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Abstract

A wireless sensor network consists of a large quantity of small, low-cost sensor nodes that
are limited in terms of memory, available energy, and processing capacity. Generally, these
sensor nodes are distributed in space to obtain physical parameters such as temperature,
humidity, vibration or light conditions, and transmit the measured values to a central entity.
The measurements are tagged with the corresponding location of the nodes in the network
and the time of sampling to enable a view of the value distribution in space and time later
on. Positioning of wireless sensor nodes without dedicated hardware is an open research
question. Especially in the domain of embedded networked sensors, many applications rely
on spatial information to relate collected data to the location of its origin. As a �rst step
towards localization, an estimation of the distance between two nodes is often carried out
to determine their positions. So far, the majority of approaches therefore explore physical
properties of signals such as the strength of a received signal or its arrival time. However,
this is problematic since either the complexity on the software or the hardware is not ad-
equate for embedded systems, or the approaches lack the required accuracy. This thesis
presents two novel ad-hoc localization systems called FCH (Factor Correction per Hop) and
PIV (Positioning Iterative Vector)based on the DIN algorithm (Distance by Intersection of
Neighborhoods). The three algorithms are designed to work as distributed ad-hoc locate-
sensing methods for indoor environments based solely on the investigation of local node
densities. The FCH method is divided into two phases: the �rst phase obtains the node-to-
landmark distances from which to later derived the node positions in the second phase using
multilateration. Whereas the PIV algorithm has two operation modi either as an autonomus
localization approach (where the �rst step is acquiring the local neighboring distances to
subsequently discover the node position in a iterative manner) or working as an iterative
re�nement phase. To evaluate the accuracy of these algorithms, extensive simulations and
experiments with di�erent testbed setups using a maximal number of 108 real sensor nodes
have been conducted. Finally compared the proposed position-sensing algorithms to several
distributed algorithms and two RSSI-based locate-sensing algorithms. The position accu-
racies achieved by applying these algorithms have reached an average position error up to
1.33± 0.84 meters.





Zusammenfassung

Ein drahtloses Sensor-Netzwerk besteht aus einer groÿen Anzahl von kleinen, Kostengüns-
tigen Sensorknoten, die in Bezug auf Speicherplatz, verfügbare Energie und Rechnerleis-
tung stark begrenzt sind. Typischeweise sind die Sensorknoten in einem bestimmten Raum
verteilt, um Umgebungsparameter wie Temperatur, Feuchtigkeit, Erschütterungen oder
Lichtverhältnisse zu messen. Die aufgenommenen Messdaten werden danach an einem zen-
tralen Rechner per Funk übertragen. Die Messwerte werden im Netzwerk in Form von
Tripeln übertragen. Die Tripel bestehen aus dem eigentlichen Messwert, dem Zeitpunkt der
Messung und dem Ort an dem sich der Sensorknoten zur Messung befand. Auf diese Weise
ist es möglich, die Verteilung der Messwerte relativ zu Raum und Zeit auszuwerten.

Speziell im Bereich der eingebetteten vernetzten Sensoren basieren viele Anwendungen auf
räumlichen Informationen, die in Relation mit den gesammelten Sensordaten gesetzt werden
müssen. Als einen ersten Schritt zur Lokalisierung wird oft eine Schützung der Distanz zwis-
chen zwei Knoten durchgeführt, um ihre Positionen annähernd zu bestimmen. Die meisten
Lokalisierungsmethoden erforschen und verwenden daher die physikalischen Eigenschaften
der Funksignale, wie zum Beispiel die Stärke eines empfangenen Signals oder seine An-
kunftszeit. Allerdings sind diese Methoden nur bedingt für eingebettete Systeme geeignet,
da entweder die Komplexität der Software die Grenzen der Rechenleistung eines Sensor-
knoten sprengt oder nicht genügend Speicher zur Verfügung steht. Diese Arbeit präsentiert
zwei neue Systeme zur Ad-hoc Lokalisierung, im Folgenden genannt FCH (Factor Correction
pro Hop) und PIV (Positionierung Iterative Vector). Beide Algorithmen basierten auf dem
DIN-Algorithmus (Distance by Intersection of Neighborhoods). Alle drei Algorithmen sind
so konzipiert, dass sie die Position von Knoten in einem Ad-hoc Netzwerk innerhalb von
Gebäuden nur mittels des Parameters der lokalen Knotendichten bestimmen.

Die FCH-Methode ist in zwei Phasen untergliedert: In der ersten Phase werden die Abstände
zu den verschiedenen Referenzknoten anhand der lokalen Knotendichte geschützt. In der
zweiten Phase werden diese Abstände für eine Multilateration verwendet, um die Position
der Sensorknoten im Netzwerk zu berechnen. Der PIV Algorithmus hat zwei Betriebsmodi:
Im ersten Modus wird er zur autonomen Lokalisierung eingesetzt. Hier ermittelt PIV die
Abstände zur lokalen Nachbarschaft, um zu einem späteren Zeitpunkt die Position mit einem
iterativen Algorithmus zu ermitteln. Im zweiten Modus wird der PIV verwendet um eine
iterative Verfeinerung der berechneten Positionen vorzunehmen.

Um die Genauigkeit der Algorithmen auszuwerten, werden verschiedene Simulationen und
Real-World Experimente in unterschiedlichen Testumgebungen mit einer maximalen Anzahl
von 108 Sensorknoten durchgeführt. Abschlieÿend werden die neuen Algorithmen FCH und
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PIV mit mehreren verteilten Ad-hoc Methoden und zwei RSSI-basierten Lokalisierungsalgo-
rithmen vergliechen. Unter Verwendung der oben genannten Algorithmen kann ein mittlerer
Positionierungsfehler von 1.33± 0, 84 m erreicht werden.
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CHAPTER 1

Introduction

Wireless Sensor Networks (WSN) [2] store and partially process sensed data either within
the same sensor nodes which take the local samples or transmit the sensed data to a remote
central computer where the data will receive a bigger and more complex handling process.
Generally, the sensor nodes are distributed in space to obtain physical parameters at that
location such as temperature, humidity, vibration or light conditions.

To have a record of the place of study, it is very important to correlate the collected mea-
surements sensed by the nodes to a speci�c location. Furthermore, the position of the nodes
opens up new ways to detect special events, tracking an object of interest, and improve the
network coordination by executing geographic routing algorithms.

The estimation of the position of every node in the network is still an open question. The
location problem is especially crucial in WSN due to the intrinsic properties of the sensor
nodes which have limited compute capability, slow store memory, and scarce energy. For
these kind of devices, it is necessary to �nd methods that work in an ad-hoc fashion, without
additional specialized hardware to save their scarce resources.

1.1 Motivation

Perhaps, the most well known technique to �nd location is the Global Positioning System
(GPS). However, the implementation of GPS chips on wireless sensor nodes is di�cult
because very low power chips adequate for WSN's do not exist and the GPS receivers have
the strong disadvantage that they do not work indoors. In addition, the named �urban
canyons� where dense blocks of structure, especially skyscrapers, contribute to lost GPS
signals. Therefore, the necessity to locate wireless sensor nodes is still a topic of interest for
the research community.

Several proposals to �nd the position of wireless sensor nodes have been developed in recent
years. The �rst step in this direction is to estimate the distance between nodes. To obtain
this information, there is a variety of techniques that exploit physical phenomena such as the
arrival time of sound signals [76], the time di�erence of arrival between radio and ultrasonic
signals [59, 9], the use of interferometry [43], radio signal strength indicators [40], or the use
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of camera pictures with a previous scene analysis [46]. These techniques and some others
will be explained in the next chapter of this work.

1.2 Problem Statement

The determination of the distance between sensor nodes that are close to one another (within
the range of tens of centimeters up to a few meters) is usually carried out with the help
of Time of Arrival (TOA) or Time Di�erence of Arrival (TDOA) systems. The accuracy
of these systems comes at the cost of a high synchronization overhead, thus high energy
expenses at runtime and the need for dedicated hardware on the sensor nodes [59].

In contrast, range-free algorithms rely solely on the conventional hardware of sensor nodes,
with the preferred technique to conclude the distance of the receiving node from the sender
by means of mapping the measured RSSI value to a distance. This mapping has to be
justi�ed by previous measurements, but has the advantage of no additional cost on a node
since it is provided by the transceiver practically for free.

To understand the distribution of RSSI values in an indoor setup, we measured these values
with our Modular Sensor Nodes (MSB), (see section 4.3.1) at regular points and created
maps, two of which are depicted in Figures 1.1 a and 1.1 b.

0

0.
25 0.
5

0.
75 1

1.
25 1.
5

1.
75 2

2.
25 2.
5

2.
75 3

3.
25 3.
5

3.
75 4

4.
25 4.
5

4.
75 5

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

meter

meter

RSSI Value

30-35
25-30
20-25
15-20
10-15

 
(a)

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

meter

meter

RSSI Value

30-35
25-30
20-25
15-20
10-15

 
 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

meter

meter

RSSI Value

30-35
25-30
20-25
15-20
10-15

 
 (b)

Figure 1.1: (a) Received signal strength of a sending node placed at the lower right corner within an
indoor testbed, (b) Received signal strength of a sending node placed in the middle of the network
within an indoor testbed

These maps visualize very well the problem that arises when utilizing a simple mapping: As
can be seen in map 1.1 a the transmission range is far from being regular, nodes may be
far away from the sender and still receive a high RSSI value, while others are closer and are
exposed to lower values, and thus will miscalculate their distance.

Fluctuation of the received signal imposes a major challenge on current range-free algo-
rithms. Also, Figure 1.1 b indicates that the determination of a small distance in the range
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of tens of centimeters is not possible, since the resolution of RSSI does not allow for such
an accuracy. Even worse, the distribution of RSSI values is in�uenced by spatial, temporal
and environmental parameters, the orientation of the antenna and the choice of transceiver,
making the calibration an almost unaccomplishable challenge.

1.3 Objectives

The main goal of this work is to locate the position of sensor nodes using solely the node's
radio communication chip to conserve the scarce energy in the WSN devices. Another desir-
able characteristic in this area is the use of algorithms which creates cooperative localization,
that is to say, sensor nodes should work together to make measurements with the help of
local data transfer and then form a map of the network where the nodes locate themselves,
despite the wrong data produced by the hostile environment.

Various application requirements such as scalability, energy e�ciency, and accuracy have
to be considered to design a robust and ad hoc localization algorithm. The indoor envi-
ronments are specially a big challenge because of the problems with the radio signal due
to interferences, re�ections, multi paths, signal attenuations, shadowing, and scatter e�ects
that appear in a random manner with a severe �uctuation. In this thesis, two novel methods
to estimate the location of wireless sensor nodes indoors based on local network density are
proposed.

In order to obtain competitive position accuracies, �rst we suggest a method to improve the
case of a multihop environment using the unknown node to reference node distances and
computing node positions by multilateration. As a second schema, we combine the internode
distances produced in a given local area of the network to later (and conjunction with the
whole network information) �nd the estimation of di�erent spatial points that minimize the
global and local node distances errors. Both methods are compared with recent approaches
not only by extensive simulations, but tested with real hardware as well. For the �rst time,
the comparison and implementation of di�erent positioning methods is in conjuntion with
our novel way to alleviate the problem of radio �uctuation to produce more reliable inter
node distances.

1.4 Structure of this thesis

The structure of the remaining thesis is as follows: First, I present basics of WSNs in terms
of typical parameters to classify di�erent methods.

In chapter 3, we show the classi�cation of di�erent positioning algorithms, practical appli-
cations of trading platforms, and prototypes. Furthermore, we discuss several approaches
which relate node density in a network to node distances as a �rst step to �nd position
estimations.

A mathematical model that relates node distances with the local node density is introduced
in chapter 4. This will serve as a foundation of the proposed DIN algorithm. Making
use of the ns-2 simulator, we probe the quality of DIN in uniform and near-uniform node
distributions with di�erent node densities. There, the necessary steps to put into practice
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the DIN algorithm on real sensor nodes are presented. Furthermore, a comparison against
a RSSI-based distance estimation is yielded to verify the validity of the DIN algorithm on
di�erent network settings.

In Chapter 5, the DIN algorithm is applied to the localization �eld through novel di�erent
localization approaches. Once again, the impact of di�erent network con�gurations with
di�erent nodes densities is probed with the help of the ns-2 simulator. The extensive simu-
lations using the new position-sensing algorithms to locate nodes are compared to di�erent
localization approaches and �nally, the practical evaluation of these new algorithms with
the ScatterWeb Platform is shown.

In the same chapter, the mathematical foundation of a new algorithm, called PIV, is also
presented. The quality of the PIV algorithm is veri�ed by multiple simulations over di�erent
network settings and densities. We investigate the e�ciency of the PIV algorithm as a pure
positioning algorithm, as well as a re�nement algorithm, comparing the position accuracies
with di�erent schemes. A distributed localization setup based on the PIV algorithm struc-
tured in three phases and implemented on real sensor nodes is discussed. The summary of
our �ndings are found in chapter 6 and �nally the future work of this investigation is found
in chapter 7.



CHAPTER 2

Basics of Wireless Sensor Networks

A Wireless Sensor Network (WSN) is formed by dozens of small, low-cost nodes which have
limitations in memory, energy, and processing capacity [2]. In this type of network, one of
the main problems is to locate each node.

The vision of many researchers is to create smart environments, controlled through planned
or ad-hoc deployment of a potentially large set of sensor nodes, each with transceivers for
wireless, short-range communication, each capable of detecting environmental conditions
such as temperature, movement, light, acoustic events or the presence of certain objects.

WSNs will enable a very close observation and control of the physical world. The future
of sensor networks appears to be in large numbers of unattended autonomous nodes which
operate in a dynamic environment which will be able to organize itself. It will be aware of
its physical position and will carry out dynamic tasks in a distributed form, very frequently
confronting changes in the network topology and failures in the network nodes due to the
lack of power, physical damage or environmental interferences.

These nodes will be able to measure and report on environmental characteristics such as
temperature, pressure, humidity, vehicular movement, noise levels, lighting conditions, the
presence or absence of certain kinds of objects, acoustic events, mechanical stress levels on
attached objects, and so on. In other words, one can say that localization will act as a
bridge between the virtual and physical world [20].

2.1 Parameter for Localization

For each method of estimating location information, it is possible to name speci�c parameters
to establish the similarities and di�erences between the various techniques. In this section,
the most typical parameters to classify di�erent approaches will be presented.

2.1.1 Accuracy and Precision

The most important parameters for localization techniques are accuracy and precision [29].
Accuracy could be de�ne as the extent by which the estimated location deviated from the
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actual position is. Precision indicates how often we expect to achieve the given accuracy at
the very least. (e.g. 20 cm accuracy across 95% of the time).

2.1.2 Scalability

The number of objects to be located in the system plays an important role. Each system
has its own limit in the number of objects it can �nd in a certain time frame depending on
the infrastructure per area.

The increase in localized objects in the network creates higher transmission demands which
could congest the communication channel if a given threshold is exceeded. To o�set this
problem, another important consideration in the location-sensing systems is the selection of
the best-�t radio frequency technology. The speed by which the location system outputs
the position information is known as responsiveness or sampling [20]. The responsiveness is
directly related to the maximum number of nodes the network can manage.

A location-sensing system could be used to �nd tags, objects, people, assets or animals on
the surface of the earth, in a city, buildings or in a single room. These systems can be
roughly classi�ed into two di�erent groups of scalability, either a system which works in
areas outside or those which locate within inside areas. This classi�cation lets us identify
special problems that the system will have to address such as di�raction, multipath and
interference problems.

2.1.3 Self-Organization, Autonomy and System Organization

The degree of autonomy has some of the most signi�cant consequences to the system design;
this parameter is closely related to the scalability of the system. A system has high autonomy
when it requires little or no human intervention to operate the system and the nodes act as
completely independent entities.

Autonomy of a given system is achieved through the use of extensive and sophisticated
internal processes that make their own coordination possible. The self-coordination of the
network is important because it impacts the ability to extend the system.

A roughly classi�cation of autonomy and self-organization divide WSNs into centralized or
distributed systems, meaning the system may not require the help of a central entity to
monitor and control the activities of the elements.

2.1.4 Cost

Computing the cost of the location sensing system requires looking at several di�erent factors
including installation time, money, e�ort required for computation, and energy.

The e�ort required for computation is a crucial parameter closely related to the location
algorithm of the system. This parameter, known as computational cost as well, determines
whether the location system is organized centrally or distributed.

The centralized systems control and monitor the system functions with the help of a central
engine. However, in the decentralized or distributed systems, the location algorithm is
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spread out into each node within the network, allowing the individual computation of the
position.

The time cost requires evaluating factor such as the length of the installation process and
the system administration needs. The time cost is also related with the e�ciency to �nd
the node positions in the network, this time depends on the algorithm to locate the nodes
and the organization of the system. Finally but not at least the �nancial cost of the whole
system is strong related on set up and operation, including factors such as infrastructure,
the salaries of support personnel and the maintenance of the system.

Figure 2.1 shows the localization taxonomy with the de�nitions mentioned in these last
sections.

2.2 Localization Techniques

Location discovery is based on three fundamental phases: a measurement phase that pro-
duces a set of distances measurements, presence hops, angularly or optically to/from a set
of anchor points; a combining phase that brings together the measurements to produce an
estimation of a position; and lastly, the optional re�ning phase that improves the estimated
positions through an iterative procedure [38].

The automatic location-sensing systems can be classi�ed into three groups:

1. Proximity-based approaches

2. Lateration

3. Angulation

4. Analysis of Prior Survey Location

This classi�cation is based on the information that a node uses about a node's neighbor-
hood (proximity-based approaches), the exploiting geometric properties of a given scenario
(lateration), or the characteristic analysis of the position of a node in comparison with
pre-measured properties (analysis of prior survey location). Most recent papers describe
location-sensing systems which employ one or more techniques of this classi�cation, becom-
ing hybrid systems.

2.2.1 Lateration

Lateration, an important concept in relationship to the localization area, computes the
position of an object by measuring its distance from multiple reference positions.

In a plane, the position of a node can be derived by the distance measure from 3 non-collinear
points. Nodes which know their exact position a priori or through the help of specialized
hardware (e.g. GPS) are called anchors, landmarks, seeds, reference nodes or beacons [33].
For lateration, the extension to three dimensions requires 4 non-coplanar distances to the
beacons to estimate the position.

Lateration uses a method known as �least squares" to estimate a particular position from
a set of linearized equations in the form of Ax = b. The least squares method is e�cient
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because it minimizes possible range estimation errors accumulated along the propagation
path. Appendix A takes a closer look at the mathematics behind it.

2.2.2 Angulation

This method estimates the positions of nodes using angular measurements from the reference
nodes instead of distance measurements. The estimation of a spatial point in a plane can
be determined with only two reference points and for tridimensional spaces with just three
angular measurements. The system proposed in [50] uses RF transmission from rotating
directional antennas to determine the location of wireless sensor nodes by applying this
technique. I will discuss direction-�nding techniques in section 2.4.

2.2.3 Proximity

The simplest technique involves �nding how �close" an object is to its known location. The
node senses the object by using a physical phenomenon with limited range, like a radio signal,
magnetic �eld, or IR light. If the node detects and recognizes the object within the range of
the emitter then the node is able to run an algorithm to determine the approximate position
of his neighbor. The proximity technique is also known as the range-free approach [10].

2.2.4 Analysis of Prior Survey

The analysis of prior survey location techniques uses features of a scene or area observed
from a particular vantage point to draw conclusions about the location of the observer or
objects in the scene. In static scene analysis, observed features are looked up in a prede�ned
dataset that maps them to object locations.

In contrast, di�erential scene analysis tracks the di�erence between successive scenes to
estimate location. Di�erences in the scenes will correspond to movements of the observer. If
the speci�c positions of the features are known, the observer can compute his own position
relative to them [74].

Nowadays there are systems that work with a hybrid analysis of prior survey systems.
Such systems work a priori in the covered area and extract samples of di�erent points by
(multi)lateration or proximity with the purpose of constructing a reference map of the area.
Later the devices �nd their own location by comparing the map samples obtained o�-line in
the area with the actual readings by the devices [40]. The major drawback of this method
is that it requires substantial computational e�ort and sometimes demands a large quantity
of physical memory.

2.3 Distance Estimations

A system based on lateration, multilateration or hybrid analysis of prior survey location
requires estimation of distances between the beacons and the nodes deployed to discover
the position of the unknown nodes. The most e�ective approaches estimating this distance
between nodes or between nodes and landmarks are: Signal Attenuation, Time of Arrival
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(TOA), Time Di�erence of Arrival (TDOA) and Interferometry, which will be introduced in
this subsection.

2.3.1 Signal Attenuation

This method can be implemented in any system able to achieve radio communication. This
method is also known as Received Signal Strength Indicator (RSSI). RSSI operates on the
general principle of a law of physics related to the loss of signal strength in space where
the signal strength loss is proportional to 1/d2 where d is the distance between sender and
receiver. In real scenarios, the distance relation could be 1/d3, 1/d3.5, 1/d4, etc. depending
on the environment where the nodes are located. There are some experimental results where
the application of this approach is developed in an indirect way, similar to [53], where O'Dell
et. al. use the loss of sent packets to determine distances between sensor nodes.

The main disadvantage is that RSSI values oscillate heavily due to signal propagation issues
such as re�ection, refraction and multipaths. These circumstances can be found even when
sender and receiver do not move.

2.3.2 Time of Arrival

The Time of Arrival method (TOA), also called �Time of Flight", exploits the relationship
between the beacon-node distance and the transmission time of the signal between sender
and landmark.

Assuming that the sender and receptor know the starting time of a transmission, if the signal
velocity is known, then the arrival of the signal indicates the landmark-node distance. This
distance can then be computed by every node in the network as presented in [8].

The two main disadvantages of this method are: �rst, it is necessary to have a synchronized
sender and receiver; second, depending on the transmission medium that is used, a high
clock resolution is required to produce results of acceptable accuracy. For example, for
acoustic waves, this requirement is modest (about microseconds) but for radio, a very high
resolution is necessary (about nanoseconds).

2.3.3 Time Di�erence of Arrival

The Time Di�erence of Arrival approach (TDOA) can be utilized if two transmission media
of very di�erent propagation speeds can be accessed. For example, radio waves propagating
at the speed of light and ultrasound.

To estimate distances, the sender must simultaneously transmit signals of di�erent speeds.
The receiver can use the arrival of the �rst faster signal to start measuring the di�erence
in arrival time of the second slower signal, safely ignoring the propagation time of the �rst
signal. The time registered by the receiver is proportional to the distance between sender
and receiver [80].

The necessity of two di�erent types of receptors and senders in every node, the limited range
of certain signals like ultrasound waves and the synchronization requirement in every device
however, are disadvantages to this approach.
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2.3.4 Interferometry

This approach [43] is useful if the system working environment of the nodes has low mobility
and is free of physical obstacles. The method uses the superposition of the �elds of two
separate radio transmissions to create interference. Two senders and two receivers use the
radio interference to obtain distance relationships between each other. The nodes create
and solve the equation sets to �nd their relative positions. The solution has good accuracy
(approximately 10 cm), but at the cost of relative high synchronization e�ort, Line of Sight
(LOS), and high computational e�ort requirements.

2.4 Angle Estimations

This technique can be separated into two di�erent categories as mentioned in [17]:

1. Anisotropy by receiver's amplitude response

2. Anisotropy by receiver's phase response

The �rst schema makes use of the the reception beam pattern of directional antennas,
locating the direction of the transmitter by the maximal signal strength while the beam
antenna pattern is been rotated mechanically or electronically. Some strong disadvantages
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of directional estimations, however, are spatial and temporal �uctuations of the transmit
power of the propagated signal, the high-rate of pulses to be intercepted by the antennas,
and the fact that the receiver might have to be held wide open to maximize signal reception
probability.

To reduce the varying signal strength, the use of a minimum of two (but typically at least
four) stationary antennas with known, anisotropic antenna patterns is proposed in [17].
Overlapping the stationary antennas pattern and comparing the signal strength received
from each antenna at the same time yields the transmitter direction, even when the signal
strength changes. Once again, the problem of this technique is the energy consumption and
the big form factor of the devices.

Römer in [65] proves that angle data can also be obtained using optical communication
which partially alleviates the problem of energy consumption and big form factor, but with
the strong disadvantage of LOS requirement.

The second technique uses the phase di�erences of a wave front from a signal transmitted.
To compute the AoA, such systems require mounting an antenna array composed of N
antenna elements. The adjacent antenna elements are separated by a uniform distance S.
The distance between a transmitter agent and the ith antenna element can be approximated
by

di ≈ d1 − iS cos θ (2.1)

where di is the distance between the transmitter and the i-th antenna element, and θ is the
relation on the transmitter with respect to the antenna array (see Figure 2.3). The phase
di�erence in every antenna can be determinated by 2π S cos θ

λ , which allows us to obtain the
direction of the beam from the transmitter through the measurement of the phase di�erence.

Although this technique works well even when confronted with a high Signal-to-Noise Radio
communication media, the presence of multipath and/or strong co-channel interference have
a very negative impact on the approach [63].

A third classi�cation that could be consider a combination of the two techniques explained
above is found in [23]. This subclassi�cation is the so called subspace based algorithms.
This technique uses a vector space formulation, which takes advantage of the underlying
parametric data model for the sensor array problem. The technique can be explained as
follows: �rst, all the signal measurements are considered as vectors which form M arrays
elements. These arrays are visualized as vectors in M dimensional space. Using an eigen-
decomposition of the correlation matrix, the vector space is separated into signal and noise
subspaces. The estimations of the emitter direction are �nally obtained looking for zeros in
the magnitude squared of the projection of the direction vector onto the noise subspace [73,
7, 34].

Other approaches such as [66] and [67] based the angle estimations on rotational invariance
techniques using two displaced subarrays of matched sensor doublets to later exploit an
underlying rotational invariance among signal subspaces. Examples of experimental testbeds
using subspace based algorithm can be found in [58]. We refer the readers to [72] where a
comprenhensive and detail discussion about angle estimation techniques are also available.
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Figure 2.3: Scheme of an Antenna Array

To give a general perspective of the di�erent distance and angles estimation techniques and
the di�erent localization approaches explained in the last sections, we resume them in a
graphical scheme of Figure 2.2.

2.5 Signal based Technologies

The following section gives an overview of signal based technologies used in WSNs. Some
advantages and disadvantages of the most typical signal based technologies, their usage in
di�erent environments, and some examples of applications will be touched upon in this
section, but a more detailed study will be presented in chapter 3.

Signal based technologies could be divided into three di�erent categories: Technologies that
use mechanical waves signals, systems that use di�erent electromagnetic radiations and,
�nally hybrid signal based technologies.

The most well-known example of mechanical waves is sound. Another option to estimate
distances and location in WSNs is using ultrasound signals. These mechanical waves have
frecuencies greater than 20 Kilohertz, which is the upper limit of human hearing. Some
applications like [9, 60, 59] and [76] report accuracies in the order of centimeters, but at the
cost of working outdoors in semi-controlled environment with a high degree of time stamp
calibration and direct LOS requirement.

The most popular signal based technologies used by the majority of location-sensing systems
is electromagnetic radiations. Depending on the frequency used, they be categorized as
optical and radio frequency signals.

Optical signals-based systems such as [65] use a laser emitting visible coherent light 650nm.
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These kind of systems are inexpensive and have nodes with a compact form factor. The
typical range of such systems is up to 5 meters. The main disadvantage, however, is that
the system does not work in direct sunlight and participating nodes must be in the LOS.

Another optical schema is proposed in The Active Badge System [79]. This system uses a
blink of an Infrared signal (IR) to detect the presence of an object. On one hand, the system
is attractive due to inexpensive deployment (being cheaper than the systems based on laser
emitters [65]), the compact form factor of the tags and the low energy consumption. On the
other hand the system is restricted to the LOS conditions with low responsiveness.

Systems based on radio frequency signals like [83] works with electromagnetic waves centered
on 2.4 GHz and use several pulses to con�rm the presence of an object. The range of this
system is about 5 to 6 meters, but it has a large form factor, an expensive infrastructure
focused on a given application.

Systems such as [3] and [13] use the so called Radio Frequency IDenti�cation (RFID). . The
RFID is an automatic identi�cation method that uses devices with miniaturized oscillator
and encoder so as to generate a programmable radio modulated pulse signal. These devices
called RFID tags typically transmitt radio frecuencie pulses between 840 and 960 MHz. In
chapter 3 we will describe better this kind of systems that use RFID to store and remotely
retrieve environment data.

Wi-Fi is a brand originally licensed by Wi-Fi Alliance to describe the underlying technology
of Wireless Local Area Networks (WLAN) based on the IEEE 802.11 speci�cations. Systems
such as [82, 31] and [40] use this technology to implement localization.

Bluetooth is an industrial speci�cation for Wireless Personal Area Networks (WPAN) based
on the IEEE802.15.1 standard. Systems like [56] and [64] use this technology to locate
devices.

Ultra Wide Band (UWB) is a technology for transmitting information spread over a large
bandwidth for WPAN. [77] and [39] are systems that use this technology to discover the
position of the nodes.

Spread Spectrum for ANSI 371.1 is a technique that is used in [83] for localization. Oth-
ers technologies based on Radio Frequency signals (RF) are Zigbee (IEEE802.15.4), DC-
Electromagnetic Pulses applied in [47], Digital Television signals used in systems such as [61],
Commercial Radio FM Stations signals proposed by [35] and [87], wide area cellular [36]
and satellite based [32].

Table 2.1 describes some of the drawbacks and advantages of di�erent localization signal
based technologies. A detailed discussion of all this signal based technologies and some
systems that use them to locate devices will be presented in chapter 3.

2.6 Conclusion

The localization parameters accuracy, the scalability, the cost, and degree of autonomy of a
given locate-sensing system can be used to determine which platform is advisable to install
for a given application. The di�erent localization techniques explained above show varying
levels of complexity, cost and position estimation errors. However, we can realize that
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Table 2.1: Taxonomy of Localization Technologies.

Signal Based Technology Advantages Drawbacks

Mechanical Waves  Ultrasound 

Accuracy in the order of cm 
Low Clock Rates 

System Inexpensive and 
Simple 

Necessity of Calibration 
and Synchronization 

Temperature, humidity and 
pressure dependence 

Typical Range is between    
3–15 m 

Electromagnetic 
Radiation 

Optical 

Visible Light 
Cheap System 

Small Form Factor 
Low Energy Consumption 

Line of Sight Requirement 
Sensible to Fluorescent and 

Sunlight 
Typical Range of 5 m

Infrared 
Inexpensive 

Small Form Factor 
Low Energy Consumption 

Line of Sight Requirement 
Low Responsiveness 

Sensible to Fluorescent and 
Sunlight 

Typical range of 5 m

Radio 
Frequency 

RFID  Cheap Tags 
Long Battery Life 
3–4 m Accuracy 

Very Low Power 
Consumption  

Centralized System 
Typical Range 1–10 m

Wi‐Fi  Potential Reuse of Deployed 
Network 

No Line of Sight 
requirement

High Power Consumption 
Typical Range Wi-Fi.  

50–180 m 
Sensible at Interference

Bluetooth 
Low Power Consumption 

Low Cost Hardware 

Typical Range Bluetooth 
10–120 m 

Interference with Wi-Fi. 
signals 

UWB  Low Power Consumption 
Less Affected by Multipath 

Accuracy < 1 m

UWB is limited at 
Bluetooth range 

Expensive

Spread Spectrum  Low Power Consumption 
Cheap Transceivers 

Spread Spectrum for ANSI 
371.1 Typical Range 

10–300 m

Zigbee  Low Power Consumption 
No Line of Sight 

Requirement 

Typical Range Zigbee  
10–100 m 

No Proper Propagation 
Model Exist

FM Radio  Commercial FM Radio 
Range is City 

Very Cheap receptors 
Low Form Factor

low precision 
No licence-free bands 

Digital Television 
Radio Signal 

Radio signal Range is City 
Expensive 

No license-free band 

Cellular System  Typical Range is 
100–150 m

Low accuracy 
Expensive Infrastructure

GPS 
Range of Satellite Based 

System is 
World Wide 

It does not Work Indoors 
and in Urban Canyons 

Expensive Infrastructure 
Affected by Multipath and 

Ionosphere Propagation 
Delay 

DC-Electromagnetic 
Pulses 

High Accuracy in the order 
of mm 

High Responsiveness

Typical Range of up to 5 m 
Sensible to metallic objects 

Expensive
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there is a relationship between the system cost, the localization techniques and the node's
distance and/or angles alternatives. For example, the RSSI based approaches are regularly
simpler and do not require any additional hardware compared with complexed techniques
such as Angulation techniques or multilateration using ToA or TDoA. The simpler the base
technology and the algorithm used to locate the nodes is, the lower power consumption,
communication overhead and system cost but with the inconvenient of lower accuracy.

Current research is strongly in�uenced using multilateration and time based techniques,
which improve node position accuracies, but only in a localized area (as we will see in Chap-
ter 5). Furthermore, the implementation conditions such as calibration and sinchronization
of the nodes, LOS requirement, time delays of the transmitted acoustic signal, and the phys-
ical misalignment, as well as diferences between the time stamp and the actual transmission
time [57] are strong disadvantages of these methods.

Researchers are still busy inventing new localization algorithms that work together with
di�erent signal based technologies in ad-hoc and global manners. These new localization
algorithms have to be robust against the measurement errors produced by the environment
and the intrinsic signal based technologies. At the same time, the new algorithm designs have
to take into consideration the limited capabilities of the sensor nodes producing competitive
position accuracies and saving scarce resources.

In chapter 3, di�erent proposed algorithms and some prototypes developed in the last years
will be described. A comparison of several practical and commercial applications will be
presented using the localization parameters explained in this chapter.



CHAPTER 3

Localization Algorithms and Related Work

As mentioned in the last chapter, sensor networks are typically quite resource-starved. The
sensor nodes have a rather weak processor, making heavy computation unfeasible. Therefore,
the localization algorithms which run on the nodes of the system are a crucial parameter for
this kind of networks. In this chapter the classi�cation of di�erent positioning algorithms,
practical applications of trade platforms and prototypes in the localization area are shown.
Finally, approaches which relate node density in a network to node distances and node
position estimations are discussed.

There are two tendencies in the categorization of localization algorithms. The �rst refers to
the computational organization and classi�es the localization algorithms into centralized or
distributed algorithms.

Centralized algorithms are designed to run on a central machine with a large amount of
computational power. Here, the sensor nodes obtain environmental data and pass it back
to a base station for analysis. The central computer processes the data and sends the
estimated position back into the network. Centralized algorithms evade the problem of a
node's computational power by accepting the communication cost of moving data back to
the base station.

The second tendency as described in [44] and [71] is to divide localization algorithms into
range-based and range-free algorithms.

Localization systems for WSNs that use connectivity-based algorithms among nodes for
calculating new positions are known as range-free localization algorithms. Those systems
that use methods which deal with distance measurements are called range-based localization
algorithms.

Taking a closer look at di�erent localization algorithms, one notices that many of them are
sensitive to the network parameters such as node density, edge Network area, environment
obstacles and terrain irregularities.
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3.1 Centralized Algorithms

Central localization algorithms permit the employment of much more complex mathematics
than distributed algorithms allow. The type of process performed at the base station helps
to distinguish and to classify them.

The most representative algorithms in our analysis are: Semide�nite Program and multi-
dimensional scaling.

3.1.1 Semide�nite Program

In [18], Doherty et al. use a Linear Program (LP) and a Semide�nite Program (SDP)
to solve the positioning problem. In this algorithm, they represent geometric constraints
between nodes as Linear Matrix Inequalities (LMI). Once all constraints in the network are
expressed in this form, the LMIs can be combined to form a single semide�nite program.
This semide�nite program produces a bounding region for each node, which is simpli�ed
into a bounding box in [75]. In Figure 3.1 the green node represents a system beacon and
the white circle with a question mark is the node whose position is constrained by some
sensing form from the beacon.

                       R

A Radial constraint Radio connectivity
B Triangular constraint Angle of arrival data
C Quadrant constraint A combination of radio range and angle of arrival
D Trapezoid constraint Variable radio connectivity and angle of arrival
E Hybrid constraint Derived from an intersection of two constraints

Figure 3.1: Possible constraint forms to work with SDP
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The simplicity of modeling theoretical measurements approaches as distance or angle esti-
mations makes methods based on SDP highly advantageous. Furthermore, it works in a
range-free modus since it uses simple connectivity. Unfortunately, not all constraints can
be expressed as LMIs. One cannot conveniently depict radio range data since transmission
rings cannot be expressed as convex constraints.

Solving a linear or semide�nite program must be done centrally. The relevant operation
is O(k2) for angle measurement, and O(k3) when radial (e.g. hop count) data is included,
where k is the number of convex constraints needed to describe the network. The accuracy
of this method depends on the number of nodes and the number of neighbors. Furthermore,
the algorithm's run-time is a severe weakness because it is highly incremented for large and
dense networks which might be harder to solve. The authors of [18] have shown that node
locations can be estimated between 0.64R and 0.72R (where R is the radio transmission
range) at a density of 5.6 neighbors per node.

3.1.2 Multidimensional Scaling

Shang et al. in [75] propose a centralized algorithm called MDS-MAP that uses only
connectivity to estimate the node's positions in a network with or without landmarks. This
method can be considered range-free, since the algorithm uses a mathematical technique
called Multidimensional Scaling (MDS).

MDS can be described as follows: Suppose there are n points in a given volume where
their positions are unknown, but it is possible to know the distance between each pair of
points. From here, multidimensional scaling uses the Law of Cosines and Linear Algebra to
reconstruct the relative positions of the points based on the pairwise distances.

MDS-MAP is almost a direct application of the "classical metric MDS." It is named clas-
sical because it uses only one matrix of distance information or "dissimilarity" and it is
metric because the dissimilarity information is quantitative (e.g. distance measurements),
as opposed to ordinal. The algorithm has three phases, which are as follows:

1. Collect the shortest paths between all pairs of nodes in the network, or zero if range
was not gathered and produce a complete matrix of internode distances D.

2. Apply the classical metric MDS on D to �nd estimated node positions, retaining the
two largest eigenvalues and eigenvectors in order to construct a two dimensional map.

3. Transform the solution into global coordinates using some number of �xed anchor
nodes.

The advantage of MDS-MAP is that it can be used either in range-free mode, since it ignores
anchor data until the last stage, or in range-based mode, obtaining distance measurements
to produce both absolute and relative position.

3.2 Distributed Algorithms

These algorithms extrapolate unknown node positions from beacon positions which know
their location in the network. Thus, the algorithms localize nodes in the jurisdiction of a
landmark's area. Relevant computation is done on the sensor nodes themselves.
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The most representative algorithms in our analysis are: Di�usion or Centroid algorithm,
AhLOS algorithms, APS, Bounding Box algorithm, N-hop multilateration, Amorphous Lo-
calization and APIT.

3.2.1 Di�usion or Centroid Approach

In [10], Nirupama Bulusu et. al. evaluate the e�ectiveness of a very simple connectivity-
metric method for location in outdoor environments that makes use of the inherent RF
communication capabilities of these devices.

3 3

2 2

1 1

est est
1 2 3 1 2 3

1

2

3

Figure 3.2: Concept of the centroid algorithm with three Anchors

Bulusu et. al. �xed numbers of reference points in the network with overlapping regions of
coverage. These reference points transmit periodic signals as beacons or landmarks. The
unknown nodes use the simple connectivity metric, which is more robust to environmental
incertitudes, to infer proximity to a given subset of these reference points. Nodes locate
themselves to the centroid of their proximate reference points by using Equation 3.1:

(Xest, Yest) =
(
Xi1 + ...+XiK

K
,
Yi1 + ...+ YiK

K

)
(3.1)

where (Xest, Yest) is the estimated location of the receiver and K is the total number of
anchor nodes. The assumptions that Nirupama Bulusu et al. consider in the project are:

1. Perfect spherical radio propagation.

2. Identical transmission range (power) for all radios.
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This scheme is easy to carry out on the nodes but the precision depends on the numbers
of anchors that exist in the system and the intrinsic environmental problems due to the
real radio propagation. This technique can be improved by making an analysis of the right
placement of the system anchors. Figure 3.2 shows the scheme of the algorithm using three
landmarks. The main disadvantage of the proposed algorithm is that it is necessary to
have a large number of reference nodes to obtain a comprehensive coverage for large-scale
networks.

3.2.2 The Bounding Box

The bounding box algorithm [65] proposed by Römer et.al. localizes nodes with low compu-
tational complexity. This algorithm creates boxes for each anchor by adding and subtracting
the estimated distance from the anchor position. For example, the bounding box of Anchor
1 shown in Figure 3.3 has the following mathematical expression:

[X1 − r1, Y1 − r1]× [X1 + r1, Y1 + r1] (3.2)

where the position of the anchor is denoted by (X1, Y1) and the estimated distance between
anchor 1 and the unknown node is r1. The intersection of each anchor bounding box is
determined by taking the maximum of all coordinate minimums and the minimum of all
maximums.

[max(Xi − ri),max(Yi − ri)]× [min(Xi + ri),min(Yi + ri)] (3.3)

3

1

2

Anchor 1

Anchor 2
Anchor 3

Figure 3.3: Concept of the Bounding Box algorithm
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For example, the shadowing area in Figure 3.3 denotes the intersection of three anchor
bounding boxes. The estimated position of the unknown node is set to be the center of this
intersection:

x =
[
max(Xi − ri) +

|min(Xi − ri)−max(Xi − ri)|
2

]
(3.4)

y =
[
max(Yi − ri) +

|min(Yi + ri)−max(Yi − ri)|
2

]
(3.5)

In the design of Calamary [80], a positioning system that uses TDOA, Whitehouse develops
a distributed version of this algorithm. However, he mentions the main drawback of the
algorithm is itï¿½s sensitivity to noisy range estimates. The accuracy of the bounding box
approach is improved when the nodesï¿½ positions are close to the anchor positions. The
most attractive characteristic of this method is that it can be implemented in sensor nodes
with very little computational power and low memory capacities.

3.2.3 The Ad-hoc Localization System

The Ad-hoc Localization system [69] provides multiple ways to implement multilateration:
atomic, iterative and collaborative. In atomic multilateration (see Figure 3.4 a), the reference
nodes' density is high enough for a node with unknown position to estimate its location with
basic trilateration. When the node has at least three distances to three reference points (on
the bidimensional case), then the node is able to locate itself.

Figure 3.4: Multilateration with the AhLOS algorithm

The iterative multilateration uses other nodes in the system which are not beacons, but have
already found their location within the system. Those nodes act as anchors to assist in the
positioning of the unknown nodes. The cost of this version, however, is reduced accuracy.
But even after applying these two methods there may be nodes in the system which are
unable to estimate their position (see Figure 3.4 b). In this case, the problem must be
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considered in a collaborative manner because the nodes build and solve a non-linear system
using an equation for each edge in the graph.

The numbers of the equation and of unknown nodes are not always good indicators (see
Figure 3.4 c). Even if four equations are available to solve four unknowns, node x is not
able to resolve the ambiguity. In this case, the node is delayed to compute its position
in a later iteration when more proximity information is available. The main contribution
of the AhLOS method is to identify problematic situations mentioned above. The main
disadvantage of the algorithm is the necessity of a high number of beacons to achieve a high
percentage to resolve node positions.

Figure 3.5: Obtainig the average hop by two Anchors with the APS algorithm

3.2.4 Ad-Hoc Positioning System

D. Niculescu and B. Nath in [51] propose a method called Distance Vector Hop (DV Hop).
This approach uses a mechanism that is similar to classical distance vector routing. This
algorithm computes the distances among anchor nodes by using both, the number of hops
between these nodes and the average hop distance. Each receiving node maintains the
minimum counter value per anchor of all beacons it receives and ignores those beacons with
higher hop-count values. Thus, every node in the network �nds the shortest path in hops to
the corresponding node reference or landmark. To obtain this distance, the beacon's position
is transmitted with hop-count values incremented at every intermediate hop. Through this
mechanism, all nodes in the network (including other anchors) get the shortest distance in
hops.

In order to convert hop count into physical distance, the system estimates the average
distance per hop without range-based techniques. Landmarks perform this task by obtaining
location and hop count information for all other anchors inside the network as shown in
Figure 3.5.
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The average single hop distance is then estimated by anchor i using the following equation:

Hopsizei =

∑√
(Xi −Xj)

2 + (Yi − Yj)2∑
hj

(3.6)

Where (Xi −Xj) and (Yi − Yj) are the positions of node i and node j respectively , and hj is
the number of hops between both nodes. Once calculated, anchors propagate the estimated
HopSize information to the nearby nodes. Once a node can calculate the distance estimate
to more than 3 beacons in the plane, it uses triangulation (or multilateration) to estimate
its location. APS is an algorithm designed for ad-hoc networks and it has the advantage
that uses solely the radio communication receivers included on the sensor nodes saving the
node's scarce power. Another bene�t is that has a low communication overhead and it is
one of the ad-hoc multihops algorithms with low computational e�ort.

The APS's drawbacks are that the algorithms does not work for slow and high node densities
in the network, the accuracies in the lowest hops produce coarse position estimations due to
the poor precision on the node-node distance estimations, lack of locate-sensing accuracy if
the network has not more a uniform distribution.

Due to the good properties of this schema, the comparison of our simulation results are con-
trasted with the e�ciency of APS algorithm. In chapter 5 we will compare the performance
of this algorithm using real sensor node with di�erent node densities and con�gurations.

3.2.5 Amorphous Localization

The Amorphous Localization algorithm [48], proposed independently from DV-Hop, uses
a similar algorithm to estimate position. First, like DV Hop, each node obtains the hop
distance to distributed anchors through beacon propagation. Once anchor estimates are
collected, the hop distance estimation is obtained through local averaging. When every node
in the network obtains the hop distance of the neighbor nodes, then the node computes an
average of all its neighbor values. Half of the radio range is then deducted from this average
to compensate for error caused by low resolution.

The Amorphous Localization algorithm takes a di�erent approach from the DV Hop algo-
rithm to estimate the average distance of a single hop. This work assumes that the density
of the network is known a priori, so that HopSize can be calculated o�ine. The expected
distance covered per communication hop, dhop, is the physical distance between a pair of
sensor nodes divided by the expected number of hops in the shortest communication path.
In this paper, they use the Kleinrock and Silvester Formula to obtain dhop, as shown in the
following equation:

dhop = r

(
1 + enLocal −

∫ 1

−1
e−

nLocal
π (arccos t−t

√
1−t2)dt

)
(3.7)

where nLocal is the number of neighbor nodes and r is the maximum range of their radios.
Finally, after obtaining the estimated distances to three anchors, triangulation is used to
estimate a node's location. Experimentally, R. Nagpal et. al. show in a recent paper [49] that
Equation 3.7 is quite accurate when nLocal grows above 5. However, when nLocal > 15, dhop
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approaches r, Equation 3.7 becomes less useful. They also assert that even better than hop
counting distance estimates can be computed by averaging distances with neighbours. This
bene�t does not begin to appear until the number of local nodes rises above 15. However,
it can reduce hop count error on 0.2r.

Di�erent from the APS, the Amorphous Localization can estimate better the node-node
distances improving the e�ciency of the algorithm but at the cost of some requirement such
as the requisite to know the density of the network previously and the necessity of a certain
number of neighboring nodes to get competitive position estimations. These requirements
limit the performance of the approach in some particular node densities and some network
distributions.

3.2.6 N-Hops Multilateration Primitive

In [70], A. Savvides et al. develop an attractive algorithm which enables the sensor nodes
to perform localization without the requirement of LOS. To produce this goal, the nodes
use the location information and distance measurements over multiple hops away from the
beacons. The authors consider a node uniquely positionable if it is in direct communication
with at least three nodes which have to being positioned in a non-collinear manner. First,
the nodes will get at least three landmark-to-node distance estimations using the cumulative
node-to-node travelling distances (similar to the APS algorithm) obtained during successive
network �ooding. Using these distances and the known anchor location, the position of an
unknown node is con�ned inside a bounding box centered at the respective anchor node.
Using the intersection of three landmark's bounding boxes, the unknow node position is
determined at the center of the bounding boxes. The �nal node position estimations are
obtained by solving a global non-linear optimization problem through an iterative least
squares process. The node's locations that were classi�ed as no uniquely positionables are
estimated with the help of its uniquely positionable neighbors.

This approach has similarities with the other counting hops methods, but in particular,
Savvides et. al. recommend placing some beacons around the edges of the sensor networks
�eld to improve the accuracy. The N-Hops Multilateration Primitive try to solve the lack of
reference nodes problem and the line of sight of the beacons through the mutual collaboration
of the nodes to estimate their locations. once again, the main disadvantage is that the
algorithm need harware specialized on the node to node distance estimations. Another
drawbacks of the technique is the requirement of some number of nodes in the network to
deliver good postion accuracies.

3.2.7 Approximate Point-In-Triangulation Algorithm

This algorithm requires the separation of the environment into triangular regions between
landmark nodes to perform location estimation (Figure 3.6).

In [27], Tian He et. al. mention that a node's presence inside or outside these triangular
regions allows a node to narrow down the area in which it can potentially reside.

One of the drawbacks of the technique is the assumption that every node in the network is
able to hear a large number of beacons. At the very least the algorithm does not assume
that nodes can range to these beacons.
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The APIT algorithm, every node decides whether it is inside or outside a given triangle
by comparing signal strength measurements with its neighbor nodes. When this algorithm
stage is �nished, the node locates itself in the center of gravity of the intersection region of
the triangles that contain it.

Position estimates using overlapping triangles
Figure 3.6: Position estimation using overlapping triangles

In Figure 3.6, every triangle corner represents an anchor node and the intersection of all the
triangles de�nes the position of the node trying to locate itself.

The APIT algorithm uses the geometric-based Point-In-Triangulation (PIT) test. For a
given triangle with A, B and C corner points, a given point M is outside the triangle ABC,
if there exists such a direction that a point adjacent to M is further from or closer to all
points A, B and C. On the other hand, if M's shifted position is nearer (further from) at
least one anchor A, B or C, then point M is inside the triangle.

Assuming that sensor nodes do not typically move through the network, Tian He et. al.
de�ne an Approximate PIT (APIT) test which is based on the relative high node density of
these network to emulate the node movement. If no neighbour of M is further from/closer
to all three landmarks A, B and C simultaneously, M assumes that it is inside triangle ABC.
Otherwise, M assumes it resides outsides this triangle.

 

Figure 3.7: Taxonomy of the Localization Algorithms
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Table 3.1: Highlights of location techniques

Localization Techniques 
Method  Distributed 

System 
Memory 

Requirement 
Communication 

Overhead 
Form 
Factor  Accuracy  Energy 

Consumption 
Computational 

Effort  Scalability  Price  Observations 

Proximity  ++  ##  O  ##  ‐  ##  ##  ++  ## 
Range‐Free 

Can be implemented 
with different signal 
based technologies 

Lateration  +  O  #  #  +  O  O  +  O 

Range‐based 
Combination of 
electromagnetic 

waves and acoustic 
signals

Prior Survey 
Location  ‐‐  **  ##  *  ++  *  **  ‐  ** 

Scalability depend on 
the number of 
central engines 

Angulation  O  *  #  **  +  **  *  ‐  * 
Accuracy depend on 
the signal based 

technology  

Distance and Angle Estimations
Technique  LOS 

Requirement  Repeatability  Synchronization 
requirement 

Form
Factor  Accuracy  Energy 

Consumption 
Computational 

Effort  Scalability  Price  Observations 

RSSI  ##  ‐‐  ##  ##  ‐  ##  ##  ++  ## 
Heavy signal 

oscillation inclusive 
without movement 

TOA  #  +  **  #  O  O  #  ‐  * 
High clock resolution 

requirement 
Relative Robust at 

obstruction 

TDOA  **  ++  *  *  +  *  O  ‐  * 
Necessity of two 
different receptors 

and senders 

AOA  *  +  O  *  ++  *  *  ‐‐  * 
Obstructions 

correlate poor Angle 
Estimations 

Interferometry **  +  **  **  ++  **  *  ‐‐  **  Do not work properly 
with obstructions 

 

This algorithm is classi�ed as a range-free algorithm because it can use RSSI range mea-
surements which have to be monotonic and calibrated to be comparable, but do not have
to be converted into node distances.

The drawbacks of the APIT algorithm are that it requires a relative high ratio of anchors to
nodes, big foot print anchor signal, and it is sensitive to errors in RSSI measurements. On
the other hand, the low complexity of the algorithm makes improvement possible on typical
limited sensor nodes and it requires less communication than other anchor based algorithms.

Di�erent algorithms used in localization are summarized in Figure 3.7. In order to better
describe the practical location applications on the next section, some concepts and the most
important characteristics of localization topcis, which have been seen in previuos sections,
are highlighted on Table 3.1. The symbol used to compare the di�erent techniques have the
next interpretations: The symbol �++� for �very good�, �+� for �good�, �o� for �satisfactory�,
��� for �su�cient�, �� �� for �not su�cient�, �∗∗� for �very high�, �∗� for �high�, �#� for �low�
and �##� for �very low�.

3.3 Practical Systems

Nowadays there are systems with large scale unattended computers such as automated
factories, which contain hundreds of unsupervised sensors which were deployed with very
careful planning and react to external events. In WSNs there are applications that work in
a similar way, requiring some planning e�ort to determine where the nodes will be working
in order for them to reach the highest grade of localization. On the other hand, there are
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also systems which try to develop localization in an ad hoc manner.

Every approach has its advantages and drawbacks, depending on the way it handles the
topic. Di�erent location systems which attack a variable point of view of the localization
problem will be seen brie�y.

3.3.1 Global Positioning System and LORAN System

Perhaps the most well-known location sensing system is the Global Positioning System
(GPS) (see [32]). The �rst experimental Block-I GPS satellite was launched 1978 and was
originally intended for military applications but in 1980 the government of the USA made
the system available for civilian use.

GPS is based on the NAVSTAR satellite constellation (24 satellites) placed into orbit by the
USA Department of Defense. GPS satellites circle the earth twice a day in a very precise
orbit and transmit signal information to earth. GPS receivers take this information and use
triangulation to calculate the user's location. Essentially, the GPS receiver compares the
signal transmission time by a satellite with the time it was received. The di�erence in time
tells the GPS receiver the distance to the satellite. With distance measurements from three
or more satellites, the receiver can determine the user's position and display it on the unit's
electronic map.

GPS signals were designed for tracking and locating in open outdoor areas. Therefore, the
technology is not reliable indoors and in urban areas. The principal problem of GPS is the
lost of the signal due to atmospherical conditions or the multipaths of the weak signal in
the cities. Assisted GPS (A-GPS) helps the GPS receiver by providing an alternate source
to the fragile navigation message and helping the receiver average for extended periods of
time. Another alternative using GPS is the called Di�erential GPS (DGPS). Here, a �xed
ground base station broadcasts the di�erence between its real position and the estimated
position based on the satellite signals, periodically. All the GPS receivers that track the
same satellites can use this information as correction when estimating their own position.
However, even A-GPS and DGPS are unreliable indoors due to the fundamental physics of
GPS satellite signals.

The Long Range Navigation System (LORAN) [24] is a terrestrial navigation system that
uses low frequency radio transmitters operating in the low frequency 90 to 110 kHz band.
The transmitters use the time interval between radio signals received from three or more
stations to determine the position. Actually LORAN operates in a similar way to GPS but
uses ground based beacons instead of satellites.

3.3.2 Aeroscout System

AeroScout applications [3] use the standard IEEE 802.11 protocol (Local Wireless Networks
or Wi-Fi.) to locate Standard Wi-Fi devices and/or Wi-Fi based Active RFID tags which
have a special receptor in the 125 KHz band. These devices send a signal at a regular
interval which is received by standard wireless access points or by special location receivers
called Aeroscout Location receivers. These receivers work with 2.4 GHz or 125 KHz signals.

The system uses signal strength and/or time of arrival information which is sent to a location
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processing server. The engine compares the location data with data previously obtained from
the work environment and processes it to show the location on a virtual map. The average
accuracy is up to 1 meter rms. Figure 3.8 shows a node and a landmark of the aeroscout
system.

 

(a)
 

(b)

Figure 3.8: Node and Landmark of the aeroscout system (a) Wi-Fi. Based Active RFID (b) Location
Receiver. Both pictures have been derived from [1]

3.3.3 Ekahau System

The Ekahau System [40] tracks wireless laptops, PDAs, VoIP phones, Wi-Fi tags and other
802.11 enabled devices. These devices use Wi-Fi. signal as signal base technologie to obtain
the position of the unknown devices. The technique used to locate them is the prior site
survey. The Ekahau schema includes a special software called Ekahau Position Engine based
on signal strength calibration which supports standard 802.11a/b/g Wi-Fi. access points.

The Ekahau Client inside the tag or other Wi-Fi device only collects RSSI values from
surrounding access points and sends the data to the server. On the server, the data is
processed and compared with the measured RSSI data to determine an estimated location.

For system calibration, the site survey software is installed on a laptop or tablet PC with a
�oor plan map of the area. The systemï¿½s engineer walks through the facility carrying the
laptop and records the RSSI signal strength values in those areas where location information
is needed by clicking the map using the mouse or a pointer. Due to these characteristics, the
Ekahau project is classi�ed as a centralized system with a Prior Survey Location technique.
Once again, the disadvantage of the system is the requirement to do a previous survey of the
place where the devices are deployed. The System demand a considerable computational
e�ort, thus the centralized nature of the system design. On the other hand, an advantage is
that Ekahau can locate and tracking all devices uses the standard 802.11 protocol. Figure 3.9
shows the nodes used by the Ekahau system.
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Figure 3.9: Wi-Fi. Tag T201 of Ekahau System. Picture has been derived from [40]

3.3.4 Rosum System

This system provides indoor and outdoor localization. The structure integrates signals from
the existing commercial TV digital broadcast for indoor and urban areas location with the
performance of the signals from GPS satellites to support positioning outdoor.

The position calculation according to [61] may be implemented at the enabling device or
at the server. They use the signal structure for Digital Television (DTV) speci�ed by the
American Television Standard Committee (ATSC). However, it could be developed in NTSC
Analog TV Broadcast which in recent years has also included synchronization signals like
DVB in Europe and ISDB-T in Japan.

The �rst step to estimate location consists of extracting timing from the digital (or analog)
TV signal through a correlation process where the correlation peak for the �eld synchroniza-
tion segment is found. The correlation peak is translated into a timestamp or pseudorange,
which represents the arrival time of the �eld synch at the receiving antenna.

Unlike the case of the satellite-based positioning technique [32], the location of the trans-
mitter is unchanged and does not need to be continually updated. Therefore, the TV
transmitter location data may be stored at the Rosum TV Measurement Module (RTMM)
inside a given mobile device or at the server.

In order to compute the location of the RTMM, the precise timing of the TV synchroniza-
tion code transmissions must be known. To develop this task, the system uses Monitor
Units. These Monitor Units are small devices that are deployed in a �xed location in the
region in which RTMMs (and their host location devices) will be deployed. The Monitor
Units use their antenna to monitor TV signals in the region, to analyze the stability and
timing of these signals, and to report this information back to the Location Server. Finally
the location server computes the position of the RTMM and sends it back to the device.
Figure 3.10 depicts the main components used by Rosum TV-GPS. An strong disadvantage
of the system is the usage of private license radio bands which makes expensive the local-
ization of devices. The system works either in a centralized mode or in a semi-distributed
mode. The scalability and accuracy of the system depend on the number of Monitor Units
deployed on the deployment area.
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Figure 3.10: Rosum TV-GPS components. Picture has been derived from [16].

3.3.5 Skyhook System

The Skyhook system [82] uses the ubiquitous cloud of radio signals of both public and
private Wi-Fi access points networks to estimate location. The server skyhook software is a
compilation of a nationwide database of known Wi-Fi access points in the main metropolitan
areas of the USA. The service includes location for laptops, tablet portable computers,
Personal Digital Assistants (PDA) and smart-phones that have Wi-Fi capability.

To produce location, the WPS location client scans the airwaves for 802.11 signals and
obtains some RSSI measurements from Wi-Fi. sites in range. The client �nds its position
by comparing observed access points against the Skyhook Software database which contains
the graphically known locations.

There are two modalities for the Skyhook database; it is either located in a central server
or runs on the device. In the case of the device model the database and client are installed
on an individual device, the position is calculated on the device and then communicated to
other applications such as mapping of the area.

With the network model, the location database resides on the skyhook wireless server which
computes the position device and then sends the location back to the client over the network
connection or another server based application.

This System also belongs to the Prior Survey Location group. This Wi-Fi. Positioning
System (WPS) has the advantage that it requires no specialized hardware and works indoors
or outdoors. The high computational e�ort and the large of data memory on the device,
however, are two drawbacks to this system.
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3.3.6 BLIP System

The BLIP System [77] is based on Bluetooth signals which operate in a globally available
2.4 GHz radio frequency band. Bluetooth ensures reliable communication within a range of
100 meters if the device is class 1 or 30 meters if it belongs to class 2.

The system is managed by special server software called BlipManager. The BlipManager
creates BlipZones, which groups a number of BlipNodes. The BlipNode is a Bluetooth Access
Point which controls and monitors end terminals such as mobiles phones and PDAs. The
mobile phones and PDAs that are connected to a Blipnode acquire all services that o�ers
a Local Area Network (LAN). The BlipNodes connect to the BlipServer through Internet,
Ethernet or Bluetooth as can be seen in Figure 3.11.

The BlipServer is formed by modules, one of these modules being the Positioning Module,
which is con�gured to use graphical user interface. To estimate the position of a Bluetooth
device, the server uses the BlipNodes to con�rm the presence in the area and register the
RSSI, making triangulation possible when more than two BlipNodes detect the wireless
device.

Accuracy depends on the distance between BlipNodes, for example, 10 meters between
BlipNodes gives approx. 2 meters accuracy. To increase the position accuracy, the grid
of BlipNodes is extended with other devices called BlipNode-micros which have wireless
connection with the BlipNodes. The main drawback of the system is the necessity to deploy
a lot infrastructure on the network area to have an acceptable aware-location or to track a
special endterminal.

 

Figure 3.11: Blip system network diagram. Picture has been derived from [78].

3.3.7 Place Lab System

Place Lab [31] is a software which allows clients like notebooks, PDAs, and cell phones
to locate themselves by listening for radio beacons such as 802.11 acces points, GSM cell
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phones towers, and �xed Bluetooth devices that already exist in large numbers around us
in the environment. Place Lab is released under an open source license. Binary and source
releases for many platforms, as well as sample radio traces can be found in [55].

This system is similar to the Skyhook system since the clients estimate the position by by
identifying the IDs of the beacons and comparing the associated beacon position in a locally
cached map.

The three fundamental parts of the Place Lab are: radio beacons in the environment,
databases that hold the information of the beacons' position, and the Place Lab client
which uses this data to estimate its own position.

An advantage of this locate-sensing system is that it works by listening to the transmission
of wireless network sources or radio source beacons (802.11 access points, �xes Bluetooth
devices and GSM cell towers). This way, the clients do not need to transmit data to know
their own locations, nor listen to other user's data transmission. In [37], Anthony Lamarca
et al. obtain a 20-30 meter median accuracy with nearly 100% of coverage.

3.3.8 Right Spot System

John Krumm et al. in [35] present an algorithm to obtain location based on the RSSI
measurements of the FM radio stations. The hardware platform for this project was a
small low-power device named Smart Personal Object Technology (SPOT). This device was
designed to listen for digitally encoded data transmitted on frequency sidebands leased from
the commercial FM radio stations.

The standard SPOT device has to measure the signal strength of arbitrary frequencies in
the FM band to locate itself. This is one of the attractions of this approach, unlike GPS,
because the FM radio signals have wide coverage (indoors and outdoors). The SPOT device
obtains a vector of measured signal strength from the di�erent scanned list of FM radio
frequencies. Through a correlation of these vectors and a Hash code, the SPOT device
estimates its own position.

This project was augmented by Youssef et al. in [87]. Instead of manually training locations
as a function of signal strength as before, Youssef et al. used simulated signal strength maps
to eliminate the need of physical location visits and to measure signal strengths for training.
Using smoothed histograms of rank hash codes, they can infer a device's location down to
an accuracy of about 80-50 metres.

3.3.9 Ubisense System

This system develops localization based on UltraWideBand signals (UWB). The network
works by creating sensor cells, each of which is typically composed of four to seven �xed
sensors to deploy location.

The �xed sensors, called Ubisensors, are devices which work like anchors or landmarks. The
Ubisensors are �xed in a known position around the area that has to be covered and are
networked using standard Ethernet. Each Ubisensor has an RF transceiver and an array of
four UWB transceivers.
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The objects whose position has to be discovered are small tags called ubitags. The ubitags
have an RF transceiver and an UWB transmitter. When an ubitag is active, it sends out a
conventional RF message containing its identity. At the same time, the ubitag transmits a
UWB pulse sequence that is used by the Ubisensors to calculate the TDOA and the AOA
to estimate the tag's location.

To determine the ubitagï¿½s location in three dimensions, it is necessary to have at least
two Ubisensor readings. As mentioned before, the system works in cells which contain one
Ubisensor that functions as a master as can be seen in Figure 3.12. This master Ubisensor
coordinates the transmission of every ubitag into the cell dividing the conventional RF
channel into time slots and then allocating slots to multiple calls.

If the application is focused on tracking a special Ubitag, then it can be scheduled more
frequently than the others, conserving the UWB channel and the Ubitag power supply.

In [77], Steggles et al. mention that outdoors, the system can register an accuracy of 15 cm
across 95% of the readings without obstacles. Although this system has a good accuracy in
the location, the main disadvantage is the need of a lot of expensive infrastructure per area
unit.

 

Figure 3.12: Ubisense hardware components. Picture has been derived from [15].

3.3.10 BlueLon System

This system, which shares some similar characteristics with the Blip system, works with
devices which are able to use the Bluetooth protocol.

This structure [64] is administered by a server and special software called BlueLon iTooth
Acces Control. This software manages the Bluetooth access points that cover the indoor
or outdoor area. The server could have a wired internet, or Bluetooth connection with the
Bluetooth access points called BlueAccess Bal-100. The Bluetooth access point is capable of



3.3 Practical Systems 35

leading with 200 bluetooth devices. To obtain the position of every client, it is necessary to
register its ID in the system, and then the server computes the position through the RSSI
readings of the di�erent access points by triangulation or multilateration.

For every Bluetooth tag, the battery power lasts approximately 14 days. Once again, the
system is centralized and the location engine requires a considerable amount of infrastructure
to have an acceptable accuracy. The cost of the hardware is not an active reason to put the
system into practice.

3.3.11 WhereNet System

This system locates devices which work based on the standard ANSI 371.1. This protocol is
de�ned at 2.4 GHz and uses spread spectrum technology. This technology speci�es nominal
location accuracy between two and three meters. The system requires a distance between
the tag and the reader of 300 meters outdoors and a distance of 100 meters for indoors.

The WhereNet system [83] works in a centralized form. A server controls and monitors the
visibility of the tags in the covered area. The whereTags transmit spread spectrum signals
which are recognized by the whereNet beacons. These beacons calculate the position of the
WhereTag using di�erential time of arrival and multilateration.

The battery life of every WhereTag is about 7 years; the time depends also on the frequency
of the communication between the beacons and the whereTags. The main drawback of the
system is the need to deploy large amount of reference on the usage area, the tags have
specialized hardware that increment the tag unit price.

3.3.12 The Radar System

The RADAR system [6] uses the RF signal strength measurements in the 2.4 GHz license-free
ISM (Industrial, Scienti�c and Medical) band.

To estimate the location of the user, the RADAR system takes the RSSI readings from three
�xed base stations in two phases. In the �rst phase, the schema constructs a set of received
signal strength maps. To reach this goal it is necessary to collect the RSSI values of the
base stations from di�erent points of the area where the system will be used. This process
is called the data collection phase or o�-line phase.

The second phase is an on-line phase during which the location can be obtained by observing
the received signal strength from the user and matching that with the readings from the
o�-line phase. Through this approach, one can obtain a median accuracy between 2 and
3 meters.

The weaknesses of the system is that the object to be tracked must support also wireless
LAN, which makes it impractical for the small and power constraint wireless node devices,
the requirement of a a prior survey over the usage area and the relative high amount of data
access points on the deployed area to send the signals collected by the user devices to the
central engine.
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3.3.13 The Cricket System

The Cricket location system [60] was designed to locate devices indoors as well as outdoors.
It provides location using ultrasound and RF signals. The Cricket nodes consist of small
hardware platforms which have Radio Frequency (RF) transceivers on 433 MHz unlicensed
band, a microcontroller, and other associated hardware to generate and receive ultrasonic
signals.

Priyantha et al. in [60] mention that the Cricket nodes could be classi�ed into two categories:
beacons and listeners. A beacon, as mentioned above, is hardware that acts as a location-
aware �xed reference point. These beacons are typically attached to the ceiling and the
walls of the work area. Unlike the beacons, the listeners are mobile objects that seek to
determine their location.

The beacons periodically transmit a message containing speci�c information such as the ID
of the beacon, its coordinates, the physical space associated with the beacon, etc.

The listeners listen to beacon transmission (the RF and Ultrasound signal) and compute the
distance to nearby beacons by Time Di�erence of Arrival (TDOA). Each listener uses the
beacon distances to estimate its position using multilateration. If the listener has multiple
ultrasonic sensors, it is able to estimate its orientation.

The accuracy obtained with this system was in a region of 30x30 centimeters, a distance of
5 centimeters in free space is even reported in [59].

The biggest weakness of the system is the use of ultrasound signals because they are very
sensitive to obstacles. It also has a very limited scope (approx. 5 meters) and high precision
distances can only be achieved through a direct LOS as well as �ne alignment.

3.3.14 The Bat System

In the Bat system, Harter et al. in [26] develop a matrix of receiver elements which are
placed on the ceiling of the building similar to the Cricket system, but the receivers are
connected together by a serial wire cable network to form the receiver matrix.

The receivers have an ultrasonic receptor and a transceiver. The transmitters are small
units called bats. These bats are attached to equipment or are carried by personnel.

Bats consist of a radio transceiver, controlling logic, and an ultrasonic transducer. Each bat
has a unique ID associated with it. The network is controlled by a central computer which
periodically sends a radio message with a single ID, causing the corresponding bat to emit
a short uncoded pulse of ultrasound. The network receivers detect this ultrasound pulse
and send out the information to the central computer which does all the data analysis for
tracking the transmitters.

The central computer uses the time of arrival of the ultrasound signal, which it records
from the di�erent receivers which listen to the signal. Then, this time is converted into
the corresponding bat-receiver distances and the position of the bat can then be deduced
through multilateration. The system use small devices which reduce the infrastucture cost,
but the cable planning and the centralization of data render the system in�exible and not
appropriate for di�erent scenarios.
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3.3.15 The Pinpoint 3D-ID System

This system [13] uses Radio Frequency Identi�cation (RFID). The readers in this system
extract the tag ID and determine the tag's distance from the antenna by measuring the time
of �ight round-trip. Since the reader generates the signal, there is no need to calibrate the
tag's clock.

The distance of each reader is determined independently. Consequently, there is no need to
synchronize the clocks on the various readers.

The system is organized into cells within a building. Each cell is handled by a cell controller,
which is attached to 16 antennas by means of coaxial cables.

To estimate location, the tag signal is received at a time that is the sum of the following:
transmission time by the cell controller and the transmission of data to the central engine.
The central machine leads with the known �xed delays in the system and computes the
distance tag multiplying the time of �ight through the air and the speed of light. Since the
signal travels to and from the tag, the distance to the tag is half of the air distance traveled.

On the one hand, a limitation of this system is that it requires its own indoor antenna
infrastructure. On the other hand, it o�ers a relative ad-hoc deployment of tags. The
approach acquires distance measurements between 1 and 3 meters of accuracy. The wiring
nature of the central machine, therefore, makes the system less attractive.

3.3.16 The Calamary Project

The Calamary project [80] works with ultrasound signals as well as the Bat and the Cricket
systems. In this project, the acoustic time of �ight is calculated by transmitting a radio
message of 433 MHz radio and ultrasonic pulse of 25 KHz simultaneously.

The nodes measure the time di�erence of arrival of the sent signals and �nd their own
position on the network when they collect three or more measures from the reference nodes.

The disadvantage of the system is that receivers and anchors have to be synchronized.
After the synchronized phase, the nodes in the network are able to estimate their location.
Whithouse et al. report accurate measurements within approximately 10 cm of error when
the acoustic transducers are pointed at each other.

A special contribution put forth in this paper is the usage of a re�ective cone over the
ultrasonic transducer (see Figure 3.13) which minimizes the requirement of having an strict
alignment between nodes to achieve more precise distance measurements. Althought the
nodes are cheap and ad-hoc devices, the scalability of the system is limited by the maximum
range of the ultrasonic signal (about 5 meters).

3.3.17 The Pushpin System

This system also belongs to the ultrasonic group as the Calamary project does. Broxton
et al. in [9] also use ultrasound signals for this project. But instead of using RF signals to
coordinate the time di�erence of arrive protocol, they use Infrared transceivers in every node
of the network. Most importantly, the paper proposes the estimation of the node's location
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(a) (b)

Figure 3.13: The Calamary nodes (a) Assembled re�ective cone on nodes (b) Calamary node and
the re�ective cone from [81]

using a special global external stimulus. This external stimulus is an external device which
generates an acoustic and IR pulse which produces the beacons of the system.

The reference nodes on the network are not special nodes; however, every node in the
network could be a landmark node. The process to elect a node to be a reference depends
on the three external stimuli proximity for bidimensional localization (or four in the case of
three-dimensional location-sensing). In other words, the external stimulus �nds the seeds
of the system to develop an ad-hoc localization system with relative coordinates. Once the
beacons are chosen through the network, they help the other nodes to �nd their location by
multilateration.

In contrast to the other applications, the Pushpin system works as a distributed network
with which localization is achieved in an ad-hoc manner with simple sensor nodes.

The fact that the external stimulus has to be activated in a remote central engine and
also that the system uses ultrasonic plus infrared light makes for some strong drawbacks.
These two signals technologies have the disadvantage of operating solely in direct LOS. The
smallest obstacle to the direct sighting between nodes would misplace the corresponding
nodes.

3.3.18 The SpotON System

J.Hightower et al. in [30] document the creation of the SpotON system. This system tracks
people indoors. It uses tagging technology for three dimensional location based on radio
signal strength analysis. The system uses 916.5 MHz for communication and works in a
centralized manner.

In order to locate the node, it is necessary to do an o�ine previous place survey taking
RSSI measurements. These measurements are stored in a remote central computer. The
Spot ON System computes the position of the tags by multilateration. Altough the use of
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the radio signal allows the location of tags without direct LOS, the previous analysis on the
workplace makes it a system not appropriated for wireless sensor networks.

The battery time life is approximately of 10 hours and the total hardware component cost
is about $30-$40.

3.3.19 Easy Living System

The Easy Living project at Microsoft Research [74] was developed for building intelligent en-
vironments. An intelligent environment is a place, where people live and work that contains
computing devices which work together with the common goal of providing information and
services to mobile users.

Here the system attempts to manage an emerging area with stereo vision technology. The
vision group at Microsoft Research uses the computer vision to locate objects. The local-
ization of objects could be very precise but at the cost of high computational e�ort, prior
survey of the working place, and a considerable amount of infrastructure installation. In
other words, the only way to achieve localization with this technique is through a centralized
network.

3.3.20 E911

Maybe the main motivator to implement localization was the 1996 Federal Communications
Commission (FCC) second-phase mandate for E911 services [14]. This mandate was the
product of a new industry of location-aware applications, formally named location-based
services (LBS) .

The E911 is not a speci�c location-sensing system but is important due to the fact that it
was the �rst try for localization. To meet the FCC requirements for positioning, it must
be accurate within 150 meters for 95 percent of calls with receiver-based handset solutions
such as GPS, or to within 300 meters with network-transmitter-based approaches.

3.3.21 Motion Wireless

This enterprise [47] o�ers position and tracking to support virtual reality and motion capture
for computer animation. This tracking system generates axial DC magnetic-�eld pulses from
a transmitted antenna in a �xed location.

The central engine monitors and controls the system sensors. This engine computes the posi-
tion and orientation of the receiving antennas by measuring the response in three orthogonal
axes to the transmitted �eld pulse. This pulse is the linear combination of the constant ef-
fect of the earth's magnetic �eld and the transmitted signal. The central computer has to
separate this e�ect to obtain the feasible measurement.

With this system, it is possible to achieve very high precision and accuracy in localization
(on the order of 1 mm spatial resolution) and also high responsiveness, but with a high price
tag.

The range of operation of the system is in an area of 3x4.5 m. Another strong drawback
is the extreme sensitivity to metallic objects. Other example that uses a similar technique
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in the virtual area is [8] the usage of a CDMA radio which enables the tracking of body
sensors.

In Table 3.2 we can compare each location-sensing system that we have discussed in this
section in a quantitative form with the parameters previously seen on the last sections.

3.4 Algorithms which work with Node Density

As we saw in the last sections, there are many commercial applications and a considerable
amount of algorithm proposals to sensing location. Most of the practical applications,
however, have the strong disadvantage of o�ering the location service at a very high cost.
Either the infrastructure and special devices on the nodes and tags are necessary or the
computer complexity is so hard that the system can not be �exible or ad-hoc, but strongly
centralized.

We set out in this thesis to design a distributed ad-hoc system for WSNs solely using the
radio communication, the RSSI measurements, and the knowledge of local network density.
In the development of this system, we took into account the scarce resources of single and
cheap nodes such as limitations of memory, energy, and processing capacity.

Most of the localization algorithms designed in recent years are based on multilateration
without directly confronting the poor ranging measurement of dynamic and noisy environ-
ments. This section presents the state of algorithms, including an analysis of the density
of nodes in wireless networks. We focus on the most signi�cant papers derived from the
analysis of the radio signal strength indicators, connectivity, and prototypes which do not
depend on global infrastructure.

A plethora of algorithms have been proposed to estimate distances between sensor nodes.
For example, Bulusu et al. [11] use a node density classi�cation to �nd the best location for
beacon placement in a network. Y. Ohta et al. [54], present a data collection technique in
dense networks. They relate local node densities to the number of nodes necessary to obtain
a given accuracy for distance estimation to a moving target.

The more interesting approaches are those which use node densities to approximate the
distance between nodes. In [84], Wong et al. analyze neighborhood node densities to
improve algorithms which rely on hop-counting to estimate positions. They classify node
densities into three categories: low, medium, and high densities. The motivation behind
this classi�cation is that the less dense a network is, the less optimal a path between two
nodes becomes. Varying densities are a characteristic problem in non-uniformly distributed
networks. The authors utilize these categories to produce range ratios which represent the
ratio of expected hop-distance associated with the transmission range for a particular local
density.

The follow-up paper [85] discusses the minimization of the cumulative error in distance-hop
estimations for long hop-count propagation paths. They use the local density per node
to weight every hop accordingly and compare the results with DV-Hop [52]. While the
approaches above rely on three discrete categories of densities as parameters to weigh hop
distances, DIN allows for a continuous mapping, thus resulting in a better resolution of
distance estimation.
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Table 3.2: Applications in Location-Aware Systems

Application 
name 

Classification parameters 

Work 
frequency 

Battery 
time life 

Range 
Location 
Algorithm 

System 
Accuracy 

and 
precision 

Cost Observations 
Indoor Outdoor

GPS Pocket 
size 

L band 
Frecuencies 
1575.42 MHz 
and 
1227.60 MHz 

2 
days 

No reliable Earth 
Multilateration 
TOA 

Decentralized
15 m 
(95 to 
99%) 

Expensive 
Infrastructure 
$100 
receivers 

Not Indoor and 
in urban areas. 
Vulnerable to 
weather 
conditions, 
multipath, line 
of sight. 

Aeroscout 
Wi.Fi. 
2.4 GHz and 
125 Khz 

4 
years 

60 m 200 m 
Multilateration 
TDOA RSSI 

Centralized 
5 to 
10 mts 
(100%) 

$55 each 
RFID. 
Software and 
reader 
$3000 

Previous map 
RSSI planning. 
Use Location 
receiver and 
Wi.Fi 

Ekahau 
Wi.Fi. 
2.4 GHz 

5 
years 

40 to 60 m 
100 to 
150 m 

Multilateration 
RSSI Analysis 

Centralized 3 to 5 mts 

$100 Wi.Fi. 
Tags. 
Administration 
Cost 

Prior RSSI site 
survey 
Building and 
periphery 

Rosum 300–750 MHz 

Depend 
of the 
host 
device 

Building 
25 to 75 
Km 

Multilateration 
Pseudoranges 
analysis 

Centralized ----- 
Administration 
cost, relative 
cheap tags 

Previous 
signal survey 
outside and 
inside 

Skyhook 
Wi.Fi. 
2.4 GHz 

Depend 
of 
device 

Covered 
for the Wi. 
Fi. 
Network 

City 
Multilateration 
RSSI analysis 

Centralized 
Aprox. 
20 mts 
outdoor 

Administration 
cost 

No Hardware. 
Signals private 
and public 

BLIP 
Bluetooth 
2.4 GHz 

Depend 
of the 
host 
device 

100 m 120 m 
Presence and 
RSSI 

Centralized 
Approx 
2m (90%) 

Administration 
Cost 

Make a 
Personal Area 
Network, use 
presence/RSSI

Place Lab 

Wi.Fi. GSM 
cell phone 
towers Fixed 
Bluetooth 
devices 

Depend 
of the 
host 
device 

Wide 
Network 

City 
RSSI analysis 
in Database 

Decentralized
Approx. 
20-30 m 
(100%) 

Administration 
Cost 

The software 
compare the 
IDs of the 
beacons to 
estimate 
location 

RightSPOT 
FM radio 
signals 

Between 
2–4 
days 

----- City 

RSSI analysis 
compare to 
simulated 
RSSI maps 

Decentralized
Approx. 
8 Km 
(81%) 

$70–$75 per 
Unit 

No constitute a 
bilateral 
network 

RADAR 
2.4 GHz radio 
signals 

Several 
months 

200 m ----- 
RSSI analysis 
triangulation 

Centralized 
2–4 m 
(50%) 

$100 
Considerable 
Preplanning 
effort 

Cricket 

433 MHz 
40 KHz 
Ultrasonic 
wave 

5–6 
weeks 

5 m due 
Ultrasound

----- 
TDOA 
analysis 
Multilateration 

Decentralized
0.30 m 
(100%) 

$10 

Beacons per 
room. 
Receiver 
computation 

BAT 
40 KHz 
ultrasonic 
wave 

Several 
months 

5 m due 
Ultrasound

----- 
TOA 
Multilateration 

Centralized 
10 cm 
(95%) 

Administration 
Cost, cheap 
tags and 
bases 

Wait to loss 
reverberation 
in every tag 
location 

PinPoint 
3D-ID 

System 

RF 40 MHz 
802.11 

Several 
months 

Building ----- Lateration Centralized 1–3 m 

Several bases 
stations, 
Infrastructure, 
Installation 
expensive 

Interference 
802.11 
Installation 
planning 

Calamary 
Project 

RF 433 MHz 
25 KHz 
ultrasonicave 

Several 
months 

5 m due 
Ultrasound

----- 
Lateration 
TDOA 

Decentralized
10 cm 
(95%) 

Cheap Nodes 
low 
infrastructure 

Line of sight 
necessary, 
temperature 
dependence, 
relative indoor 
environment 

Pushpin 
System 

IR 
transceivers 
40 KHz 
Ultrasound 

N / D 1–2 m ----- Lateration Decentralized
5 cm 
( %)90  

Cheap Nodes 
external 
exciter is 
needed 

Relative 
position, 
external 
stimulus 
needed 

Ubisense 
System 

UWB 
928 MHz, 
433 MHz, 
870 MHz 

12 
months 

60 m 250 m 
Multilateration 
TDOA and 
AOA 

Centralized 
15 cm 
(95%) 
outdoors 

Relative 
cheaps tags, 
expensive 
Infrastructure 

Robust against 
multipath, 
scatter and 
interference 

BlueLon 
System 

Bluetooth 14 days 50 m 100 m 
Triangulation 
presence 

Centralized 2–3 m 
Administration 
Cost. $100 
pro tag 

Expensive 
Infrastructure 
limited 
scalability 
discoverable 
after 3 min 

WhereNet 
System 

ANSI 371.1 
2.4 GHz 

7 years 100 m 300 m 
Multilateration 
RSSI 

Centralized 2–3 m 
Administration 
Cost  $100 
Wi.Fi. Tags 

Robust against 
interference 
and multipath. 
No 
Interference 
with Wi.Fi. 

SpotON 
System 

RF 916.5 MHz 
10 
Hours 

Depend 
on the 
cluster 
size 

----- 
Multilateration 
RSSI Analysis 

Centralized 
2–3 m 
(95%) 

Administration 
Cost $30–$40 
Hardware 
Component 

Cluster 
Administration 

Easy living 
Computational 
Vision 

N / D 
Single 
Room 

N / D 
Triangulation 
Pixel Analysis 

Centralized Variable 

Cheap 
cameras 
Expensive 
infrastructure 

High 
Computational 
effort 

E911 
Cellular 
System 

Depend 
of the 
device 

Building, 
office 

City 
Triangulation 
Presence 

Centralized 
150–
300 m 
(95%) 

Expensive 
Infrastructure. 
Cost-Unit 
depend of the 
cellular phone 

Available only 
where cell 
coverage exist 
Presence 

Motion 
Start 

Magnetic 
Field Pulse 

N / D 3 m ----- Multilateration Centralized 
Milimeters 
(100%) 

Expensive 
Infrastructure 

High 
Computational 
effort, good 
accuracy but 
high cost 

N / D  Information not available 
-----  The system was not designed for this purpose 
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The publication having the most similarity with our work is described in [12]. Here,
Buschmann et al. present an algorithm called NIDES to infer distances between nodes.
The algorithm functions based on the observation that distant nodes have fewer neighbors
in common than close ones. They �rst use a mathematical model to derive the overlap of
two unit disc graphs representing the transmission range, and relate this intersection area
to a number of shared neighbors. Depending on this number and di�erent radio models, a
look up table to determine the distance between two nodes can be constructed.

The exploitation of the received signal strength for distance estimation has been examined
from several points of view. Lymberopoulos et. al in [42] carried out extensive measure-
ments in both obstacle-free and indoor environments of signal strength properties for a 2.4
GHz CC2420 radio to provide a detailed analysis of parameters in�uencing the RSSI value.
Conclusions on how to overcome intrinsic problems are left undiscussed and open for future
research. Besides proving that RSSI values are closely correlated to environmental param-
eters, Zhao et. al [88] explore the feasibility of concluding the distance of a transmitting
Berkeley Mica Mote operating at 433 MHz from the reception rate of packets. They aim to
set up a merit �gure based on RSSI to describe and quantify the corresponding reception
rate. Furthermore, research in the area of range-free positioning and localization methods
include studies on optimizing antennas to provide less �uctuating signals [86] or the de-
velopment of more sophisticated algorithms relying on ordering and ranking sequences of
measurements to prede�ned reference points to identify unique regions within the localiza-
tion space. Although the distance estimation method based on RSSI values that we utilized
for our comparison is rather simplistic, we based the chosen algorithm on intense calibra-
tions. With regard to the instability of RSSI values identi�ed, we tried to provide the fairest
comparison possible to DIN.

Table 3.3 displays a general comparison between range-free algorithms and useful parameters
to engage in a state-of-the-art trial. We are interested in truly distributed algorithms that
can be employed on large-scale ad-hoc sensor networks. These algorithmns have to be robust
which means they need to be tolerant of node failures and range errors, energy e�ciency with
little computation e�ort, and self-organazing (i.e., independent of external infrastructure).
We try to evaluate di�erent algorithms in a qualitative manner estimating the advantage
and drawbacks of algorithms and prototypes with the following pattern of symbols: The
symbol �++� for �very good�, �+� for �good�, �o� for �satisfactory�, ��� for �su�cient�, �� ��
for �not su�cient�, �∗∗� for �very high�, �∗� for �high�, �#� for �low�, �##� for �very low�
and �NA� for �not applicable�.

3.5 Conclusion

The area of localization in ad hoc wireless sensor networks constitutes an emerging research
�eld with a variety of open topics to be addressed. In this chapter, I described di�erent
algorithms and practical location-sensing systems. The parameter explained in section 2.1
help us to compare the weaknesses and advantages of the several algorithms and location-
sensing systems in a qualitative manner.

In reference to the di�erent localization systems, we identi�ed the relationship between the
signal based technologies used and the scalability of the whole network, as well as the energy
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Table 3.3: Comparison table for di�erent localization algorithms and prototypes in WSN

 
Parameters  Centroid  Bounding 

Box 

Ad‐hoc 
Localization 
System 

Ad‐hoc 
Positioning 
System 

Easy Living 
System 

N‐Hope 
Multilateration

Approximate 
Point‐in‐

Triangulation

Pushpin 
System  NIDES  Cricket 

System 

Scalability  ‐‐  +  +  ++  ‐  +  ‐  ‐‐  ++  ‐ 
Computational 

Effort  ##  ##  #  #  **  O  ##  O  #  # 

Self‐Organizing  O  O  +  ++  ‐‐  +  O  ‐  +  + 
Distance 
Estimation  NA  O  +  +  ++  +  NA  +  +  + 

Anchor fraction  **  *  O  O  NA  O  *  *  NA  O 
Energy Efficient  ++  +  O  +  ‐‐  ‐  +  O  O  ‐ 
Real Hardware 
Implementation +  NA  +  NA  ++  +  NA  ++  NA  ++ 

Cost 
Implementation ##  NA  O  NA  **  O  NA  *  NA  * 

Position 
Accuracy  ‐  O  +  +  ++  +  +  +  NA  + 

Refinement  NA  NA  +  NA  NA  +  NA  NA  NA  + 
 

 

 

 

 

 

 

 

consumption on the devices. For example, some signal based technologies like the acoustic
signals in combination with electromagnetic waves present a very good position accuracy,
but at the cost of a limited operation range which is later translated on an increment of the
number of beacons to cover a determined area.

The commercial locate-sensing systems based on Wi-Fi signals partially solve the usage of
specialized hardware to locate wireless devices, but with the inconvenience of a centralized
work mode or the employ of relativly large amount of memory making it inappropiate for
WSNs.

Focusing on the several localization algorithms of the last section, we found the centralized
algorithms have a good performance and can be implemented using di�erent distance or
angle measurement techniques. The variety of measurement techniques can improve the
position accuracy of the system due to better quality on the distance or angle estimations,
but the nature of the algorithms do not allow to program the algorithms on a single node.

Another disadvantage of the centralized algorithms is that the scalability of the system
is proportional to the number of central engines on the deployed area. In contrast, the
computational complexity for distributed algorithms generally increases with the number of
deployed sensor nodes in the network following a exponential relationship [19, 4, 5].

We can observe in table 3.3 the more complex the algorithm is, the less energy demanded of
the unknown device. Some of the distributed algorithms have a re�nement phase where the
position estimation can be improved, but at the cost of a extra communication overhead.
In general, the distribuited algorithms are more appropiated for WSNs than centralized
ones due to their low complexity, high scalability value, and better self-organization of the
system.

An interesting point discovered in our survey was that the majority of the scienti�c studies
do not provide information regarding bias and variance metrics to compare their results with
other algorithms using real hardware. Few studies such as [62] have been validated their
algorithms through implementation in an experimental testbed. We realize that real-scenario
performance results, such as pracitcal comparison of several algorithms, have only begun to
be reported. In particular, we have identi�ed two research topics as key future challenges
requiring further scienti�c attention: �rst is the development of a common framework for
analytical characterization and e�ective performance comparison of localization algorithms
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for wireless sensor networks; second is an experimental evaluation of localization schemes via
real-scenario testbed deployment. In the next chapters of this thesis we will try to compare
our innovative algorithms with di�erent distributed algorithms in simulation and using real
hardware.



CHAPTER 4

Distance by Intersection of Neighborhoods

WSNs [2] store and partially process the sensed data either within the same sensor nodes
which take the local samples or transmit the sensed data to a remote central computer where
the data will receive a bigger and more complex handling process.

In order to have a record of the place of study, it is very important to correlate the collected
measurements by the nodes to a speci�c location. Furthermore, the position of the nodes
opens up new ways to detect special events, track an object of interest, and improve the
network coordination by executing geographic routing algorithms. The location problem is
especially crucial in WSNs, because it is necessary to �nd methods that work in an ad-hoc
fashion and without additional specialized hardware to save scarce resources due to the fact
that indoor positioning is not possible with GPS.

The �rst step into this direction is the estimation of the distance between nodes. To obtain
this information, there is a variety of techniques that exploit physical phenomena such as
the time of arrival of sound signals [76], the time di�erence of arrival between radio and
ultrasonic signals [59, 9], the use of interferometry [43], RSSI [40], or the use of camera
pictures with a previous scene analysis [46].

This thesis focus on the problem of non GPS based, ad-hoc and low cost localization for
WSNs. It proposes a method to estimate distances based only on the analysis of local
node densities called Distance by Intersection of Neighborhoods (DIN)[41]. This algorithm
estimates distances between nodes which share a communication link using the number
of nodes that are positioned in the union and intersection area of their communication
ranges. We evaluated our algorithm for indoor usage using simulations and real hardware
experiments.

First at all, we implemented an RSSI-based distance estimation experiment to obtain an
idea of its performance with real hardware using the Scatterweb nodes described in the next
subsection. The main purpose is to know the quality of this range free technique for indoor
environments using WSNs.
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4.1 The DIN Algorithm

The DIN algorithmï¿½s main objective is to determine the distance between nodes in ad-hoc
manner, relying solely on the investigation of local node densities. In this section, it will be
described this algorithm as well as the precursor algorithm to DIN to get a better idea of
the functionality of the contribution.

4.1.1 Weighted Density Node Intersection

The �rst approach to the DIN algorithm was the Weighted Density Node Intersection
(WDNI) [21]. This algorithm determines distances between adjacent nodes using knowl-
edge about local node densities. The �rst step required �nding a mathematical expression
of the distance between two nodes in terms of the intersection area of their communication
ranges. This distance requires taking into consideration two parameters, the �rst one be-
ing an approximation of the distance obtained by evaluating the di�erent sized, uniformly
distributed networks. Second, one much use a function which relates this distance to the
number of nodes in the union of their communication ranges. The mathematical foundations
are described in Appendix B.

4.1.2 The DIN algorithm as the improved version of WDNI

In this section, the DIN algorithm as a proposal to increment the accuracy and �exibility of
the range-free techniques such as the RSSï¿½-based distance estimation is introduced. The
essence of the approach is to determine distances between nodes through the analysis of the
local density which the nodes �nd between each other in an ad-hoc manner.

Unlike to the WDNI algorithm, the DIN algorithm does not need the help of weighted
functions previously evaluated by means of di�erent network simulations. To obtain a
distance from the local density surveys, the DIN algorithm relates the distance between
two nodes in terms of the union and intersection areas of their communication radii. The
mathematical model is veri�ed using the help of the ns-2 simulator with di�erent nodes
distribution. The DNI algorithm as the improvedment of WDNI is also tested with real
sensor nodes in uniformly and near-uniformly distributed networks.

4.1.3 Relating Distance to Radio Intersection and Union Area

An important consideration in our mathematical foundations is that we based the DIN
algorithm on an idealized two dimensional radio model. Although we are aware that as-
sumption is not valid in reality, as we have shown in section 1.2, we use it because it was
simple and easy to reason out mathematically. We take into consideration the next three
main assumptions:

1. Unit disc graph radio transmission range

2. Identical transmission ranges for all the nodes in the network

3. Uniform distribution of nodes in the network
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Figure 4.1: Geometric analysis of the intersection and union area of overlapping transmission ranges

If we consider a bidimensional square with diagonal coordinates U(0, 0) and P (m,m), where
the nodes could be deployed as shown in Figure 4.1, we can �nd a point x which represents
a sensor node, into the area as x ∈ [U(0, 0), P (m,m)].

When we take into consideration two neighboring nodes which share a radio link communi-
cation (as it is marked in red in Figure 4.1), we can obtain the intersection area Ai of the
overlapping transmission ranges, which are despicted as circles by geometrical analysis. As
we can see in the same �gure, we de�ne the union area with (Au) and the complete deployed
area as At.

We denote the probability of �nding x in the union and intersection area in terms of the
named super�cial area as:

P (x ∈ Ai) =
Ai
At

(4.1)

P (x ∈ Au) =
Au
At

(4.2)

The conditional probability to �nd x in the intersection area under the condition that x is
already in the union area is denoted as:

P (x) = P (x ∈ Ai|x ∈ Au) =
Ai
At
Au
At

=
Ai
Au

(4.3)

To �nd the intersection area between the two circles, we rely �rst on the mathematical
development to estimate the fourth of Ai (shadowed area in Figure 4.1)

A(CDE) = A(CEA)−A(CDA) =
α

2
· r2 −

h · d2
2

= r2
[
α

2
− dn

8

√
4− d2

n

]
(4.4)
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where dn is the distance normalized by the radio transmission range (dn = d
r ). Finally, we

take four times the equation 4.4 to complete the formula

Ai = 4A(CDE) = r2
[
2 cos−1

(
dn
2

)
− dn

2

√
4− d2

n

]
(4.5)

Combining 4.1, 4.2 and 4.3 with 4.5, one obtains

P (x ∈ Ai) =
Ai
At

=
r2
[
2 cos−1

(
dn
2

)
− dn

2

√
4− d2

n

]
m2

(4.6)

P (x ∈ Au) =
Au
At

=
r2
[
2π − 2 cos−1

(
dn
2

)
+ dn

2

√
4− d2

n

]
m2

(4.7)

P (x ∈ Ai|x ∈ Au) =
Ai

2πr2 −Ai
=

4 cos−1(dn2 )− dn
√

4− d2
n

4π − 4 cos−1(dn2 ) + dn
√

4− d2
n

(4.8)

4.1.4 Relating Distance to the Local Node Density

Due to the restricted resources available on real sensor nodes, it is not suitable to design an
algorithm that requires in-situ complex mathematical computations. In turn, the idea here
is to make this problem a more light-weight one by demanding the sensor nodes to conclude
their distances from the number of their neighboring nodes. Under the assumption of uni-
formly distributed networks, the number of nodes in the intersection area Ai is proportional
to this area. We refer to this quantity of nodes as Ki.

Although using the equation 4.6 and 4.7, we can obtain the information of the distance
between adjacent nodes, we believe that this estimation can be further minimized taking
into account the local node densities of participating nodes.

The approximation can be smoothed out by weighing it with the number of nodes that are
in the union of the transmission ranges Au. We denote as Ku the number of nodes in the
area Au. When the number of nodes in the intersection area Ai and in the union area Au
are proportional, we complete the mathematical steps of DIN de�ning the function H(dn)
as following:

H(dn) =
Ai
Au

=
4 cos−1(dn2 )− dn

√
4− d2

n

4π − 4 cos−1(dn2 ) + dn
√

4− d2
n

≈ Ki

Ku
(4.9)

Since we are interested in �nding an expression for the distance between two neighbor
nodes, we have to solve equation 4.9 for dn. Using MatLab, we obtained a polynomial
approximation of degree three to determine the normalized distance between nodes.

dn ≈
{
−2.73H3

n + 5.66H2
n − 4.88Hn + 1.88 ki 6= ki

1
ki−1 ki = ki

(4.10)



4.2 Simulating the DIN Algorithm with ns-2 49

Figure 4.2: Comparison of error resulting from di�erent degrees of the approximation polynomials
obtained with ns-2.

Equation 4.10 is limited by H(dn) values between 1 and
4 cos−1( 1

2
)−
√

3

4π−4 cos−1( 1
2
)+
√

3
. Those values

assure a shared link communication between two adjacent nodes. With this mathematical
expression of 4.10, we �nish the analysis to �nd the distance between adjacent nodes. Now
every node in the network can estimate its distance between neighbouring nodes in ad-hoc
manner solely based on the investigation of the local node density.

4.1.5 Impact of the Degree of the Approximation on the Error

The approximation of the function H(dn) can be expressed with polynomials of di�erent
degrees. To measure the impact of the degree, thus the accuracy of the approximation
on the distance estimation, we rerun the simulations under the same conditions using those
di�erent polynomials. The estimated distance of every pair of adjacent nodes in the network
has been computed using the DIN algorithm. This calculated distance is then compared to
their real Euclidean distances. The average error values for the polynomial curves of degree
3, 5 and 7 are shown with the help of interquartile bars (see Figure 4.2).

We chose to use interquartile diagrams since they allow the judgment of the value dispersions
of the distance errors. Due to the fact that the data presented in Figure 4.2 did not yield
a critical di�erence in the average error computation, we can safely use the polynomial
approximation of degree three without signi�cant loss in accuracy.

4.2 Simulating the DIN Algorithm with ns-2

An important issue to examine with the help of ns-2 has been to determine the behavior
of DIN under variable network settings. The main parameters used in our simulations are
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condensed in Table 4.1. We obtained the results in the previous section with a �xed network
size while varying the number of nodes. In contrast, subsequent simulations feature a �xed
number of 100 nodes. The network size was increased until the density of nodes became
too sparse, thus the network disconnected. The same e�ect can be obtained when changing
the transmission range of the nodes accordingly. Every node in the network computes its
relative distances to those nodes that are in its transmission range by using DIN.

Table 4.1: Simulation parameters

Simulation parameters Range

Wireless Network 802.11, 11MBit/s
Radio Propagation Model Free Space
Transmission Range 250m
Routing Algorithm AODV

The corresponding absolute error of the estimation is simply the absolute value of the
di�erence of the actual distance between nodes and the calculated distance. In the following,
the normalized error is therefore calculated by dividing the absolute error by the radius of
the transmission range of a node.

In order to also be able to compare the error independent of variable radio communication
ranges and network sizes, we de�ne the Space-Range Ratio (SRR) depicted on the x-axis
of Figure 4.3 a and b. This is simply the radio communication scope of the idealized node
over the length of one of the sides of the deployment area. A value of 1 for SRR therefore
equals a transmission range covering the complete network.

While DIN has been developed under the assumption of uniformly distributed networks, we
want to measure the accuracy of distance estimations for near-uniform distributions in a
second step.
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Figure 4.3: Absolute normalized errors in distance estimation versus covered radio range in a uni-
formly distributed network (�gure (a)) and Absolute normalized errors in distance estimation versus
Space-Range Ratios in a horseshoe setup (�gure(b))
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4.2.1 Uniform Network Distribution

In Figure 4.3, the absolute normalized errors in distance estimations of ten simulation runs
are shown. Unlike [12], we take into account the error of all nodes including border nodes,
although these nodes contribute to the error with higher values since their calculation de-
pends on less available information. This way, the error of the complete network instead
of a central area is measured. Nodes that can not derive their distances to other ones, due
to the lack of neighboring nodes within their range, contribute with a value of normalized
error distance equal to 1, thus incrementing the error average in the interquartile statistics.

Figure 4.3 a shows that the DIN algorithm produces the best performance with an SRR
value of 0.1666, where the 25% of the estimations (�rst interquartile)have normalized error
values less than 0.0532R. Compared to our previous work, we discovered that the DIN algo-
rithm yields better performance than WDNI [21] algorithm, where the smallest normalized
error reported was a value of 0.16R. Although the absolute normalized distance error in
Figure 4.3 a shows the trend to decrease with increasing node densities.

Unlike WDNI, the DIN algorithm uses solely the number of local nodes without the help
of a weighting function, thus it is not compensated for high node densities. We can denote
that the duty zone of DIN is between SRR values of 0.0769 and 0.5. Those values represent
deployed spaces with L values from 2R to 13R respectively. In this interval, we can see
that the normalized distance error for the 75% of the estimations is less than 0.39R (see
interquartile 3).

For bigger deployed areas than SRR values of 0.0769, the average normalized distance error
increases smoothly. This is due to fact that the connections in the network start to break
so the interquartiles begin to reach the maximum normalized error.

4.2.2 Near-Uniform Network Distribution

A di�erent network setup to test DIN, such as a near-uniform distribution of nodes, is
an interesting subject to evaluate the �exibility of its usage. Therefore, the nodes were
positioned in a way that the network takes the form of a horseshoe. This means that the
center and one side were left empty, and all nodes are spread out on the remaining three
sides. This allows for testing the response of DIN to high densities both close and far away
from a node with few nodes in a medium distance.

In Figure 4.3 b, we can observe that for SRR values between 0.0625 and 0.5, the normalized
average error and the 75% of the error values in every case is lower than 0.37R. For this
con�guration, DIN has better performance than in the uniform distribution. That means
for values of SRR smaller than 0.0769 in Figure 4.3 b, it continues displays lower error under
to 0.37R.

Unlike the uniform distribution, the errors in a horseshoe set up increase in a smooth way.
That is due to the smaller con�guration in the deployed area compared to the uniform
distribution, in such a way that the network remains connected longer but produces larger
errors for bigger deployed spaces.

Looking at the normalized error of interquartile one, we realize that the best 25% of the
errors is presented for an SRR value of 0.1111 showing error values lower than 0.0627.
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Once again, we can observe an operation area in terms of SRR values. For high node
densities (SRR=1) the distance estimations are less accurate. They assume to be uniformly
distributed, causing high error rates in the distance estimations. On the other hand, DIN
loses precision for networks with low node densities due to the lack of nodes, producing less
available information.

Table 4.2: Minimal and maximal normalized error values in simulations of the uniform and horseshoe
distributions

Uniform Distribution
Norm. 1st Interquartile 2nd Interquartile 3rd Interquartile Average
Error Value SRR Value SRR Value SRR Value SRR

Min. 0.0532 0.1666 0.1061 0.1666 0.186 0.1666 0.127 0.25
Max. 0.0966 0.0833 0.1968 0.0769 0.387 0.0769 0.3118 0.0769

Horseshoe Distribution
Norm. 1st Interquartile 2nd Interquartile 3rd Interquartile Average
Error Value SRR Value SRR Value SRR Value SRR

Min. 0.0627 0.1111 0.1283 0.1111 0.2195 0.1111 0.1618 0.1428
Max. 0.1046 0.5 0.2 0.5 0.36 0.0625 0.2832 0.0625

Table 4.2 shows the minimum and maximum values over all the experiments obtained with
the di�erent network distribution using the ns-2 simulator. In this section, we con�rm
that a node which uses the DIN can estimate distances between their neighbors as long
as the transmission range is set to a value that enables most of the nodes to experience
a neighborhood close to a uniform distribution. The second step to test the accuracy of
our algorithm is implementing DIN using real hardware; the results of this new test are
presented in the next section.

In this last two sections, we describe the performance of the DIN algorithm discovering that
the algorithm produces competitive values for uniform and near-uniform distribution (see
table 4.2). We con�rm once again that our algorithm works as long as the transmission
range is set to a value that enables most of the nodes to experience a neighborhood close to
a uniform distribution.

4.3 Experimental Evaluation of DIN

Simplifying assumptions about radio propagation, network coverage and node distributions
are common in network research. The core idea of DIN uses a circular transmission range of
nodes to �nd a relationship between distances and local node densities. Since the results of
the simulations were very promising, we decided to implement DIN on our WSN hardware
platform and measure the impact of a real environment on the performance of the algorithm.
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Figure 4.4: Radio Weigh curves to determine a general approximation of the radio communication
range.

4.3.1 ScatterWeb Sensor Network Platform

For the set up of our testbed, we rely on the ScatterWeb Modular Sensor Boards (MSB)
[22]. These nodes feature the 16-bit microcontroller MSP430F1612 from Texas Instruments
equipped with 55 KB of �ash memory and 5 KB RAM, and a Chipcon CC1020 transceiver
using the ISM band at 869 MHz. The transceiver is able to monitor the received signal
strength (RSSI). The transmitted power can be set directly in software. Additional sensors
are available on a separate sensor board to be plugged onto the core board if needed.

4.3.2 Communication Range Calibration

Since our algorithm depends on a spherical radio propagation model described in section
4.1.2, we rely on mapping a transmission power setting to a known distance to calibrate DIN.
This calibration was obtained by testing the behavior of the radio with di�erent transmission
power settings.

The �rst problem we encountered was that even with the smallest value for setting the
transmit power, it was not possible to construct an experimental setup where not all nodes
were within each other's transmission range indoors.

To solve this problem, two di�erent strategies have been explored. On the one hand, we
experimented with sensor nodes with disassembled physical antennas, where only the small
welded copper footprint on the node itself is left for communication. On the other hand, we
simply used the RSSI value to arti�cially limit the transmission range by �ltering signals
below a certain value. Although at �rst glance this solution may seem to be a testbed
workaround, the results obtained will still be valid in a larger multi-hop environment since
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Figure 4.5: Normalized average error per node with di�erent transceiver settings with a near-uniform
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the �lter will be used equally here, thus no di�erence in the behavior of DIN will be observed.

Another important issue we encountered is how to evaluate the quality of the transmission
range in terms of temporal and spatial �uctuation of the area covered by the signal. Once
again, this setting has a high impact on the performance of the algorithm since the distance
estimation directly depends on the radio link. In order to choose the best con�gurations
for the transceiver in terms of least �uctuations, the transmission range of a transmitting
node was analyzed by measuring the communication link on di�erent peripheral points, as
discussed in section 1.2.

The next calibration for an approximation of a circular transmission range was obtained
by mapping the radiation pattern of the MSB nodes on an indoor environment. For this
purpose, a sending node was located on three di�erent positions of a 5 mx5 m square
area (upper-left corner, central position, and lower-right corner) in a seminar room of our
institute. Two of the created maps are shown in the Figure 1.1 a and 1.1 b.

The RSSI measurements were taken every 25 cm from an emitter node until a complete sweep
of the setup area was �nished. Both nodes were positioned over cleared desk height in order
to provide a good transmission scenario. As we expected, these �gures have con�rmed that
the transmission is strongly irregular and without homogeneity. The nodes can be far away
from the transmitter node and still receive high RSSI values, while others are closer and
exposed to lower values.

We determined a standard radio range for the DIN algorithm by analyzing every transmission
pattern map previously produced, and then evaluated the quality of the transmission range
in terms of �uctuations of the RSSI values of the area covered by the signal. From the
measurements, we reason that with an RSSI threshold of 33 (-42.5 dBm), an arti�cially
limited transmission range could be implemented.

To determine a standard radio range for our system, it was necessary to analyze every trans-
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mission pattern map previously produced and to evaluate the quality of the transmission
ranges in terms of �uctuations of the RSSI values of the area covered by signal. Taking as
a reference point the position of the sender node, we created di�erent circular transmission
range in increments of 0.25 cm until it covered the complete setup area. In order to �nd the
best circular transmission range that �ts better with the RSSI threshold, we evaluated every
disc communication range with the help of the variable called radio weigh (RW ) de�ned as
follows:

RW = RI −RO −NRI (4.11)

In the mathematical expression of RW from Equation 4.11, the number RI is de�ned as the
number of regular points inside the �ctitious radio scope within the range of the arti�cially
RSSI limit value (33). RO is the variable that counts the RSSI values in range, but out-
side a given radio range, and �nally NRI is the number of points that are inside the disc
communication range, but have an RSSI value lower than 33.

By averaging all the RW values of all the received signal strength measurements over the
di�erent scenarios, we obtained the average curve of Figure 4.4. We can observe that the
curve reaches its maximum value in 3 m. Thus, we decided to consider a radio transmission
range equal to 3 m using an RSSI threshold value of 33 with a transmit power of 0x01
from the CC1020 radio transceiver. We used these values as a reference for all our DIN
experiments.

The radio range �uctuation also depends on intrinsic transceiver settings; two con�gurations
that o�er few �uctuations were activating Automatic Gain Control (AGC) with minimum
Low Noise Ampli�er (LNA) or disabling the AGC. On average, this �uctuation has a value
between 15 to 20 cm. It was obtained using twenty di�erent sensor nodes and averaging the
error.

Although this �uctuation is very critical when relying on nodes with disassembled antennas,
we chose to also launch experiments with these nodes, since they o�er an opportunity to test
the behavior of DIN with asymmetrical communication ranges. The in�uence of di�erent
con�gurations of the transceiver on the distance error estimations are shown in Figure 4.5,
and will be discussed in the next sections.

4.3.3 Adaptation of DIN for Experimental Evaluation

Due to the limited computational capability of sensor nodes, we decided to adapt DIN to
avoid resource-intense computations. First, we replaced the computation of Equation 4.10
with a density-to-distance lookup table. Depending on the number of nodes in common
(represented by Ki) and the local node density (depicted by Ku), a node can derive its
distance from a neighboring node.

The protocol of DIN proceeds in three phases. In phase one, every node in the network
broadcasts a HELLO packet to discover neighboring nodes within its communication range.
It is important to take into consideration that signals received with an RSSI value below
33 will be dropped automatically to preserve the arti�cially constructed transmission range.
To avoid collisions on the medium, we implemented a delay timer depending on the node
ID. The information obtained in the �rst phase is a neighbor table with a single entry for
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each discovered neighbor.

The second step on the DIN protocol is the exchange of neighbor tables. This process allows
on to �nd how many nodes are in the union, as well as the intersection transmission area of
two neighbor nodes in the network. With this information, every node is able to compute
the distance to an adjacent node by its density-to-distance table.

The main problem in exchanging neighbor tables in the network was the communication
link asymmetries. Here, a sensor node can receive signals of another node perfectly, but
communication in the other direction fails. To prevent retransmission of a neighborï¿½s
table's request, the expiration of an internal timer limits the overall waiting time. When a
node in the network experiences an asymmetric link, the DIN algorithm implemented in th
nodes sets the estimation distance to the maximum value.

In the last phase, nodes consult the density-to-distance lookup table using Ki and Ku,
obtained in phase two as input parameters, to �nally determine the distance between them-
selves and another node.

The protocol of DIN can be naturally integrated into any routing overhead. The exchange
of neighborhood information and HELLO packets are subject to more routing schemes and
thus may also be utilized by DIN when available. Additional information such as the local
view on the network of each node can be piggybacked on regular data packets to minimize
the overhead for the distance estimation. Therefore, DIN can be implemented on top of
existing sensor network software at very low additional communication costs.
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Figure 4.6: (a) Uniform node distribution, (b) Horseshoe node distribution

4.4 Testbed Set up and Experimental Results

The primary goal has been to test DIN with the best hardware con�guration possible.
Therefore, experimenting with di�erent transceiver settings, as already mentioned in section
4.3.2, had to be done in-situ before obtaining the �nal results.
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Figure 4.7: Picture of the testbed enviroment

Two di�erent testbed layouts have been used for our experiments (see �gure 4.6 a and Figure
4.6 b). The �rst layout is a uniform distribution of sensor nodes and the second depicts a
horseshoe setup. Both testbeds have already been used in the ns-2 simulations.

The nodes were deployed in a 5 x 5 meter square in a seminar room at our institute.
We placed them on desks and the room was cleared over desk height. The room was big
enough to assure a distance of at least 1.5 meters between border nodes and the walls (see
Figure 4.7).

We chose the uniform layout to further analyze transceiver settings. Since we aimed for a
con�guration that allows for a received signal with the least variation possible, we examined
the in�uence of the Automatic Gain Control on the complete algorithm.

Two options have been considered and tested with DIN; the activation of the AGC with a
minimal setting for the low noise ampli�er and disabling it. As a comparison, the test has
also been conducted using sensor nodes without antenna. The results re�ect our expectations
(see Figure 4.5).

The error in distance estimation using no antenna su�ers from high variations for the dif-
ferent sensor nodes due to the asymmetrical transmission ranges. AGC regulates the ampli-
�cation of the received signal dependent on its amplitude and the sampling rate. Thus, the
less gain is set, the less �uctuation we observe and the better the results for the distance
estimation. Therefore, all following experiments have been carried out with a disabled AGC.

The main results are depicted in Figure 4.8. Here, the average normalized distance error
per interquartile with the DIN is plotted, as well as the dispersion of obtained error values
with the help of the interquartile diagrams. Once again, DIN works best for uniformly
distributed network. The average, normalized miscalculation of the nodes of 0.325R in this
setting equals to 0.975 m, with the best 25% of the distance calculations having an error
below 0.118R or 0.354 m, a value that provides a good accuracy for indoor usage.
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Figure 4.8: Normalized distance errors per interquartile in horseshoe and uniform distribution de-
rived from the DIN testbed.

In 75% of all cases, the error remains at a value of 0.443R or a maximal o�set of 1.3 m
within acceptable bounds. On the other hand, the horseshoe distribution remains below a
threshold of 0.15R which is equivalent to 0.45 m in interquartile 1, and features an average
error of roughly 1 m at the most, an observation that shows the validity of applying the DIN
to near-uniform network distributions despite its initial design for uniform distributions.

An interesting question that we wanted to examine was the in�uence of the node placement,
more precisely the membership of nodes to the border or inner portion of the network on
the distance estimation.

The bars of nodes 1 to 20 in Figure 4.9 represent the error of nodes placed at the border of
the network, while nodes 21 to 36 denote the inner sensor nodes. In the portion of the inner
nodes, the best estimation of the network is presented with a value of 0.17R. The 94% of
the estimations in this section is lower than 0.30R.

The border nodes made distance estimations with a value lower than 0.4R for the 65% of
the total cases. Making a closer analysis over the network, we found that the border nodes
distance estimations are worse than the inner nodes due to a poor neighbor table quality.
Asymmetric links and packet collisions led to a neighbor table with far less entries than
usual.

Two interesting points in Figure 4.9 are the normalized average distance estimations of the
nodes 6 and 11 which present distance estimations far from acceptable. Both nodes were
placed on the top corners of our experimental testbed. Analyzing its information obtained
during run time, we realized that they could set a communication link with nodes that
were outside of the arti�cial radio communication scope. Thus, they underestimate the
real distance to these nodes. However, there are border nodes like the node number 3 that
present good distance estimations. This is because to each calculated distance estimation
has been exceptionally good.
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 Figure 4.9: Average normalized errors in uniform node distribution for border and inner nodes in

the experimental setup

Overall, we can conclude that the node placement does seem to have an in�uence on the
distance calculation. In order to add statistically signi�cant evidence to such a proposition,
we have to evaluate more and larger scenarios.

4.5 Evaluation of DIN

In this section, we want to present details on two interesting comparisons we carried out:
First, we contrasted the behavior of DIN in simulated and real environments and second,
we evaluated the algorithm against other range-free distance estimation technique.

To minimize e�ects resulting from technological di�erences, we therefore implemented an
RSSI-based distance estimation algorithm and compared the performance of the two ap-
proaches accordingly.

4.5.1 Comparison of Simulation and Testbed

The good results observed in the interquartile diagrams by testing the DIN algorithm on the
ns-2 simulator were con�rmed by the test run conducted by the Scatterweb sensor nodes.

Looking on the interquartile 1 and 2 for uniform and horseshoe node distributions, we
realized that the average normalized errors are slightly lower in a simulation environment
than in an implementation on real hardware, keeping in mind that the SRR value for the
experimental setup corresponds to a simulative value between 0.5 and 1 which has to be
considered when comparing the overall averages of testbed and simulations results.

Taking as a reference the interquartiles with an SRR value of 0.5 for the cases of horseshoe
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 Figure 4.10: Approximation of the distance between nodes based on RSSI for indoor scenario at a

transmission power of 0x01

and uniform nodes distribution on simulation diagrams, we can see that the interquartile 3
of these both distributions in our testbed add to higher values due to an increase in mis-
calculation. We considered that this behaviour is due to external in�uences such as fading,
interference, or asymmetric links. However, the discrepancy on the average normalized errors
between real and simulation environments is not higher than 0.14R which is an acceptable
behavior for practical use.

4.5.2 Comparison of DIN and RSSI Distance Estimation

The evaluation of the quality of the proposed range-free distance estimation algorithm is
complemented by a quantitative comparison to a similar estimation based on RSSI data.
To guarantee a fair validation, the same testbed settings including the physical setup of the
sensor nodes and the best transceiver settings have been used.

Furthermore, the function that maps the strength of the received signal to a speci�c distance
as depicted in Figure 4.10 has been constructed by interweaving several RSSI measurements
such as Figures 1.1 a and 1.1 b with di�erent node positions into a suitable approximation.
Note that the validity of the polynom obtained with MatLab

fx = −0.0127x2 + 0.3697x+ 2.2688 (4.12)

is constrained to the measurement area since extrapolation instantly leads to untolerable
errors, a fact that once again emphasizes the need for careful calibration when relying solely
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Figure 4.11: Averaged normalized errors per interquartile in a horseshoe and uniform distribution
derived from RSSI distance estimation

on RSSI values.

Within the RSSI comparison testbed, the protocol used to determine distances in the net-
work was developed as follows: Every node in the network has the opportunity to broadcast
its ID. The receptor nodes register the signal strength of this packet and computes its dis-
tance to the sender nodes of the network by substituting the value of the received signal
strength for x in Equation 4.12 and solving for fx to obtain the corresponding distance.

As we already mentioned, the same 36 MSB nodes with the two di�erent testbed (see Figure
4.6 a and 4.6 b) layouts were used to test the RSSI-based distance estimation. The result
of our experiment is shown in Figure 4.11.

Although the normalization of the results is arti�cially applied after the collection of the
data, it has been chosen for comparability reasons. Results can easily be remapped to dis-
crete error values by multiplying them by 3 m (the �ctitious radio obtained in section 4.3.2).
The dispersion of the error values is once again illustrated with the help of interquartile di-
agrams.

The data on RSSI distance estimation as shown in Figure 4.11 reveals the weaknesses of
relying solely on RSSI readings. In average, RSSI distance estimation errors are almost
twice as high for all the tested scenarios than the ones provided by DIN, leading to an
average misplacement of 1.88 and 1.89 m for a uniformly and near-uniform distributed
network respectively. As we expected, the RSSI measurements lacked the required accuracy
to determine distances between adjacent nodes.

For a view on the normalized average error per node see Figure 4.12, which nicely illustrates
the superiority of DIN in all examined node distributions, a result that meets our expec-
tations. The approximation simply lacks the required �exibility to cope with the problem
of �uctuation of the received signal strength maps and their low resolution as have been
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Figure 4.12: Average normalized errors per node in horseshoe and uniform distribution with the
RSSI and the DIN distance estimation

Table 4.3: Testbed Comparisons

Norm. DIN Real RSSI DIN Simulation
Error Uniform Horseshoe Uniform Horseshoe Uniform Horseshoe

Min. 0.00047 0.003833 0.003957 0.00766 4.52E-5 9.99E-6
Max. 1.3132 1.1574 2.1666 2.089 0.602477 0.7145

discussed in section 1.2, a problem that DIN is able to at least partially solve with its
exploitation of the knowledge of local node densities. The best and worst normalized er-
ror values for the distance estimations in the di�erent scenarios and implementations are
depicted in Table 4.3.

4.6 Conclusion

In this chapter, I presented the DIN algorithm which estimates distances between two ad-
jacent nodes based solely on local neighborhood information. As a foundation, the area of
intersection of two overlapping transmission ranges has been related to the number of nodes
in a uniformly distributed network to determine the internodal distances.

To investigate the accuracy of the DIN algorithm, we rely both on simulations and exper-
iments with real sensor nodes and provide an exhaustive evaluation against another range
free distance estimation algorithm. One can observe on the simulations a tendency towards
better results in medium and high densities networks. The duty zone of DIN is between
SRR values of 0.0769 and 0.5 for uniformly distribution networks and between SRR values
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of 0.0625 and 0.5 for near-uniform distribution networks with the majority of normalized
error values below 0.39R. Here, the best average, normalized distance error has been 0.127R
for a uniform distribution of sensor nodes.

The good results obtained putting into practice the DIN algorithm with di�erent testbed
layouts, re�ect the �ndings of the simulations as can be observed in Figure 4.8, although we
were only able to analyse a fraction of the simulation cases. Finally, we con�rm the better
accuracy of distance estimation of our approach comparing the real hardware tesbed results
with those obtained using solely RSSI-values. The results show that up to more than the
double enhancement of distance accuracies for di�erent tesbeds (see Figure 4.12) have been
achieved.

With this work, we demonstrated that DIN also works in near-uniform environments, but
features slightly higher error values. The advantage of this approach is that neither the usage
of specialized hardware, nor the measurements of physical properties that are inaccurate or
unreliable are necessary for this estimation.

The DIN is a completely Ad-hoc algorithm that keeps the overhead in communication and
calculation at a minimum. We therefore use the DIN algorithm as a ranging method to help
the node discover their locations. As we will see in the next chapter, the DIN algorithm
is the basis of our localization scheme because of its good performance compared to the
RSSI-based ranging approach.





CHAPTER 5

Locating the Sensor Nodes

The positioning of wireless sensor nodes without dedicated hardware is an open research
question. Especially in the domain of embedded networked sensors, many applications rely
on spatial information to relate collected data to the location of its origin. The majority
of approaches, such as those explained in chapter 3, explore physical properties of acoustic
and/or radio signals such as the strength of a given received signal or its trip time. This
is, however, problematic since neither the complexity on the side of the software nor the
hardware is adequate enough for embedded systems.

Due to the good results obtained using the DIN algorithm to estimate distances, we were
more than motivated to apply the DIN algorithm on the sensor-location area. To evaluate
the accuracy of the DIN algorithm, we ran extensive simulations and we experimented with
di�erent testbed setups. So far, we have applied the DIN algorithm for localization using
real sensor nodes. Finally we implemented di�erent range-free approaches such as DV-Hop
and RSSI based localization parallel to our real and simulated experiments to obtain a
comparative analysis.

In this section, we will introduce a new and innovative technique to �nd the position of
nodes deployed in a distributed network based on the DIN algorithm. This new algorithm
called the Positioning Iterative Vector (PIV) could be used either as an iterative approach
to determine node positions or as a re�nement phase of any other location-sensing method.

5.1 Distance to the Reference Nodes

The �rst step for multilateration is determining the distance between unknown nodes and
reference nodes. In chapter 4, the single hop distance-to-landmark problem using node
local density was successfully solved using the DIN algorithm. If a node can directly com-
municate with several landmarks, its position can be discovered by the estimation of the
node-to-landmark distance supplied by DIN algorithm and later solving the linear system
by multilateration. Unfortunately, the assumption of a direct connection to the anchors
rarely occurs in real scenarios of wireless sensor networks. In this section, we will introduce
approaches that extend the neighboring distances provided by the DIN algorithm to the
node-to-landmark distances.
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To discover the position of an unknown node in a three dimensional space, it is necessary to
estimate the distances between the node and at least four landmarks. In the �nal phase of
the DIN algorithm, each node obtains the distances to its neighbors, so we have to extend
these distances to the four reference nodes.

To estimate the distances (dl) from the unknown nodes to the reference nodes (landmarks)
in our simulations, we explored three possible solutions: Extension of the DIN algorithm
(ExDIN/DV-Distance), Factor Correction (FC), and Factor Correction per Hop (FCH).

5.1.1 The ExDIN Algorithm or DV-Distance algorithm

The ExDIN algorithm is based on the concept of adding the distances produced by the DIN
algorithm, thereby �nding the shortest path between the unknown nodes and the landmarks.
The ExDIN process begins when the landmarks �ood its own positions throughout the net-
work. When the �rst unknown nodes have received the broadcast of those landmarks, the
nodes add its own DIN-distance to that shared landmark packet. After the addition of its
distance value to the landmark's data, these nodes broadcast the new packet to other adja-
cent nodes, who will integrate to the package the neighboring distances from the nodes which
have recently been heard. In this manner, the nodes construct paths following a distance-
vector approach (similar than APS) where ranging information is �ooded throughout the
whole network in a hop by hop fashion.

A node is allowed to send the distance-to-landmark packet into the network again when its
distance-to-landmark is updated. That means if an unknown node obtains a new packet
data from another adjacent node with a shorter distance-to-landmark value, it will replace
the old distance-to-landmark path with the new shorter one. Once the node has updated its
own distance-to-landmark, it will schedule its retransmission of this new data packet into
the network.

Assuming di�erent connectivities in the network from node to node, we describe the distances
between a given unknown node and a landmark l as follows:

d̂l =
∑

∀(v.u)∈pl

DIN(v, u) (5.1)

where pl is the shortest path to landmark l.

The subsequent simulations feature a �xed number of 100 nodes in a square area with a
network length of L meters. The node transmission range (R) is 250 meters. Once again,
we increased the network length in increments until the network became too sparse and
communication between nodes was no longer possible. Four landmarks have been placed on
every corner of the network area, so the unknown nodes in the network could compute their
distances to those landmarks using the DV-dist algorithm.

The idea of using the shortest path between nodes and landmarks have also been utilized in
the Ad-Hoc Positioning System (APS) [51] of Niculescu and Nath, where node-to-landmark
distances are delivered as a distance vector in hops (DV-Hop). The following simulations
utilized the DV-hop technique to validate our results.
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Table 5.1: Interquartile Comparisons of ExDIN and DV-Hop methods for a length square side of
1500 meters

SRR=0.1666 Interquartile 1 Interquartile 2 Interquartile 3 Average

ExDIN 0.20957 0.42007 0.69293 0.59209
DV-Hop 0.18263 0.40096 0.74889 0.55368

5.1.2 Simulation of the ExDIN Approach

Figure 5.1 shows two distance error curves produced by simulations of the ExDIN and DV-
Hop algorithms with a length square side of 1750 and 2000 meters. The radio range of
every node in the network was 250 m. These two interlaced plots con�rm that the ExDIN
algorithm can out-perform the DV-Hop algorithm under the �rst distance hops from the
landmarks. For nodes that are more distant from the reference nodes, the estimations of
distances by ExDIN are longer than those computed by the DV-Hop algorithm.
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Figure 5.1: Comparison of the error resulting from the simulations of the ExDIN and DV-Hop
simulations for an uniformly distributed network with (a) L = 1750, and (b) L = 2000 meters

Figure 5.1 (b), the performance of the ExDIN algorithm decreased compared to the DV-Hop
e�ciency. This e�ect is due to the accumulative distance error of adding the DIN distances
through the network. The more distance in hops the nodes are, the higher accumulative
landmark to node distance error is obtained. Although DV-Hop also experiences this e�ect,
the average value of the distance-hop makes up for better results.

In chapter 4, we mentioned that the best performance of the DIN algorithm was pro-
duced with a side square of 1500 meters (or 0.1666 SRR value) for a uniform distribution.
With this SRR value, 25% of the estimated distances (see �rst interquartile of Figure ref-
Fig:Ns2Interquartiles) have normalized error values less than 0.0532R.

Extending the neighbor distances to the landmarks, we �nd for a similar range that 25%
of the ExDIN algorithm has normalized error values less than 0.2096R, while DV-hop has
error values less than 0.1826R, as presented in the interquartile comparison of Table 5.1.

Analyzing the curves of Figure 5.1, Table 5.1, and other curves produced with di�erent SRR
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values in Apppendix C, we discovered the best result of neighbor distances does not imply
the best distance to the reference nodes. The normalized error using ExDIN increases little
by little with every increment of the hop-distance.

Looking closer at the results of the di�erent simulations, we conclude that the progressive
increment of the normalized error for long node-to-landmark paths are caused by deviation
of the straight line connections, i.e., the path from landmark to a given node in the network
rarely plots a straight line, but rather takes more the form of a snake. We presume a
connection of the shortest path is still an overestimation of the real distance between faraway
nodes and landmarks (see Figure 5.2).

d8
d9

Unknown Node

Landmark

Figure 5.2: Accumulative distance error adding node to node DIN or DV-Hop distances

5.1.3 The FC and FCH Algorithm

The detour e�ect that provokes the overshot of normalized errors using ExDIN motivated
the improvement of the extension of the distances using the DIN algorithm. Due to the
cumulated errors per hop produced using ExDin and inspired by the APS method, we
propose two new attempts to estimate node to landmark distances.

Working with uniformly distributed networks, we experienced over-estimation on entire
paths from a reference node to an arbitrary unknown node. Trying to alleviate this phe-
nomenon, we proposed the method called Factor Correction. The Factor Correction is
de�ned as the average of the real distance (dlireal) to the estimate distance (dliestimated)
ratios between a landmark i and the other reference nodes in the network.

To better visualize the idea behind the Factor Correction, let us consider the situation
shown in Figure 5.3 where four landmarks have been deployed in a square area similar to
our simulations.
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Landmark 1 Landmark 2

Landmark 3Landmark 0

Figure 5.3: Correction of the estimated node to landmark distance

Every arrow in the �gure has three di�erent labels. The label dliestimated is the distance
yielded by adding DIN-distances from landmark �0" to landmark i, the variable dlireal is
de�ned as the real distance between landmarks, and dlihop represents the distance from land-
mark to landmark in hops. The mathematical expression to calculate the factor correction
is:

FC =
dlreal

dlestimated
=

dl1real

dl1estimated
+ dl2real

dl2estimated
+ dl3real

dl3estimated

3
(5.2)

The correction factor implemented in our simulations determines the ratios of the real dis-
tances from landmark �0" to the other landmarks labeled as 1, 2 and 3 respectively in
Figure 5.3. By using Equation 5.2, a node in the network is able to improve its distance
to the landmark by just multiplying the correction factor and its estimation distance to the
landmark. Thus, the new approximation of the node-to-landmark distance is

dt+1
li

= (FC)
(
dtli
)

(5.3)

where dt+1
li

is the new distance estimation, FC is the Factor Correction and dtli the estimated
distance produced by ExDIN.

The landmark-to-landmark and landmark-to-node lengths provided in hops in Figure 5.3
have been taken as supplementary information to shape our third attempt to improve the
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Figure 5.4: Average normalized errors in distance to the landmarks estimations versus covered radio
ranging in uniformly distributed networks

distance to landmark values. This new approach has been named Factor Correction per
Hop (FCH).

The FCH method improves the distances by taking into account the in�uence of the error
estimated per hops. In contrast to the APS algorithm, the FCH algorithm employs the
ExDIN algorithm to derive a �rst distance estimation and later �gure a factor correction
per hop.

First, the real distance between landmarks (dlireal), its distance in hops (dlihop) and its
ExDIN distances (dliestimated) are required to produce the new Factor Correction. Adding
the di�erence between the real distances and the ExDIN distances results in the total error
rate. Finally, the average error caused by one hop is produced by the ratio between the
total error rate and the addition of the hop distances between landmarks.

FCH =
∑n

i=1 dlireal − dliestimated∑n
i=1 dlihop

(5.4)

Since we are interested in �nding an expression for re�ning the node-to-landmark distances,
we have to multiply the distance-hops from a given node and the FCH value from Equa-
tion 5.4. The new approximation for the distance-to-landmark length is the addition of this
product (FCH) and the estimated distance to the landmark (dliestimated), computing in the
node by EXDIN as described in Equation 5.5

dt+1
li

= dliestimated + (dlihop) (FCH) (5.5)
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5.1.4 Simulating the FC and FCH Algorithms

The average normalized errors of distance-to-landmarks estimations of ten simulation runs
using the FC, FCH and DV-Hop methods are presented in Figure 5.4. Four reference nodes
are deployed in every corner of the square area where the unknown nodes are distributed.
The length of the square side (L) was incremented until the nodes in the network lost the
connection-hops with the landmark, meaning the nodes were not more capable of calcu-
lating the direct or indirect distance to the landmark due to the lack of connections with
neighboring nodes. Every simulation takes into account the results of distance to landmark
estimations of a �xed number of 100 nodes.

Figure 5.4 shows the simulations of the FC and the FCH methods overcome the DV-Hop
error values. Although the absolute normalized distance error of FC and FCH for SRR values
from 1 until 0.1666 are slightly lower than those generated by the DV-Hop evaluations, a
signi�cant di�erence can be calculated from SRR values higher than 0.1428.

Looking closer at the simulation results, we found the path to the landmarks is improved
by FCH for relative low node densities because the nodes make a beeline for the landmarks,
i. e., the FCH can better discover the node distances when the trajectories are free from
snake paths.

The best accuracy is obtained by the FCH algorithm for a SRR value of 0.5 with an average
normalized distance error of 0.11R. Unlike the DV-hop technique, the FCH algorithm holds
an average normalized distance errors less than 0.86R throughout the SRR values. The
curves of normalized distance errors of FC, FCH, and DV-hop methods versus the number
of distance hops for di�erent network densities presented in Appendix D con�rm the good
performance of the FCH algorithm. The best example is Figure D.1 b, where analyzing the
best 25% of the distance estimations have a normalized error less than 0.04403R. The nodes
in the following simulations will use the FCH algorithm as the input parameter to discover
its own position in the network, unless speci�ed otherwise.

5.2 DIN Based Localization: Simulation Environment using ns-2 Simulator

After obtaining the distances to the reference nodes, the unknown nodes begin to determine
their positions. In order to calculate its own location, the node requires the coordinates of
the reference nodes and its distance in relation to the Landmarks.

In Chapter 3, the most common distributed and centralized algorithm for localization was
presented. The most popular, ad-hoc, and simplest distributed algorithms for deriving a
position are multilateration and bounding box methods.

We decided to implement both methods in our experiment using the ns-2 simulator to
provide the best location-aware solution for the FCH algorithm. Although multilateration
is quite expensive due to the number of �oating point operations, it provides very accurate
positions if the estimated landmark-to-node distances are relative precise. Nevertheless, the
bounding box algorithm is cheaper in terms of computation e�ort and robustness. But, as
we mentioned in 3.2.2, this method is very sensitive to the place of anchors, especially at
the edges of the deployment network area, as well as the physical topology [68].

In order to be consistent with the previous experiment, we preserved the same ns-2 simula-
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tion parameters depicted on Table 4.1 to determine the behavior of those di�erent location-
aware algorithms. A �xed number of 100 nodes under variable network sizes produce the
subsequent simulation results. According to the recommendation of Savvides et al. [70], we
have placed four Landmarks at the edges of the simulated network to avoid the inaccuracy
of the node locations at the edge. We also used di�erent SRR values in order to compare the
error independent of variable radio communication ranges and network sizes. Every node in
the network calculates its actual positions through the combination of the bounding box and
multilateration methods using the distances produced by DIN or DV-hop algorithms. The
corresponding absolute normalized error of the position estimation is simply the distance
between the real position of the node in the network and its calculated location divided by
the radius of the transmission range of the a node (R) as it is described in Equation 5.6.

Error =

√
(xr − x)2 + (yr − y)2

R
(5.6)

where (xr, yr) denotes the real coordinates of the node and the coordinates (x, y) is the
estimated node position.

Due to the nature of the DIN algorithm, the comparisons of the combination with FCH/lat-
eration and FCH/Bounding Box have been developed under uniformly distributed networks.
After obtaining the best combination result, we compared it with the APS method. Finally,
the measurement of the accuracy of position estimations for near-uniform distributions are
presented.

5.2.1 Simulation of Uniform Distributed Networks

To face the issue of which algorithm combination has to be used to �nd the node positions,
we produced 30 simulation runs of the distance algorithms and two location methods. We
decided to test the worst case of DIN using the ExDIN algorithm as distance estimator
versus the DV-hop technique to clarify the best node location-aware method. The average
normalized error in position estimation using multilateration and bounding box algorithm
are shown in Figure 5.5.

Comparing the curves of the normalized errors of Figure 5.5, we can observe when the
network is less dense, the accuracy produced by the multilateration method is higher than
the one obtained by bounding box. The accuracy using the bounding box fails for SRR
values below 0.2 with the combination of either ExDIN or DV-hop algorithms. This is due
to the lack of precision of the algorithm by nature when setting the position estimation at the
centroid of the square of the Min-Max square overlapping area (see section 3.2.2). Therefore,
all following experiments have been carried out with the multilateration approach.

As mentioned in section 2.2.1, multilateration is sensitive to the accuracy of the distance
estimations, but at the same time multilateration tries to minimize the possible estimation
errors. The node-to-landmark distance estimations produced by the FCH algorithm presents
more precise measurement, therefore we were motivated to use it in order to improve the
position estimation. The main results are depicted in Figure 5.6: here, we plotted the
average and the interquartiles of the normalized position errors yielded by DV-Hop and
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Figure 5.5: Comparison of position errors resulting from the combination of di�erent position algo-
rithms and distance estimation methods

FCH algorithms using multilateration for di�erent SRR values.

As expected, the absolute normalized distance errors of DV-hop and the FCH algorithms
show the trend to decrease with increasing density of the network. When we looked at the
average distance error using the FCH algorithm, we recognized that the best performance
is obtained for SRR values of 1,0.5 and 0.3333 with normalized average error values lower
than 0.2. The best 25% (see the �rst interquartile) with SRR value of 0.5 has normalized
error value of 0.1 using the FCH algorithm. This value represents an improvement of 59%
over the same interquartile using the DV-Hop algorithm. This is due to the fact, that nodes
have more information to position themself better with the help of the FCH algorithm.

Once again, when the values of SRR decrease, the connections in the network start to break.
This result suggest that nodes have no further communication through other nodes which
link them to the landmarks making the multilateration to locate itself impossible. This e�ect
is appreciated observing the errors produced with a SRR value of 0.125 for both algorithms,
where fewer nodes add to the overall error.

5.2.2 Simulation of Near-Uniform Distributed Networks

To evaluate the �exibility of the FCH algorithm, we have simulated implementation of
di�erent setups with near-uniform distribution. Like the structure in Chapter 4, the nodes
were positioned in the horseshoe setup distribution. As in our previous simulations, the
results are presented through di�erent network densities and using Interquartiles.

Figure 5.7 shows the results of 30 simulation runs using the FCH, DV-hop and multilat-
eration algorithms. In this network distribution, the normalized position errors are quite
similar. For SRR values lower than 0.5, the FCH algorithm overcomes slightly the DV Hop
performance. Only in the case of SRR values of 0.5 and 1, the DV Hop algorithm presents
somewhat better results than the FCH algorithm. Because of the similarity between the in-
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Figure 5.6: Normalized positions errors using the (a) DV-Hop and (b) FCH algorithms
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Figure 5.7: Comparison of normalized position errors produced by using the DV-Hop and FCH
algorithms in a horseshoe con�guration
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Figure 5.8: Diferent simulation testbed to measure the DV-Hop and FCH algorithms' performance

terquartiles and average curves, we decided to explore the performance of the FCH algorithm
with other near-uniform distributions.

The nodes were deployed in di�erent schemes as shown in Figure 5.8, all of them with a
side length square of 4R. To preserve the idea of a near-uniform distribution, the square
deployed area was divided into 16 range squares each with a side length of 1R.

In Figure 5.8, two kinds of range square are presented: the range square with low node
density (grey squares) where a maximum number of 5 nodes were uniformly deployed and
the range squares with high node density (dark squares) which contain 25 nodes uniformly
distributed. We have related this manner to distribute the nodes over the low and high
density range squares as sparse networks. In contrast with the sparse distributions, dense
networks were populated with �ve extra nodes per range square. That is to say, 10 nodes
for low node density range squares and 30 nodes for high node density range squares. Once
again the position of the nodes over every range square in the dense network were located
in a random manner.

A special case is the irregular setup (mash) where the node distribution in every range square
was increased by 6 nodes more than the preceding range square on the x-axis. For every
range square on the y-axis the increment of nodes respect to the preceding range square was
increased by adding 7 nodes. Furthermore, for the case of sparse networks the less populated
range square began with a node density of 5 nodes, while in the case of dense networks, the
less dense range square had 10 nodes.

The curves presented in Figure 5.9 shows the results of 30 simulation runs in the sparse
network modality previously described. The error bars in mash, middle and slash network
distributions with the FCH algorithm present similar errors to the bars produced using
the DV-Hop algorithm. For the remaining con�gurations, the comparison of position errors
present high similarities on the normalized error values either using the DV-Hop or the FCH



76 5 Locating the Sensor Nodes

0 45

0.4

0.45

/R
]

Interquartile 1

Interquartile 2

Interquartile 3

0.35

Er
ro
r 
[d
/ Interquartile 3

Average

0.25

0.3

si
ti
on

 E

0.2

ze
d 
Po

s

0.1

0.15

N
or
m
al
i

0.05

0.1N

0

FCH DV Hop

(a)

0.35

0.4

/R
]

Interquartile 1

Interquartile 2

Interquartile 3

0.3

rr
or
 [d

/ Interquartile 3

Average

0.25

si
ti
on

 E

0 15

0.2

ze
d 
Po

s

0.1

0.15

or
m
al
iz

0.05

N

0

FCH DV Hop

(c)
0 45

0.4

0.45

/R
]

Interquartile 1

Interquartile 2

Interquartile 3

0.35

Er
ro
r 
[d

q

Average

0.25

0.3

si
ti
on

 E

0.2

ze
d 
Po

s

0.1

0.15

N
or
m
al
i

0.05

0.1N

0

FCH DV Hop

(e)

0.35

0.4

/R
]

Interquartile 1

Interquartile 2

0.3

rr
or
 [d

/ Interquartile 2

Interquartile 3

0.25

si
ti
on

 E
r

Average

0 15

0.2

ze
d 
Po

s

0.1

0.15

or
m
al
iz

0.05

N
o

0

FCH DV Hop

(b)
0 45

0.4

0.45

/R
]

Interquartile 1

Interquartile 2

Interquartile 3

0.35

rr
or
 [d

/ Interquartile 3

Average

0.25

0.3

si
ti
on

 E
0.2

ze
d 
Po

s

0.1

0.15

or
m
al
iz

0.05

0.1

N

0

FCH DV Hop

(d)

0.25

0.3

0.35

0.4

0.45

si
ti
on

 E
rr
or
 [d

/R
]

Interquartile 1

Interquartile 2

Interquartile 3

Average

0

0.05

0.1

0.15

0.2

FCH DV Hop

N
or
m
al
iz
ed

 P
o

(f)

Figure 5.9: Comparison of the error resulting from the simulations of the FCH and DV-Hop al-
gorithms in sparse networks with a) center b) mash c) corner d) middle e) half and f) slash near-
uniformly distributions
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algorithm. The error estimations produced in Figure 5.9 b show a considerable improvement
over all the interquartiles using the FCH algorithm. The improvement on the average error
to the FCH's Interquartile was 54% lower than the DV-Hop value. This e�ect using the
irregular setup motived us to test the FCH algorithm in dense networks.

Figure 5.10 shows the interquartiles bars of the FCH and DV-Hop algorithm in dense net-
works. With the increment of the node densities for the di�erent schemas, a signi�cant
decrease on the position estimation errors is computed for all the network con�gurations.
The best normalized position errors are found in the irregular con�guration. Here, the error
of 75% of the position estimations is lower than 0.17 (see interquartile 3). In the same plot,
we can see that the best 25% is obtained with a normalized error value of 0.049. No con-
�guration using the DV-Hop algorithm can overcome the good results yielded by the FCH
algorithm. This e�ect occurs due to the fact nodes in dense networks have more information
through their neighborhood and this is translated into a decrease on the position errors.

In this section, when we tested the e�ciency of the FCH algorithm, we realized it overcame
the performance of the DV-Hop algorithm for di�erent con�gurations and network densities.
However, in sparse networks, the e�ciency of FCH is very similar to that produced by using
the DV-Hop approach. In the next section, the innovative PIV algorithm will be described
as a re�nement-phase algorithm, but also as an autonomous location system.

5.3 Iterative Approach to Locate Wireless Sensor Nodes

There are several approaches to improving the accuracy of the position of sensor nodes
such as those mentioned in chapter 3. A common drawback in methods such as bounding
box, APS or APIT algorithm is the strong impact over the accuracy of landmark-to-node
distances in the location process. Although the FCH algorithm presents better position
estimations compare to RSSI or DV-hop methods (as we will see in section 5.4), it also
su�ers from a lack of precision in the distance to anchor estimations due to the accumulative
distance error per hops. This makes necessary an improved algorithm to solve this problem.

Saavides et al. have proposed in [69] an iterative algorithm to minimize the error position
caused by long landmark-to-node path. In this method, an unknown node can serve as
an anchor so long as it is aware of its position. One of the main requirements to use this
algorithm (called AHLoS) is the presence of at least three anchors within one hop distance
of a given unknown node. Thus, the unknown can compute its position by multilateration
and help other nodes to �nd its location. The two principal disadvantages of the algorithm
are, �rst, the need of a percentage of anchors nodes to yield multilateration and, second,
they still have error accumulation using the iterative multilateration.

Another scheme which works with iterative re�nement is the proposed by Savarese et al.
in [68]. Here, the Hop-Terrain avoids that the range error problem similar to the FCH
algorithm by counting the distance hop between anchors and nodes and multiplying that by
an average-hop distance. With this correction data, the unknown nodes calculate its position
by multilateration. Savarese et al. use the iterative multilateration, giving a con�dence value
to every single node. The con�dences weigh the equation of multilateration, making stronger
the impact of the iterative multilateration in nodes closer to anchors than nodes hops away
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Figure 5.10: Comparison of the error resulting from the simulations of the FCH and DV Hop
algorithms in dense networks with a) center b) mash c) corner d) middle e) half and f) slash near-
uniformly distributions
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from them. The critical drawback is that this re�nement phase works reasonably well for a
regular network and high connectivity but does not converge for other network topologies.

Although the Positioning Iterative Vector (PIV) algorithm proposed in this paper has been
initially proposed as a new re�ned iterative method to locate the sensor nodes, we will
investigate the feasibility to implement PIV as an autonomous distributed localization ap-
proach. The main idea is to present an algorithm which determines the position of sensor
nodes relying only on local neighboring distance estimation within an ad-hoc space with
sparse number of reference nodes, and at the same time, avoid the accumulative distance
errors due to the snake paths. In the following sections, we will describe the mathematical
origin of the PIV algorithm to later test its performance as an autonomous iterative posi-
tioning algorithm as well as re�ned system after a multilateration phase. Our �ndings are
based on comprehensive simulations with uniform distributed networks as well as grid node
deployment.

5.3.1 Mathematical Foundations of the PIV Algorithm

The available information that a given unknown node has to locate itself in a WSN before
a locate-sensing process can be divide into three main features: �rst, the position of the
reference nodes. This data can be obtained by direct communication with anchor or in an
indirect manner by, for example, a �ooding broadcast of the landmark. Second, the distance
measurements between adjacent nodes obtained by the exchange of packages between neigh-
boring nodes. Third, the superposition of these distances to �nd the shortest path between
the reference nodes and a given unknown node as used in multilateration.

The idea behind the PIV algorithm is to work just with the �rst two parameters, considering
the second parameter (the estimated distance between neighboring nodes) as a force vector
that pulls and pushes the estimation of the node position iteratively.

At the very beginning of the localization process, every unknown node has a random position
(we called this tuple as Virtual Coordinates). The nodes can calculate a virtual distance
from its initial estimated position and its corresponding neighbor positions to later compare
it with its measured or estimated adjacent node distances. The di�erence between the
estimated distances and the virtual distances is used as a �gure of merit to correlate the
current node to its real position. To estimate the virtual distances between adjacent nodes,
we used the DIN algorithm, but this distance can be obtained by other range-based methods
such as RSSI, TOA or TDOA.

As can be expected, the position error is very high at the beginning of the localization
process due to the random distribution. This disparity between the virtual distances and
the estimated distances produces large changes in the node position estimations for the �rst
iterations. As the PIV algorithm progresses, the changes in the node position estimations
will be smaller compared to the initial iterations, and little by little the position estimation
of a given node will converge to its real location.

The reference nodes in the network play an important role in the iteration process. Unlike
unknown nodes, the landmarks do not change its coordinates, but they help and accelerate
the process in every iteration to �nd the right position of the unknown nodes. In other
words, ones realizes that the solution with the PIV algorithm is analogous to the system of
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free masses (unknown nodes) connected by springs, where a few masses are �xed by nails
(anchors or reference nodes).

Y

X0

B

A

Figure 5.11: Mathematical Schema for two neighboring nodes using the PIV algorithms

To understand how the nodes move to its real position in every iterative step, we can consider
two nodes A and B as shown in Figure 5.11. Here, their positions are regarded as vectors−→
P0 and

−→
Pi. Both nodes know after the process of distance measurements (in our particular

case are the DIN distances) that the separation between them is the distance labeled as d0i.
Using the virtual coordinates resulting from the random deployment, the node B computes
the euclidean distance to node A in the t-th iteration as

dt0i =‖ P0 − Pi ‖ (5.7)

The di�erence between the distance dt0i and the estimated distance d0i produces the distance
error (ε) between the nodes

ε = dt0i − d0i (5.8)

The absolute value of the normalization of Equation 5.8 in respect to the euclidean distance
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dt0i is the magnitude of the error vector (αt0i) between the node A and B in the t-th iteration

αt0i =
∣∣∣∣dt0i − d0i

dt0i

∣∣∣∣ (5.9)

Equation 5.9 is the constraint value to move the node B to A with the direction of
−−−−−→
Pi − P0.

Due to the fact that node A will move exactly the same stretch, but in opposite direction(−−−−−→
P0 − Pi

)
, a factor of 1/2 is introduced in αt0i to avoid the overlapping of the distance

correction (φt0i). Node B will advance half of ε and the remaining half is covered by the
node A in the same iteration as depicted in Equation 5.10.

φt0i =
1
2

∣∣∣∣dt0i − d0i

dt0i

∣∣∣∣ (−−−−−→Pi − P0

)
(5.10)

To �nd the position update for a given node with k neighbors, the average of all αt0i and its
respective orientation vectors are taken into account. Thus, the new position of a node in
the position P0 for the t+ 1-th iteration with k adjacent nodes is

P t+1
0i = P t0 +

1
k

k∑
i=0

dt0i − d0i

2dt0i

(−−−−−→
Pi − P0

)
(5.11)

Equation 5.11 is the generalization for the update of the components estimations for the
X,Y, or Z axis. The process by which to calculate the update for the X-axis and Y -axis
coordinates of an arbitrary node at the t + 1-th iteration is introduced in Equation 5.12
and 5.13.

Xt+1
0i = Xt

0 +
1
k

k∑
i=0

dt0i − d0i

2dt0i

(−−−−−→
Xi −X0

)
(5.12)

Y t+1
0i = Y t

0 +
1
k

k∑
i=0

dt0i − d0i

2dt0i

(−−−−→
Yi − Y0

)
(5.13)

This completes the mathematical steps of the PIV algorithm, since every node in the network
can now estimate its position iteratively with its local information by using Equation 5.12
and 5.13.

As we will see in the next sections, we have simulated the multilateration algorithms using
real neighbor distances as well as the two mode of the PIV algorithm (Autonomous localiza-
tion algorithm and re�ned algorithm). There, we have realized that the better the quality of
the distance estimations does not mean necessarily the best position estimation using mul-
tilateration or the iterative location-sensing algorithms. This is mainly due to dependence
of network factors such as the initial position that every node has at the very beginning of
the iterative process, the number of iterations, number of hops inside the network, and some
others that will be later go into detail.
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5.3.2 The PIV Algorithm as Localization Algorithm

In order to discover the pure behavior of the PIV algorithm as a position-sensing algo-
rithm under variable network settings, we performed the following simulations using C++
language. We decide to use C++ language instead of the ns-2 simulator to present an ide-
alized version of the network to compare purely the performance of our algorithms in this
environment without communication protocol and/or the delivering of simulated packages.
At the same time, we compared the simulations obtained using PIV and multilateration.
The simulation runs are divided into two groups:

1. Simulations using random uniform nodes deployment

2. Simulations using grid nodes deployment

Both simulations groups take into consideration the following parameters: The simulation
space where the nodes were deployed has a normalized dimension of 1x1. The normalization
of the area let us to later compare our results easily with other research works. The number
of deployed nodes have been varied from values of 10 nodes until 100 nodes adding 5 nodes
as discrete step for every simulation case. The normalized radio transmission range was
changed from 0.1 until 1.0 with an incremental of 0.1. Every simulation case was tested
with 4, 8 and 16 reference nodes. For all the possible simulation cases resulted by changing
the number of deployed nodes, their radio transmission, and the number of reference nodes,
we have plotted the average position error and its respective standard deviation using the
next algorithms:

1. Multilateration using Real Neighbor Distances (RND)

2. Multilateration using the ExDIN algorithm

3. Multilateration using the DV-Hop algorithm

4. Multilateration using the FCH algorithm

5. PIV using RND

6. PIV using DIN distances

5.3.3 Localization methods comparison in random uniform nodes deployment

The �rst step in our analysis is to test the PIV algorithm as an individual positioning method
and at the same time compare it with other approaches explained in the last section. Even
though the PIV algorithm was initially developed to be applied as a re�nement stage, it
would be of great interest if this new method could also be used to �nd the position of
the wireless sensor nodes in an iterative manner. The following simulations compare the
performance of PIV using RND and DIN distances with the e�ciency of the multilateration
approaches. All the nodes in the network were deployed in a random manner over the
normalized square of 1x1. The virtual position that every single node had at the very
beginning of the localization process was also uniformly distributed.

Figure 5.12 shows the average position errors and their respective standard deviation of
di�erent localization approaches obtained after an average of 100 simulation runs using
4 reference nodes. In order to highlight the strong advantage using the PIV algorithm as
autonomous localization method we �rst refer to a drawback identi�ed using multilateration.
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Looking at the Figure 5.12 (a) where the average error utilizing the multilateration approach
and the RND of the nodes is shown, we can observe that in spite of the fact that we
used the real distances between adjacent nodes, the approach does not �nd the right node
position in cases such as the combination of low density sensor networks and low normalized
transmission radii. The main reason is the lack of su�cient links between the unknown
nodes and the system's beacons. This is the reason that curves using 10 and 20 deployed
sensor nodes do not appear after a normalized transmission radio of 0.5 or 0.4 respectively.
Then, when the network has node deployment bigger than 55 distributed nodes and values of
normalized transmission radius lower than 0.4, the multilateration method does not converge
on the real node position. For the rest of the cases, multilateration using RND yields error
values lower than 0.033.
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Figure 5.12: Position error comparison of a)Multilateration using RND b)multilateration using DV-
Hop c)PIV using RND d)multilateration using ExDIN e)multilateration using FCH and f)PIV using
DIN distances for an uniformly distributed network and 4 Anchors

Unlike Multilateration using RND, the PIV algorithm also using RND (see Figure 5.12 c)is
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able to locate the sensor nodes for all node densities and all radio communication ranges.
For the cases where multilateration fails, PIV can estimate the position of some of the
unknown nodes after 500 iterations. The PIV algorithm can overcame these cases because
it just needs a single connection with a landmark to estimate the node positions rather than
at least 3 beacon links to locate the nodes as in the case of multilateration. Of course, the
position accuracy is better when more connections with the reference nodes are available,
as can be deciphered in Appendix E Figure E.1 and Figure E.2, where the plots have been
produced using 8 and 16 reference nodes.

A weakness of PIV used as localization system is the velocity of convergence. The number
of necessary iterations needed to locate a node can be a potential problem. In Figure 5.12 c,
we see the e�ect of slow convergence of the PIV algorithm. This disadvantage is presented
for all the transmission radii. Looking closer into the run simulations, we realized that the
initial random node positions plays an in�uential role in making the iterative process longer.
After 500 iterations, the algorithm does not reach the real position of the sensor nodes, but
at least produces a signi�cant advance positioning nodes for very low node densities and
low values of transmission ranges. As we can see in Figure 5.12 f, PIV did not overcome the
good results obtained by using Multilateration with FCH with 4 reference nodes.

If we increased the number of landmarks in the system, then the accuracy of PIV became
competitive to FCH, as can be seen in Appendix E in Figures E.1 f and E.2 f where the
simulations have been accomplished by using 8 and 16 landmarks. For the plots obtained by
using 16 beacons, the PIV overcame the error position values of all the approaches producing
average position errors lower than 0.04 for network densities bigger than 75 deployed nodes
in a range of 0.2�04 tranmission radii. We also observe that PIV with RND begins to reach
the right node positions over a transmission range of 0.3 and 0.7 values in all the network
densities, something that RND multilaterion fails to do as well (compare Figures E.1 a
and c).

PIV can estimate the position of sensor nodes using DIN distances with a good execution
for radius values between 0.3 and 0.7 as depicted in Figure E.1 a. Di�erent from the PIV
algorithm, the combination of multilateration and the ExDIN distances (Figure 5.12 d) has
its best performance for a radius value of 0.3 getting average position error lower than 0.25
for all densities. For bigger radius values, the ExDIN algorithm begins to lose accuracy
due to the accumulative landmark to node distances as well as the errors produced by DIN
during the neighbor distance estimations. Algorithms like FCH and DV-Hop working with
correction factors have the advantage to make up for the accumulative errors over the wide
radius range. We can observe in Figure 5.12 b and Figure 5.12 e that the FCH method
works slightly better than the DV-Hop approach. FCH e�ectively compensates the position
errors for medium and high network densities yielding values lower than 0.1 in a radius range
between 0.2 and 0.6. On the contrary, DV-Hop can produce similar error values for 0.2 and
0.3 radius values over 55, 85 and 100 deployed nodes in the network.

A conclusion of using PIV as localization system is that the average accuracy degrades
slightly for networks with higher number of deployed nodes. This tendency in the algorithm
behavior is depicted more clearly in Figure 5.13 c where the average position errors of a
number of 100 simulations runs using PIV with RND is shown. Here, we can see that for
normalized radii bigger than a value of 0.4, the curves tend to slightly misplace the sensor
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Figure 5.13: Comparison of average position error versus number of deployed nodes with
a)multilateration using RND b)multilateration using DV-Hop c)PIV using RND d)multilateration
using ExDIN e)multilateration using FCH and f)PIV using DIN Distances for an uniformly dis-
tributed network and 4 Anchors

nodes when the number of deployed sensor nodes is increased. Using the DIN Distances,
the PIV algorithm presents the same e�ect as can be seen in Figure 5.13 f. The loss of
accuracy of PIV for a large number of sensor nodes is a direct consequence of the velocity
of convergence as will be further described in the next section.

An alternative to alleviate this loss of accuracy using PIV for high node densities is incre-
menting the number of reference nodes in the system. Incrementing the landmarks in the
system, PIV produces better position accuracies using either RND or DIN distances, as
can be seen in Figure E.3 and Figure E.4 letters c and f. Unlike PIV, the multilateration
methods with all the approaches variants maintain relative stable or improve slightly the
position errors for all the cases where the algorithm converges. The plots in Figure 5.13 show
that multilateration develops the best position estimations using radius values between 0.4
and 0.6, while the PIV algorithm is specially precise for radius values from 0.3 to 0.6 using
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DIN neighboring distances. This general trend applies to all the node densities and for all
number of reference nodes as can be seen in Appendix E looking at the curves of Figures E.3
and E.4. The behavior of PIV can be attributed to the fact that the best distance accuracies
produced by the DIN algorithm also have the best performance for almost the same radius
ranges (see chapter 4). Once again, the overall curves of those �gures point to the fact
that the PIV algorithm yields position estimation using all the radii and over all network
densities.

5.3.4 Localization methods comparison in grid nodes deployment

An important point of reference commonly used by the research community is the behavior
of algorithms tested in a grid setup. The subsequent simulations resulted by using a grid
node distribution over a normalized square deployment area. Similar to the positioning error
simulations presented in the section 5.3.3, the number of nodes was varied adding 5 nodes
from an initial number of deployment nodes of 10 to 100 nodes. The nodes were placed on 5
columns separated by a �xed distance of 0.16666 units over the x-axis. The number of rows
depended on how many nodes the simulation run had. The criterion handled to distribute
the rows over the y-axis were determined by the next expresion:

YRowsDist =
1

TN
5 + 1

(5.14)

where YRowsDist is the distance between the node rows (constitued by groups of 5 nodes)
and/or the borderline of the normalized square area. TN is the total number of deployed
nodes in the system. Once more, the virtual initial position of every single node in the
network were placed in a random manner over the square area.

The simulation results using 4 reference nodes in the grid setup can be seen in Figure 5.14.
There, it continued to be noted that in all cases using multilateration with DIN distances
(letters b, d, and e) the grid con�guration had a negative e�ect on the positioning errors for
higher radio transmission compared to the perfomance yield in a uniform node deployment
(see section 5.3.3). On the other hand, the PIV algorithm remained in the same range
of accuracies as presented in the case of a uniform distribution shown in the last section.
However, the node position estimations using PIV continued to be slightly higher as the
best results produced by the multilateration and the FCH algorithm.

Comparing the results using the grid and uniform node con�gurations, we observed that
the nodes in the grid setup was better able to locate nodes using the combination of mul-
tilateration algorithms in comparison to those cases presented in uniform distribution with
low density networks ([10�30] deployed nodes) and low radio transmission ranges ([0.1�0.3]
transmission radius). The curves with low node densities and low radio communication links
appeared later in the uniform distribution than the grid setup. In other words, the curves
with these properties were plotted for higher radio transmission radius than those used with
the uniform con�gurations (see Figure 5.14 and 5.12 letters b, d, and e).

This e�ect in the uniform distribution is produced due to the requirement to have bigger
values of transmission ranges to create direct links with the landmarks or indirect connections
through other neighboring nodes, thereby enabling them to �nd their position in the system.
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Figure 5.14: Average position errors versus normalized transmission radio using a)multilateration
using RND b)multilateration using DV-Hop c)PIV using RND d)multilateration using ExDIN
e)multilateration using FCH and f)PIV using DIN Distancces for a grid node distribution and 4
landmarks

On the other hand, the �xed node position in the grid deployment have helped the nodes
to connect to each other with low radio ranges and low node densities.

Although the PIV algorithm is capable of estimating node positions where some of them have
either direct or indirect landmark contact, the nature of the grid setup negative in�uences
the performance of PIV due to the lack of connections to the landmarks, when using radio
transmission ranges with a value of 0.1 and low density networks producing node clusters in
best cases (as can be seen in Figure 5.14 a and f). Once again, multilateration is the most
a�ected because of the requirement to obtain at least three node to landmark distance to
locate a given node.

The impact of incrementing the number of reference nodes for PIV and the several combi-
nations with the multilateration method can be also seen in the Figures E.5 and E.6 where
the plots using 8, and 16 anchors depicted an improvement over all the position errors and
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all the localizations algortihms. An inspection of the curves resulting from using the PIV
algorithm reveals the usage of di�erent radius values to locate nodes with competitive error
values increases when the number of reference nodes are augmented. Such a behavior is also
con�rmed by the plots of Figures E.7, E.8, and E.9 where the curves show the average posi-
tion errors using a given radio transmission range versus the number of deployment nodes for
4, 8 and 16 anchors in the system respectively. Looking closer at the curves produced with
the PIV algorithm and the DIN neighboring distances, we note that the more number of
anchors at the perimeter of the square area, the better accuracies obtained for the di�erent
radius curves. The best improved curves correspond to values between 0.2 and 0.7 radius
similar to the simulations conducted with uniform distributions.

5.3.5 Velocity of convergence using the PIV algorithm

An interesting question about the performance using the PIV algorithm is how many it-
erations are necessary to develop an acceptable node position accuracy. To answer this
interrogation, we studied once more the results of the average of 100 run simulations in
uniform and single simulations with a grid distribution. The same network parameters used
in section 5.3.2 were utilized in our search for this section. Certainly the �gures belong ex-
clusively to the position errors calculated by using PIV with real neighbor distances (all the
curves placed on the left side) and PIV using DIN neighboring distances (curves positioned
on the right side of the �gures).

PIV in node uniform distribution

First, the plots that show the average position errors versus iteration, with variation in
the number of deployment nodes, are depicted in Figure 5.16 and Figure 5.16 using 4 ref-
erence nodes. An inspection of the curves of Figure 5.16, where we programmed in low
radio transmission ranges, shows that the change of node position estimations for the PIV
algorithm using RND is high before reaching an iteration value of 50. In this stage of PIV,
the algorithm achieves a noticeable reduction of the average position errors.

After this iteration value, 80% of the average curves are in the area where a low location
improvement ratio is reached. On the other hand, the ratio of convergence of the PIV
algorithm using DIN neighbor distances is more a�ected by the size of the radio transmission
range used by the sensor nodes, producing a delay a�ect for the low position improvement
stage reached after 70 iterations.

Observing the curves using RND, we can concluded that the lower the node density the
network had, the faster it is reached the zone where the average position error is slowly
improved. As better displayed in Figure 5.16, the curves with slow densities converge faster
than the curves with a high number of deployment nodes for PIV with RND as well as PIV
using DIN distances. However, that does not necessary means that the curves have the best
accuracies.

It is worth highlighting that PIV produces a satisfactory degree of accuracy for low and
medium network densities as can be seen in Figure 5.16 where the curves using 0.5, 0.7, 1
radio transmission values are depicted. Comparing the curves obtained using the RND to
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Figure 5.15: Average position errors versus iteration using 4 reference nodes with a)0.1R and RND
b)0.3R and RND c)0.4R and RND d)0.1R and DIN distances e)0.3R and DIN distances f)0.4R and
DIN distances

those calculated with DIN, the algorithm converges to the values established by the distance
model. That is to say, the curves display a reduction in the average position error for all the
radius and density values theoretically until they reach the right node position after a large
number of iterations. In the systems where the DIN distances are used, the PIV algorithm
tried to �nd the best node location that minimized distance errors in the neighboring node
distance model. This behavior is clearly depicted when we compare Figure 5.16 c and f.

The curves of Figure 5.16 tended to improve the position of the nodes slower if the radio
transmission was incremented. The slowest values of convergence were for the curves with
high node densities and high network densities.

To better understand the impact of changing the node communication radius on the velocity
of convergence of the PIV algorithm, the curves of Figure 5.17 and Figure 5.18 were simulated
for di�erent network densities using 4 reference nodes in a uniform network distribution.
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Figure 5.16: Average position errors versus iteration using 4 reference nodes with a)0.5R and RND
b)0.7R and RND c)1R and RND d)0.5R and DIN distances e)0.7R and DIN distances f)1R and
DIN distances

Once again the average of 100 simulations are presented on the values of the position errors.
Both �gures show clearly that the most e�cient radio transmission values for the PIV
algorithm using either RND or DIN distances are in the range of 0.2 to 0.7 (as we also see in
section 5.3.3). The curves that present fewer position accuracies are the �rst to converge on
the are of slow error improvement, since most of the cases radio transmission values between
0.4 and 0.7 yield better position estimations but with a slow ratio of convergence.

The convergence of the PIV algorithm is directly related to the number of deployed nodes in
the network. Looking closer at the curves produced by PIV using DIN Distances and RND
distances from Figures 5.17 and 5.18, it is easier to calculate how the knee of the curves
with di�erent node densities is displaced to higher iteration values. This can be explained
as follows: the nodes that are closer to landmarks have the advantage of becoming quickly
its virtual position to the real one since they used the �xed position of the reference node
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Figure 5.17: Average position errors versus iteration using 4 reference nodes with a)10 deployed
nodes and RND b)30 deployed nodes and RND c)50 deployed nodes and RND d)10 deployed nodes
and DIN distances e)30 deployed nodes and DIN distances f)50 deployed nodes and DIN distances

as well their comparisons of neighboring distances, as explained in section 5.3.1.

In constrast to those unknown nodes, the nodes that are placed deeper in the network have
just as accurate information the comparison to their virtual distances (that are not �xed)
and their estimated distances with their adjacent nodes. Thus, these nodes need more
iteration to place themself in the right position, since such nodes depend on the iterative
position correction of their neighbors, the accurate distances from their neighbor distnace
estimations and the initial virtual positions of their neighborhood.

The number of deployed anchors is a critical network parameter for the velocity of con-
vergence of the PIV algorithm, as can be seen in the of appendix F where the position
error curves using 16 reference nodes are shown. looking closer at the curves of Figure F.3
and F.4 we can observe that all the convergent knees of the whole plots using PIV with
DIN distances are placed before the iteration number of 45. The best value was obtained



92 5 Locating the Sensor Nodes

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Iteration
a)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Iteration
b)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Iteration
c)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Iteration
d)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Iteration
e)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Iteration
f)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

 

 

0.1R 0.2R 0.3R 0.4R 0.5R 0.6R 0.7R 0.8R 0.9R 1R

Figure 5.18: Average position errors versus iteration using 4 reference nodes with a)60 deployed
nodes and RND b)80 deployed nodes and RND c)100 deployed nodes and RND d)60 deployed nodes
and DIN distances e)80 deployed nodes and DIN distances f)100 deployed nodes and DIN distances

for very low node densities [10-20 deployed nodes] where the PIV convergence is lower than
13 iterations (see Figure F.3 d).

5.3.6 Discussion of the PIV algorithm behavior

In the last sections, I analyzed the behavior of the PIV algorithm and a comparison with
algorithms based on multilateration. As general conclusions about the perfomance of the
PIV algorithm, I must mention the following points:

The PIV algorithm develops similar or slightly better position accuracies than the ones
produced by multilateration for low and medium network densities with normalized radio
transmission ranges between 0.2 and 0.7 using a low number of reference nodes. If the
number of reference nodes are incremented (at least larger by 8 anchors) then the PIV
algorithm could be utilized as a re�ned method after the �rst phase of a given localization
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process (initial position estimations such as multilateration in our case). The PIV algorithm
as an autonomous localization method has the advantage of locating sensor nodes with the
sole help of a unique reference node. The low converge ratio achieved by PIV for high
network densities constitutes a signi�cant drawback for PIV to be a suitable localization
system in a real testbed scenario due to the relative high communication cost when the
neighboring distance are determined by DIN. An open research topic of the PIV algorithm
is to determine the behavior of the algorihm using other signal technologies comparing the
results once again with other localization approaches using the same network conditions.

5.4 DIN Based Localization: Experimental Evaluation

The attenuation of radio signal with distance and symmetric radio connectivity are common
assumptions in wireless network research. As mentioned in chapter 1, those theoretical
radio properties do not �t real scenarios and true hardware platforms. Due to the good
results of the FCH algorithm obtained for di�erent network distribution, we decided to put
into practice the FCH algorithm on small-wireless sensor devices. At the same time we
pretended to compare these results with other approaches such as DV-Hop, two RSSI based
location methods and the PIV algorithm. The main goal is to measure the impact of a real
environment on the performance of all these approaches. To the extent of our knowledge,
the present study constitutes the �rst performance comparison of several range-based and
range-free localization algorithms implemented on real hardware.

5.4.1 Adaptation of DIN Based Localization for experimental Evaluation

We used the ScatterWeb MSB platform to set up our testbed. The same RSSI threshold
with a value of 33 (-42.5 dBm) characterized in section 4.3.2 was taken to preserve the
arti�cially transmission range of 3 m.

The general communication protocol of each testbed experiment can be divided into three
main stages, which loosely correspond to the constituent execution phases in which the
localization algorithms have been structured throughout the present thesis:

1. Internodal ranges estimation, either via the DIN algorithm or by direct application of
one of the two considered RSSI-ranging functions.

2. Hop-by-hop node-to-anchor extended ranges estimation (applying DV-Hop, ExDIN,
FCH or the RSSI-ranging functions) and initial position determination via multilater-
ation.

3. Re�nement of estimated node locations using the PIV algorithm (the location improv-
ing is solely applied to the algorithms based on the DIN distance estimations).

In phase one, every node in the network sent a HELLO packet to discover neighboring nodes
within its communication range. The transmission range determined by the RSSI threshold
valued at -42.5 dBm (number 33 in the CC1020 communication chip) plays an important
roll in this phase. The nodes drop out a HELLO packet when they receive the transmission
signal with a RSSI value lower than 33, thus only nodes whose transmitted package are
received with RSSI values equal or stronger than -42.5 dBm are considered as neighbor
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nodes. At the end of this �rst phase, every node in the network has already constructed its
neighbor table.

Unlike in chapter 4, the broadcast was initialized by an external master node which activated
the �rst broadcast of the lowest ID node, which later followed the next node broadcast
utilizing a round-robin procedure based on the node IDs. The use of such a succesive
communication protocol has the advantage of minimizing the packet collision.

In order to compute the DIN distances between adjacent nodes, the exchange of neighbor
tables takes place during the �rst phase in the localization protocol. To minimize signal
collisions in the network, the same strategy was used by acquiring the neighbor tables.
That is to say, the neighbor tables interchange with the nodes in a round-robin broadcast
depending on the ID number of every node.

When a node acquires all the neighbor tables in its neighborhood, the node can estimate
the internodal distances applying the polynomial approximation of Equation 4.10 of chap-
ter 4. Finally, this normalized distance (dn) is converted into absolute units (meters) mul-
tiplying dn by the known transceiver communication radio of 3m previously determined in
section 4.3.2.

Every node then automatically identi�es the communication asymmetries the network in the
following manner: if a given node in the table interchange process has received a neighbor
table from a neighbor node (previously registered as neighbor in the node ID broadcast
stage) without its own ID, then both nodes have an assymetrical link. To properly compute
the Ki and Ku factors in these cases, the passive node inserts its own ID on the heard
neighbor table to later calculated the normalized neighbor distance by the DIN algorithm.
A second possible asymmetric case might arise if the node received a neighbor table of
another node that was not registered as a neighbor. In these cases, the neighboring distance
is established with the maximum value of 3 meters.

In the second phase of the localization protocol, the nodes discovered their distances to the
landmarks. The communication protocol implemented for the DV-dist algorithm begins at
the reference nodes which sends a distance packet with the anchor's ID together with the
hop count and the cumulative distance �elds (set to 0 at the very begin). It is important to
consider that only neighboring nodes can spread out the landmark-packets. In other words,
if a node broadcasts the anchor message to other nodes around it, just the receiver nodes
which have the sender node as a neighbor can validate and retransmit this packet through
the system. In every retransmission, the unknown nodes add their DIN distances to the
anchor message, thus the nodes of the next hops decide depending on those distances which
node connection is the shortest path to the reference node.

Once again, the transmission of every anchor packet was implemented similarly to the DIN
procedure using the round-robin scheme based on the anchor's ID. The process of the anchor
package �ooding begins with a unicast of an external node to the lowest ID landmark. The
beacon with the lowest ID sends its anchor package into the network after receiving the
starting signal from the external node and initializes a delay timer. After the expiration of
the timer, the landmark transmits a control packet to the subsequent reference node. Once
the anchor with the highest ID value has propagated its own packet throughout the network,
then it sends a control packet to the external node, �nishing this process.

After the execution of the DV-dist procedure, a set of minimum DIN distances and hops
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to the reference nodes is available in every deployed node as well as at each landmark of
the system. With this information, every anchor computes the FCH correction factor and
sends this data through the network. The FCH corrections packets are transmitted by the
reference nodes utilizing the same round-robin process as DV-dist.

Unlike the ExDIN process, the FCH process does not send back the correction packet in
a hop bv hop fashion, but through a broadcast signal with the maximum transmit power
of the landmark's transceiver. Due to the relatively small dimensions of the deployed area
(8x9m) the correction factor is received by all the unknown nodes with a unique broadcast
saving energy in the scatterweb nodes.

Whenever a node has the available correction factor of a given reference node, the node
can update or correct its corresponding anchor distance estimation using the correction
factor together with the number of hops and the ExDIN distances previously obtained
in the DV-dist process. When an unknown node has at least three coordinates of di�erent
reference nodes and their correction factors respectively, the node computes its own location
by multilateration.

The �nal phase of the localization process is the re�nement of the estimated node locations
using the PIV algorithm. The execution of every iteration can be divided into two subphases:
First, the exchange of the position estimations of the nodes in the local neighborhood, and
second, the computation of the estimated node location using the data of the �rst subphase.

The iterative process begins once more with the transmission of a control packet from the
external monitor node to the reference node with the lowest ID number, thereby activat-
ing a round-robin communication scheme. After receiving the control packet, every node
(including the landmarks) transmits a local broadcast which contains the current position
estimation and its own ID. To avoid packet collision, a delay timer is activated on every
node after its local broadcast to later transmit a PIV control packet to the next sensor node
once the given timer has come to an end.

The iteration of the whole network terminates when the highest ID sensor node sends its
own local broadcast and its delay timer expires. Then the last node indicates to the external
monitor node the end of the round-robin communication process. The monitor node sends
back a packet with the highest power transmission to begin the second subphase of the
system. This transmission possible allows every single node to compute its new position
estimation using the data collected in the �rst subphase and preparing the node for the next
network iteration.

The unique nodes that do not change their own positions are the reference nodes. It is
important to mention that all unknown nodes begin with the position estimation generated
by the FCH, DV-Hop or DV-dist algorithm. A number of 30 iterations has been established
in our di�erent testbeds.

Furthermore, we considered use of two di�erent RSSI based algorithms in our experimental
study to compare the e�ciency of the di�erent algorithms implemented in our nodes. The
�rst approximation is the same used in section 4.5.2. The second approximation function
to derive distances from the RSSI values is the proposed in [25]. The resulting expression of
the di�erent RSSI linear combination and interweaving RSSI values of this work is presented
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as a polynomial function:

f(x)RSSI2 = f(x)indoors_tx1 = −0.2996x2 − 1.407x+ 33.7234 (5.15)

For the distance determination using RSSI values, no RSSI threshold is applied in any of
the node con�gurations. That means, whenever a packet arrives with a signal strength large
enough to be processed then, the RSSI value is substituted on the variable x of the two
RSSI functions to compute the distances.

The position estimations produced for our algorithm are compared with the DV-Hop range-
free technique. Due to the fact that FCH use the hop count between nodes and landmarks,
the protocol of DV-Hop is easily implemented with the protocol as the FCH algorithm.
Two sole restrictions have been programmed on the sensor nodes to estimate their location
through the DV-Hop algorithm. The �rst requirement is that after the broadcast of the
average hop values by every anchor (this broadcast is sent with the same packet of the
factor correction for the FCH algorithm), the unknown sensor nodes must have registered
its hop-distance to the respective landmark obtained in the phase of ExDIN. Otherwise, the
distance to the anchor node is set as unreachable and its respective incoming calibration
factor is ignored. The second condition requires that all of the average hop computed by
the landmarks and later sent out in the broadcast package into the network has to be a
positive value. If the received estimated hop value contains a negative magnitude, the node
identi�es the packect as corrupted and drop it.

When an unknown node has already at least three average hop values then the node is able
to estimate its own position using multilateration. If the node received subsequent packets
with new calibrations factored from other beacons, the node will refresh its own position
using multilateration, adding the additional information.

5.5 Experimental Results and Testbed Set up

The results of our simulations in sections 5.2 and 5.3.2 were very promising; therefore we
decided to implement all the localization algorithms explained in previous sections on the
scatterweb sensor nodes. We use nine di�erent testbed layouts in our experiment. The
di�erent con�gurations can be divided into three groups: the grid node deployment named
uniform distribution, the con�guration that depicts a horseshoe layout, and an assymetric
low node density setup. For the uniform and horseshoe layouts, we settled on 50 and 100
nodes for every case. The nodes were deployed in an 8x9 meter seminar room at the Free
University of Berlin. They were placed on desk and the room was cleared over desk height.

The con�gurations were not just varied in the number of deployed nodes, but also with the
number of reference nodes using either 4 or 8 anchors for every single con�guration. The last
layout named as asymmetric with very low density was populated with 9 unknown nodes
and 8 landmarks. The setups using 8 beacons using 50 nodes and 100 unknown nodes for
uniform and horseshoe con�gurations as well as the low density distribution are depicted in
Appendix G.

The main results are shown in Table 5.2 and Table 5.3 where the average position error
and the standard deviation values associated to the uniform distribution and horseshoe
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distribution respectively are summarized. At �rst inspection of the mean values of both error
position tables, we realize that the RSSI-based location approaches yield satisfactory values
on position accuracies. The straighforward mapping of the signal strength to node-to-anchor
distances and the use of multilateration have been produced a considerable improvement in
location estimation compared to the node ranging values of chapter 4.

Another interesting point is the fact that the number of interweaving RSSI values used for the
creation of the RSSI polynomial functions do not represent a big impact on the localization
accuracies as can be observed by comparing the average values of the RSSI1 and RSSI2
positioning functions in uniform distribution as well as for the horseshoe con�guration.

The best position estimation using a uniform distribution has been obtained with the
ExDIN/DV-Dist algorithm with 4 reference nodes and 100 deployed nodes resulting in an
average position error of 2.02 meters with a deviation standard of ±1.00 meters. Comparing
this error value to the best performance obtained using the RSSI-based approach, an incre-
ment of 10% has be achieved by the ExDIN algorithm. The e�ciency of the FCH algorithm
has overcome almost all the averages error values produce by the DV-Hop algorithm. For
the testbed where 50 nodes and 4 anchors have been deployed, the DV-Hop has obtained
an very slight improvement compared to FCH. A comparison of the FCH average errors to
those generated by the RSSI function shows that FCH has reached an accuracy improve-
ment of 12% using 100 unknown nodes and 4 reference nodes. For the remaining node
con�gurations in uniform distribution, the mean position estimations using the RSSI-based
algorithms have been better than the ones yielded by the FCH algorithm. Although the best
performance for the uniform distribution was provided by the ExDIN/DV-dist algorithm, it
was not able to provide better position estimations for all node setups.

Table 5.2: Average position errors and their respective standard deviations in uniform con�guration

Testbed Absolute
DV-Hop ExDIN/DV-Dist FCH RSSI1 RSSI2

Con�g. Error [m]

4A
50N

Mean 2.6248 2.4281 2.6718 2.4474 2.3161

Stdv 1.4216 1.1476 1.3093 0.9212 0.9475

100N
Mean 2.4288 2.0269 2.1444 2.5323 2.4487

Stdv 1.1540 1.0020 1.0171 0.9866 0.9592

8A
50N

Mean 2.4137 2.5592 2.3353 2.3463 2.2856

Stdv 1.0455 1.373 1.2232 0.8710 0.8405

100N
Mean 3.1027 2.5686 2.4894 2.3512 2.2388

Stdv 1.3487 1.1891 1.2833 0.9798 0.9844

The best location estimation using the horseshoe con�guration was yielded once again by
the ExDIN/DV-Distance algorithm in the setup using 8 landmarks and 100 unknown nodes
with a position accuracy of 1.87 meters and a deviation standard of ±0.85 meters. These
results are a 15% improvement over the best location estimation produced using the RSSI
technique. Analysing the results using 4 anchors with the horseshoe distribution, we observe
that in all cases the best mean position has been accomplished by the ExDIN/DV-Distance
algorithm. Whereas using 8 landmarks the FCH algorithm produces the best accuracy
for the layout with 50 sensor nodes with an average value of 2.16 ± 1.16 meters. For the
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con�guration with 100 deployed nodes the ExDIN algorithm has the best value over all the
cases using the horseshoe con�guration.

The accuracy enhancement over all the testbeds developed by the RSSI-based positioning
methods shows the bene�ts of using the least-square method in the presence of high error
rates. However, the performance of the di�erent range-free algorithms and the RSSI-based
localization methods are surprinsigly di�erent than the expected from the simulations and
the previous study seen in section 4.3. The FCH algorithms and DV-hop algorithms, which
have been presented as the best position estimations in the simulation environment, do not
work properly on our several testbeds due to two main causes:

1. The number of asymmetries in the network

2. The miscalculation of correction factor and average hop values

Table 5.3: Average position errors and their respective standard deviations in horseshoe layout

Testbed Absolute
DV-Hop DV-Distance FCH RSSI1 RSSI2

Con�g. Error [m]

4A
50N

Mean 2.8469 2.6363 2.7378 2.7092 2.6298

Stdv 1.5553 1.0241 1.173 0.8001 0.9099

100N
Mean 3.5244 2.1853 3.2709 2.8427 2.7231

Stdv 1.5693 1.1146 1.2545 0.7657 0.8243

8A
50N

Mean 2.5388 2.3732 2.16 2.4373 2.2988

Stdv 1.2318 1.1351 1.1618 0.7274 0.7636

100N
Mean 3.1032 1.8759 2.1371 2.6317 2.5643

Stdv 1.2910 0.8558 1.0161 0.7634 0.7930

To understand better the e�ect of asymmetries produced in the localization process using real
hardware, we divide the asymmetries of every node in the groups �Connectivity In Range�
and �Connectivity Out of Range� depending on whether the node with the asymmetrical
link is inside or outside the 3m arti�cial communication range.

Figure 5.19 shows the asymmetrical links per node for two of the setups used in our exper-
iments. Here, we can see that a higher proportion of the detected asymmetries corresponds
to sensor nodes located outside the �cticious circular communication radio (depicted as red
bars). As we see in section 1.2, the distortion of the circular communication radio model
are produced by several signal propagation e�ects such as re�ections, refractions, and fad-
ing. These radio transmission phenomena are stronger in real indoor scenarios, producing a
negative impact on the position estimations achieved by the several localization algorithms.

Looking closer at the data obtained by the nodes, we have realized that this kind of asym-
metries have directly a�ected the hop-by-hop counter and the propagation of information
through the whole network. In particular, the �Connectivity Out of Range� is the respon-
sible for the incorrect estimations of the factor corrections calculated in every landmark
when the FCH method is used. In a similar manner, the average value of the hop-distance
used by the DV-hop approach has been barely in�uenced by the same factor as well. These
miscalculations degrade the performance of both algorithms resulting in the poor position
accuracies showed in table 5.2 and 5.3.
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Comparing the accuracy levels shown in the uniform (5.2) and horseshoe (5.3) tables, we
�nd that when using the same anchor fractions and the same number of nodes, the uniformly
distributed layouts have achieved slightly more satisfactory location estimations than those
obtained in the horseshoe topologies. Such inaccuracies in the horseshoe networks meets our
expectation that the distances estimations by DIN, which is the foundation of our positioning
algorithms, perform better in uniform distributions than anisotropic networks. Additionally,
it can be observed that the results do not produces a �nal conclusion related to the number
of reference nodes as well as the node density in the system to the better position accuracies
via multilateration.

An interesting question that we want to examine is the in�uence of the node placement
on the position accuracy achieved by the algorithms implemented on our scatterweb nodes.
Figure 5.20 shows one of the tridimensional plots derived from our di�erent layouts. Here,
we depict the localization errors of several range-free and range-based algorithms versus
node position in a uniform distribution using 4 beacons and 100 unknown nodes. The
spatial distribution of the position errors achieved by all the schemes show that the most
inaccurate values are located at the edge of the deployment area. This phenomena with
the range-free and range-based algorithms is related to the fact that the less information
that a node has about the perimeter of the network to locate itself (regions with low local
densitiy), the more likely the borders of the network will represent a low accuracy distance
estimation area inherited by the theoretical analysis of the DIN algorithm (the ideal radio
disc unit is defective on the perimeter). In addition, the multipath, re�ections, scattering
and other physical phenomena are stronger on the borders due to the proximity of the nodes
with metallic doors, furnitures and windows installed in the seminar room where the nodes
are deployed.

Analyzing the information obtained during run time using the RSSI-based algorithms, we
observe both RSSI functions tend to place all the sensor nodes in the middle of the room
causing exceptionally good values for the inner nodes. This e�ect can be seen in Fig-
ures 5.20 d and e. Di�erent than the RSSI method, most of the range-free methods try
to locate the nodes near its real position with acceptable accuracies not only in the center
area of the network, but also for some nodes deployed close to the borders as shown in
Figure 5.20 c. This e�ect, concentrating most of the location estimations on the center of
the deployed area, is a common characteristic when the mean least-square method is applied
in the presence of distance errors. Due to the result that all our methods seen previously
(with exception of PIV) have used multilateration to �nd the location of the sensor nodes,
the center location trend can bee seen in most of the plots in Figure 5.20, which is stronger
on the RSSI-based localization algorithms. Overall, we can conclude that node placement
does seem to have a strong in�uence on the position calculation in range-free methods, but
more and larger scenarios have to be evaluated to add statistically signi�cant evidence to
such a proposition.

5.5.1 The PIV Algorithm as Re�nement Phase

Although the FCH and DV-Hop approaches do not present the accuracy expected, the
DIN algorithm has still worked producing competitive position estimations through the
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Figure 5.19: Link asymmetries per node in uniform and horseshoe con�gurations
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Figure 5.20: Localization error versus position in uniform network con�guration using 4 anchors and
100 unknown nodes
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ExDIN/DV-dist algorithm. The exceptional location e�ciency obtained using DV-Dist in
horseshoe with 8 anchors and 100 nodes was produced by unusually direct shortest paths
to the landmarks. Since the DIN algorithm presents good position estimations through the
ExDIN algorithm, the implementation of the PIV algorithm as a re�nement stage in our
sensor con�gurations has been developed as the next step.

The main idea for this approach is to use as initial node position estimations the ones
calculated by the ExDIN/DV-Distance, DV-Hop, and FCH approaches. The �nal node
location has been obtained after 30 iterations. The number of iteration was considered
su�cient to evaluate the convergence ratio of the PIV algorithm due to the good initial
location estimations, and the previous simulation runs which showed that the �rst iterations
contribute to the enhancement of position accuracies. Our �ndings are summerized in
tables 5.4 and 5.5. In order to better describe the behaviour of the PIV algorithm, we
introduce a new parameter labeled as ∆PIV in this section. We de�ne ∆PIV as the di�erence
between the initial average position error (Einitial) and the �nal average position error
(Efinal)after the last iteration using the PIV algorithm. Finally, this di�erence is divided
by the initial average position error and multiplied by 100 to create a porcentage (see
Equation 5.16).

∆PIV =
Einitial − Efinal

Einitial
· 100(%) (5.16)

Equation 5.16 shows the relative degree of the position accuracy variation between the
inital and last location phase using the PIV algorithm. A positive magnitude of this metric
represents an enhancement of the initial average displacement estimation, whereas a negative
value is asociated with a loss of the average node position accuracies.

Table 5.4: Position errors after applying the PIV algorithm in uniform con�guration

DV-Hop ExDIN/DV-Distance FCH

Testbed Absolute
Initial PIV(30) Initial PIV(30) Initial PIV(30)

Con�g. Error [m]

4A

50N
Mean 2.4851 2.1764 2.4637 2.3965 2.4321 2.2346

Stdv 1.3449 1.3172 1.2096 1.1695 1.3872 1.2981

∆PIV (%) 12.42 2.73 8.12

100N
Mean 3.2712 2.5417 2.2185 1.8087 2.6512 2.1673

Stdv 1.8767 1.2630 1.0298 0.8408 1.5511 1.0631

∆PIV (%) 22.3 18.47 18.25

8A

50N
Mean 2.4962 1.6466 2.3529 1.6153 2.2356 1.4968

Stdv 1.2829 0.9429 1.1002 1.0221 1.1126 0.8858

∆PIV (%) 34.04 31.35 33.05

100N
Mean 2.3737 1.5808 2.0014 1.3724 1.9738 1.4017

Stdv 1.2417 0.9543 1.2192 0.8704 0.9684 0.8610

∆PIV (%) 33.41 31.43 28.98

Examining the results from table 5.4, an improvement is noticeable for all the experiments
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for all the node con�gurations for the location precision produced after 30 iterations using
the PIV algorithms. Di�erent degrees of position enhancements were successfully achieved
by the iterative method using the average positions calculated by the DV-Hop method.
This method resulted in the higher location improvement in all the experimental cases. The
most successful case of location improvement using PIV was obtained using 50 nodes and
8 reference nodes in the uniform distribution utilizing an initial position attained by the
DV-Hop approach. For this case, a ∆PIV value of 34.04% was yielded.

However, the highest enhancement value does not necessarily mean the best accuracy was
achieved in all our experiments. The best accuracy calculated by PIV as a re�nement algo-
rithm was in the cases where the position estimations where found through the ExDIN/DV-
dist algorithm using 100 deployed nodes in a uniform distribution and 8 beacons with an
average precision of 1.37± 0.87 meters.

We can observe on the initial position reported in the uniform distribution and horseshoe
distribution tables that the most precise locations are attained through the ExDIN algo-
rithm con�rming the �rst results presented in this section. Once again, the initial position
accuracies are a�ected by the node con�guration as it can be seen in table 5.5. Here, the
best average position accuracy has a value of 1.59 ± 0.81 meters using 50 unknown nodes
and 8 reference nodes. Although the initial position estimations for the horseshoe layout
have higher innacuracies, the PIV algorithm does not present higher correction compared
to the ∆PIV values registered in table 5.4. We consider that this behaviour is due to the
close relationship between the PIV and the DIN algorithm and the external factors such as
fading, interference and the number of link asymmetries. The negative value of ∆PIV in
table 5.5 for the testbed where a horseshoe con�guration include 4 reference nodes and 100
unknown nodes is a direct consequence of the anomalies from wireless medium resulting in
an accuracy degradation.

Table 5.5: Position errors after applying the PIV algorithm in horseshoe layout

DV-Hop ExDIN/DV-Distance FCH

Testbed Absolute
Initial PIV(30) Initial PIV(30) Initial PIV(30)

Con�g. Error [m]

4A

50N
Mean 4.4617 3.7843 3.1395 2.6018 3.3185 3.1001

Stdv 1.8726 1.4976 1.5006 1.2438 1.4859 1.2347

∆PIV (%) 15.18 17.13 6.58

100N
Mean 3.7961 3.6606 3.3498 3.5325 3.8940 3.8728

Stdv 2.3595 1.9991 2.0836 2.0344 2.1884 1.9587

∆PIV (%) 3.57 -5.45 0.55

8A

50N
Mean 2.2257 1.7417 2.3076 1.5924 2.1862 1.7526

Stdv 0.9827 0.8817 0.7795 0.8156 1.0816 0.8935

∆PIV (%) 21.74 30.99 19.83

100N
Mean 2.6926 2.0758 2.1115 1.6702 2.1949 1.6479

Stdv 1.0222 0.9377 0.8078 0.7467 0.7733 0.7551

∆PIV (%) 22.91 20.90 24.92
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To assure the best evaluation of the e�ciency with PIV as re�nement algorithm, the same
local DIN distances of each node in the system used to produce the initial positions by using
the range-free methods have been employed to improve the location accuracies through
the iterative algorithm. That is to say, the same set of neighborhoods (created in the
multilateration phase) is used as an input parameter in the re�nement phase. With this
constraint on the PIV algorithm, the location estimations must theoretically converge to the
same position estimation for all nodes independently of the localization methods utilized
before the iterative process.

Looking closer on the results presented on tables 5.4 and 5.5, we observe a considerable
variation of the �nal average position estimations after the PIV iterations. This observation
constitutes an indicator of the in�uence of the initial position on the PIV performance. More
experimental tests with several network densities must be done to discover the impact of the
network topology as well as the node location at the beginning of the iterative localization
phase.

The accuracy attained by using the PIV algorithm as an re�nement phase has produced
a better performance than the results obtained on the multilateration phase. This can be
con�rmed when the �nal average positions errors for uniform and horseshoe distribution
using the iterative algorithm are compared with the average location estimations of the
multilateration phase shown on the tables 5.2 and 5.3. Looking closer at the average values
for uniform distributions, the estimations using the PIV algorithm using 8 anchors (see
Table 5.4) improve the average location errors with an accuracy enhecement from 31%
(DV-Hop algorithm with 8 anchors and 50 nodes of table 5.2)to 49% (DV-Hop algorithm 8
anchors and 100 unknown nodes). The �nal estimations for all the accuracy improvements
by PIV are with 8 anchors are at least 27% more precise than the estimations realized by
multilateration using range-based methods.

The accuracy of PIV using 4 anchors in uniform distributions reached the maximal per-
centage of 17% when the �nal result of PIV using 50 unknown nodes is compared with
the average error obtained using the DV-Hop approach with 4 anchors and 50 nodes (see
table 5.3). Comparing the accuracies improved by PIV with 4 anchors (Table 5.4) and the
results obtained with the RSSI-based algorithms with 4 anchors shown in table 5.3, we can
observe that slight precision enhancements are achieved. Only in the case of the ExDIN with
100 nodes did the results show a signi�cant elevation of accuracy being 21% more accurate
than the best value gathered with any of the RSSI-based localization using 4 anchors and
50 nodes.

When the results of PIV on a horseshoe con�guration is compared with the average errors
gathered through multilateration in the same node distribution, we observe that deploying 8
landamrks, the percentage of accuracy (Table 5.5) over the ones collected in Table 5.3. PIV
produced an enhancement of precision up to 36% (PIV-ExDIN 8 anchors 100 nodes versus
Multilateration RSS1 8 landmarks 100 nodes) over all the node position errors produced in
a horseshoe layout with 8 beacons.

Using 4 landmarks and 50 deployed nodes in horseshoe layout, PIV yields a maximum
accuracy improvement of 45% when we use an initial position estimation calculated by the
FCH algorithm. However, for the case of horseshoe con�gurations with 4 reference nodes,
the precision has not always improved over those obtained by multilateration with the same
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(a) DV-Hop - Initial Pos. Error

0

2

4

6

8 0

2

4

6

8

−4

−2

0

2

 

m

m

 

A
b
s
o
l
u
t
e
 
P
o
s
i
t
i
o
n
 
I
m
p
r
o
v
.
 
[
m
]

−1

−0.5

0

0.5

1

1.5

2

(b) DV-Hop - PIV Pos. Improv.
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(c) ExDIN/DV-Dist - Initial Pos. Error
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(d) ExDIN/DV-Dist - PIV Pos. Improv.
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(e) FCH - Initial Pos. Error
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(f) FCH - PIV Pos. Improv.

Figure 5.21: Spatial distribution comparison of initial position error vs PIV location improvement
using DV-Hop, DV-Dist, and FCH algorithms in a horseshoe con�guration with 8 anchors and 50
unknown nodes
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network conditions. One must keep in mind that the initial experiment values using PIV
with 4 anchors and 50 and 100 deployed nodes (see Table 5.5) have been less accurate than
the misplecement errors gathered for multilateration in the same conditions (as can be seen
in Table 5.3). Thess bad initial values have restricted the enhancement of accuracy of the
PIV algorithm, producing a limited and unsatisfactory improvement over the node position
estimations.

An interesting question we wanted to investigate was the spatial distribution of error cor-
rection after applying the PIV algorithm. The tridimensional representation of the position
errors for the inital phase of the re�nement process (plots on the left columns) and the
absolute value of the PIV improvement on its �nal iteration (plots on the right side) of 50
deployed nodes with 8 landmarks in a horseshoe con�guration are depicted in Figure 5.21.
The graphs shows that the PIV algorithm improve the node location estimations where the
range-free methods lacked precision. The red colored regions of the plot on the right side
depict the areas the maximal position corrections achieved by the PIV iterative method. As
we can see in Figure 5.21, the zones where the least satisfactory position estimations are
obtained after multilateration (see plots of the left column) coincide in most cases with those
where the PIV algorithm has produced the most remarkable accuracy enhancements. The
areas where the re�nement phase produces some accuracy degradations are observed on the
blue colored regions which usually take a maximum negative value up to 1 meter. Another
example which demonstrates the good results incrementing the location estimation through
the PIV algorithm is shown in Figure F.5. With these two examples, we can con�rm the
ability of PIV to correct the position errors where the inaccuracy levels of the network are
higher, as seen in tables 5.4 and 5.5.

5.5.2 The PIV Algorithm Behavior on Low Node Density Network

The density networks presented in the last section are far away from constituting a typical
real network scenario. Taking as reference that most of the real applications work with
sparse node networks, we implemented a new testbed using the scatterweb nodes with a low
node density distribution, as can be seen in Figure G.5. In order to �nd the in�uence of
the number of reference nodes in such networks, an extra layout using 4 landmarks placed
at every corner of the 8x9 m deployed area was implemented with the same nine unknown
nodes.

Figure 5.22 shows the average position error in every iteration of the PIV re�nement phase
using 4 and 8 landmarks. An increment of accuracy on the average location estimations for
both testbeds is achieved by using the PIV algorithm as a re�nement phase. Looking closer
at the curves using 4 anchors of Figure 5.22 a, we note that the nodes have not estimated
their initial positions by the multilateration using the DV-Hop method. This e�ect was
produced because the nodes were not able to forward some of the DV-Hop packages to the
di�erent anchors of the system to later compute the average hop-distance. However, the
initial positions using the FCH and DV-Distance have been completed for both experiments.

In spite of the low connectivity levels of the layouts, a notable reduction of the position
errors has been accomplished by the iterative method. The poor initial average accuracies
attained by multilateration with DV-Dist and FCH using 4 anchors have been improved from
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Figure 5.22: Average position error versus iteration in low node density con�gurations

an average misplacement of 4.64± 1.52 meters using ExDIN/DV-Dist and 4.72± 1.51 using
FCH to a �nal stage after 30 iterations of 2.43 ± 0.42 and 2.43 ± 0.42 meters respectively.
These values consitute an accuracy enhancement of more than 50% on the �nal average
error.

In the experiment using 8 anchors, the results collected show good accuracy improvement
on the average position errors incrementing the precision from 2.44 ± 1.07 meters using
multilateration with DV-Hop, 2.02 ± 0.58 meters achieved by multilateration with FCH
and 1.83± 0.85 meters attained by multilateration with DV-distance, to a �nal estimation
through PIV with values of 1.54 ± 0.93 meters, 1.6 ± 0.99 meters, and 1.33 ± 0.84 meters
respectively. That means, PIV has generated an improvement of a maximum of 36% and a
minimum of 27%.

To better understand the enhancement of the node location estimations by using PIV, the
position errors for each deployed node and multilateration method in the testbed using 8
anchors are depicted in Figure 5.23. Here, the node error positions after the multilateration
phase are depicted by blue bars, while the �nal location errors after 30 iterations using the
PIV algorithm are represented in red. An inspection of the error bars of every node reveals
that nodes with higher IDs have placed better after the iterative method. We found that a
better neighbor table quality allows a better correction of the misplaced nodes in the network.
Nodes, such as the ones with 14, 15, 16 and 17 ID numbers, have precisely calculated their
neighbor DIN distances so they locate better using the PIV algorithm. Altough the iterative
method is not able to correct the position of all the nodes (such as the nodes with the Id
numbers 10 and 12), a vast majority of nodes have presented correction up to more than
2 meters after the re�nement process (see error bars of node 15 in Figure 5.23). Thus, the
usage of PIV in low density networks in worthwhile from a network-wide perspective to
improve the location of the majority of the sensor nodes.
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Figure 5.23: Average position error per node after applying the PIV algorithm for several location
algorithms in low node density network
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5.6 Conclusion

In this chapter, di�erent techniques to locate the nodes of WSN based on the DIN algo-
rithm have been explained. First, di�erent methods to obtain the distances to the reference
nodes such as the ExDIN/DV-Distance, FC, and FCH algorithms have been proposed. The
e�ciency of those node-to-landmark distance methods have been investigated through exten-
sive simulations using the ns-2 simulator with di�erent network densities. The simulation
comparison using multilateration with FCH, ExDIN/DV-Distance and DV-Hop algorithms
has shown that our algorithms produce similar or slightly better position estimations in
uniform and near-uniform con�gurations for a number of deployed nodes. The algorithm
that produced the best performance for the majority of layouts and local densities was the
combination of multilateration with the FCH algorithm.

We suggest a new and innovative algorithm called PIV to �nd the node locations. This
algorithm can be used either as an autonomous localization algorithm or as advanced re-
�nement phase after applying a location sensing approach. The e�ciency produced by the
PIV algorithm has been compared with di�erent multilateration methods such as the Ad-
hoc Position System, the FCH algorithm and the ExDIN/DV-Distance algorithm using a
C++ enviroment with di�erent con�gurations and network densities. Although the PIV
algorithm achieved satisfactory location accuracies in our simulations, in some simulations,
the good position estimations using FCH overcame PIV. These results limited the original
idea of using the PIV algorithm as a re�nement method, but the implementation of di�er-
ent localization methods using real hardware has pointed out the usefulness of PIV in this
phase.

A quantitative experimental performance analysis between di�erent distributed positioning
systems has been addressed in this chapter. The algorithms implemented on the scatterweb
nodes were the DV-hop algorithm, the FCH algorithm, the ExDIN/DV-distance and two
rssi based localization approaches. All the algorithms have been tested in multihop wireless
networks with di�erent number of deployed nodes and several anchors ratios in the system.
To the extent of our knowledge, the practical comparisons between di�erent range-free and
range-based algorithms have been accomplished for the �rst time with a multihop indoor
environment using real sensor nodes.

Our �ndings show that the PIV algorithm produce better position accuracies in practical
enviroments than the RSSI-based algorithms and the other distributed algorithms included
in the study. Althought our �rst simulations have been declined the possible use of PIV
as re�nement phase, the di�erences between the simulation and practical enviroment have
enabled the use of PIV as an iterative method, producing average location errors up to
1.37±0.87 meters for uniform distributed networks and 1.59±0.81 meters for near-uniform
distributions. Furthermore, the re�nement phase in low network densities have improved the
node misplacement up to 53% of the average values achieved by using multilateration. The
best average position estimation in low node densities environment has a value of 1.33±0.84
meters using 8 reference nodes on the perimeter of the node deployment area.

The good accuracies of position estimations using the PIV algorithm as a re�nement phase
with di�erent testbed layouts re�ect the need to in�uence more additional experimental
evaluation in order to better understand the network conditions of real-world scenarios and
the propagation e�ects throughout the wireless medium in indoor enviroments.





CHAPTER 6

Conclusions

This work addressed the problem of recovering the topology of an ad-hoc wireless sensor
network for indoor environments without dedicated hardware and using distributed system.
The foundation of all our location-sensing algorithms was the DIN algorithm which related
the area of intersection of two overlapping transmission ranges to the number of local density
involved to determine their distances. Using this algorithm as the �rst step for di�erent
localization methods to determine the node locations, we have proposed the FCH and the
PIV algorithms. Being the PIV algorithm which achieves the best accuracies in practical
experiments.

The �rst contribution of this thesis is the discovery that the neighboring distances of a
given sensor node can be estimated by the analysis of the local node density. The duty zone
of the DIN algorithm is between SRR values of 0.0769 and 0.5 for uniformly distribution
networks and between SRR values of 0.0625 and 0.5 for near-uniform distribution networks
with the majority of normalized error values below 0.39R. Here, the best average, normalized
distance error has been 0.127R for a uniform distribution of sensor nodes. The good results
obtained by testing the DIN algorithm with di�erent testbed layouts re�ect the �ndings of
the simulations, although we were only able to analyze a fraction of the simulation cases.

Figure 4.12 demonstrates the advantage of using DIN to determine neighboring distances
versus RSSI ranging methods in uniform and horseshoe con�gurations. The ranging values
yielded by using DIN are more than double the accuracies computed by the RSSI-based
approaches.

The advantage of the DIN approach is that it does not need any kind of additional special-
ized hardware to determine distances, making it suitable for advances ad-hoc localization
phases. Furthermore, DIN keeps the usage of memory, the communication overhead, and
the computational process load at minimum. We, therefore, have used the DIN algorithm
as the ranging method to discover the location of the sensor nodes.

Motivated by the good accuracies accomplished by DIN, four di�erent localization schemes
based on the DIN algorithm have been suggested in chapter 5. These algorithms are the
ExDIN/DV-Distance algorithm , the FC algorithm, the FCH algorithm, and the PIV iter-
ative method. The �rst three techniques have been oriented to estimate node to reference
node distances, which later helps compute the node position by multilateration. A series
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of simulations using the ns-2 enviroment have shown that the best position accuracies are
achieved using the FCH algorithm with multilateration. The FCH algorithm was confronted
with the e�ciency of the DV-Hop algorithm in uniform and near-uniform networks with sev-
eral network densities as can be seen in Figures 5.6, 5.9, and 5.10.

We completly simulated the PIV algorithm as an autonomous localization method using
DIN and real neighbor distances confronting the multilateration method using real neighbor
distances, as well as the DV-Hop, ExDIN/DV-distance, and FCH algorithms in an ideal
environment simulator based on the C++ language. This characterization comprises the
analysis of the di�erent algorithms, varying the anchor fraction in the system, the number
of deployed nodes, and the transceiver communication ranges in uniform and near-uniform
distributions.

After the performance analysis of all the algorithms, we realized that in spite of using the real
neighbor distances in multilateration for a multihop environment, it does not mean that the
method will �nd the right node positions. This is due to the snake-like twisted paths through
other node connectivities in the network, that a given node has to navigate through to reach
a landmark. This navigation a�ects all the algorithms that use the multilateration method.
As in our result simulation, the FCH algorithm presented better accuracies, correcting the
snake path problem in the majority of node densities and in all the simulations that vary
the number of deployed nodes and/or the radio transmission ranges.

Although the PIV algorithm does not share the snake path problem, the simulations of
the PIV algorithm are not more accurate than the multilateration approaches for all the
number of deployed nodes or all the values of radio communication ranges. The duty zone
where PIV a lighter increment of precision than the multilateration methods is con�ned
to normalized radio transmission ranges between 0.2 and 0.4 with medium and high node
densities (in our simulations between 45 to 75 deployed nodes) for the most of the network
settings with normalized error values less than 0.15.

An interesting point always present in the simulations was that the PIV algorithm could
estimate the node positions of very low node density networks. Unlike the multilateration
approaches, the PIV algorithm is able to estimate node locations using a single connection
with one of the deployed landmarks.

A weakness of PIV used as a localization system is the velocity of convergence. The number
of necessary iterations needed to locate a node can be a potential problem for some radio
transmission ranges and high density networks as can be seen in Figure 5.12 c. However,
if the number of landmarks is increased in the system, then the accuracy of PIV became
competitive compared to the FCH algorithm, as can be seen in Appendix E. After di�erent
simulations of PIV with uniform and grid distributions varying the number of deployed
nodes, radio communication ranges and number of reference nodes, we concluded that the
�rst 50 iterations of the PIV algorithm represent an 80% change ratio of the iterative process.
That is to say, the �rst iterations using PIV have a bigger impact on the increment of the
locaction accuracy than the higher iteration values. The number of minimum iterations to
reach a good position accuracy is directly proportional to the number of deployed nodes in
the network, but inversely proportional to the number of anchors in the system.

The good results observed in the simulations of the several localization methods, it is con-
�rmed by the di�erent practical testbed using the scatterweb sensor nodes. The experi-
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Table 6.1: Comparison table for di�erent algorithms and locate-sensing prototypes in WSN 

 
Parameters  Centroid  Bounding 

Box 

Ad‐hoc 
Localization 
System 

Ad‐hoc 
Positioning 
System 

Easy 
Living 
System 

N‐Hope 
Multilateration 

Approximate 
Point‐in‐

Triangulation 

Pushpin 
System  NIDES  Cricket 

System 

 
ExDIN  FCH  PIV 

Scalability  ‐‐  +  +  ++  ‐  +  ‐  ‐‐  ++  ‐  +  ++  + 

Computational 
Effort  ##  ##  #  #  **  O  ##  O  #  #  ##  ##  ## 

Self‐Organizing  O  O  +  ++  ‐‐  +  O  ‐  +  +  +  +  + 

Distance 
Estimation  NA  O  +  +  ++  +  NA  +  +  +  O  O  + 

Anchor fraction  **  *  O  O  NA  O  *  *  NA  O  O  O  # 

Energy Efficient  ++  +  O  +  ‐‐  ‐  +  O  O  ‐  +  +  O 

Real Hardware 
Implementation  +  NA  +  NA  ++  +  NA  ++  NA  ++  ++  +  ++ 

Cost 
Implementation  ##  NA  O  NA  **  O  NA  *  NA  *  ##  ##  ## 

Position 
Accuracy  ‐  O  +  +  ++  +  +  +  NA  +  O  +  ++ 

Refinement  NA  NA  +  NA  NA  +  NA  NA  NA  +  NA  NA  ++ 

 

mental analysis presented in this thesis constitutes to the extent of our knowledge the �rst
quantitative comparison which compares several distributed localization algorithms indoors.
Nine di�erent network con�gurations with several anchor fractions and node densties have
been employed to evaluate three of our algorithms (the ExDIN/DV-Dist, FCH and PIV
algorithm), comparing with the performance of the DV-Hop algorithm and two RSSI-based
localization methods.

Examining the results achieved by the algorithms which use the multilateration method, we
were aware of the dissimilarities between the ideal simulation enviroment and the real-world
scenario. Physical phenomena such as asymmetry communication links between nodes,
interference, multipaths, re�ections, and strong �uctuetion in the radio signal have been
common precision attenuators for all the algorithms tested. In spite of the real wireless
characteristics, the best position estimation using a uniform distribution has been obtained
with the ExDIN/DV-Dist algorithm resulting in an average position error of 2.02 meters
with a deviation standard of ±1.00 meters (see Table 5.2). An increment of the average
position accuracy has been reached for the horseshoe con�guration using the ExDIN/DV-
Dist algorithm with an average position accuracy of 1.87 meters and a deviation standard
of ±0.85 meters (see Table 5.3).

Although the best average values have been calculated by our algorithms, they represent a
maximum enhancement of 11% for uniform distribution and 18% for the horseshoe con�gura-
tion compared to the best performance values attained by using the RSSI-based localization
algorithms of every distribution. Unlike the multilateration algorithms, the PIV algorithm
used as a re�nement phase has con�rmed the better accuracy of position estimations of
our approach compared to the multilateration algorithms and the RSSI-based localization
systems.

The best accuracy of using the PIV algorithm in uniform distributions was 1.37±0.87 meters
(see Table 5.4) which depicts an enhancement of position accuracy of 39% comparing with
the best result yielded by using the RSSI technique in this con�guration. For the horseshoe
layout, the best precision of the PIV algorithm has a value of 1.59 ± 0.81 meters (see
Table 5.5) re�ecting an increase in the location precision of 30% in comparison to the best
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value achieved by the RSSI approaches.

Finally, a test with an asymmetric con�guration and low node density has been conducted
to examine the behavior of PIV on such network settings. The best accuracy of PIV on this
network conditions has a value of 1.33 ± 0.93 meters, improving the initial position of the
nodes up to 37% of the node misplacements as can be seen in Figure 5.22. Our �ndings
show that the PIV algorithm produced better node position estimations when the algorithm
is put into practice with real sensor nodes rather than other distributed algorithms and the
classical RSSI techniques. Nevertheless, we need more experiments to better understand the
real-world conditions. In chapter 3, we have compared di�erent range-free algorithms as well
as position-sensing prototypes in WSN. Table 6.1 is an extended version of Table 3.3 which
includes the three localization algorithms proposed in this thesis. The criteria to evaluate
all these algorithms were the same symbols as those used on Table 3.3.



CHAPTER 7

Future Work

The performance of the DIN algorithm was evaluated analytically, by ideal programming
environment with help of the ns-2 simulator and the C++ based simulator, and �nally using
real hardware in uniform and near-uniform distributions, varying the number of deployed
nodes, the anchor ratio, and the radio communication range in chapter 4. However, it is
necessary to examine the behaviour of DIN in no-uniform distributed networks. To achieve
this goal, simulations with di�erent network densities have to be programmed.

Since the DIN algorithm is the foundation for the PIV algorithm, ExDIN/DV-distance
algorithm, and the FCH algorithm proposed in this work, it will be especially interesting to
�nd out whether a lower bound for the number of neighboring nodes and a given accuracy
for the three algorithms can be derived for multi-hop, medium, and high density networks.

Another important point to investigate is the impact of changing the ideal transmission
range to determine more accurate neighboring distances by using the DIN algorithm and
the in�uence on the performance in our three proposed algorithms.

Taking the practical perspective of the DIN algorithm, it is necessary to minimize the
degradation of accuracies due to the hostile features of the wireless medium such as the
asymmetry communication links, the �uctuations of the radio signal, re�ections, and other
attenuators causing external factors.

An investigation into the in�uence of the �ctitious variable transmission range in the DIN
algorithm using di�erent transmission power into di�erent real scenarios is a desirable future
work.

Another aspect not addressed yet in this thesis is the dropped packages due to external
factors on the FCH algorithm and PIV algorithm. The importance of the delivery of in-
formation between anchors throughout the network is of decisive importance with respect
to the estimation of the factor correction. On the other hand, the neighboring information
of a given node is essential to new position computation on the iterative method (see sec-
tion 5.3.1). The study has to be considered from the network layer perspective to discover
the minimum and maximal ratio of the package lost as well as its relationship with the
accuracy of the whole system.

To complete this goal a more realistic physical model has to be developed in C++ language
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that should take into account phenomena such as re�ections, selective fading, spatial and
temporal radio signal �uctuations, multipaths, packet collisions, and corruption of trans-
mitted packets in order to provide a more accurate environment simulations.

An open question to be explored is the repercussion of changing the number of reference
nodes over the whole system on the accuracy of the FCH and the PIV algorithms. In one
hand, the velocity of convergence of the PIV algorithm is notable better when the number
of anchors is incremented over the perimeter of the deployed area (see section 5.3.5), but the
in�uence of the landmarks deployed either on previous selected areas or deployed randomly
on the position estimations is including as next future work.

A better understanding of the use of a PIV algorithm as a re�nement phase has to be
conducted by simulations paying special attention to the conditions that achieve the good
convergence to the real node position. Factors, such as the initial position estimations,
the connectivity of the neighboring nodes, the neighboring distance estimations, number of
neighbor nodes, the number of inner unknown nodes or/and reference node on the neighbor
tables, and the scope of the communication link directly a�ect the performance of the PIV
algorithm. For this reason, simulation and practical tests using real hardware focused on
those parameter is a worthwhile analysis for the future.

A practical usage of PIV as a re�nement phase is based on section 5.5.1's very acceptable
results. Nevertheless, the analysis of the PIV algortihm as an autonomous localization
method is still an open topic in our work. Therefore, we plan to implement the position-
aware system with real hardware the help of PIV as a localization approach.

Finally, it is necessary to develop a graphical interface to display on a central computer the
location of the sensor nodes. The integration of this interface is especially advisable due
to the facility to collect the main parameters of the distributed network. The collection of
data on real time under real wireless scenarios will provided an easy and quick analysis of
the di�erent algorithms implemented on the sensor nodes.
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APPENDIX A

We will present the mathematical solution for laterion on two dimensions. The extension
for the solution on three dimensions required solely the addition of a fourth distance from
the node to the Landmark.

A.1 Solution with three beacons

We consider three reference nodes or beacons with positions determined by the coordinates
(xi, yi) for i = 1, 2, 3, a node with unknown location (xu, yu), and its distance values from
the reference nodes ri, i = 1, 2, 3

The relationship of these elements can be denoted by a set of equations as follows

(x1 − xu)2 + (y1 − yu)2 = r21 (A.1)

(x2 − xu)2 + (y2 − yu)2 = r22 (A.2)

(x3 − xu)2 + (y3 − yu)2 = r23 (A.3)

Substracting A.3 from A.1 and A.2, we achieve the next two equations rearranging all the
terms:

(x1 − xu)2 − (x3 − xu)2 + (y1 − yu)2 − (y3 − yu)2 = r21 − r23 (A.4)

(x2 − xu)2 − (x3 − xu)2 + (y2 − yu)2 − (y3 − yu)2 = r22 − r23 (A.5)

Since we are interested in writing the equations as a set of linear equations, we expand all
the binomial expressions of the Equations A.4 and A.5 and rearrange terms resulting in

2 (x3 − x1)xu + 2 (y3 − y1) yu =
(
r21 − r23

)
−
(
x2

1 − x2
3

)
−
(
y2
1 − y2

3

)
(A.6)
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2 (x3 − x2)xu + 2 (y3 − y2) yu =
(
r22 − r23

)
−
(
x2

2 − x2
3

)
−
(
y2
2 − y2

3

)
(A.7)

These equations can be rewritten into a linear matrix form as

2
[
x3 − x1 y3 − y1

x3 − x2 y3 − y2

] [
xu
yu

]
=
[ (

r21 − r23
)
−
(
x2

1 − x2
3

)
−
(
y2
1 − y2

3

)(
r22 − r23

)
−
(
x2

2 − r23
)
−
(
y2
2 − y2

3

) ] (A.8)

For a system of linear equations in the form Ax = b, we get the solution of x when the mean
square error ||Ax− b||2 is at a minimum. Applying the property of 2-norm of a vector (the
square root of the sum squares of the vector elements), we obtain:

||Ax− b||22 = (Ax− b)T (Ax− b) = xTATAx− 2xTAT b+ bT b (A.9)

Minimizing this expression is equivalent to minimizing the mean square error. Regarding
this as a function in x, its gradient has to be set equal to zero:

2ATAx− 2AT b = 0↔ ATAx = AT b (A.10)



APPENDIX B

We will present the mathematical basis for the algorithm called Weighted Density of Node
Intersection (WDNI). The basic idea of WDNI is to approximate distances between two
nodes using only the knowledge of local node densities, which is the number of nodes within
the communication range of another. To derive a distance from this knowledge and imple-
ment an algorithm accordingly, we proceed in the following three steps:
First, we �nd a mathematical expression for the distance between two nodes in terms of the
intersection area of their communication ranges. This distance we relate to the number of
the neighboring nodes in the intersection area, constructing an approximation by means of
evaluating di�erent sizes of uniformly distributed networks. Finally, we weigh this distance
with the number of nodes in the union of their communication ranges.

B.1 Relating distance to radio intersection area

We based WDNI on an idealized radio model in order to de�ne an approximation model.
Although we are aware of this assumption being false in reality as discussed in section 1.2,
we use it in order to simplify the mathematical foundation.
Three main assumptions were taken into consideration:

1. Unit disc graph radio transmission range.

2. Identical transmission ranges for all the nodes in the network.

3. Uniform distribution of nodes in the network.

Considering the two nodes as shown in Figure B.1, we can obtain the intersection area
Ai of the overlapping transmission ranges depicted as circles by geometrical analysis. The
equations of the two circles with r, R being the radii describing the range of the nodes, are:

X2 + Y 2 = R2 (B.1)

(X − d)2 + Y 2 = r2 (B.2)
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Figure B.1: Geometric analysis of the intersection area of overlapping transmission ranges

Combining B.1 and B.2 and solving for X results in

X =
d2 − r2 +R2

2d
(B.3)

Substituting B.3 in B.1 and solving for Y , half of the length of chord α is obtained

Y =
α

2
=

√
4d2R2 − (d2 − r2 +R2)2

4d2
(B.4)

Assuming similar transmission ranges R=r, the entire chord length is α=2Y , thus

α =
√

4R2 − d2 (B.5)

To �nd the intersection area between the two circles, we take two times the formula of a
circular section of radius R

Ai = 2R2 cos−1(
d

2R
)− d

2

√
4R2 − d2 (B.6)

Finally, the normalized intersection area An can be described as a function of the transmis-
sion range and the normalized distance between the nodes.

An = 2R2 cos−1(
dn
2R

)− dn
2

√
4R2 − d2

n (B.7)

Since we are interested in �nding an expression for the distance, we have to solve equation
B.7 for dn. The Newton-Rapson Method has been used to �nd the roots of the function
with MatLab

f(dn)− f−1(An, dn) = 0 (B.8)
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resulting in a family of polynomial expressions of di�erent degrees. We veri�ed that the a
polynomial of degree 3 is su�cient for our algorithm.

dn = 0.0239A3
n + 0.245A2

n − 1.006An + 1.9254 (B.9)

Equation B.9 now gives us the normalized distance between nodes that share intersecting
transmission ranges dependent on the normalized area of this intersection.

B.2 Relating distance to the probable number of nodes in the intersection

area

Due to the restricted resources available on real sensor nodes, it is not suitable to design
an algorithm that requires in-situ complex mathematical computations. The idea is to map
this problem in such a way to create a more light-weight one by demanding the sensor
nodes to conclude their distances from the number of their neighboring nodes. Under the
assumption of uniformly distributed networks, the number of nodes in the intersection area
Ai is proportional to this area. We refer to this quantity of nodes as Ki.

An ∼ p(d,Ki) ∗Ki (B.10)

where p(d,Ki) describes the relationship between distances between nodes and the number
of nodes in the intersection area. We obtained this approximation by running a multitude
of simulations with a variety of node densities.
The graphs plotted in Figure B.2 have been derived using the ns-2 network simulator. Into
a rectangular area of 400 x 400 meter, a number of nodes ranging from 5 to 100 nodes
has been deployed in a uniform fashion. For our approximation, the radio communication
range was set to 250 meters. This way, we vary Ki, getting an idea about its behaviour
in networks with low, medium and high density. To plot each graph, the average distance
between two nodes for a given Ki using 20 simulations has been taken into account. Note
that for better comparability both axis of the graph are normalized. As can be seen clearly,
the di�erent graphs of Figure B.2 converge in the function p(d,Ki). Therefore, we can use
the knowledge about Ki to determine the distance between nodes, remaining aware of the
transmission range and the network density.

B.3 Weighting the approximation with local node densities

Although using the distance approximation p(d,Ki) in equation 4.10 is valid, the error of
the estimation can be further minimized by taking into account the local node densities of
participating nodes. The approximation can be made more accurate by weighting it with
the number of nodes that are in the union of their transmission ranges, which we denote as
Ku.

An ∼
p(d,Ki) ∗Ki

Ku
∗ π (B.11)
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Figure B.2: Approximation graphs to estimate distance depending on (Ki) for di�erent node densi-
ties

The equation is multiplied by π due to circular, normalized transmission ranges, thus pro-
ducing a unit disk graph model. This completes the mathematical steps of WDNI since
every node in the network can estimate its distance to adjacent nodes by using equation
B.11 in combination with equation 4.10.



APPENDIX C

Here we present the plots obtained by the simulation of the ExDIN and DV-Hop algorithms
using a �xed number of 100 nodes. Four reference nodes have been deployed on the corners
of a square area which have been varied from 250 meters to 2500 meters. Every graph
displays the result of 30 simulation with uniform deployment. The length of network is
speci�ed in every �gure caption of this section.
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Figure C.1: Comparison of the error resulting from simulations of the ExDIN and DV-Hop techniques
for an uniformly distributed network with (a) L = 250, (b) L = 500, (c) L = 750, and (d) L = 1000
meters
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Figure C.2: Comparison of the error resulting from the simulations of the ExDIN and DV-Hop
algorithms for a uniformly distributed network with (a) L = 1250, (b) L = 1500, (c)L = 1750, (d)
L = 2000, (e) L = 2250, and (f) L = 2500 meters



APPENDIX D

In this section, the curves of normalized distance errors of the FC, FCH and DV-Hop meth-
ods using the ns-2 simulator are presented. Four Landmarks are placed in every corner of
the square area. The Length (L) of the square side where the nodes are deployed is varied
from 250 to 2500 meters. The average of 10 simulation runs using a �xed number of 100
nodes with di�erent network densities are displayed in each graph.
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Figure D.1: Comparison of the normalized errors resulting from simulations of the FC, FCH and
DV-Hop techniques for an uniformly distributed network with (a) L = 250, (b) L = 500, (c) L = 750,
and (d) L = 1000 meters
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Figure D.2: Comparison of the normalized errors resulting from the simulations of the FC, FCH
and DV-Hop algorithms for an uniformly distributed network with (a) L = 1250, (b) L = 1500, (c)
L = 1750, (d) L = 2000, (e) L = 2250, and (f) L = 2500 meters



APPENDIX E

In this section, the curves of average position error obtained by using PIV with RND and
DIN neighbor distance as well as the multilateration method with RND in combination with
ExDIN, DVHop and FCH lagorithms are presented. The simulation were programmed with
C++ programming language.
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Figure E.1: Position error comparison of a)Multilateration using RND b)Multilateration using DV-
Hop c)PIV using RND d)Multilateration using ExDIN e)Multilateration using FCH and f)PIV using
DIN Distancces for an uniformly distributed network and 8 Anchors
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Figure E.2: Position error comparison of a)Multilateration using RND b)Multilateration using DV-
Hop c)PIV using RND d)Multilateration using ExDIN e)Multilateration using FCH and f)PIV using
DIN Distancces for an uniformly distributed network and 16 Anchors
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Figure E.3: Comparison of average position error versus number of deployed nodes with
a)multilateration using RND b)multilateration using DV-Hop c)PIV using RND d)multilateration
using ExDIN e)multilateration using FCH and f)PIV using DIN Distancces for an uniformly dis-
tributed network and 8 Anchors
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Figure E.4: Comparison of average position error versus number of deployed nodes with
a)multilateration using RND b)multilateration using DV-Hop c)PIV using RND d)multilateration
using ExDIN e)multilateration using FCH and f)PIV using DIN Distancces for an uniformly dis-
tributed network and 16 Anchors
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Figure E.5: Average position errors versus normalized transmission radio using a)multilateration
using RND b)multilateration using DV-Hop c)PIV using RND d)multilateration using ExDIN
e)multilateration using FCH and f)PIV using DIN Distancces for a grid node distribution and 8
landmarks
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Figure E.6: Average position errors versus normalized transmission radio using a)multilateration
using RND b)multilateration using DV-Hop c)PIV using RND d)multilateration using ExDIN
e)multilateration using FCH and f)PIV using DIN Distancces for a grid node distribution and
16 landmarks



136 E

15 25 35 45 55 65 75 85 95
0

0.05

0.1

Number of deployment nodes
a)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

15 25 35 45 55 65 75 85 95
0

0.05

0.1

0.15

0.2

0.25

Number of deployment nodes
b)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

15 25 35 45 55 65 75 85 95
0

0.1

0.2

0.3

0.4

Number of deployment nodes
c)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

15 25 35 45 55 65 75 85 95
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of deployment nodes
d)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

15 25 35 45 55 65 75 85 95
0

0.05

0.1

0.15

0.2

0.25

Number of deployment nodes
e)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

15 25 35 45 55 65 75 85 95
0

0.1

0.2

0.3

0.4

0.5

Number of deployment nodes
f)

A
ve

ra
ge

 P
os

iti
on

 E
rro

r [
d/

R
]

 

 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure E.7: Average position errors versus number of deployment nodes using a)multilateration
using RND b)multilateration using DV-Hop c)PIV using RND d)multilateration using ExDIN
e)multilateration using FCH and f)PIV using DIN Distancces for a grid node distribution and 4
landmarks
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Figure E.8: Average position errors versus number of deployment nodes using a)multilateration
using RND b)multilateration using DV-Hop c)PIV using RND d)multilateration using ExDIN
e)multilateration using FCH and f)PIV using DIN Distancces for a grid node distribution and 8
landmarks
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Figure E.9: Average position errors versus number of deployment nodes using a)multilateration
using RND b)multilateration using DV-Hop c)PIV using RND d)multilateration using ExDIN
e)multilateration using FCH and f)PIV using DIN Distancces for a grid node distribution and
16 landmarks



APPENDIX F

In this section, the curves of average position error versus number of iterations obtained by
using PIV with RND and DIN neighbor distance with di�erent number of reference nodes
are presented and plots related with the behaviour of the PIV algorithm using real sensor
nodes.
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Figure F.1: Average position errors versus iteration using 16 reference nodes with a)0.1R and RND
b)0.3R and RND c)0.4R and RND d)0.1R and DIN distances e)0.3R and DIN distances f)0.4R and
DIN distances for a uniform node distribution
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Figure F.2: Average position errors versus iteration using 16 reference nodes with a)0.5R and RND
b)0.7R and RND c)1R and RND d)0.5R and DIN distances e)0.7R and DIN distances f)1R and
DIN distances for a uniform node distribution
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Figure F.3: Average position errors versus iteration using 16 reference nodes with a)10 deployed
nodes and RND b)30 deployed nodes and RND c)50 deployed nodes and RND d)10 deployed nodes
and DIN distances e)30 deployed nodes and DIN distances f)50 deployed nodes and DIN distances
for a uniform node distribution
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Figure F.4: Average position errors versus iteration using 16 reference nodes with a)10 deployed
nodes and RND b)30 deployed nodes and RND c)50 deployed nodes and RND d)10 deployed nodes
and DIN distances e)30 deployed nodes and DIN distances f)50 deployed nodes and DIN distances
for a uniform node distribution
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Figure F.5: Spatial distribution comparison of initial position error vs PIV location improvement
using DV-Hop, DV-Dist, and FCH algorithms in a horseshoe con�guration with 4 anchors and 100
unknown nodes



APPENDIX G

In this section, di�erent node con�guration used in the real experimental testbed are shown.
The layouts that used four reference nodes can be obtained removing the landmarks from
number 5 to 8 and sustracting four for every ID of the unknown deployed nodes.
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