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Abstract–Determining the ages of young planetary surfaces relies on using populations of
small, often sub-km diameter impact craters due to the higher frequency at which they
form. Smaller craters however can be less reliable for estimating ages as their size-frequency
distribution is more susceptible to alteration with debate as to whether they should be used
at all. With the current plethora of meter-scale resolution images acquired of the lunar and
Martian surfaces, small craters have been widely used to derive model ages to establish the
temporal relation of recent geologic events. In this review paper, we discuss the many
factors that make smaller craters particularly challenging to use and should be taken into
consideration when crater counts are confined to small crater diameters. Establishing
confidence in a model age ultimately requires an understanding of the geologic context of
the surface being dated as reliability can vary considerably and limitations of the dating
technique should be considered in applying ages to any geologic interpretation.

INTRODUCTION

Impact craters currently provide the best
mechanism for absolute dating planetary surfaces other
than the Earth and locations on the Moon where in situ
samples were acquired by the Luna and Apollo missions
providing age estimates through radiometric and
cosmic-ray exposure age-dating techniques (e.g., Turner
1977; Heiken et al. 1991; Nyquist and Shih 1992;
Papike et al. 1998; Snyder et al. 2000; Nyquist et al.
2001). The relative ages of a planetary surface can be
established from the observed population of superposed
craters; however, the determination of absolute ages
requires information on the rate of the accumulation of
craters over time. Modeled impact crater chronologies
rely on correlating the ages derived from the age-dated

lunar samples (e.g., Arvidson et al. 1975; St€offler and
Ryder 2001; St€offler et al. 2006) to observed crater size-
frequency distributions (CSFDs) to anchor the lunar
crater chronology and enable systems of crater
retention-age models to be developed for the Moon
(e.g., Neukum 1983; Neukum et al. 2001) and
extrapolated to other inner solar system bodies, such as
Mars (Ivanov 2001; Hartmann 2005), Mercury (Fassett
et al. 2011), Venus (Herrick et al. 1997), Vesta
(Schmedemann et al. 2014), and Ceres (Hiesinger et al.
2016a). This dating technique has been developed over
several decades (e.g., €Opik 1960; Shoemaker et al. 1963,
1970; Baldwin 1964; Hartmann 1965, 1966a, 1999, 2005;
Greeley and Gault 1970; Neukum and Wise 1976;
Crater Analysis Techniques Working Group 1979;
Moore et al. 1980; Neukum 1983; Neukum and Ivanov
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1994; Hartmann and Neukum 2001; Neukum et al.
2001), and has been recently revisited (Marchi et al. 2009;
Le Feuvre and Wieczorek 2011; Hiesinger et al. 2012;
Robbins 2014) as more recent image data have become
available along with an improved understanding of
impactor dynamics and asteroid populations (also see
recent review by Fassett [2016] and references therein).

The chronology systems contain two elements: a
production function (PF) describing the CSFD shape and
the chronology function (CF) relating the accumulated
crater density to absolute time. Collectively, these yield a
predicted CSFD, or isochron, for a given length of time a
surface has been exposed to impact cratering. To apply
isochrons based on the lunar chronology system to other
solar system objects requires an additional extrapolation
that accounts for differences in encounter velocities,
surface gravity, and impactor flux (e.g., Ivanov 2001;
Hartmann 2005).

Due to the higher frequency at which smaller
energy impacts occur, age estimates of very young
surfaces or geologic features often require using craters
with diameters limited to a range where their
production function is less certain and the craters are
more sensitive to variation and modification. Various
processes preferentially alter crater populations at
smaller diameters (e.g., €Opik 1965) resulting in
deviations in the CSFD such as: ablation, deceleration,
and fragmentation of meteors traversing an atmosphere
prior to impacting the surface; secondary and self-
secondary cratering; the influence of target properties
on crater scaling; and postformation modification of
craters through erosion and deposition. Therefore,
crater counts limited to small, sub-kilometer crater
diameters are at greater risk of yielding an age that
may be misinterpreted if the modeled PF has not
accounted for the factors that have altered the CSFD
within the observed diameter range (Hartmann et al.
1981).

Additionally, ages derived for young surfaces will
be sensitive to variations in the impactor flux including
episodes of enhanced cratering resulting from the
disruption of asteroids as the integration time is limited
to the recent past and may not be representative of the
longer term average assumed in the modeled
chronologies (e.g., Hartman and Hartmann 1968;
Hartmann 1970; Bottke et al. 2007; Kirchoff et al.
2013). Additional uncertainties arise as crater
identification may be prone to biases at smaller sizes by
illumination effects and resolution limits, and limited
numbers of craters or confined crater-count areas can
introduce statistical uncertainties (Soderblom 1970;
Young 1975; Wilcox et al. 2005; Ostrach et al. 2011;
Hiesinger et al. 2012; Van der Bogert et al. 2015a,
2015b; Michael et al. 2016).

All of these issues render the modeling of ages using
predominately small craters susceptible to error. Yet the
need to discriminate very young features is vital to
addressing many outstanding questions in planetary
science. Given the complicating factors making small
craters challenging to use in establishing ages, the
question of whether such ages can be determined
reliably and confidently within the uncertainty required
to be useful in making geologic interpretations is one of
utmost importance. In this paper, we review these issues
and their potential influence on model age estimates of
very young surfaces.

IMPACT RATES

Current Observations

The development of CFs, derived from crater
counts correlated with dated lunar samples, has made it
possible to assign absolute model ages to unsampled
regions of the Moon, and other inner solar system
bodies. After an initial rapid decline in cratering early in
lunar history, the impact rate has been relatively
constant over the last 3 Gyr (e.g., Guinness and
Arvidson 1977; Neukum 1983; Neukum et al. 2001),
though there is evidence that the cratering rate may
have declined by a factor of ~3 during this period
(Hartmann et al. 2007; Quantin et al. 2007). A gap in
lunar samples with ages ~1–3 Ga, however, limits our
understanding of the true nature of the cratering
chronology during this period and the resulting large
uncertainties in the rate will likely remain unresolved
without the future acquisition (or eventual in situ
dating) of new samples with such ages. A recent attempt
to calibrate an age for Autolycus crater, which would
presumably fall within this unrepresented age range,
was unsuccessful, likely due to secondary contamination
from Aristillus (Hiesinger et al. 2016b). Observations of
the present-day impact rate of smaller frequently
encountered objects, however, provide a useful
comparison to commonly used production and CFs and
assess their reliability for dating very young surfaces
(Williams et al. 2014a, 2014b; McEwen et al. 2015).

Surveys of objects colliding with the Earth provide
estimates of the size-frequency distribution (SFD) and
flux of small impactors at 1 AU. These objects generally
do not reach the surface as a single body, but deposit
energy in the atmosphere that is detectable via optical,
seismic, or acoustic/infrasound sensors (Ceplecha et al.
1998). Various surveys are plotted in Fig. 1 normalized
to an annual flux. Brown et al. (2002) reported results
of bolide detections in the terrestrial atmosphere from
8.5 yr of optical satellite observations operated by the
Department of Defense and the Department of Energy.
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The optical flashes corresponded to objects a few meters
in diameters (0.1–10 kiloton equivalent TNT where 1
kiloton = 4.185 9 1012 J) and the power-law fit to the
satellite data is plotted in Fig. 1, where we have
converted the kinetic energy estimates of the events to
diameters assuming a nominal Earth encounter velocity
of 20 km s�1 and mean projectile density of
2700 kg m�3. The power law is consistent with the
Neukum et al. (2001) lunar crater PF for impactors ≲ a

few meters where the Neukum production function
(NPF) is scaled to equivalent terrestrial impactors
assuming crater scaling parameters appropriate for the
lunar regolith (see table 2 of Williams et al. 2014a and
Holsapple 1993), a mean impact angle p/4, a Moon/
Earth impact flux ratio 0.725 to account for the
gravitational capture cross sectional areas (Ivanov
2006), and a mean Earth/Moon velocity ratio of 1.04
(Le Feuvre and Wieczorek 2011).

An extension of the Brown et al. (2002) survey
using nearly 20 yr of bolide data (Brown et al. 2013)
found a similar flux; however, the inclusion of the
Chelyabinsk event of February 15, 2013 raised the
estimated flux of objects ~5 times in the tens of meter
size range implying a power-law exponent, or slope on a
log-log plot, that is shallower for energies above 1 kT.
The latest satellite detections on the NASA JPL fireball
and bolide reporting website (http://neo.jpl.nasa.gov/f
ireball/) include 390 events from January 1, 2005 to July
7, 2016. Chelyabinsk, the largest event, is well above the
Brown et al. (2002) power-law estimate for an event of
this size given the survey period. Similarly, a 13.67-yr
survey of acoustic detections of airbursts by a global
network of microbarometers operated by the Air Force
Technical Applications Center (AFTAC) (ReVelle 1997;
Silber et al. 2009) also indicated a systematically higher
flux at these sizes partly as a result of the inclusion of a
single large megaton-scale event in August 1963. Silber
et al. (2009) note that the source energy estimate
techniques have not been calibrated for such high
energy events and are extrapolated from lower bolide
energy events, possibly explaining the higher flux
estimates.

Recent analysis of near-Earth asteroids (NEA),
using a computer survey simulation to determine the
completion of detections versus size based on the
re-detection ratio (D’Abramo et al. 2001), has provided
estimates of the SFD of the total population (Harris
and D’Abramo 2015). Curvature with peaks and dips is
observed in the SFD with a peak at ~10–30 m
indicating impact rates are in fact elevated for this size
range of impactors (Harris et al. 2015) and could
explain the shallower power-law slope implied by the
bolide frequency estimates from satellite (Brown et al.
2013) and infrasound detections (Silber et al. 2009) at
sizes above a few meters. The curvature is observed in
the raw discovery numbers versus size and, thus, is not
an artifact of any model bias corrections. Modeling of
the impactor flux by Marchi et al. (2009) based on the
dynamical models of Bottke et al. (2005a, 2005b) also
deviates from the Brown et al. (2002) power law and
the NPF at these sizes.

Collisional and dynamical models predict a wavy-
shape in the SFD of main belt asteroids as a

Fig. 1. Estimates of the cumulative population of terrestrial
impactors. Black and red solid lines are the power-law fits to
the satellite data reported by Brown et al. (2002, 2013),
respectively. Dashed cyan curve is the production function of
Marchi et al. (2009) and the orange dotted curve is the
production function of Neukum et al. (2001). Green ‘x’ are
the latest satellite fireball detections reported by the NASA
JPL fireball and bolide reporting website (http://neo.jpl.na
sa.gov/fireball/) that includes 390 events from January 1, 2005
to July 7, 2016. Circles are optical surveys of near-Earth
asteroids (Harris and D’Abramo 2015) assuming an impact
probability of 2 9 10�9 (Brown et al. 2002) and the relation
between absolute magnitude and diameter of Bowell et al.
(1989) with a mean albedo of 0.14. Squares are lunar impact
flashes for events with magnitude 9 or brighter (Suggs et al.
2014). Triangles are bolides detected by global infrasound
monitoring (Silber et al. 2009) using the energy-period relation
of ReVelle (1997). Blue dash-dot line segments are fireball
detection from optical camera network (Halliday et al. 1996).
Diamonds are two craters confirmed by LROC images to have
formed since Apollo with measureable diameters (Daubar
et al. 2011) and the magenta ‘x’ are the D ≥ 10 m newly
formed craters detected by LROC NAC temporal image pairs
(Speyerer et al. 2016). Dark gray bars and labels indicate
equivalent lunar crater diameters for impact velocities
10–20 km s�1 assuming an impact angle of 45°.
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consequence of the collisional evolution of the
population (Durda et al. 1998; Bottke et al. 2000, 2002,
2005a, 2015; O’Brien and Greenberg 2003, 2005). Wave
structure in the model SFDs is generated by asteroids
having size-dependent strength. The inflection points
occur at approximately the same sizes in the NEA
population though the SFD is modified by size-
dependent Yarkovsky/YORP-driven migration (Bottke
et al. 2006, 2015). Harris and D’Abramo (2015) suggest
a transition in internal structure from gravitationally
bound “rubble piles” to more cohesive “monolithic”
objects may explain the dip in the SFD around 100 m
diameter based on rotation statistics, indicating the spin
rate of asteroids larger than ~200–300 m is limited by
the gravitational spin barrier of ~2.2 h period (e.g.,
Pravec and Harris 2000). This may explain, at least in
part, variations in the power-law slope observed in the
impactor and crater populations at these diameters.
Impactor estimates do appear to converge however to a
common power law at smaller sizes. The slope of the
NPF for D = 250 m to 1 km is ~�3.7, but transitions
to ~3 below 100 m, which is similar to the Brown et al.
(2002) power law and monitoring of lunar impact
flashes (Suggs et al. 2014) and fireball detections with
camera sky surveys (Halliday et al. 1996). The detection
of new lunar craters (Daubar et al. 2011; Speyerer et al.
2016) by the Lunar Reconnaissance Orbiter Camera
(LROC) (Robinson et al. 2010) is also consistent with
the power law of Brown et al. (2002) in the cm to tens
of cm diameter range (Fig. 1).

The formation of fresh craters on Mars has also
been observed by multiple missions (Fig. 2). Initial
identification of new craters by the appearance of dark
spots in repeat imaging within dust covered regions of
Mars by the Mars Orbiter Camera (MOC) (Malin et al.
1992) aboard the Mars Global Surveyor (MGS) mission
(Malin et al. 2006) provided a crude estimate of the
impactor flux at Mars. Daubar et al. (2013) refined this
estimate using fresh craters identified in image data
provided by the Mars Reconnaissance Orbiter’s Context
Camera (CTX) (Malin et al. 2007) and High-Resolution
Imaging Science Experiment (HiRISE) (McEwen et al.
2007). The implied flux is generally consistent with
the modeled population of meter-scale impactors
extrapolated from the observed distribution of known
Mars-crossing objects (JeongAhn and Malhotra 2015),
and the largest of the new impact craters are consistent
with the predicted impact crater formation rate at these
sizes by the Martian chronology system of Hartmann
(2005). However, fewer craters were observed at smaller
sizes resulting in a shallower CSFD slope than the
Hartmann production function (HPF). An extrapolation
of the terrestrial impactor flux assuming the Brown
et al. (2002) power law to equivalent craters on Mars

also predicts a steeper CSFD than observed (Williams
et al. 2014a). More than half of the fresh craters
discovered are crater clusters resulting from
fragmentation of the impactors during passage through
the atmosphere prior to reaching the Martian surface,
indicating disruption of impactors exerts an influence on
the resulting CSFD (Hartmann et al. 2017). The HPF
accounts for the atmosphere by incorporating an
atmospheric model (Popova et al. 2003), although
modeling by Ivanov et al. (2014) suggests that the
atmosphere may be influencing the smaller diameter
impactors to a greater extent than is predicted by this
model. Williams et al. (2014a), however, concluded that
the atmosphere, including effects of fragmentation, is
unlikely to explain the discrepancy in CSFD slopes;
recent surveys reported by Hartmann and Daubar
(2017) of craters on young, well-preserved surfaces
indicate that the atmospheric influence on CSFDs down
to ~1–2 m may actually be less than predicted by
Popova et al. (2003). Daubar et al. (2016) suggest that
more rapid fading of the blast zone albedo patterns
around the smaller craters observed in follow-up
HiRISE imaging could indicate smaller events may go
undiscovered and partly explain the shallower CSFD.

Fig. 2. Fresh craters observed during the MGS mission by
MOC (Malin et al. 2006) and the MRO mission by CTX with
crater diameters confirmed with targeted HiRISE images
(Daubar et al. 2013) along with the crater chronology system
of Hartmann (2005) (which may include some unknown
fraction of field secondaries) and the predicted SFD for
Martian craters derived from the observed terrestrial flux of
impactors (Williams et al. 2014a).
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The overlap between the new Martian craters and
the chronology system of Hartmann (2005) is
reassuring. However, the difference in the CSFD slope
remains unexplained, and extrapolated to larger crater
sizes results in a higher present-day impact rate than
predicted, which suggests that absolute model ages of
young surfaces may be overestimated.

Variations in Impact Rates

Chronology models typically make the assumption
that the average impact rate has been near-constant at
least over the last ~3 Gyr. On shorter time scales, the
impact rates may have varied and the present-day
impact rate may not necessarily be representative of the
longer term average. For example, a survey of ~90 km
diameter impact craters on the Moon may indicate
extended periods characterized by lulls in the impact
rate after 3 Ga with a shorter period (~200 Myr) of
elevated impact rates ~1.8 Ga (Kirchoff et al. 2013).
This assumes that the flux of small impactors (≲1 km) is
not correlated with the flux of large impactors (≳5 km),
with the small impact flux remaining relatively constant
and the large impact flux varying with the breakup of
asteroids as modeled in Bottke et al. (2007). Lunar
farside rayed craters and terrestrial craters suggest
impact rates may have increased late in geologic time
(McEwen et al. 1997; Shoemaker 1998) and a
periodicity in impact rates has been suggested (e.g.,
Alvarez and Muller 1984; Shoemaker and Wolfe 1986;
Rampino and Caldeira 2015) possibly related to the
passage of the Sun through the galactic plane (Matese
et al. 1995).

Dating of meteorites and the extraction of
extraterrestrial materials in sediments on Earth provide
a record of the delivery rate of material over time. The
H and L chondrites, ordinary chondrites that make up
the majority of meteorite falls, show strong evidence for
disruption events of the meteorite parent bodies in the
last 500 Ma. Fossilized meteorites in mid-Ordovician
limestones reveal a two orders of magnitude increase in
the delivery of L chondrite material associated with the
breakup of the L chondrite parent body ~466 Ma
(Thorslund et al. 1984; Schmitz et al. 1997, 2001;
Schmitz 2013) consistent with a large group of L
chondrites with gas retention ages ~400–500 Ma
(Anders 1964; Keil et al. 1994; Bogard 1995; Haack
et al. 1996; Hartmann 2007; Hartmann et al. 2010;
Swindle et al. 2014). Cosmic-ray exposure (CRE) ages
of chromite grains from the suite of fossil meteorites
increase upward in the sediment column indicating
many different falls are recorded that originate from a
single break-up event reaching Earth at successively
later times (Heck et al. 2004). A number of terrestrial

impacts also formed in the Late Eocene (~36 Ma) with
the two largest craters, Popigai and Chesapeake Bay,
forming within a ~10–20 kyr period (Koeberl et al.
1996; Bottomley et al. 1997) with H and L-chondritic
chromite grains associated with their ejecta deposits
(Schmitz et al. 2015). A peak in CRE ages of meteorites
indicate disruption events of both the H and L
chondrite parent bodies around the Late Eocene (Wieler
and Graf 2001; Kyte et al. 2011), and enrichments of
3He in marine sediments—along with microtektite or
krystite beds and iridium anomalies—observed over
the corresponding stratigraphic interval have been
attributed to an increase in the delivery of
extraterrestrial material (Montanari et al. 1993; Farley
et al. 1998; Farley 2009; Koeberl 2009; Boschi et al.
2017). It has been suggested that the 3He anomaly,
representing a ~2 Myr interval, possibly resulted from
an increased flux of impact ejected material from the
Moon during this period of time (Fritz et al. 2007) as
the upper regolith layer of the Moon contains high (5–
50 ppb) 3He-concentrations (Wittenberg et al. 1992;
Cocks 2010).

Using the rock abundance signature of the ejecta
from Copernican-age lunar craters D > 5 km derived
from the Diviner instrument on LRO as a proxy for age
(Ghent et al. 2014), Mazrouei et al. (2015) and Ghent
et al. (2016) find a concentration of craters at all
diameters at ~388 Ma that could indicate variations in
the impact flux occurred on the Moon. Isotopic ages of
lunar impact glass spherules have shown an increase in
the frequency of cratering in the last ~500 Ma (Culler
et al. 2000; Muller et al. 2001; Levine et al. 2005).
However, the lifetimes of spherules are geologically short
(Hartmann et al. 2007; Zellner and Delano 2015) as they
are prone to breaking into shards and may thus bias the
results such that the increase in impact glass spherules
during this time may not necessarily be indicative of an
increase in the impact flux. The population of most
recently formed craters on the Moon, identified by their
correlation with patches of anomalously cold nighttime
regolith temperatures in Diviner data (Bandfield et al.
2011, 2014), indicates a possible clustering of impact
crater formation occurred within the last ~200 ka
(Williams et al. 2016a).

How such short-term variations in the impact rate
may influence age estimates is unclear, though age
estimates on younger surfaces will be more sensitive to
such events as the accumulation of craters are
integrated over a shorter window of time. The influence
could be relatively small, if for example the potential
impact cratering spike that occurred in the Late Eocene
~36 Ma resulted in a doubling of the impact rate over a
2 Myr period; a cratered surface would appear only
~5% older than it actually is, much smaller than the
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inherent uncertainty in the chronology models. A
systematic increase in cratering throughout most of the
Copernican period would already be accounted for in
the chronology model fits to crater counts during this
period. However the age gap in dated lunar samples
between ~1–3 Ga precludes any determination as to
whether the Eratosthenian had a lower impact rate and
thus whether older, intermediate-age surfaces are
properly modeled.

ATMOSPHERIC FILTERING

The presence of an atmosphere on a planet
complicates the derivation of model ages when
constrained to smaller diameter craters. Deceleration,
ablation, and fragmentation effects reduce impactor
energy as meteors traverse the atmosphere prior to
contacting the surface (e.g., Baldwin and Schaeffer
1971; Bronshten 1983; Melosh 1989; Chyba et al. 1993;
Popova et al. 2011). Depending on the characteristics of
the atmosphere and the range of crater diameters
available for dating a surface, the effects of the
atmosphere can have a nontrivial influence on the
resulting CSFD.

The atmosphere of Venus represents an extreme
case in our solar system with a surface pressure of ~92
bars (Fig. 3). Such an atmosphere plays a large role in
modifying crater formation (Schultz 1992). Less than
1000 craters have been identified globally with the
smallest craters ~1.5 km in diameter (Schaber et al.
1992; Herrick et al. 1997). The atmosphere alters the
CSFD up to crater diameters ~30 km (Phillips et al.
1992) where the global CSFD is observed to deviate
from a power-law distribution. The low density and
broad, near-random dispersal of craters globally provide
little constraint on relative timing and duration of
formation of surface units (Campbell 1999; Ivanov and
Head 2011).

Titan similarly has few craters with an area fraction
of craters similar to Venus (Wood et al. 2010; Neish
and Lorenz 2012). The atmospheric temperature and
pressure of ~93 K and ~1.5 bar measured by the
Huygens probe at the surface (Fulchignoni et al. 2005)
correspond to an atmospheric surface density ~4 times
that of Earth. The lower surface gravity acceleration
(1.35 m s�2) also results in an atmosphere that is
significantly distended relative to Earth with meteoroids
experiencing the initial effects of drag and ablation at
much higher relative altitudes (Fig. 3). The models of
Zahnle et al. (2003) and Artemieva and Lunine (2005)
predict a significant reduction in the formation of
craters with diameters <~20 km as the projectiles will be
significantly disrupted by the atmosphere. The
suppression of small crater formation by the

atmosphere and lack of global radar coverage
challenges the ability to clearly distinguish ages with
more granularity than a global average surface age,
with the possible exceptions of Xanadu, which appears
to be older and has equatorial dune areas that have
lower than average crater densities (Wood et al. 2010).

The atmosphere of Mars by comparison has a more
modest influence on crater formation with sub-meter
craters capable of forming under current atmospheric
conditions (H€orz et al. 1999; Newsom et al. 2015). The
magnitude of deceleration and ablation experienced by
meteors traversing the atmosphere will depend on the
initial velocity and mass of the objects (e.g., Baldwin
and Schaeffer 1971; Bronshten 1983; Melosh 1989; Ip
1990; Chyba et al. 1993; Davis 1993; Vasavada et al.
1993; Popova et al. 2000; Artemieva and Shuvalov
2001; Chappelow and Sharpton 2005), with CSFDs
becoming increasingly altered by the effects of the
Martian atmosphere with decreasing impactor mass
starting at crater diameters around a couple hundred
meters. Objects with a mass roughly equivalent to or
smaller than the mass of the atmospheric column
encountered will be significantly decelerated and unable
to impact the surface at hypervelocity (typically defined
as greater than the sound speed of the target material).
This can be approximated by assuming the atmospheric
column mass to be qaHA where qa is the surface density
of the atmosphere, H is the scale height, and A is the
meteor cross sectional area (Williams et al. 2014a). For
a nominal Martian atmospheric surface pressure of 6

Fig. 3. (a) The pressure and (b) mean free path with altitude
above the surface of the atmospheres of Earth, Mars, Venus,
and Titan (U.S. Standard Atmosphere, 1976, U.S.
Government Printing Office, Washington, D.C., 1976; Seiff
and Kirk 1977; Seiff 1983; Yelle et al. 1997).
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mbars, this corresponds to impactor diameters of ~9 cm
assuming a density of 2700 kg m�3. For comparison,
this critical impactor diameter is ~60 m and ~570 m for
the Titan and Venus atmospheres respectively and
increases to ~170 m for Titan assuming a cometary
impactor density of water ice.

The size-dependent reduction in impactor energy by
the Martian atmosphere results in a CSFD that
increasingly deviates from that expected for an airless
body at smaller diameters. The latest iteration of the
Martian chronology system by Hartmann (2005)
includes the atmospheric entry model of Popova et al.
(2003) in an attempt to account for the influence of the
current atmosphere on age estimates at the smallest
sizes.

The present-day atmospheric conditions on Mars
are unlikely to have persisted for more than the past
few hundred thousand years (Head et al. 2003; Laskar
et al. 2004; Levrard et al. 2004; Haberle et al. 2012).
Climate models predict that obliquity-forced changes on
the distribution of insolation on Mars’ surface result in
large-scale variations in atmospheric mass on time
scales of 105–106 yr as a response to changes in
partitioning of the CO2 inventory between the
atmosphere and the surface (Ward et al. 1974; Toon
et al. 1980; Franc�ois et al. 1990; Fanale and Salvail
1994; Montmessin 2006). During periods of low
obliquity, the atmospheric pressure is expected to drop
with the sequestering of CO2 in the polar caps where
surface temperatures are below the sublimation
temperature of CO2 (Leighton and Murray 1966)
resulting in “atmospheric collapse” (Haberle et al. 1994;
Kreslavsky and Head 2005; Soto et al. 2015).
Conversely, periods of high obliquity result in increased
annual average insolation at the poles, sublimating CO2

in the polar caps and regolith, driving up atmospheric
surface pressure. The total inventory of CO2 available
to the atmosphere-seasonal cap system is uncertain
though buried deposits of CO2 ice within the south
polar layered deposits (SPLD), recently revealed by
SHARAD (Shallow Radar), represent a reservoir that
would increase the atmospheric mass by up to 80%
(5 mbar) if released into the atmosphere at times of
high obliquity (Phillips et al. 2011). Kieffer and Zent
(1992) estimate the amount of CO2 absorbed in the
regolith could be as much as 70 mbar equivalent. The
discovery of sizable iron meteorites by the Opportunity
rover has been cited as evidence for a past thicker
atmosphere (Beech and Coulson 2010; Chappelow and
Sharpton 2006) though Chappelow and Golombek
(2010) have found these meteorites could have been
decelerated enough in the present-day atmosphere to
survive impact under a narrow range of initial entry
conditions.

A robust prediction of the obliquity history for
Mars has been developed for the last 10–20 Ma (Laskar
et al. 2004). The obliquity has varied between ~15°–35°
during the last 4.5 Myr (Fig. 4) after transitioning from
a period of higher mean obliquity (~36°). Prior to the
last 20 Ma, deterministic predictions are not possible as
the model input parameters become chaotic; however,
several candidate obliquity histories over the last
250 Ma produced by Laskar et al. (2004) represent a
wide spread of climate options for the Late Amazonian
climate history. A general paleopressure history derived
using the obliquity history over the last 20 Ma (Fig. 4),
estimated from the annual average insolation at the
poles and assuming the CO2 atmosphere is in
equilibrium with perennial CO2 ice deposits (Ward et al.
1974), indicates pressures have been typically higher
than present-day. However, peak paleopressures may
have been limited by the availability of CO2, making the
paleopressure history uncertain. Given the possible
paleopressure history over the last 20 Ma depicted in
Fig. 4, a Monte Carlo simulation of crater production
assuming the impactor population and encounter
velocities described in Williams et al. (2014a), predicts a
greater downturn in the CSFD using the time-varying
pressure history relative to a constant 6 mbar
atmosphere (Fig. 5). While the CSFD of the simulated
20 Ma surface is similar to that predicted using the HPF
(Hartmann 2005), the craters for the time-varying
pressure history are better fit by a ~5–6 Ma HPF model
age for craters D ≲ 30 m. For older surfaces, uncertainty
resulting from paleopressure variability becomes greater,
particularly when considering small craters.

CRATER FORMATION HETEROGENEITY

Secondary Craters

Primary craters, formed by the direct impact of an
asteroid or comet on a planetary surface, can eject

Fig. 4. The obliquity history of Mars from Laskar et al.
(2004) and corresponding paleopressure assuming unlimited
availability of CO2 over the last 20 Ma.
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fragments with sufficient energy to form secondary
craters when the ejected material re-impacts the surface
(see Bierhaus et al. [2017]; for a review). The formation
of secondary craters as a consequence of explosive
crater formation and its relevance to impact cratering
on the Moon was recognized through large-yield
chemical and nuclear explosive cratering experiments
(Shoemaker 1960; Roberts 1964), the identification of
lunar craters associated with rays from Earth-based
observations (Fielder 1962; Shoemaker 1962), and the
first images of decameter-scale craters from the Ranger
VII spacecraft (Kuiper 1965; Miller 1965; Shoemaker
1965), raising concern that craters counts may not
reliably be used to determine the flux of impactors on
the lunar surface. More recent work concluded that the
small crater populations on Mercury (Strom et al. 2008,
2011) and Europa (Bierhaus et al. 2001, 2005) are
dominated by secondary craters, and the discovery of
>106 secondaries thought to be generated by the crater
Zunil on Mars (McEwen et al. 2005; McEwen and
Bierhaus 2006; Preblich et al. 2007) has raised the
question of whether this could be the case on Mars as
well. It should be noted that a more recently identified
crater, Corinto, produced rays and secondaries that
crosscut the rays of Zunil, and thus some rays originally
attributed to Zunil were likely generated by Corinto
(Quantin et al. 2016).

Secondaries represent a geologically instantaneous
spike in crater production, in excess of the expected
primary crater population. Thus, depending on the
fraction of secondary craters, the reliability of an
observed crater population as a chronometer will vary,
and in the worst case, may be rendered completely
useless. Global mapping of primary and secondary
craters on Mars by Robbins and Hynek (2014), using
the crater database compiled by Robbins and Hynek
(2012), shows that secondary craters comprise ~19% of
the total population for craters larger than 1 km. This
is a conservative estimate as identification of
secondaries was somewhat subjective and based on
morphologic characteristics; secondaries may have gone
unidentified and the distribution is nonuniform with
secondary craters outnumbering primary craters in
places. At smaller diameters, the proportion of
secondary craters that comprise crater populations and
their influence on derived model ages remains debated,
though comparison between the terrestrial meteoroid
flux and small lunar craters on dated surfaces indicates
a secondary contamination below 25–50% (Ivanov
2006). This is consistent with crater counts conducted
by Neukum et al. (1975) around Bessel crater in Mare
Serenitatis that showed the influence of secondary
craters on the observed CSFD became negligible at a
distance of ~7 crater radii.

Crater counts used to develop the lunar and
Martian chronology systems excluded obvious
secondary craters, which are generally distinguishable
on the basis of their association with rays and aligned
chains, herringbone patterns, and clustering near their
source craters often orientated toward a primary
(Shoemaker 1962; Oberbeck and Morrison 1974; Pike
and Wilhelms 1978; Neukum 1983). Distant secondaries
with a more random distribution may be
indistinguishable from the general crater population.
The chronology systems of Hartmann (2005) and
Neukum (1983) make no attempt to distinguish these
“background” secondary craters with the assumption
that the accumulation of both primaries and
background secondaries preserves chronometric
information (Hartmann 2007).

It was recognized from early high-resolution images
of the lunar surface that the slope of the CSFD was
steeper for craters with diameters D < 1–2 km. This
steep branch of the crater distribution was suggested to
result from the predominance of secondary craters at
these smaller diameters (Shoemaker 1965; Brinkmann
1966). A similar conclusion was made from the global
distribution of craters on Mars from Mariner 9 images
(Soderblom et al. 1974). The inflection in slope in the
distribution, if the result of a crossover point where
secondary craters begin to dominate the statistics,

Fig. 5. The CSFDs of a simulated 20 Ma surface on Mars
assuming a constant 6 mbar pressure atmosphere (circles) and
the time-varying pressure history depicted in Fig. 4 (triangles)
and the 20 Ma and 5 Ma model isochrons of Hartmann
(2005).
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should migrate to larger diameters over time as larger
impact craters accumulate and form larger secondary
craters (Neukum and Ivanov 1994; Werner et al. 2009).
However, this transition in slope is observed to be
invariable irrespective of surface age. Ivanov (2006) and
Williams et al. (2014a) demonstrated that the observed
annual flux of objects impacting the terrestrial
atmosphere (Brown et al. 2002) (Fig. 1), scaled to
equivalent lunar and Martian craters, can produce a
CSFD consistent with the lunar and Martian crater
production functions. Small craters (D < 1 km) on
asteroids such as Gaspra, where secondary craters are
thought to be absent due to the very low escape velocity
(Cintala et al. 1978; Bierhaus et al. 2012), also display
a similarly steep CSFD (Neukum and Ivanov
1994; Chapman et al. 1996; Neukum et al. 2001;
Schmedemann et al. 2014), and more recent observations
by the Dawn spacecraft (Russell et al. 2012) of two of the
youngest terrains on Vesta display a similar CSFD shape
(Marchi et al. 2014). The model production functions of
Marchi et al. (2009, 2011, 2014) based on modeling of the
main belt asteroid population (Bottke et al. 2005a,
2005b) predict a CSFD consistent with the steeper slope
at these smaller diameters. Collectively, this indicates the
steeper power-law slope at smaller crater diameters is a
characteristic of the impactor population, rather than an
artifact of secondary cratering.

The outer solar system, however, appears to have a
shallow power law slope at smaller crater diameters.
Crater counts from Europa (Bierhaus et al. 2001),
saturnian satellites (Lissauer et al. 1988; Dones et al.
2009; Kirchoff and Schenk 2010; Bierhaus et al. 2012;
Robbins et al. 2015), and Pluto and Charon (Moore
et al. 2016; Robbins et al. 2017a) all show shallow-
sloped crater populations at diameters <10 km when
obvious secondaries and crater clusters are excluded and
thus likely reflect a difference in the SFD of the
impactor population in the outer solar system (Bierhaus
et al. 2005).

Hartmann et al. (2010) examined several young-
looking multikilometer impact craters on Mars. These
craters displayed systems of rays detectable in Mars
Odyssey THEMIS (Christensen et al. 2004) nighttime
infrared imagery (Tornabene et al. 2006), and thus
were likely the youngest examples of craters of their
size as crater rays are relatively ephemeral features.
Crater counts by Hartmann et al. (2010) of the
superposed craters on the young rayed craters yielded
comparable model ages as the expected formation
intervals of the host primaries, indicating the
multikilometer craters and the superposed decameter-
scale craters are linked to a common production
function. The relatively young ages of these rayed
craters limit the amount of time distant secondary

craters could have accumulated, and thus the
superposed craters are likely dominated by primary
craters implying that the isochrons at small diameter
are not dominated by secondary craters.

How the nonrandom formation of secondary
craters in space and time might affect model ages,
however, remains unclear. Corinto crater (16.95°N,
141.72°E) provides an example of widespread secondary
crater formation in the volcanic plains of Elysium
Planitia. Located south of Elysium Mons, Corinto has a
diameter of 13.8 km and displays dramatic rays in the
nighttime THEMIS imagery (McEwen et al. 2010; Ong
et al. 2011; Bloom et al. 2014; Golombek et al. 2014a)
as ejected material altered the thermophysical properties
of the Martian surface (Fig. 6). Isolated ray segments
can be identified over 2000 km distance from the
primary crater (Bloom et al. 2014). The distant rays
formed by Corinto contain concentrations of millions of
secondary craters. If a Corinto-size crater is forming on
Mars every few Myr with secondary craters-extending
to at least 2000 km, any location on Mars has the
potential to be impacted by secondary crater forming
material within the last 20 Myr. On the Moon, an area
of ponded deposits and rocky material within the
otherwise nominal lunar highlands terrain may be the
result of a concentration of material at the antipode of
the 86 km diameter Tycho crater (Artemieva 2013; J€ogi
and Paige 2015; Bandfield et al. 2016; Robinson et al.
2016). If this material originated from Tycho, it
indicates debris from Tycho had the potential to impact
the lunar surface globally. The formation of an 18.8 m
crater identified with before and after LROC images
formed secondary impacts expressed as dark splotches
up to 30 km away, indicating even small impacts can
modify the lunar surface with ejected material over
distances significantly farther than the primary ejecta
blanket (Robinson et al. 2015).

The distinct clusters of craters that form rays can
generally be identified and excluded from crater counts,
as has been done in the development of the production
functions. However, outside of the rays, the
identification of secondary craters may be ambiguous,
especially as any thermal or photometric signature of
secondary craters fades with time. Quantin et al. (2016)
performed a detailed examination of the secondary
crater population around the young rayed Martian
crater Gratteri (17.7°S, 199.9°E), a D = 6.9 km crater in
the Memnonia Fossae region with an estimated age
1–20 Ma. They concluded from their survey that the
density of secondary craters outside of rays was low
enough that preexisting craters would dominate any
surface older than a few percent of Martian history and
have minimal influence on crater chronometry. Quantin
et al. (2016) and Hartmann and Daubar (2017) point
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out that if Zunil-size impacts large enough to generate
global-scale showers of secondary impact craters form
every ~1 Myr, then surfaces older than ~20 Ma would
contain enough overlapping secondaries to become
randomized while surfaces younger than ~0.5 Ma will

likely not have experienced global showers of small
secondary craters. Surfaces with intermediate ages,
however, will be particularly vulnerable to the
nonrandom formation rate of secondary craters. An
unnamed crater (8.2°N, 142.0°E) in Elysium Planitia

Fig. 6. a) THEMIS IR nighttime 100 m resolution mosaic of region south of Elysium Mons displaying rays from Corinto crater
(upper arrow). Lower arrow is location of crater in (b). b) An unnamed crater (D = 6 km) that predates the formation of
Corinto crater. Boxes show locations of crater counts using HiRISE image PSP_007659_1885 on the north and south ejecta. A
ray segment from Corinto formed on the southern margin of the crater corresponding to the dark area in the background
nighttime THEMIS image. c) Crater size-frequency distributions for D ≥ 10 m for the two regions in (b) with the 40 and 500 Ma
model isochrons from Hartmann (2005) and the crater saturation equilibrium function of Hartmann (1984).
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illustrates this possibility as the emplacement of
secondary craters from Corinto on the ejecta is
heterogeneous and, where secondary craters appear to
dominate, obfuscates chronometric information (Fig. 6).

Secondary craters do not just affect surfaces far
from their source craters. In fact, they also form on the
ejecta blankets of the primary craters themselves.
Shoemaker et al. (1968) documented a higher crater
density on the Tycho crater ejecta blanket versus the
impact melt deposits, and suggested that this density
contrast might occur due to the formation of self-
secondary craters on the ejecta blanket. They drew a
parallel to the formation of self-secondary craters on
the debris ejected during the Sedan nuclear test, where
secondaries formed just outside the rim of the nuclear
crater. Variations in terrain properties appear to be
partially responsible for the difference in crater densities
between the ejecta blanket and impact melt units (see
Discussion below). Nevertheless, populations of
candidate self-secondary craters are apparent, and are
thought to cause highly variable crater densities even
across different parts of the ejecta blanket (Plescia and
Robinson 2015; Zanetti et al. 2017), for example at the
lunar craters Giordano Bruno (22 km; 36°N, 103°E)
(Plescia et al. 2010; Xiao and Strom 2012; Williams
et al. 2014b, 2016b), Cone (340 m; 3.62°S, 17.43°W)
(Plescia and Robinson 2011; Hiesinger et al. 2015),
North Ray (950 m; 8.82°S, 15.48°E) (Plescia and
Robinson 2011; Hiesinger et al. 2012), Tycho (86 km;
43.31°S, 11.36°W) (Hiesinger et al. 2012; Zanetti et al.
2017), and Aristarchus (40 km; 23.7°N, 47.4°W)
(Zanetti et al. 2017). Craters with unusual morphologies
on the impact melt ponds may also represent self-
secondaries that formed while impact melt was still
molten or viscous (Plescia 2012, 2015).

Figure 7 shows examples of self-secondary craters
on the ejecta of Giordano Bruno where it appears that
some impact melts were emplaced after the formation of
the craters on the ejecta blanket, as evidenced by melt
that partially buries and infills a population of circular,
rimmed depressions. These depressions therefore must
have formed prior to emplacement of the melt following
deposition of the clastic ejecta. Mapping of craters on
the ejecta of Martian crater Tooting also reveals
possible self-secondary craters with anomalously high
densities of craters near portions of the southern rim,
with the largest craters containing ponded material
(Boyce and Mouginis-Mark 2015). Similarly, crater
density differences observed at Hokusai crater on
Mercury indicate a population of self-secondary craters
that appears to predate the formation of melt pools on
the crater floor (Xiao et al. 2016) and a fresh looking
rayed crater on Rhea (Inktomi) has a heterogeneous
distribution of superposed small craters on its floor and

ejecta proposed to be evidence for self-secondaries as
another source (younger, large crater) is not obvious
(Schenk et al. 2017).

In addition to traditional and self-secondaries, the
outer solar system (particularly the Saturn system) also
experiences so-called “sesquinaries” (Dobrovolskis and
Lissauer 2004; Zahnle et al. 2008; Bierhaus et al.
2012). Sesquinary craters are produced by primary
crater ejecta that is traveling fast enough to escape the
satellite. This debris orbits the planet for a short time
and then impacts a satellite—most often the
originating one. These craters will likely not form in a
clustered pattern, but be spread across the surface
sometimes having hemispherical concentrations
(Alvarellos et al. 2005, 2017). They are generally as
unrecognizable as distant secondaries in the inner solar
system and influence the crater chronology in much
the same way since they do not have a known
formation rate.

Target Properties

Differences between cratering mechanics for
differently sized craters can also influence CSFDs.
Smaller craters form in a strength-scaling regime, where
the final crater is affected by the projectile parameters,
as well as the target properties. In contrast, larger crater
dimensions are controlled by the planetary gravity field
as excavation by larger impacts result in higher
lithostatic stresses (Holsapple 1993; Neukum and
Ivanov 1994). For craters with diameters in the
strength-scaling regime, density, strength, porosity, and
other target properties affect the final diameter of an
impact crater (e.g., Chapman et al. 1970; Young 1975;
Schultz et al. 1977; Holsapple and Schmidt 1982;
Melosh 1989; Holsapple 1993; Ivanov 2006, 2008;
Ivanov and Hartmann 2007; W€unnemann et al. 2010;
Housen and Holsapple 2011; Le Feuvre and Wieczorek
2011). For example, targets with higher coefficients of
friction, more porosity, and larger cohesive strength will
produce smaller craters than targets with the opposite
properties (e.g., W€unnemann et al. 2010; Housen and
Holsapple 2011). The differences in crater diameter can
be great enough to cause age discrepancies between the
CSFD measured on coeval surfaces with differing
physical properties. For example, some lava flows
exhibit two different surface types: denser smooth
polygonally patterned areas and rough areas of broken
platy material with lower bulk density (Iceland:
Keszthelyi et al. 2004; Hawaii: Hamilton et al. 2015).
Young Martian lava flows exhibiting these two surface
textures had been postulated to have different ages
based on their CSFDs (Murray et al. 2005; Page et al.
2009). However, Dundas et al. (2010) showed, using
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pi-scaling calculations and comparisons with terrestrial
lava flows, that target property contrasts between the
two types could explain final diameter differences for
craters with diameters <100 m rather than a real age
difference. For Mars, target property effects could also

cause there to be lower crater densities on fine-layered
deposits, or possibly affect CSFDs on polar-layered
deposits, glacial deposits, and frozen ground (Dundas
et al. 2010). They also warn that estimates of the
current impact rate on Mars may be affected by the

Fig. 7. Impact melt deposits near the south rim of lunar crater Giordano Bruno. a) Portion of LROC NA image M134509592R
with boxes showing locations of (c) and (d). b) Portion of LROC NA image M139225065R with boxes showing locations of (e)
and (f). c–f) Circular depressions partially buried and infilled by impact melt deposits (black arrows).
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crater diameters measured from recently formed craters,
which are found predominately on dusty surfaces. If
those surfaces have properties that enlarge of reduce the
final crater diameter, estimates of Martian crater
production would be either over- or underestimated,
respectively.

Similarly, Van der Bogert et al. (2017)
reinvestigated age discrepancies between impact melt
and ejecta units at Copernican lunar craters. Apollo-
era studies of the crater distributions at Tycho,
Copernicus, and Aristarchus craters indicated that the
impact ejecta deposits were relatively older than
smooth deposits associated with the craters, which
were thought either to be impact melt or younger
volcanics (e.g., Hartmann 1968; Shoemaker et al. 1968;
Strom and Fielder 1968a, 1968b). Recently, workers
have applied the Neukum et al. (2001) PF/CF to
determine model ages for these units, and found
statistically significant age differences (e.g., Van der
Bogert et al. 2010, 2017; Ashley et al. 2012; Hiesinger
et al. 2012; Zanetti et al. 2012). Developments in
understanding of the formation and emplacement of
impact deposits, as well as the difficulty of producing
impact-related volcanism (Ivanov and Melosh 2003),
indicate that the “smooth deposits” described in the
1960s are impact melt units, such that a real age
difference between the ejecta and melt units is unlikely
to be measureable at the resolution of the CSFD
technique. Thus, Van der Bogert et al. (2017)
investigated whether target property contrasts between
impact melt and ejecta could be responsible for the age
discrepancy (1) by measuring the CSFD of craters on
the largest known impact melt deposit on the Moon—
the King crater melt pond (after Schultz and Spencer
1979) (Fig. 8), and (2) via pi-group scaling calculations
similar to those by Dundas et al. (2010) for theoretical
lunar targets. The resulting CSFD for the King crater
melt pond exhibits an age consistent with impact melt
units at crater diameters smaller than 255 m (in the
strength-scaling regime), whereas it has an age consistent
with the ejecta units at crater diameters larger than
310 m (where gravity-scaling starts to play a role) (Van
der Bogert et al. 2017) (Fig. 8). This indicates that the
discrepancies in the crater sizes are most likely
controlled by target property effects. The pi-group
scaling calculations also illustrate, as Dundas et al.
(2010) showed for Martian lava flows, that different
target materials yield craters with significantly different
final crater diameters, and that these differences are
likely enough to explain the apparent age differences
(Van der Bogert et al. 2017) (Fig. 9).

In fact, the slopes of the CSFDs may also be
affected by target property effects (Marchi et al. 2011;
Kirchoff et al. 2015; Van der Bogert et al. 2017). The

implications for the steepening and/or shallowing and
shifting of CSFDs due to target property effects are (1)
steeper/shallower CSFDs may be difficult to fit with a
PF, thereby complicating derivation of model ages, and
(2) determination of model ages for small craters from
distributions that can be fit with the PF should be

Ashley et al. (2012)

van der Bogert et al. (2017)

Melt pond (NAC), area=2.30x101 km2

124 craters, N(1)=3.18x10-4 km-2

Ejecta (WAC), area=9.42x103 km2

358 craters, N(1)=8.01x10-4 km-2

Melt pond (NAC), area=1.62x10  km2 2

988 craters, N(1)=3.17x10-4 km-2

7 craters, N(1)=7.79x10-4 km-2

a

b

Fig. 8. CSFDs in cumulative (a) and relative (b) plots for
King crater using data from Ashley et al. (2012) (black
triangles and circles), and a CSFD from Van der Bogert et al.
(2017) for a larger portion of the King crater impact melt
pond (red circles). Absolute model ages determined using
Poisson timing analysis show that both old and young
apparent ages can be measured on a single impact melt unit
(red), thus supporting the role of target property effects on
crater diameters in the strength-scaling regime (<~300 m
on the Moon).
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interpreted with consideration of the type of target
being dated and for the types of surfaces used to
construct the PF itself. The Neukum et al. (2001) PF at
sub-km diameters was generated largely from CSFD
measurements on the continuous ejecta blankets of
Copernican-age craters (Neukum 1983; Neukum and
Ivanov 1994) and the lunar CF was calibrated using the
craters on the ejecta blankets of Copernicus, Tycho,
North Ray, and Cone craters. As a result, Copernican
surfaces with properties unlike those of ejecta blankets
give model ages requiring additional interpretation. For
example, ages determined for Copernican-aged irregular
mare patches (IMPs) (Braden et al. 2014) may be
affected by their presumably nonejecta-like target
properties, perhaps enough to affect their apparent
absolute model age (Qiao et al. 2017).

CRATER MODIFICATION

General Theory

Small craters can undergo surface modification due
to a variety of mechanisms, such as eolian erosion and
dust deposition (€Opik 1965, 1966; Hartmann et al. 1981;
Hartmann and Neukum 2001; Hartmann 2005) and
diffusional creep driven by subsequent impact
bombardment (Ross 1968; Soderblom 1970; Lissauer
et al. 1988; Fassett and Thomson 2014). Howard (2004)
simulated several crater modification processes, including
decrescence (uniform erosion), accrescence (uniform
deposition), and nonlinear eolian sedimentation (which
combines erosion of crater rims with net deposition
within crater cavities). Both decrescence and accrescence
occur normally to the surface: dz/dt = (1/cosh) * dn/dt
(Howard 2004), where dz/dt is the rate of vertical
elevation change, h is the surface slope, and dn/dt is the
rate of uniform erosion or deposition (note that,
without the slope dependence, the relative surface shape
would be unchanged). Such depth-dependent vertical
resurfacing processes produce an equilibrium between
crater formation and obliteration, resulting in the
modification of a cumulative CSFD production
function with a slope of -b to an equilibrium function
with a slope of �(b � 1), thereby replacing isochron-
derived formation ages with resurfacing times (€Opik
1965; Chapman et al. 1969; Hartmann 1971;
Herkenhoff and Plaut 2000).

Craters undergoing decrescence exhibit steeper
inner rims and smoother floors due to backwasting; in
contrast, accrescence produces craters with more
rounded rims and negative conical interiors,
reminiscent of craters beneath the Martian mid-latitude
mantle deposits (Howard 2004). Since uniform dust
deposition does not produce a pattern consistent with
accrescence (due to the slope dependence of capture),
Howard and Craddock (1998) modeled eolian
modification as a nonlinear function of the extent of
relative surface exposure. Such nonlinear eolian
sedimentation results in parabolic crater floors (upon
which smaller craters have been eradicated) and crater
rims that remain exposed (Forsberg-Taylor et al. 2004;
Howard 2004).

Mars

The most comprehensive assessment of recent small
crater modification at low latitudes was conducted by
Golombek et al. (2014b), who cataloged ~100 craters
along the Opportunity rover’s traverse in Meridian
Planum. Golombek et al. (2014b) identified six classes
of crater degradation (dated using the Hartmann [2005]

Fig. 9. Relative crater frequency plot of CSFDs generated via
pi-group scaling calculations of final crater diameters for
different theoretical lunar targets using identical impactor
parameters. The gray line represents the standard lunar
equilibrium (slope �2; Trask 1966).
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isochrons), ranging from fresh Class 1 craters <200 kyr
old with sharp rims, bowl shapes, and blocky ejecta to
heavily eroded Class 6 craters up to 20 Myr old that are
rimless shallow depressions lacking ejecta. Their
observations indicate a rapid decrease in erosion rate
from ~1 m Myr�1 for craters <1 Ma to <0.1 m Myr�1

for craters 10–20 Ma, which Golombek et al. (2014b)
showed is consistent with a slope-dependent topographic
diffusion (i.e., nonlinear eolian sedimentation) model
with a diffusivity (quantifying material erodibility and
erosional vigor) of ~10�6 m2 yr�1. Interestingly, these
recent Meridiani erosion rates are 1–2 orders of
magnitude faster than those derived for 80–400 Ma by
Golombek et al. (2006) from both degradation of larger
craters in Meridiani and the concentration of blueberry
surface lags, which suggests that present-day Mars is
likely undergoing a short-term peak in the efficacy of
eolian erosion (Golombek et al. 2014b).

Crater modification rates at higher latitudes are
even more rapid. For example, Korteniemi and
Kreslavsky (2013) systematically surveyed D = 5–50 m
craters in patterned ground between 50–70�N, and
found evidence for “surprisingly young” crater retention
surface ages in the northern portion of their study,
ranging from thousands to just hundreds of years. They
attributed these fast crater obliteration timescales to
repeated deposition and sublimation of an ice-rich
meter-thick mantle that must be occurring during Mars’
present-day spin/orbit configuration. Similarly, Landis
et al. (2016) revisited crater modification within the
north polar layered deposits (NPLD), and concluded
that water ice deposition rates are rapid enough to
completely infill 100-m diameter craters on time scales
of centuries.

The Moon

Basilevsky (1976) characterized the morphological
evolution of small lunar craters, identifying five
different crater classes based primarily on the depth/
diameter (d/D) ratio and the steepness of inner crater
wall slopes (which decreases over time due to
downslope movement by landslides and avalanches;
Basilevsky et al. 2014). Based on this morphological
classification, Basilevsky (1976) not only derived
diameter-dependent total lifetimes of T (Myr) = 2.5 * D
(m) for D < 160 m craters, but also estimated the
fraction of time that craters would persist in each of the
five evolutionary stages. Basilevsky and Head (2012)
utilized this fresh crater classification system to infer
ages of 5–10 Ma for fresh D > 20 m craters (some of
which were still relatively steep) superposed on the
ejecta of Giordana Bruno. More recent models of
terrain diffusion rates (Fassett and Thomson 2014;

Minton and Fassett 2016) also predict substantially
shorter degradation times of smaller craters relative to
larger craters. Mahanti et al. (2016) found using digital
terrain models derived from LROC stereo observations
that small lunar craters typically became unrecognizable
when their depth was reduced by 80%, suggesting an
upper limit of ~100 Myr for the survival time of craters
with diameters 50 m or smaller consistent with
Basilevsky (1976). The degradation rate at Taurus
Littrow is also found to be significantly faster compared
to the Cayley formation suggesting crater degradation
rates can vary locally (Mahanti et al. 2016). The
accelerated degradation rate in Tarrus Littrow may
result from the unconsolidated nature of the thick
pyroclastic dark mantling deposits in the area in
contrast with the typical layered mare basalts nearby
(Lucchitta and Sanchez 1975; Van der Bogert et al.
2016).

Daubar et al. (2014) also studied the morphology of
small fresh craters, on both Mars and the Moon.
Whereas Martian craters that impacted in the last 20 yr
exhibit a mean d/D of 0.23—in accordance with the
typical value of d/D ~ 0.2 observed for simple primary
lunar craters (e.g., Pike 1974, 1977)—Daubar et al.
(2014) measured a much lower average d/D = 0.1 for
500+ random fresh small craters at similar diameters on
the Moon. Hence, Daubar et al. (2014) concluded that
most of the lunar craters they studied are either
unrecognized secondaries or primary craters degraded
via steep slope modification, which as noted by
Basilevsky et al. (2014) is expected to be a much faster
process than infilling by ejecta from near and distant
meteoritic impacts.

Effect of Resurfacing on Crater Counts

Resurfacing in general will preferentially remove
smaller craters in a population as these craters have
less topographic expression (€Opik 1965, 1966). Such
size-dependent processes will alter the CSFD. An
ongoing, long-term diameter-dependent rate of crater
removal results in a CSFD that departs from the
crater production function with a shallower slope at
smaller diameters (e.g., Hartmann 1971; Neukum 1983;
Smith et al. 2008; Newsom et al. 2015; Kneissl et al.
2016). However, an episodic resurfacing event may
only partially reset the crater population with the
larger diameter craters remaining visible: if such
resurfacing goes unrecognized, the reduction in
observed craters can erroneously be interpreted as a
younger formation age, rather than the age of the
resurfacing event, especially if counts are limited to a
small range of diameters (Neukum and Horn 1976;
Hiesinger et al. 2002; Hartmann et al. 2008; Platz et al.
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2010, 2013). The interpretation of the model ages
therefore may not be straightforward and may
represent a steady state between production and
removal of craters (€Opik 1965, 1966), or a diminishing
sequence of resurfacing processes, thereby providing a
retention age regulated by the destruction rate instead
of a surface formation age (Chapman and Jones 1977;
Smith et al. 2008; Michael 2013; Fassett 2016; Kite
and Mayer 2017).

STATISTICAL AND OBSERVATIONAL BIASES

Limited Numbers of Craters

Established approaches to dating planetary surfaces
through the analysis of a superposed crater population
rely on the technique of binning the measured crater
diameters, and attempting to use the thus divided data
to resolve the characteristic shape and density of the
accumulating crater population (Hartmann 1966b;
Crater Analysis Techniques Working Group 1979;
Neukum 1983). The method has seen numerous fruitful
applications (see listing of predictive successes in recent
review by Fassett 2016), but has always required
caution when the number of observed craters is low.

Where we have a large sample of craters, we may
be confident that the binned diameters reflect the
accumulating population, and expect that the choice of
binning has minimal influence on the result. With very
few craters, this expectation breaks down, and it no
longer makes sense to attempt to resolve a distribution
shape from a set of bins containing mostly zero or one
diameters. Thus, it is often asked “How many craters
are required to make a valid age estimate?”

A better formulated question, however, is “How
long does it take for the observed configuration of n
craters to form?” If we expect craters of given sizes to
form at known rates, Poisson statistics give the
probability of occurrence of the observed configuration
after any time t (Herkenhoff and Plaut 2000). If we
evaluate the probability for all values of t, we have a
relative probability function that fully describes the
possible age of the surface (Michael et al. 2016). With
this approach, we are no longer attempting to resolve
the distribution from the observation. Instead, the
chronology model describes the distribution, and the
Poisson statistics determine the time-resolved
probability of the given observation within the model.
There is no minimum number of craters for this
procedure: even a surface with no superposed crater
carries time information. The Poisson statistics can
inform, in a probabilistic sense, how young an
uncratered surface may be. How many craters are
required to make a valid age estimate? None.

Limited Count Areas

One challenge associated with dating young surfaces
is that recent geological activity tends to be very
spatially limited. As a result, the numbers and sizes of
craters available for statistics are also limited. In a test
of age determinations of small 4 km2 areas within a
100 km2 large reference area on the Moon, Pasckert
et al. (2015) showed that the majority of the small
count areas gave model ages that are consistent with
those of the larger area, but with lower accuracy.
CSFDs have also been demonstrated to vary across
single, presumably uniform geologic units on Mars
when count areas become small (Warner et al. 2015).
Because both of these studies arguably include the
effects of various local geological processes beyond the
production of craters at a known rate, a study of
theoretical lunar surfaces with different model ages was
done and shows that both the accuracy and precision of
the ages decrease with decreasing count area size and
the percent errors increase for younger surfaces (Van
der Bogert et al. 2015a, 2015b).

Limited count areas have implications for many
young Copernican-era surfaces on the Moon. For
example, only three of the 70 IMPs investigated by
Braden et al. (2014) were large enough to provide useful
CSFDs for fitting absolute model ages. The derived
ages, 58–18 Ma, however are important for
understanding possible late-stage volcanism on the
Moon. An enigmatic region on the far side highlands
containing ponded, smooth rocky deposits of uncertain
origin has been suggested to be related to antipodal
deposition of material from the Tycho impact
(Bandfield et al. 2016; Robinson et al. 2016).
Interpretation of a source for the material requires a
robust determination of formation age; however, crater
counts are confined to small areas where material
ponded in topographic lows, and the variability of the
derived ages, 10–42 Ma, may be an artifact of the small
count areas. Nevertheless, the units are demonstrably
young. Critically, the young craters Cone and North
Ray, two of the locations used to define the CF, are
relatively small and display a range of ages depending
on the area of the ejecta blankets counts are conducted
(Hiesinger et al. 2012, 2015). At Cone crater, the range
of absolute model ages agrees well with the range of
sample exposure ages, although the ages are slightly
older in general. This may result in part from the lower
accuracy and precision of the small count areas,
unidentified secondary crater contamination, or a higher
recent impact rate (Hiesinger et al. 2015).

On Mars, a multitude of relatively small landforms
may be susceptible to similar errors. Many, associated
with liquid water, are high priority targets for
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exploration and understanding the planet’s climate
history such as deltas, alluvial fans, and fluvial channels
(e.g., Grant and Wilson 2011; Mangold et al. 2012;
Hauber et al. 2013; Grant et al. 2014; Ehlmann and
Buz 2015). In many of these cases, the uncertainties
caused by limited count areas cannot be mitigated by
selecting larger areas. Nevertheless, such age estimates
provide useful evidence for the youth of the studied
areas.

Illumination and Image Resolution

Illumination conditions can have a significant
influence on the ability to distinguish topographic
features: higher incidence angles will increase shadowing
and enhance variations in reflectance resulting from
relief while decreasing variance in reflectance due to
albedo features. The illumination geometry of an image
therefore can influence the identification of craters and
the resulting CSFDs derived from crater counts
(Soderblom 1970; Young 1975; Wilcox et al. 2005;
Ostrach et al. 2011; Antonenko et al. 2013; Robbins
et al. 2014). A systematic study by Antonenko et al.
(2013) demonstrated how incidence angles can influence
a CSFD in a nontrivial way, and Ostrach et al. (2011)
found smaller craters especially prone to illumination
effects. Therefore, incidence angles can factor into
derived model ages with higher angles (~60–80°
depending on local conditions) being favorable. When
comparing CSFDs from different areas, the illumination
conditions of all images should be as similar as possible
to avoid systematic differences (e.g., Hiesinger et al.
2012; Van der Bogert et al. 2017; Zanetti et al. 2017).

The superior resolution of the LROC and HiRISE
cameras over previous orbital missions to the Moon
and Mars, respectively, has provided the ability to
observe crater populations down to meter-scale
diameters, making studying very young surfaces feasible
for dating. It should be noted that typically a roll-off,
or downturn, in the CSFD away from the PF occurs at
diameters approaching the image resolution limit as
crater detections become increasingly incomplete. The
smallest detectible craters therefore are not generally
useful for age determinations. In the outer solar system,
an absence of similarly high-resolution imaging makes
studying extremely young terrains difficult. For
example, there may indeed be small craters on Io or
Enceladus’ south pole or Sputnik Planum of Pluto, but
the limited high-resolution coverage means we have not
been able to determine their density much less their
crater retention age. Furthermore, because imaging of
the outer solar system satellites has been from fly-bys,
the illumination angle is widely variable making this
issue more of a problem than in the inner solar system.

CONCLUSIONS

The challenge in using crater populations to date
young planetary surfaces largely results from the fact
that crater counts are typically confined to smaller
diameter craters, the behavior of which is less
understood for the many reasons reviewed in this paper
(Table 1). Many processes that influence crater
populations preferentially alter smaller craters and
therefore model ages derived from counting these
craters require a cautious consideration of the geologic
context of the feature or geologic unit being dated.
Some of these factors (e.g., secondary cratering,
resurfacing, and target strength-scaling) have the ability
to affect geologic interpretations, while others most
likely will not, given the inherent uncertainties of the
crater chronometry technique: counting craters is
imprecise by nature and standard deviations of CSFDs
among individual observers counting craters are a few
tens of percent depending on crater densities, diameters,
and terrain type (e.g., Robbins et al. 2014). Though
many of the issues listed in Table 1 are not new, and
have been discussed in the literature since the initial
development of the field of crater chronometry, the
improved resolution and volume of image data over the
last decade, especially from LROC at the Moon and
HiRISE at Mars, have revived the discussion of many
of these issues as they relate to small craters.

Ultimately, predicted ages depend on models of
crater production and chronology. While some of the
processes discussed can be accounted for in models,
such as the atmospheric influence on crater production
on Mars by Hartmann (2005), how other factors such
as secondary cratering influence CSFDs and variations
in impact rates result in uncertainty in CFs remains
unclear or are currently debated. Ideally, the inspection
of surrounding areas for possible primary craters that
could have ejected material into a target area is part of
a crater size-frequency measurement interpretation.
Additional uncertainties in the modeled ages arise on
young surfaces due to the limited count areas, small
numbers of craters, and illumination and resolution
limits, though often these can be mitigated by selecting
appropriate images and count areas. The typically
reported error bars correspond to Poisson statistics and
do not capture the accumulated systematic uncertainty
of the chronology model, which is difficult to quantify
(Robbins et al. 2017b).

Perhaps the largest systemic cause of uncertainty is the
large age gap in lunar samples between ~1 and 3 Ga
coupled with uncertainty of Copernican ages relying on
craters conducted exclusively on crater ejecta which may be
biased by self-secondaries and target properties. Therefore,
a significant advance in our understanding of the crater
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chronology could be made with lunar samples returned
from several locations bridging this time period.
Furthermore, development of in situ dating such as

discussed by Farley et al. (2014) and Anderson et al. (2015)
for Mars and the Moon respectively, has the potential to
calibrate model ages for other solar system bodies.

Table 1. Summary of issues as outlined in paper.

Issue Description Comments

Impact rates
Impactor

populations

Knowledge of present-day

impactor SFD incomplete

Survey of impactor populations at small sizes incomplete. Observations

are consistent with a single power law over many orders of magnitude.
Variations in power-law slope likely complicate the picture and there
are discrepancies between models (Figure 1). Observed fresh lunar

(Speyerer et al. 2016) and Martian (Daubar et al. 2013) CSFDs
overlap with models but differ in slope.

Variations in

impactor flux

Secular changes and punctuated

variations in impact rates

Impact rate often assumed to be constant over last ~3 Gyr. Unclear if

present-day flux is representative of last 3 Gyr: there is some evidence
that variations may have occurred during this period, e.g., factor
2–3 higher impact rate in last ~300–400 Myr (Ghent et al. 2016;
McEwen et al. 1997). Relative ages not affected, though adds

uncertainty to chronology functions.
Atmospheric
filtering

Atmospheric
passage

Drag, ablation, fragmentation
of an atmosphere

Influence will differ between planetary bodies depending on atmospheric
characteristics and becomes severe for impactor masses smaller than
the mass of the atmospheric column. For Mars, Williams et al. (2014a,

2014b) find difference between highlands and lowlands varies model ages
by up to ~30% depending on crater diameter.

Paleopressure
variations

Paleopressures vary on Mars
and influence of atmosphere

not static

Martian pressure can vary significantly over time due to obliquity
variations, though this history is largely uncertain. Atmospheric

corrections may underestimate historic paleopressures, though
significance unclear.

Crater formation heterogeneity

Secondary
cratering

Craters formed by ejected
fragments from a distant
primary crater

How many craters are distant background secondaries is unresolved.
How secondaries influence model ages may be highly variable on young
surfaces. Hartmann and Daubar (2017) suggest ages 0.1–1.0 Ma have

highest uncertainties; for older surfaces, additional secondary crater
events become small fraction of total. Outer solar system may be
dominated by secondary craters (Bierhaus et al. 2005).

Self-secondary
cratering

Craters formed from ejected
fragments impacting the
primary crater ejecta blanket

Zanetti et al. (2017) suggest lunar cratering rate for Copernican craters
may be overestimated by factor of four. Influence of self-secondaries will
diminish with time.

Target properties Target strength influence on

the resulting CSFD

Influence increases at smaller diameters. Appear to influence model ages

up to a factor of a few at most (Williams et al. 2014a; Van der Bogert
et al. 2017).

Crater

modification

Postformation modification

such as erosion, deposition,
and terrain diffusion

Influence increases at smaller diameters. Highly variable. Age may not

correspond to formation age, but rather other events/processes.
Additional interpretation may be required.

Statistical and observational biases

Limited number
of craters

Young surfaces may be
sparsely cratered

Shape of distribution of craters may not be determined; however,
Poisson statistics can still provide time-resolved probability.

Limited count

areas

Young surfaces may be

limited to small areas

Accuracy shown to decrease with smaller crater-count area: Warner

et al. (2015) recommend count areas exceed 1000 km2; however, Van
der Bogert et al. (2015b) find error only ~10% for areas as small
as 1 km2.

Illumination Incidence angle of image

influences crater
detectability

Antonenko et al. (2013) find optimal incidence angles to

be ~58° to ~77°.

18 J.-P. Williams et al.



Given the knowledge that calibration to absolute
time is complicated by numerous aspects, the crater
statistics nevertheless have the potential to provide
meaningful information and have successfully been
applied in the past to establish the sequence of events on
planetary surfaces. Crater densities vary over many
orders of magnitude, and thus uncertainty of a factor of a
few does not preclude the ability to distinguish very
young terrains. For example, ice-rich dust mantling and
glacial-like features at mid-to-high latitudes on Mars
(e.g., Mustard et al. 2001; Head et al. 2003; Dickson
et al. 2008; Souness et al. 2012) are predicted to result
from the redistribution of water ice from the poles to
lower latitudes during periods of high obliquities
(Mischna et al. 2003; Laskar et al. 2004; Forget et al.
2006) resulting in surfaces < a few tens of Myr old. Crater
populations have yielded consistent model ages for the
predicted ice deposition (e.g., Hartmann et al. 2014).

While the technique of crater counting has proven
to be an invaluable tool, widely applied by the
planetary science community, its reliability varies
considerably and has inherent limitations that need to
be taken into account in applying derived ages to any
geologic interpretation.
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