent action for linearized pure massless 
gravity. With a classical source, it can be treated exactly as in 
Sect. 2.1.

We have thus (along with the known decoupling of the helic-
ity ±1 degrees of freedom) explicitly identified the scalar field that 
is responsible for the DVZ discontinuity, as the limit of the escort 
field on the massive Hilbert space. Our result is formally similar to 
Zakharov’s who writes (in an indefinite gauge) instead the mass-
less coupling AF

μν(x, e)T μν(x) as the limit of the massive coupling 
plus a compensating scalar ghost [28]. We want to emphasize the 
change of perspective when one avoids unphysical ghost degrees 
of freedom.

As at spin 1, also the spin-2 potentials Aμν(e) and A(2)
μν(e) at 

fixed e can be regarded as axial gauges. The averaging over the 
string directions with e0 = 0 is only possible for A(2)

μν(e) at m = 0, 
and yields again the radiation gauge potential AC

0μ(x) = 0.
The case of general integer spin [15] is very similar to s = 2, 

except for the more involved combinatorics.

4. String-localized stress-energy tensor

The stress-energy tensor is by no means unique. It must be con-
served and symmetric so that the generators

Pσ =
∫

x0=t

d3x T0σ , Mστ =
∫

x0=t

d3x (xσ T0τ − xτ T0σ )

are independent of the time t; and the commutators with the gen-
erators must implement the infinitesimal Poincaré transformations 
given by the Wigner representation. (The commutators are fixed by 
the 2-point functions.) But one may add “irrelevant” local terms as 
long as they do not change the generators.

One choice of a stress-energy tensor that produces the correct 
generators is the “reduced stress-energy tensor” (× = μ2 . . .μs is 
a multi-index)
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T red
ρσ := (−1)s

[
− 1

4
:AP

μ×
↔
∂ρ

↔
∂σ APμ×:

− s

2
∂μ

(
:AP

ρ×
↔
∂σ AP

μ
×: + (ρ ↔ σ)

)]
. (4.1)

It differs by “irrelevant terms” from the Hilbert stress-energy ten-
sor, defined as the variation of a suitable generally covariant action 
w.r.t. the metric. The first term in Eq. (4.1) also appears in [4]. The 
second term does not contribute to the momenta, but is needed to 
ensure the correct Lorentz transformations [15].

Expanding AP into A(r)(e) resp. A(r)(e′), and discarding irrele-
vant terms (involving derivatives of escort fields) that “carry away” 
all singularities when m → 0, one gets a string-localized stress-
energy tensor that admits a massless limit. Discarding more terms 
that are irrelevant at m = 0, one decouples it as the sum over r ≤ s
of

T (r)
ρσ (e, e′) = (−1)r

[
− 1

4
:A(r)

μ×(e)
↔
∂ρ

↔
∂σ A(r)μ×(e′):

− r

4
∂μ

(
:A(r)

ρ×(e)
↔
∂σ A(r)

μ
×(e′): +(e ↔ e′)

+(ρ ↔ σ)

)]
(4.2)

understood as distributions in two independent directions e, e′ . As 
in Eq. (3.3),

A(r)
μ1...μr (x, e) = (Ir

e F (r)
[μ1ν1]...[μrνr ])(x) eν1 . . . eνr

can be expressed in terms of the massless field strengths.
As the massless potentials A(r) mutually commute, the genera-

tors defined by T (r) separately implement the Poincaré transforma-
tions of A(r) . Massless higher-spin currents of charged potentials 
are constructed similarly. For details see [15].

That the Weinberg–Witten theorem can be evaded with non-
local densities, was pointed out earlier in [11], where examples 
with unpaired helicities were given. Eq. (4.2) involving string in-
tegrals over field strengths is perhaps the most conservative alter-
native, also in comparison with other proposals to couple massless 
higher-spin matter to gravity [6,27,1,9].

5. “Fattening”

The 2-point functions of the massless and massive string-
localized potentials A(s) (for any spin) are the same polynomials 
in the tensor Eμν(p), except that the argument p of the functions 
Eμν is taken on the respective mass-shell. Thus, one obtains the 
massive field A(s) from the massless field A(s) just by changing 
the dispersion relation p0 = ωm(�p). As the massive 2-point func-
tion was constructed on the Hilbert space of the Proca potential, 
this deformation preserves positivity. Through the coupling to the 
lower escort fields, it brings back all spin components of the Proca 
field. Indeed, the latter is restored from the massive potential A(s)

by

AP
μ1...μs

(x) = (−1)s
m M AP

μ1 ...μs ,APν1 ...νs
A(s)

ν1...νs

∣∣
m(x, e),

where in this formula m M AP,AP
is understood as a differential op-

erator (a polynomial in πμν = ημν + m−2∂μ∂ν ).

6. Outlook: interactions

A crucial question is which physical interactions that other-
wise are non-renormalizable or cannot be formulated on a Hilbert 
space, are accessible by couplings to string-localized fields. Al-
though the actual perturbation theory is not the subject of this 
letter, we give an overview of possible interactions.
One class of interactions (called “L-V -pairs”) are of the form

Lint(e) = Lint + ∂μV μ(e)

where Lint is a possibly non-renormalizable string-independent in-
teraction Lagrangean, and the string-localized Lint(e) is renormal-
izable. The string-dependent derivative term ∂V disposes of the 
strong short-distance fluctuations of Lint , typically by means of es-
cort fields.

Further constraints may arise in order to secure the e-independ-
ence of the perturbative S-matrix in higher orders in the coupling 
constant, and higher order interactions may be needed. We refer 
to these as “induced” interactions.

All couplings Aμ1...μs (x, e) jμ1...μs (x) of massive potentials to 
conserved currents are of L-V type, but also cubic self-couplings 
of massive vector bosons

fabc F a
μν(x)Abμ(x, e)Acν(x, e)

+ m2 fabc Aaν(x, e)∂νφb(x, e)φc(x, e)

where φa(e) are the escort fields as in Sect. 2.1, and fabc is to-
tally anti-symmetric; or more general expressions admitting vector 
bosons (W and Z ) of different masses. A second order constraint is 
that fabc must satisfy the Jacobi identity, so they are the structure 
constants of some Lie algebra (without a gauge principle having 
been imposed). Induced interactions in this case are the quartic 
Yang–Mills terms, as well as an additional coupling to a Higgs bo-

son of arbitrary mass and with a potential such that m2
H

2 H2 + V (H)

is the usual Higgs potential with one of its minima at H = 0.1

While in the non-abelian case the Higgs coupling is induced 
from the cubic self-coupling of the vector bosons, an abelian Higgs 
coupling Aμ(x, e)Aμ(x, e)H(x) may be chosen directly provided it 
is completed to a power-counting renormalizable L-V -pair

Aμ(e)Aμ(e)H + Aμ(e)[φ(e)
↔
∂μ H] − m2

H

2
φ(e)2 H

= AP
μ APμH + ∂μV μ

with V μ = Aμ(e)φ(e)H + 1
2 φ(e)2

↔
∂μ H . A Higgs potential is in-

duced in higher orders.
A more general class (called “L-Q -pairs”) are interaction La-

grangeans Lint(e), for which

∂eκ Lint(e) = ∂μ Q μ
κ (e)

holds, which is sufficient to secure the e-independence of S int(e) =∫
d4x Lint(x, e). These include couplings Aμ1...μs (x, e) jμ1...μs (x) of 

massless potentials to conserved (classical or quantum) sources, 
for which a point-localized potential on the Hilbert space does not 
exist. Namely, ∂eκ Aμ1...μs (x, e) is a sum of gradients. A general un-
derstanding of L-Q pairs, and which terms they induce in higher 
orders in order to maintain renormalizability, is presently under 
investigation.

Perturbative correlation functions of observables (compos-
ite fields that are e-independent in the free theory) remain 
e-independent when the interaction is switched on. This has to 
be secured by Ward identities, that, e.g., allow to pull derivatives 
out of time-ordered products.

1 Some of these claims have not yet been conclusively established, but work is in 
progress [16]. They are true in the analogous BRST approach pursued by Scharf et al. 
[20,5], and up to now the same patterns are always repeated in the string-localized 
approach, where e-independence replaces BRST invariance.
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7. Conclusion

We have identified string-localized potentials for massive parti-
cles of integer spin s on the Hilbert space of their field strengths, 
that admit a smooth massless limit to decoupled potentials with 
helicities h = ±r, r ≤ s. We have presented an inverse “fattening” 
prescription via a manifestly positive deformation of the 2-point 
function. The approach provides a way around the Weinberg–
Witten theorem, and explicitly and quantitatively exhibits the ori-
gin of the DVZ discontinuity.

Our results also allow to approximate string-localized fields in 
the massless infinite-spin Wigner representations [17] by the mas-
sive scalar escort fields A(0) of spin s → ∞, m2s(s + 1) = κ2 =
const. (Work in progress [19].)

String-localized fields are a device to formulate quantum inter-
actions in terms of a given particle content, that allow to take into 
full account the well-known conflicts between point-localization 
and positivity. With their use, positivity is manifest, while localiza-
tion is controlled by renormalized causal perturbation theory, as 
presently investigated in [8,16,13]. It bears formal analogies with 
BRST renormalization, but is more economic (avoiding unphysical 
degrees of freedom), and much closer to the fundamental princi-
ples of relativistic quantum field theory.

It was shown in the framework of algebraic quantum field the-
ory, that to connect scattering states with the vacuum, may in 
certain theories require operations localized in narrow spacelike 
cones; and in the presence of a mass gap it cannot be worse than 
that [3]. The emerging perturbation theory using string-localized 
fields is the practical realization of this insight.
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