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We present a general formulation to calculate the dynamic optical conductivity, beyond the linear
response regime, of any electronic system whose quasiparticle dispersion is described by a two band
model. Our phenomenological model is based on the optical Bloch equations. In the steady state
regime it yields an analytic solution for the population inversion and the interband coherence,
which are nonlinear in the optical field intensity, including finite doping and temperature effects.
We explicitly show that the optical nonlinearities are controlled by a single dimensionless parameter
which is directly proportional to the incident field strength and inversely proportional to the optical
frequency. This identification leads to a unified way to study the dynamical conductivity and
the differential transmission spectrum across a wide range of optical frequencies, and optical field
strength. We use our formalism to analytically calculate the nonlinear optical conductivity of doped
and gapped graphene, deriving the well known universal ac conductivity of σ0 = e2/4~ in the
linear response regime of low optical intensities (or equivalently high frequencies) and non-linear
deviations from it which appear at high laser intensities (or low frequencies) including the impact
of finite doping and band-gap opening.

I. INTRODUCTION

Since it’s discovery, graphene, a truly two-dimensional
system, has been at the forefront of material research [1–
3]. On account of its linear dispersion and high carrier
mobility, graphene has demonstrated remarkable elec-
tronic and optical properties [4]. In the linear response
regime, with weak optical field induced momentum lin-
early coupling to the charge carriers in graphene, spec-
tacular physical effects have been predicted and observed
which are significantly enhanced or peculiar, when com-
pared to their bulk counterparts. An early such surprise
was the observation of a strong coupling of a single mono-
layer of carbon atoms to electro-magnetic radiation with
almost a constant absorption coefficient of 2.3% over a
broad range of optical frequencies. The corresponding
optical conductivity is elegantly expressed in terms of
universal constants, in the form σ(ω) = σ0 ≡ e2/4~ [5–
9]. Several exotic predictions and observations followed,
including ultra-high mobility in pristine graphene [10],
Klein tunneling [11], weak localization [12] and quantum
hall effect [2, 13, and 14].

Following the first prediction of universal optical con-
ductivity for graphite honeycomb lattices [15], several
theoretical works extended the formulation to graphene
using the Dirac cone approximation for clean samples
[16–18], and with disorder [19]. Experimental observa-
tion of the universal optical conductivity [5–9] gave a
strong impetus to the field and motivated further theo-
retical work. These include studying the bandstructure
effects on optical conductivity beyond the Dirac cone ap-
proximation [20], analyzing effect of strain [21], role of
substrate [22] and the effect of electron-electron interac-
tions on the optical conductivity [23–26]. In addition to
the linear conductivity, several remarkable non-linear op-
tical effects in graphene have also been explored [22, 27–

36], motivating a plethora of applications[37–41] based
on broadband nonlinear optical properties of graphene.

In particular, non-linear optical response along with
linear dispersion in graphene imply higher harmonic gen-
erations, and the large velocities of carriers results in
highly efficient electron-photon coupling. Furthermore,
gapless excitation leads to effective resonant non-linear
excitation in graphene. These interesting possibilities
have motivated a plethora of studies based on non-linear
response of these 2-d materials, ranging from microwave
[17], terahertz [42] to optical frequencies [37]. Such re-
sponse has led to second and third harmonics genera-
tion in the optical [43 and 44] and THz domain [45], fre-
quency mixing ranging from microwave to optical excita-
tions [46 and 47], self-phase modulation and optical Kerr
effects [48 and 49], photon drag [50], THz driven chiral
edge photo-currents [51] or, dynamic Hall-effect driven
by circularly polarized optical frequencies [52]. Such un-
usual effects triggered a range of applications including
graphene based rf modulators [53], optically gated tran-
sistors [54 and 55], photo-detectors [56], graphene sat-
urable absorbers for mode-locking [57] and even proposal
for nonlinear interaction at the level of single photons
[58].

At a fundamental level, non-linear response functions
serve as excellent tools for probing intrinsic material
properties. This provides a rich class of information
on material symmetry and selection rules, intricacies of
band-structure, electron-spin relaxation and decoherence
mechanisms that are otherwise hidden in the linear re-
sponse regime. There is thus significant motivation to
develop a unified theoretical framework to address non-
linear response of low dimensional systems in general,
that is applicable over a range of optical excitation fre-
quencies, and a wide range of the incident optical field
strength.
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FIG. 1. Classification of different optical response regimes
in the parameter space of optical frequency (in Hz) and
the incident radiation field strenth (in units of V/m). The
vertical black line marks the ω = γ2 boundary between
the dirty or low frequency (left) and the clean or high fre-
quency (right) limits. The black dashed line marks the

ζ ≡ evFE0/(~ω
√
γ1γ2) = 1 line which is the boundary of the

linear (bottom) and non-linear (top) response regimes. Note
that for a given frequency and material (with fixed damp-
ing parameters) the linear to non-linear regime crossover oc-
curs at smaller field strength. Here we have chosen vF = 106

m/s, and {γ1, γ2} = {1012, 1014} Hz, based on parameters for
graphene (see Ref. [27] and the references therein).

Motivated by Mishchenko [29], in this article we
present a theoretical framework for calculating non-linear
optical conductivity of a general two-band system, which
is applicable over a large range of optical frequencies and
field strengths. We recast the wave-function based ap-
proach of Ref. [29], into a density matrix based approach
and this allows us to incorporate the impact of finite tem-
perature, finite doping (chemical potential) etc. into the
non-linear conductivity calculations. In particular, we
provide steady state solutions for the coupled Maxwell-
Bloch equations for a two band system, in which we
include electron-electron and electron-phonon scattering
phenomenologically via the inter-band population inver-
sion decay rate γ1 and the coherence decay rate γ2. The
steady state population inversion and the inter-band co-
herence is then used to calculate the optical conductivity
for a generic two band systems, and the optical transmis-
sion spectrum for a two dimensional system in general.
We apply the developed formulation to analyze the non-
linear optical conductivity of doped and gapped graphene
in detail. However, the formalism can also be applied to
other systems such as bilayer graphene, Weyl semimetals,
phosphorene etc. whose low energy electronic properties
are captured by a two band model.

A natural outcome of our formalism is that, with γ1

and γ2 as two phenomenological input parameters, it al-
lows us to classify the parameter space in terms of the
incident optical frequency (ω) and field strength (E0)
in four regimes: a) linear response in the clean regime,
b) linear response in the dirty regime, c) non-linear re-

sponse in the clean regime and finally d) the non-linear
response in the dirty regime [see Fig. 1]. What we call
the clean (dirty) regime can also be called the collision-
less or high frequency limit (collisional or low frequency),
and is quantified by the region ω ≥ γ2 (ω � γ2).

The linear (ζ < 1) or nonlinear (ζ > 1) response of the
system is quantified by a single dimensionless parameter
[29],

ζ ≡ evFE0

~ω√γ1γ2
, (1)

where vF denotes a material dependent effective veloc-
ity. Non-linear optical effects start becoming dominant
either on increasing the field strength keeping the fre-
quency constant, or alternatively by decreasing the fre-
quency while keeping the field strength constant.

The manuscript is organized as follows: in Sec. II, we
describe a general two band systems and its optical re-
sponse via the population inversion and coherence. This
is followed by a discussion of the non-linear optical con-
ductivity in Sec. III, and the differential transmission of
a freestanding two dimensional material in Sec. IV. In
Sec. V and Sec. VI, we discuss the dynamic conductivity
of doped and gapped graphene respectively, in various
limiting cases of linear response in clean limit (previ-
ously known), linear response in dirty limit, non-linear
response in the clean limit and the most general case of
non-linear response in the dirty limit. Finally we sum-
marize our findings in Sec. VII.

II. POPULATION INVERSION AND
COHERENCE IN A GENERAL TWO BAND

SYSTEM

We start with a very generic two band electronic sys-
tem, in presence of an electromagnetic radiation. The
electromagnetic field is treated classically in the coulomb
gauge, with the vector potential A satisfying ∇ ·A = 0
and the scaler potential Φ = 0, yielding B = ∇×A and
E = −∂tA. The Hamiltonian describing the dynamics
of an electron in presence of an external electromagnetic

field, is given by Hem = H0(~k̂→ ~k̂+eA), which is usu-
ally approximated as Hem ≈ H0 + e~−1A · ∇kH0. Note
that while Hem is an approximation for general two band
systems, it is exact for systems described by the two di-
mensional Dirac Hamiltonian, for which H0 only depends
linearly on the wave-vectors. Furthermore, from the per-
spective of calculating optical conductivity, this is akin
to neglecting the diamagnetic part of the current (which
anyway vanishes for Dirac systems since ∂2H0/∂k

2
i = 0),

and only focussing on the paramagnetic part of the re-
sponse function [59].

In the eigen-basis of H0, the effective Hamiltonian,
can be rewritten as, Hem = H ′0 + A ·M, where H ′0 is
a diagonal matrix comprising of the dispersion of two
bands. The elements of the matrix M are defined by
Mλλ′(k) = e~−1〈ψλ|∇kH0|ψλ

′〉. We consider light to



3

be incident perpendicular to the sample, with negligi-
ble transverse momentum, such that it does not signifi-
cantly alter the electron momentum. This sets a selection
rule, allowing only vertical transitions in the momentum
space. More explicitly, Hem = H ′0 +HI , where we have

H ′0 =
∑
k

εcka
c
k
†ack + εvka

v
k
†avk , (2)

with ack(ac†k ) and avk(av†k ) being the annihilation (cre-
ation) operator for electron in the conduction and valance
band respectively. The interaction part of the Hamilto-
nian is given by

HI

~
=
∑
k

Ωcck a
c
k
†ack + Ωvvk a

v
k
†avk + Ωcvk a

c
k
†avk + Ωvck a

v
k
†ack,

(3)

where we have defined ~Ωλλ
′

k = Mλλ′(k) · A to be the
Rabi frequencies.

Let us now consider an arbitrary two band system,
whose low-energy quasiparticle bands are described by
the generic 2× 2 Hamiltonian,

H0 =
∑
k

hk · σ, (4)

where hk = (h0k, h1k, h2k, h3k) is a vector composed
of real scalar elements and σ = (112, σx, σy, σz) is a
vector composed of the identity and the Pauli ma-
trices in two dimensions. The eigen energies of H0

are given by ελk = h0k + λgk where we have de-

fined gk ≡
√
h2

1k + h2
2k + h2

3k, and λ = 1 (or −1)
denotes the conduction (valance) band. The corre-
sponding eigenvectors can be conveniently expressed as
ψλ = {cos θλk, sin θλke

iφk}, where tanφk = h2k/h1k,

and tan θλk = (λgk − h3k)/
√
h2

1k + h2
2k. Note that

for the special case of materials, such as graphene, for
which h0k = h3k = 0, we have cos θλk = 1/

√
2, and

sin θλk = λ/
√

2.
The optical matrix elements can accordingly be ob-

tained in a very general form, as follows

Mvv =
e

~gk

(
gk∇kh0k −

∑
i=1,2,3

hik∇khik

)
, (5)

Mcc =
e

~gk

(
gk∇kh0k +

∑
i=1,2,3

hik∇khik

)
, (6)

Mvc = − e

~gkhk

(
− h2

k∇kh3k + (h1kh3k − ih2kgk)∇kh1k

+(h2kh3k + ih1kgk)∇kh2k

)
, (7)

Mcv = (Mvc)
∗

(8)

where we have defined h2
k ≡ h2

1k + h2
2k.

To describe the dynamics of the system, we consider
the time evolution of the momentum resolved density ma-
trix (2 × 2), whose diagonal elements are ρ11 = ρvk, and

ρ22 = ρck. Here ρλk ≡ 〈aλk
†
aλk〉 denotes the momentum

resolved electron density in the valance and conduction
bands. The off-diagonal elements of the density matrix
are given by ρ12 = pk ≡ 〈ack

†avk〉, and ρ21 = p∗k, with pk
denoting the inter-band coherence or polarization. Us-
ing the equation of motion, i~∂tρ̂(t) = [H, ρ̂], we ob-
tain the following equation for the population inversion,
nk ≡ ρck − ρvk, as

∂tnk = 4= [{Ωvck (t)}∗pk(t)] . (9)

The corresponding inter-band coherence evolves as

∂tpk = i [ωk + Ωcck (t)− Ωvvk (t)] pk(t)− iΩvck nk(t) , (10)

where ~ωk = εck − εvk.
To obtain the steady state (long time average re-

sponse), we do a rotating wave approximation, where in
we get rid of the fast oscillating terms (with frequencies
2ω and higher), and retain the slow time dependence
in Eqs. (9) and (10). To this end, one can substitute
A(t) = e0ω

−1E0 cosωt, with e0 denoting the polariza-
tion direction. Keeping only the low frequency resonant
terms (of the form of e±i(ω−ωk)), while neglecting all the
high frequency ones (e±i(ω+ωk)) leads to:

∂tñ = 2=
[
Ω̃vc∗k p̃k

]
, (11)

∂tp̃k = i(ωk − ω)p̃k − iΩ̃vck ñk/2 , (12)

where ~Ω̃ = M · e0 E0/ω, p̃k(t) = pk(t)e−iωt, and
ñk = nk(t). Here p̃, and ñk, are almost frozen (vary
very slowly) over the timescales of the order of 1/ω. Note
that Eqs. (11)-(12) do not include energy relaxation and
decoherence mechanisms, arising due to electron-electron
interactions, electron-phonon, electron-impurity scatter-
ing and other interactions. To include these effects, phe-
nomenological damping terms are added in the above
equations [60] leading to

∂tñk = 2=
[
Ω̃vc∗k p̃k

]
− γ1(ñk − neq

k ) , (13)

∂tp̃k = i(ωk − ω)p̃k − iΩ̃vck ñk/2− γ2p̃k . (14)

Here γ1 is the inverse of the relaxation time for the mo-
mentum resolved occupation number and γ2 is the inverse
relaxation time of coherence. The equilibrium population
inversion in absence of the optical field is neq

k = fck−fvk.
The function fak = [1 + exp ((εak − µ)/kBT )]−1 denotes
the Fermi function (kB and T are the Boltzmann con-
stant and temperature, respectively). The relaxation
rates γ1 and γ2 are usually dominated by electron-phonon
and electron-electron interactions, respectively. Gener-
ally the damping rates are frequency dependent [29], and
can be modeled microscopically by self-consistently solv-
ing electron-electron (generally at a mean field level),
electron-phonon and electron-photon coupling equations
[61]. For example in graphene, typical values of γ1 ≈ 1012

Hz, and γ2 ≈ 1014 Hz for optical frequencies [27]. How-
ever, for simplicity of analysis, we choose these rates to
be constants over the frequency range considered in this
work.
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In the steady state regime, we can solve Eqs. (13) and
(14) to obtain the following steady state values for the
population inversion

ñk
neq
k

=

(
1 +

γ2|Ω̃vc|2

γ1[(ωk − ω)2 + γ2
2 ]

)−1

, (15)

and the inter-band coherence

p̃k =
ñk
2

Ω̃vc

(ωk − ω) + iγ2
. (16)

Before proceeding further it is instructive to express the
steady state population inversion of Eq. (15), in the fol-
lowing form,

ñk
neq
k

≡ G =

(
1 +
|Mvc · e0|2

e2v2
F

ζ2 γ2
2

[(ωk − ω)2 + γ2
2 ]

)−1

,

(17)
where ζ is specified by Eq. (1). In Eq. (17), Mvc·e0/(evF)
is the dimensionless material dependent optical matrix
element component which couples to the incident ra-
diation. The term γ2/[(ωk − ω)2 + γ2

2 ] in Eq. (17) is
a Lorentzian centered around ω = ωk with half-width
γ2. It reduces to a Dirac-delta function δ(ω − ωk) in
the limiting case of γ2/ω → 0. Furthermore, we note
that G can be expanded in a power series of ζ2. Thus
ζ is a dimensionless effective field strength, which, for
a fixed value of the optical frequency and the damping
constants, distinguishes between the linear (ζ � 1) and
the nonlinear (ζ ≥ 1) response regime [29]. Additionally,
for a fixed value of the optical frequency and effective
field strength, the ratio γ2/ω determines the clean/high
frequency (γ2 � ω) or the dirty/low frequency limits
(γ2 ≥ ω). This classification of the system’s response
into linear and non-linear regimes, or alternatively into
the clean and the dirty limit arises naturally in our for-
mulation and will be used in the rest of the manuscript.

Having obtained the steady state density matrix ele-
ments, we now proceed to calculate the induced current
density and the nonlinear optical conductivity.

III. NONLINEAR INTER-BAND OPTICAL
CONDUCTIVITY

To obtain the inter-band contribution to the opti-
cal current and optical conductivity, let us consider the
generic form of the current density for a d-dimensional
system: J(t) = −gsgv(2π)−d

∫
dk Jk(t), where gs (gv)

denotes the spin (valley) degeneracy factor, Jk(t) =
eTr[ρk(t)vk(t)] and the generalized velocity operator is
given by v̂k = −i~−1[r, H0] = ~−1∇kH0. The momen-
tum dependent component of the particle current density
is then

Jk(t) = 2<e[pkMcv
k ] +

∑
λ=c,v

ρλkM
λλ , (18)

(a) (b) (c)

(d) (e) (f)

FIG. 2. The momentum resolved current J̃kx density of
Eq. (20), in the kx − ky plane for graphene in panels a), b)
and c) and for massive graphene in panels d), e), and f). In
panels b) and c) [panels e)-f) for massive case] we have a larger
coherence decay rate γ2 = ω/5 as compared to a) for which
γ2 = ω/20 and this show the impact of broadening of the cur-
rent density around the circle k = ω/(2vF) at µ = 0. Further
in panel c) for graphene [panel f) for massive graphene], we
display the impact of a finite chemical potential µ = 0.5~ω
which manifests itself in the Pauli blocking of the momentum
space for k < µ/~vF. For more details see Eq. (43) for mass-
less graphene, and Eq. (54) for the massive graphene case.

In presence of particle-hole symmetry, as in graphene or
gapped graphene, we have Mcc

k = −Mvv
k . One can then

rewrite Eq. (18) as

Jk(t) = 2<e[pk(t)Mcv
k ] + nk(t)Mcc

k . (19)

It is evident that the first term in Eq. (19) arises from the
inter-band contribution, while the second term originates
from the intra-band contributions. In Eq. (19), pk(t) =
p̃ke

iωt, and consequently the momentum resolved cur-
rent density consists of three terms: 2<e [p̃kM

cv
k ] cosωt,

−2=m [p̃kM
cv
k ] sinωt and ñkM

cc
k . Of these, the term pro-

portional to cosωt is the out of phase (with respect to
the incident field) response of the system and it does
not contribute to the dissipative part of the conductivity
[29]. Hence it will be neglected in the rest of the arti-
cle. Furthermore, for graphene and gapped graphene, it
is easy to check that the intra-band term ñkM

cc
k , van-

ishes on performing the momentum sum. In fact, since
we have considered only momentum conserving vertical
transitions in calculating the electronic density matrix, it
then follows that the intra-band part of Eq. (18) should
vanish for all materials after the k−integration.

One therefore needs to focus only on the dissipative
part of the current, which is captured by the in-phase
(to the electric field) part of the response corresponding
to the sin(ωt) term. This part of the momentum resolved

current, can be expressed as Jk(t) = J̃k sin(ωt), with

J̃k = −E0

~ω
ñk=m

{
(Mvc

k · e0)Mcv
k

ωk − ω + iγ2

}
. (20)
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The corresponding dynamical nonlinear optical conduc-
tivity can then be obtained by integrating the above ex-
pression and using σij = |J̃i|/[E0(e0 · ĵ)], where E0(e0 · ĵ)
is amplitude of the field along the ĵ direction.

If one considers a linearly polarized light, say along
the x-direction, and restrict oneself to the longitudinal
response only, then Eq. (20) reduces to

J̃kx
E0

= − ñk|M
vc
x |2

~ω
=m

{
1

ωk − ω + iγ2

}
. (21)

In Eq. (21), the total current, is in general ‘cut-off’ or
band-width dependent. For systems described by a con-
tinuum model, the ultraviolet momentum cutoff is in-
versely proportional to the lattice spacing. On the con-
trary, for systems described by a tight-binding model,
the energy cutoff is typically the band-width of the sys-
tem. Furthermore, there is static component of the cur-
rent in the ω → 0 limit. This is unphysical, since in
this limit, the inter-band current must vanish for a time-
independent vector potential. Accordingly, this contribu-
tion needs to be subtracted from Eq. (21) as prescribed
in Ref. [62].

The momentum resolved current density of Eq. (21) is
shown in Fig. 2 for graphene and massive graphene.

Using Eq. (21), the longitudinal optical conductivity in
the most general nonlinear-dirty case can be expressed as

σxx(ω) =
gsgv

~ω(2π)d

∫
dk|Mvc

x |2ñk=m
{

1

ωk − ω + iγ2

}
.

(22)
We emphasize here that the non-linearity of the opti-
cal conductivity in Eq. (22), stems from the nk term,
whose solution is obtained from the optical Bloch equa-
tion within RWA.

Let us now consider the following limiting cases in
which Eq. (22) simplifies. The limiting case for γ2/ω � 1
(γ2/ω ≥ 1) corresponds to the clean (dirty) limit, and the
limiting case for ζ � 1 (ζ ≥ 1) is related to the linear
(non-linear) response of the system.

A. Linear response in the clean limit: ζ � 1, and
γ2/ω � 1

In this limit, to zeroth order in ζ, we have nk → neq
k ,

and converting the Lorentzian into a Dirac-delta func-
tion, we have

σlc
xx(ω) =

−πgsgv
~ω(2π)d

∫
dk|Mvc

x |2δ(ωk − ω)(fck − fvk) .

(23)
Note that the conductivity obtained above [Eq. (23)], is
identical to that obtained from the Kubo formalism.

For systems with particle-hole symmetry and isotropic
quasi-particle dispersion, such as graphene and massive
graphene, Eq. (23) can be expressed as

σlc
xx(ω) =

πgsgvg(ω, α, T )

~ω(2π)d

∫
dk|Mvc

x |2δ(ωk − ω) , (24)

where α ≡ max{µ,∆}, with ∆ being half of the band-gap
in a given semiconductor. The function

g(ω, α, T ) ≡ 1

2

[
tanh

(
~ω + 2α

4kBT

)
+ tanh

(
~ω − 2α

4kBT

)]
.

(25)
In the zero temperature limit, g(ω, α, T → 0) =
Θ(~ω/2 − |α|), where Θ(x) denotes the Heaviside step
function.

B. Linear response in the dirty limit: ζ � 1, and
γ2/ω ≥ 1

As in the previous case, here again we can approximate
nk → neq

k upto zeroth order in ζ. However in this case
the Lorentzian has to be retained in the integral. The
corresponding conductivity is given as

σld
xx(ω) =

−gsgv
~ω(2π)d

∫
dk|Mvc

x |2
γ2(fck − fvk)

(ωk − ω)2 + γ2
2

. (26)

C. Non-linear response in the clean limit: ζ ≥ 1,
and γ2/ω � 1

Here the Lorentzian can be approximated by a delta
function, and from Eq. (22) one obtains

σnc
xx(ω) =

−πgsgv
~ω(2π)d

∫
dk|Mvc

x |2
δ(ωk − ω)(fck − fvk)

1 + |Mvc
x |2ζ2/(e2v2

F)
.

(27)
For systems with particle-hole symmetry and isotropic
quasi-particle dispersion, such as graphene and massive
graphene, Eq. (23) can be approximated as

σnc
xx =

πgsgvg(ω, α, T )

~ω(2π)d

∫
dk|Mvc

x |2
δ(ωk − ω)

1 + ζ2|Mvc
x |2/(e2v2

F)
,

(28)
where g(ω, α, T ) is defined in Eq. (25).

Below, we will explore the optical conductivity of
doped and gapped graphene in all the four regimes. Note
that the transverse (Hall like) conductivity, σyx(ω) will
also have expressions similar to that of Eqs. (22)-(26),
with the substitution |Mvc

x |2 →Mvc
x M

cv
y in the numera-

tor.
Here we would like to emphasize that the formal-

ism described above gives only the finite frequency part
of the conductivity which cannot be extrapolated to
the DC limit (limitation imposed due to RWA). The
full paramagnetic conductivity, which includes the zero
frequency Drude weight (D) is given by σtotal(ω) =
πDδ(ω) + σ(ω). The Drude weight is explicitly given by
D = limω→0 ω=m[σ(ω)] (see Ref. [59] for details). The
imaginary part of the optical conductivity can therefore
be evaluated by making use of the Kramers-Kronig rela-
tions, as

=mσ(ω) =
2

πω
P
∫ ∞

0

dω′
ω′2<eσ(ω′)

ω2 − ω′2
, (29)
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where P denotes the principal part of the integral.
Experimentally the optical conductivity is probed via

the differential optical transmission or reflection spec-
troscopy. Motivated by this, in the next Section, we
explore the effect of non-linearity on the reflection and
transmission spectrum.

IV. NON-LINEAR DIFFERENTIAL
TRANSMISSIVITY AND REFLECTIVITY FOR

2D MATERIALS

The calculated non-linear conductivity has significant
implications for optical experiments. In this section we
determine the differential transmission (or equivalently
the reflection coefficient) of a ‘free standing’ two dimen-
sional material, suspended in vacuum.

Let us consider a linearly polarized incident field prop-
agating normal to the plane of the 2D material. For def-
initeness, let us assume that the two-dimensional sample
is freely suspended in the x − y plane at z = 0. An in-
coming field directed along the negative ẑ-direction can
be decomposed into its components as,

E =

{
EI sin(ωt+ qz) + ER sin(ωt− qz) , z > 0
ET sin(ωt+ qz) , z < 0,

(30)
where q = ω/c is the photon momentum and Ei =
(E0i cos θ0, E0i sin θ0), with i = I,R and T , denoting the
incident, reflected and the transmitted components. θ0

is the polarization angle with respect to the x̂-axis. In-
teraction of the incident light with the carriers in the 2D
sample, is modeled in the Maxwell’s equations, via the
total current density in the 2D (x̂ − ŷ) plane, having a
vanishing thickness. This implies J(t) ≡ J(t)δ(z). The
spatiotemporal evolution of the x̂ component of the elec-
tromagnetic field is given by

∇2Ex − µ0ε0
∂2Ex

∂t2
= µ0∂tJxδ(z) . (31)

Integrating the above equation across the two dimen-
sional plane yields

∂zEx|z=0+ − ∂zEx|z=0− = µ0∂tJx . (32)

Substituting Eq. (30) in Eq. (32), we obtain

(EI − ER − ET ) cos θ0 =
cµ0

ω cos(ωt)
∂tJx . (33)

Additionally, the continuity of the electromagnetic field
across the 2D layer yields,

EI + ER = ET . (34)

Furthermore, if we assume the material to be isotropic,
with a conductivity tensor which has only diagonal ele-
ments, we have Jx = σxx sin(ωt)[ωET cos(θ0)]. With this

the non-linear transmissivity can be easily obtained to
be,

T (ω) ≡
∣∣∣∣ETEI

∣∣∣∣2 =

[
1 +

παfine

2

σxx(ω)

σ0

]−2

, (35)

where αfine ≡ e2/(4π~cε0) is the universal fine structure
constant and σ0 ≡ e2/(4~), is the so called universal
ac conductivity of graphene. Here σxx(ω) is the non-
linear longitudinal conductivity. The reflectivity R(ω) =
|ER/EI |2, can also be obtained in a similar fashion and
it is given as

R(ω) =

(
παfine

2

σxx(ω)

σ0

)2 [
1 +

παfine

2

σxx(ω)

σ0

]−2

.

(36)
The absorption coefficient is given by α(ω) ≡ 1−T (ω)−
R(ω) and it denotes the fraction of light intensity which is
either scattered by the surface atoms of the 2D material
(Rayleigh scattering) or absorbed.

V. NONLINEAR CONDUCTIVITY OF DOPED
GRAPHENE

In this section we apply the general framework devel-
oped in Sec. II and Sec. III to calculate the non-linear op-
tical conductivity of graphene. For simplicity, we use the
effective low energy quasiparticle dispersion of graphene
instead of the full tight-binding Hamiltonian. The cor-
rections to the low energy dispersion on the universal
conductivity has been shown to be ∼ ~ω/(72 × 2.8eV)
[20]. Thus such effects can be safely neglected for
all frequencies in the optical domain and below. For
graphene, we have εck = −εvk = ~vFk, and Mvc =

Mcv∗ = ievFτ{sinφk,− cosφk} where k = (k2
x + k2

y)1/2,

φk = tan−1(ky/kx) and τ = +1 (−1) for the K (K ′)
valley.

We now consider the non-linear optical conductivity of
graphene arising from the inter-band transitions in var-
ious regimes. We start with the linear response in the
clean limit of graphene, i.e., for ζ � 1 and γ2/ω � 1
limit. In this regime, using Eq. (24), one can obtain the
finite temperature optical conductivity for graphene as

σlc
xx(ω) =

gsgve
2

16~
g(ω, µ, T ) . (37)

This has also been derived earlier from the Kubo for-
malism (see Eq. (25) of Ref. [20]). In Eq. (37), gs = 2
(gv = 2) denotes the spin (valley) degree of freedom
in graphene and the function g(ω, µ, T ) is defined in
Eq. (25). In the limiting case of T → 0, including the
spin and valley degeneracy factors, Eq. (37) reduces to,

σlc
xx(ω) =

e2

4~
Θ

(
~ω
2
− |µ|

)
, (38)

which has a finite universal value as long as the optical
excitation energy is greater than twice the chemical po-
tential. Equation (38) yields the so called ‘universal’ ac
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FIG. 3. Color plot of the nonlinear (inter-band) optical con-
ductivity (in units of σ0 = e2/4~) as a function of frequency
and the electric field strength of the incident laser beam for
(a) pristine graphene with µ = 0 and (b) doped graphene
with µ = 0.1 eV (or equivalently µ/~ = 1.5 × 1014 Hz). The
vertical (white) line represents ω = γ2, which is the boundary
of the clean (also called collision-less or high frequency limit
for ω ≥ γ2) and the dirty (or collisional or low frequency)
limit. The dashed white line marks the boundary of the linear-
nonlinear response regime [ζ ≡ evFE0/(~ω

√
γ1γ2) = 1], and

together with the boundary of the clean limit, it divides the
plot into 4 regimes, linear clean (marked ‘lc’), non-linear clean
(‘nc’), non-linear dirty (‘nd’) and linear dirty (‘ld’). Panel (c)
shows horizontal cuts from the upper two panels, i.e., the con-
ductivity as a function of ω for different electric field strengths
for both, the µ = 0 case (solid lines), and the doped case of
µ = 0.1 eV (dotted lines of the same color). The yellow circles
show the excellent match of Eq. (41), in the linear dirty limit,
with the exact numerical results. Panel (d) displays vertical
cuts from the upper two panels, i.e., the conductivity as a
function of E0 for different frequencies with solid lines for the
µ = 0, and the dotted lines of the same color for µ = 0.1eV .
Here the yellow circles show the excellent match of Eq. (39),
in the non-linear clean limit, with the exact numerical re-
sults. In all the panels we have chosen vF = 106 m/s, and
{γ1, γ2} = {1012, 1014} Hz.

conductivity of graphene which was predicted in Refs. [15
and 17], and experimentally observed in Ref. [6].

In the non-linear and clean limit, we have ζ ≥ 1 and
γ2/ω � 1. Using Eq. (28), the optical conductivity for
graphene takes the form

σnc
xx(ω) =

e2

4~
2

ζ2

(
1− 1

(1 + ζ2)1/2

)
g(ω, µ, T ) . (39)

As a consistency check we note that Eq. (39) reduces to
Eq. (37) in the limiting case of ζ → 0. Note that for
the specific case of pristine graphene (µ = 0 at zero tem-
perature), Eq. (39) can also be derived by following the
wave-function based approach and integrating Eq. (12)
of Ref. [29].
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FIG. 4. Color plot of the nonlinear transmission as a function
of frequency and the electric field strength of the incident
laser beam for (a) pristine graphene with µ = 0 and (b) doped
graphene with µ = 0.1 eV (or equivalently µ/~ = 1.5 × 1014

Hz). Panels (c) and (d) display horizontal and vertical cuts,
respectively with the solid lines corresponding to the µ = 0
case, and the dotted lines representing the µ = 0.1 eV. Other
parameters are identical to that of Fig. 3.

Next we consider the linear response in the dirty limit
for which ζ � 1 and γ2/ω ≥ 1. In this case the form of
conductivity changes substantially and at zero tempera-
ture it is

σld
xx(ω) =

e2γ2

4π~ω

∫ 2Λ
~

2|µ|
~

dωk

[
ωk

(ωk − ω)2 + γ2
2

− (ω → 0)

]
,

(40)
where Λ is the ultraviolet energy cutoff, which physically
should correspond to half of the bandwidth. In a tight-
binding model of graphene half of the bandwidth is 3×2.8
eV.

Evaluating Eq. (40) we obtain

σld
xx(ω) =

e2

4π~
[f (ω, 2Λ/~)− f (ω, 2|µ|/~)] , (41)

where

f(ω, x) ≡ tan−1

(
x− ω
γ2

)
+
γ2

2ω
ln

[
γ2

2 + (ω − x)2

γ2
2 + x2

]
.

(42)
The finite temperature generalization of Eq. (41) has to
be calculated numerically. As a consistency check we note
that Eq. (41) reduces to Eq. (38) in the limit γ2 � ω.

For the most general case of the nonlinear-dirty
regime, starting with Eq. (20), we express the dissi-
pative part of the steady state current for each spin
and valley of graphene (x̂ and ŷ components) as J̃k =

J̃k (sinφk,− cosφk) . Here,

J̃k =
e2v2

FE0 sin(φk − θ0)γ1γ2n
eq
k

~ω
{
γ1 [(ωk − ω)2 + γ2

2 ] + γ2|Ω̃vc|2
} , (43)
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and θ0 is the polarization angle of the linearly polarized
field, with respect to the x̂ axis. We then have the to-
tal longitudinal conductivity for graphene as σxx(ω) =
(2π)−2gsgv

∫
dk σ′xx(k), where

ωσ′xx(k) =
e2

~
v2

Fγ2(fck − fvk) sin2 φk[
(ωk − ω)2 + γ2

2(1 + ζ2 sin2 φk)
]−(ω → 0).

(44)
At T → 0, the k-integral of Eq. (44) has lower and up-
per limits of 2|µ|/~vF and 2Λ/~vF respectively. It can
therefore be evaluated exactly (as in Eq. (40)) to obtain,

σxx(ω) =
e2

4π2~

∫ 2π

0

dφk sin2 φk [f1(2Λ/~)− f1(2|µ|/~)] ,

(45)
where,

f1(ω, x) ≡ γ2

γφk

tan−1

(
x− ω
γφk

)
+
γ2

2ω
ln

[
γ2
φk

+ (ω − x)2

γ2
φk

+ x2

]
,

(46)
and γφk

= γ2(1 + ζ2 sin2 φk)1/2. The φk integral in
Eq. (45), can also be done analytically, yielding a cum-
bersome expression without much insight. However, it is
easy to check that in the linear response regime, ζ → 0,
γφk
→ γ2, and Eq. (45), reduces to Eq. (41), as expected.

The optical conductivity of graphene, in all four
regimes is shown in Fig. 3. The ζ = 1 line clearly
marks the boundary of the non-linear response regime,
with saturation effects dominating on the ζ > 1 side.
Interestingly enough, the ‘universal’ optical conductivity
of graphene σ0 = e2/(4~), seems to be valid only in the
ω > γ2 and ζ � 1 regime. Figure 3 also suggests that
non-linear optical saturation effects will become domi-
nant with decreasing optical frequencies while keeping
the laser intensity constant. The effect of non-linear op-
tical conductivity on the transmission spectrum is high-
lighted in Fig. 4.

An interesting observation from Eq. (43), is that the
off-diagonal conductivity σyx(ω) (for a x̂ polarized field)
vanishes for graphene. This is on account of the φk in-
tegration vanishing for each valley. This is not the case
for massive graphene where σyx(ω) is finite for each val-
ley with opposite signs for the two valleys. Therefore
the total σyx(ω) cancels out. This implies that one can
possibly have a finite σyx in massive graphene if the two
valleys can be made to have a different bandgap.

VI. NONLINEAR OPTICAL CONDUCTIVITY
OF GAPPED GRAPHENE

We now proceed to discuss the case of gapped
graphene. If a gap, ∆ is introduced in the band struc-
ture of graphene, say by growing it epitaxially on top
of SiC [63 and 64], then the effective Hamiltonian would
take the form of Eq. (4), with h0k = 0, h1k = ~vFkx,
h2k = ~vFky, and h3k = ∆. In this case, we have
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FIG. 5. Color plot of the optical conductivity as a function of
frequency and the electric field strength of the incident laser
beam for (a) gapped graphene (∆ = 0.065eV = ~× 1014 Hz)
with µ = 0 and (b) gapped and doped graphene with µ = 2∆.
As in the case of graphene, the vertical solid white line at ω =
γ2, and the dashed white line for ζ ≡ evFEI/(~ω

√
γ1γ2) =

1] divide the parameter space into 4 regimes: linear clean
(marked ’lc’), non-linear clean (’nc’), non-linear dirty (’nd’)
and linear dirty (’ld’). Panel (c) show horizontal cuts from the
upper two panels, i.e., the conductivity as a function of ω for
different electric field strengths for both, the µ = 0 case (solid
lines), and the doped case of µ = 0.13 eV (dotted lines of the
same color). The yellow circles show the excellent match of
Eq. (51), in the linear dirty limit, with the exact numerical
results. Panel (d) displays vertical cuts from the upper two
panels, i.e., the conductivity as a function of EI for different
frequencies with solid lines for the µ = 0, and the dotted lines
of the same color for µ = 0.13 eV. Here the yellow circles
show the excellent match of Eq. (50), in the non-linear clean
limit, with the exact numerical results. In all the panels we
have chosen vF = 106 m/s, and {γ1, γ2} = {1012, 1014} Hz.

εck = −εvk ≡ gk = (~2v2
Fk

2 +∆2)1/2. The x̂ and ŷ compo-
nents of the inter-band optical matrix element are given
by

Mvc

evF
= −

(
∆ cosφk

gk
− iτ sinφk,

∆ sinφk
gk

+ iτ cosφk

)
,

(47)
where τ = +1 (−1) for the K-valley (K ′-valley).

In the linear clean limit (ζ � 1, γ2/ω � 1), using
Eq. (47) in Eq. (23), we obtain the optical conductivity
for massive graphene (with gs = gv = 2) to be

σlc,m
xx (ω) =

gsgve
2

16~

[
1 +

4∆2

~2ω2

]
g(ω,max(|µ|,∆), T ),

(48)
where function g(x) is defined in Eq. (25). In the limiting



9

case of T → 0, g(x)→ Θ(x) and

σlc,m
xx (ω) =

e2

4~

[
1 +

4∆2

~2ω2

]
Θ

(
~ω
2
−max(|µ|,∆)

)
.

(49)
The above expression clearly suggests that the chemical
potential is not important if it lies inside the gap (µ < ∆).
This is a direct consequence of unavailability of any phase
space below the bandgap for optical excitations. Evi-
dently in the ∆→ 0 limit, we recover the corresponding
optical conductivity expression for graphene.

In the nonlinear clean limit (ζ ≥ 1 and γ2/ω � 1),
we use Eq. (28) to calculate the optical conductivity at
finite temperature. For massive Dirac systems in two
dimensions, we obtain,

σnc,m
xx =

e2g(ω, α, T )

2~ζ2

[
1− 1√

1 + ζ2

(
1 +

4∆2ζ2

~2ω2

)−1/2
]
.

(50)
In the limiting case of ∆→ 0, Eq. (50) reduces to Eq. (39)
as expected.

Next we consider the linear dirty limit (ζ � 1 and
γ2/ω ≥ 1) and with the help of Eq. (26), we arrive at the
following expression in the T → 0 limit,

σld,m
xx =

e2γ2

4π~ω

∫ 2Λ
~

2α
~

dωk

[
4~−2∆2 + ω2

k

ωk [(ωk − ω)2 + γ2
2 ]
− (ω → 0)

]
,

(51)

where Λ is the ultraviolet energy cutoff and α =
max{|µ|,∆}. Evaluating Eq. (51) we obtain

σld,m
xx (ω) =

e2

4π~
[f2 (ω, 2Λ/~)− f2 (ω, 2α/~)] , (52)

where we have defined,

f2(ω, x) ≡ (1 + y) tan−1

(
x− ω
γ2

)
− γ2

2 − 4~−2∆2

2γ2ω
ln[x2 + γ2

2 ]

+
γ2(1− y)

2ω
log[(x− ω)2 + γ2

2 ]− ωy

γ2
log(x) ,

(53)

and y ≡ 4~−2∆2/(ω2 + γ2
2). The finite temperature gen-

eralization of Eq. (52) has to be calculated numerically.
As a simple check we note that as ∆ → 0, Eq. (52) re-
duces to Eq. (41).

In the most general case, corresponding to the nonlin-
ear dirty limit for massive graphene, the dissipative part
of the current density which arises only from the inter-
band contribution, is given by J̃m

k = (Ak, Bk)neq
k , where

Ak =
e2v2

FE0γ1

[
∆2γ2 cos θ0 + ~2v2

Fk
2γ2 sin(φk − θ0) sinφk − τ∆gk(ωk − ω) sin θ0

]
~ωg2

k {γ1 [(ωk − ω)2 + γ2
2 ] + γ2|Ωcvk |2}

, (54)

Bk =
e2v2

FE0γ1

[
τ∆gk(ωk − ω) cos θ0 − ~2v2

Fk
2γ2 sin(φk − θ0) cosφk + ∆2γ2 sin θ0

]
~ωg2

k {γ1 [(ωk − ω)2 + γ2
2k] + γ2|Ωcvk |2}

. (55)

However for this case, the k integration of Eq.(54) has to
be done numerically.

The optical conductivity of massive graphene, in all
four regimes is shown in Fig. 5. As in the case of
graphene, the ζ = 1 line marks the boundary of the
non-linear response regime, saturable absorption effects
dominating beyond ζ > 1. Note that the Kubo for-
mula based result for the optical conductivity of massive
graphene [Eq. (48)], is valid only in the ω > γ2 and ζ � 1
regime. The impact of non-linear optical conductivity on
the transmission spectrum is highlighted in Fig. 6.

Finally we note that in graphene σyx(ω) was zero for a
x̂ polarized light for each valley. This is not the case for
massive graphene. We find that based on Eq. (55), for a
x̂ polarized light, each valley has a finite σyx(ω), which

in the clean linear response regime is given by

σyx(ω) =
2σ0

π

∑
τ

τ∆τ

~ω
log

(
2 max{∆τ , µ}

2 max{∆τ , µ} − ω

)
,

(56)
where τ = +1 (−1) corresponds to the K (K ′) valley and
∆τ is the corresponding gap. Note that in Eq. (56) the
sign of σyx(ω) in the K valley turns out to be opposite to
that of the K ′ valley and if they have the same gap, the
total σyx(ω) vanishes. However, if a valley asymmetry
can be induced in graphene or other Dirac material (by
breaking time reversal symmetry) [65], leading to differ-
ent band gap at the K and K ′ valleys (∆K 6= ∆K′), then
we can have a finite σyx(ω).
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FIG. 6. Color plot of the nonlinear transmission as a function
of frequency and the electric field strength of the incident
laser beam for (a) pristine graphene with µ = 0 and (b) doped
graphene with µ = 0.13 eV (or equivalently µ/~ = 2 × 1014

Hz). Panels (c) and (d) display horizontal and vertical cuts,
respectively with the solid lines corresponding to the µ = 0
case, and the dotted lines representing the µ = 0.13 eV. Other
parameters are identical to that of Fig. 5.

VII. CONCLUSION

In this paper, we have present a unified formulation
to calculate the non-linear optical conductivity for a
generic two band system. Our model is based on a
steady state solution of the optical-Bloch equations which
yields an analytic expression for the population inver-
sion and the inter-band coherence. A natural outcome
of our model is the appearance of the dimensionless pa-

rameter ζ ∝ E0/ω, which quantifies the degree of opti-
cal non-linearity in the system, which was first pointed
out by Mishchenko in the context of graphene [29]. This
implies that nonlinear saturation effects are stronger at
lower frequencies for the same strength of the optical field
strength. Furthermore, based on the parameter ζ and
the coherence decay rate γ2, any optical two band sys-
tem can be said to be in one of the four regimes: (1)
linear clean where ζ � 1, and γ2 � ω, (2) linear dirty
where ζ � 1, and γ2 ≥ ω, (3) non-linear clean where
ζ ≥ 1, and γ2 � ω, and (4) non-linear dirty where ζ ≥ 1,
and γ2 ≥ ω. These regimes present distinct signatures
in the optical conductivity and the optical transmission
and reflection spectrum.

Having established a general formulation for any two
band system, we explicitly study the non-linear optical
conductivity of graphene and massive graphene using the
effective low energy Hamiltonian, and find analytic ex-
pressions for the optical conductivity in various regimes,
reproducing the results for the clean case in the linear re-
sponse regime. We emphasize that the usually reported
Kubo formula based results for the optical conductivity
are generally valid only in the high frequency (ω � γ2)
and linear response (ζ � 1) regimes.

An obvious extension of this work is to include the
electron-phonon and electron-electron interactions ex-
plicitly along with the optical Bloch equation. This will
provide a natural microscopic model for population in-
version and decoherence decay rates, γ1 and γ2, which
we have assumed to be constant in this paper. Along
with this the effect of band bending, trigonal warping etc.
can be included by considering a tight-binding model for
the Hamiltonian as opposed to an effective low energy
Hamiltonian, and that will also increase the validity of
this formulation for a wide range of optical frequencies.
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