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Chapter 6

Mobile OLAP in Wireless
Infrastructure Based Networks

This chapter provides a detailed presentation of FCLOS, a complete mobile infor-
mation system, explicitly designed for OLAP [112]. Specific parts of the system,
requiring a more thorough analysis, are presented in Chapters 7, 8.

The chapter is structured as follows: Section 6.1 gives the motivation behind
this work. In Section 6.2, we define the requirements of mOLAP architectures.
Section 6.3 explains the system architecture, including the data model, the server
and client architecture. In Section 6.4, the scheduling algorithm is presented.
Section 6.5 explains the cost model, based on which an extensive experimental
evaluation, presented in Section 6.6, takes places.

6.1 Motivation

Chapter 2 presented the background of MDDBs. Multidimensional data has been
traditionally used in DWs to manage huge amounts of data, to aggregate and
navigate into hierarchies. Nevertheless, as the amount of data, which applications
have to handle, grows over the time, it is rational to expect a wider adoption of
this model. Data warehousing is increasingly used not only for strategic, but for
operative decision making as well. Ubiquitous access to corporate data is already
success critical for every business.

In parallel, the wireless domain has been experiencing substantial growth in
the past years. Great advances, both in wireless networks and respective mobile
devices functioning within their proximity, enable a wide-scale adoption of such
systems. In the respective application domain, vendors of mobile devices continu-
ously produce smaller, cheaper and more powerful devices, which are able to run
more sophisticated applications and network services. Consequently, organiza-
tions are deploying mobile applications because substantial business benefits can
be safely assumed. As seen in Chapter 3, mobile data management is already an
established research and application area.
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Figure 6.1: mOLAP in wireless infrastructure based networks

The intersection of the aforementioned areas motivates us to examine the case
of mOLAP applications. As a motivating application scenario, we refer to an
example described in [139], which considers the case of brokers accessing a stock
market gallery data mart. At opening and closing times, different stocks in differ-
ent financial dimensions are analyzed by many traders using some mobile device,
typically laptops. Some of these stocks are more popular than other; similarly,
some analytical dimensions are more important than other. In such scenarios, a
data mart equipped with a broadcast gateway is responsible for serving the incom-
ing requests. Figure 6.1 depicts a general mOLAP architecture in infrastructure
based networks. It is important to underline though, that our architecture is by
no means restricted to dissemination of OLAP data, but can be used for dissemi-
nation of any kind of multidimensional, aggregated data as well.

Section 4.3 thoroughly analyzed, why general broadcast systems cannot pro-
vide efficient, scalable and robust mOLAP. In Section 5.3.5, we argued that existing
mOLAP architectures, although considering exclusively OLAP data, do not fully
exploit its properties, being mere extensions of existing general broadcast sys-
tems. Before presenting FCLOS though, we define the requirements for mOLAP
architectures.

6.2 Requirements

Section 5.3 defined the criteria based on which mOLAP architectures can be eval-
uated and thus indirectly presented the main mOLAP requirements. However,
requirements and evaluation criteria are not always identical, therefore we explic-
itly define the requirements for mOLAP architectures:
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1. Offline functionality : In the case of network disconnections, end users should
retain offline functionality, i.e., dataset navigation capability.

2. Online functionality : mOLAP end users should be able to pose any kind of
query, just as they would in the case of desktop OLAP.

3. Efficiency : mOLAP architectures should optimize query access time, energy
consumption and generated traffic.

4. Scalability : The system’s performance should be independent of the number
of end clients.

5. Self adaptiveness: The system should not be designed under specific work-
load assumptions. It should operate both under relatively low workloads
without unnecessarily consuming bandwidth, and under relatively high work-
loads retaining acceptable performance.

6. Load balancing : The system should maintain load balancing mechanisms,
when server or clients get overloaded.

7. Query distribution independence: The system should be independent of the
query distribution.

8. Physical structure independence: The system should be independent of the
data cube physical implementation. The integration of any future data cube
physical structure should be seamlessly feasible, without this influencing the
scheduling decisions.

6.3 System Architecture

A general mOLAP architecture is depicted in Fig. 6.1. It consists of the following
basic components:

• Application (FCLOS) server

• OLAP servers (backend)

• Wireless gateway

• Mobile clients

Assume n mobile clients {M1, M2, ..., Mn} that issue queries using a wireless
uplink channel. A wireless gateway acts as an intermediate element to finally
propagate the incoming requests through the internet to the application server.
There is no direct communication between mobile clients. The application server
is responsible for fetching the appropriate data from the backend OLAP servers, if
not already available in its local resources. Through the wireless gateway it uses a
downlink channel to broadcast the data. Without loss of generality, we assume one
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Figure 6.2: Overview of the FCLOS server architecture

downlink channel for one queried data cube. If more than one cube is queried, the
server can accordingly use more downlink channels and operate multiple instances
of the FCLOS scheduler.

6.3.1 Data Model

The assumed data model has been thoroughly described in Chapter 2. FCLOS
does not make any explicit assumptions about the queried MDDB. Contrary to
existing mOLAP systems, the client is allowed to pose any query targeting the
database.

6.3.2 Server Architecture

The big picture of the FCLOS server architecture is depicted in Fig. 6.2. The
following paragraphs explain the details of specific components.

Query Mapping

Upon reception of a query, FCLOS maps it to the corresponding node of the
aggregation lattice. Section 2.6 explained how query mapping works, both for
DCL and hDCL. FCLOS can operate with both query mappings, without any
architectural modification. Optimal query mapping is the topic of Chapter 7,
where we analytically and experimentally substantiate the choice of DCL query
mapping.

Naturally, a question that may arise is why to map queries anyway. FCLOS
employs query mapping because it is proven that the point-to-point communica-
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tion model is inefficient for mOLAP [139]. In other words, serving each query
individually, assuming that clients are not able to perform local processing, not
only exhibits poor performance, but does not scale with the number of requests
as well. The number of possible different queries targeting a database is infinite.
The objective behind query mapping is to produce a finite number of handled
data items, which not only simplifies, but also assists the operation of broadcast
schedulers.

Figure 6.3 depicts 9 incoming requests {q1, q2, ..., q9}, mapped to their cor-
responding sub-cubes {sc1, ..., sc4}. Even in this trivial example, it can be seen
that the number of handled items is reduced to 4.

Scheduling

After query mapping, the queries have to be scheduled. The scheduling algorithm,
which is a fundamental component of FCLOS, is presented in detail in Section 6.4.

Backend

The FCLOS scheduler decides which sub-cube is going to be broadcast. It is as-
sumed that the OLAP server either has already stored all possible sub-cubes or
retrieves them from the backend OLAP servers. In other words, the material-
ization of views is not a FCLOS task. In addition to that, because in mOLAP
transmissions last much longer than in general broadcast systems, the time re-
quired to fetch the appropriate data, does not influence scheduling.

Transmitted Structure

FCLOS design makes its scheduling decisions completely independent of the sub-
cubes’ physical implementation. However, the choice of a data cube physical



62 6. Mobile OLAP in Wireless Infrastructure Based Networks

DD DIDDI I

Data bucket

Offset to next  index 
bucket

Index bucket Data Segment

Data
(sub-cube data)

Descriptor
(sub-cube bitmap)

Figure 6.4: FCLOS bucket

structure influences the overall performance. Throughout this chapter, we assume
that the physical structure used is a ST. STs are unindexed relations, which consist
of all tuples of a corresponding fact table. In Chapter 8, we integrate the m-Dwarf
in our architecture, which is a physical structure explicitly designed for mOLAP,
and show its impact on architectural and performance issues.

Bucket Structure

FCLOS employs a very simple bucket indexing scheme. Figure 6.4 depicts the
transmitted buckets. There is a conventional distinction between index and data
buckets. Both bucket types contain a field that indicates the offset to the next
index bucket, so that clients get informed when to tune again. The main field of
the index bucket contains a sub-cube descriptor. This descriptor is based on the
corresponding bitmap of the sub-cube and includes additional information about
the identification of the multidimensional schema. For example, in a transmission
of sub-cube PT of Fig. 2.4, the descriptor contains its bitmap 101. Obviously, the
main field of the data bucket contains the sub-cube itself. The number of data
buckets of a data segment is not fixed, depending on the size of the transmitted
sub-cube.

In the mOLAP domain, complex indexing structures, such as the ones dis-
cussed in Section 3.2.1, are not necessary. This is justified by the fact that clients’
queries are satisfied by only one data segment. In other words, clients do not have
to tune in different data segments in order to retrieve the data buckets comprising
their answer. Instead, they just need to wait until the appropriate index bucket,
which precedes the requested data segment, appears. Moreover, due to the fact
that sub-cubes are order of magnitude bigger than data items usually transmit-
ted by general broadcast systems, data segments dominate the generated traffic,
making the contribution of the index buckets to the generated traffic practically
negligible.
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Updates

mOLAP systems are centralized architectures, and thus can easily cope with up-
dates. Assuming that the OLAP server handles updates caused by external re-
sources, the issue ends up being a synchronization problem. The server can simply
broadcast either every update or periodically in a digest way. The fact that FC-
LOS transmits fact table data enables the server to transmit only the affected
tuples, and let the clients deal with the necessary bottom-up propagation of ag-
gregations [51]. In FCLOS, updated tuples are transmitted in special buckets,
between normal data segments. Appropriate index buckets ensure that all clients
are tuned in.

6.3.3 Client Architecture

As already emphasized throughout this document, FCLOS assumes fat clients,
which are able to store and locally process data. This facilitates, among others,
offline functionality.

Querying

Clients use an uplink channel in order to send their queries to the server. FCLOS
assumes that clients are aware of the MDDB ’s metadata. If this is not true, i.e.,
this is the first query targeting the MDDB, an explicit query has to be issued.
Alternatively, given that the size of metadata is in average order of magnitude
smaller than the size of the transmitted sub-cubes, the server can periodically
broadcast the metadata.

It is important to underline though, that not all queries can be answered only
by the fact table. Selections or clauses might not target the values of the fact table,
but the values or attributes of the dimension tables. Therefore, when clients enter
the network, they must be aware not only of the schema’s metadata, but of the
dimension tables’ values as well, if full functionality is required. Since the size
of dimension tables is also typically much smaller than the size of fact tables,
there are many options. The server might broadcast dimension tables through a
separate downlink channel of limited capacity, or periodically through the main
downlink channel, or answer on-demand. In any case, the overhead is practically
negligible.

Local Processing

Clients are able to locally store and process the received data. FCLOS does
not assume any specific database client architecture. The way data is stored
and processed is naturally dependent on the data cube physical implementation.
Chapter 8 explains the tradeoff between the size of the transmitted structure
and the required local processing. Assuming the sub-cubes na and nb for which
na � nb, it suffices to simply scan every tuple of na to produce nb.
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Table 6.1: FCLOS scheduler notation

Notation Definition

D Number of dimensions
Q FCLOS’ waiting queue (after query mapping)

e An element of the queue (e ∈ Q)

|Q| Length of the waiting queue Q

sca �scb sca is an ancestor of scb
SM The sub-cube metric of FCLOS

BW The broadcast weight metric of FCLOS

BCL Broadcast cluster in FCLOS

6.4 The Scheduling Algorithm

FCLOS introduces a novel family of scheduling algorithms, explicitly designed
towards efficient dissemination of multidimensional data into wireless networks.
Table 6.1 provides a notation overview for this section.

The scheduler handles the requests that are already mapped to the respective
aggregation lattice nodes, as shown in Fig. 6.3. An element e of the FCLOS
waiting queue Q is an incoming query mapped to its corresponding sub-cube. We
now formally present the algorithm.

6.4.1 Steps

FCLOS scheduling is a three step procedure:

Step 1

In the first step, FCLOS uses the novel metric SM (Sub-cube Metric), defined as:

SM = R×W ×D (6.1)

where R is the number of requests for a specific sub-cube, W the waiting time of
a request (1st arrival) and D the dimensionality of the requested sub-cube.

For each element e of the queue, its SM is computed:

∀e ∈ Q SMe = Re ×We ×De (6.2)

Step 2

In the second step, FCLOS detects every possible broadcast cluster BCL. A BCL
consists of one ancestor j∗ and its children. The ancestor node in a broadcast
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cluster is the sub-cube, from which all other sub-cubes comprising the BCL can
be subsumpted:

∃ j∗ ∈ BCLj∗ ⊆ Q : ∀e ∈ BCLj∗ j
∗ � e (6.3)

Note that the complexity of finding the BCLs is not a practical issue. While
theoretically the complexity is O(n2) (where n = |Q|), practically the examined
ancestor candidates are much fewer than |Q|. The algorithm considers as candi-
dates only the requested sub-cubes, whose level l is the highest in the aggregation
lattice, as well as all sub-cubes of level l− 1 for which no lattice ancestor has been
requested. Every other candidate does not have to be examined by the algorithm
because it is guaranteed to be a successor of the already examined candidates, and
therefore its BCLs are subsets of already examined BCLs. In practice, this step
does not influence the performance of the system at all, since during transmissions,
the system can schedule the next data item.

Step 3

In the final step, after having identified all possible BCLs, we employ a novel
metric under the name BW (Broadcast Weight). BW practically represents the
weight not of one specific element in the queue, but the one of a potential broadcast
cluster. If k represents a sub-cube belonging to an identified BCL then the BW
of that specific BCL is defined as:

BW =
∑

k∈BCL

SMk (6.4)

The algorithm computes the respective BWc for each identified BCLc:

∀BCLc BWc =
∑

k∈BCLc

SMk (6.5)

Eventually, the ancestor node j∗ of the cluster BCLj∗ , namely the cluster with the
maximum BW, is broadcast. In this way, all clients that have requested sub-cubes
which belong to BCLj∗ are served.

transmit j∗ of BCLj∗ : ∀BWc BWj∗ ≥ BWc (6.6)
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Figure 6.5: Steps of the FCLOS scheduling algorithm

Algorithm 6.4.1: Scheduler(∗∗Q)

Input : Queue Q
Output : Sub− cube to be transmitted j∗
global ∗sm,∗∗ bcl,∗ bw, j∗

comment: sm is the array holding the SM values

comment: bcl is the array holding all recognized BCLs

comment: bw is the array holding the BW values for all BCLs

comment: j∗ is the sub-cube index

main
1 : Compute SM for every queue element (sub− cube)
2 : Find all possible clusters (BCLs)
3 : Compute BWk for every identified cluster BCLC

4 : Select for transmission the ancestor node of the cluster BCLj∗ ,
whose BWj∗ is maximum

return (j∗)

Figure 6.5 illustrates the operation of the scheduling algorithm.

6.4.2 Analysis

Having formally presented the scheduling algorithm of FCLOS, we proceed by
explaining the intuition behind the algorithm’s design. Obviously, the SM pri-
oritizing metric is influenced by the R × W metric, described in Section 4.1.1.
Previous mOLAP systems adapt this metric for the specific domain by using the
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Table 6.2: A scheduling example: STOBS vs. FCLOS
R W S D R×W

S R×W ×D
S 3 200 15 1 40 600

PT 2 15 30 2 1 30
PS 1 100 20 2 5 200
P 4 150 10 1 60 600

R×W
S

metric.

Contrary to the well established practice of promoting smaller in sizes items,
not only in mOLAP, but in general broadcast systems as well, FCLOS uses an
unconventional approach and promotes bigger in size items. This is the intuition
behind the SM metric, which puts the dimensionality D in the nominator, thus
promoting bigger sub-cubes.

The dimensionality of a sub-cube is generally proportional to its size, but nat-
urally in this way SM does not distinguish between sub-cubes with the same
dimensionality, although big size differences between them may exist. This is an
intended compromise in order to keep the scheduling decisions completely indepen-
dent of the data cube physical implementation. Chapter 8 provides more insight
about this issue.

But why does FCLOS promote sub-cubes with higher dimensionality? The an-
swer is straightforward. Since the distinguishing characteristic of mOLAP schedul-
ing is the exploitation of subsumptions, the degree of exploitation should be max-
imized. Sub-cubes with higher dimensionality, or the corresponding nodes of the
aggregation lattice have more successors than nodes being in a lower level of the
lattice. For instance, a DCL node with dimensionality D has 2D − 1 successors.
Therefore, the dimensionality D should be a positive prioritizing factor, exactly
as in the SM metric.

In addition to that, the scheduling algorithm does not produce the schedule
based exclusively on the prioritizing metric SM . FCLOS is designed to exploit
every subsumption probability. In this context, when identifying BCLs, every
queue element e is considered as an ancestor candidate an. The search for BCLs
is completely independent of traditional scheduling metrics such as R or W .

By introducing our new metric BW and by separately detecting all possible
clusters, FCLOS does not exploit subsumptions whenever this is possible but
rather enforces it. This results in a better exploitation of the broadcasting feature,
since, quite expectedly, the number of members of the served BCLj∗ is now higher
in average. Results for new queries have now higher probability of already existing
in client’s storage, partly due to previous scheduling decisions taken by FCLOS.

The following example illustrates the scheduling procedure of FCLOS and
STOBS (we omit SBS due to its similarity with STOBS ). Assume a queue with 4
sub-cubes (PS, PT, P, S ), from the DCL of Fig. 2.4 and the values of Table 6.2,
for R, W, S and D. While the operation of STOBS after the computation of the



68 6. Mobile OLAP in Wireless Infrastructure Based Networks

Table 6.3: Clusters and broadcast weights in FCLOS
BCL BW

(PS, S, P) 1400
(PT, P) 630

(P) 600
(S) 600

Table 6.4: Schedules: STOBS vs. FCLOS
1st 2nd 3rd 4th

STOBS P S PS PT

FCLOS (PS,S,P) PT - -

R×W
S

metric is straightforward, FCLOS searches candidate clusters and finds
the four shown in Table 6.3. Finally, as seen in Table 6.4 the two schedulers
produce entirely different schedules. Even in this trivial example, it is evident
that for the same incoming load, FCLOS needs 2 transmissions, whereas STOBS
4. Naturally, the number of transmissions alone does not suffice for a thorough
evaluation. Section 6.6 provides detailed insight.

6.5 Cost Model

The performance of mOLAP systems can be evaluated using the following metrics:

• Query Access Time: The total period of time that a client spends since
posing a query until the requested subset is actually fetched in its local
storage (Tall). It is the time the request spends in the server’s waiting queue
TQ, plus the time the client spends receiving data from the downlink channel
TC , plus the time the client locally processes the data TL.

Tall = TQ + TC + TL (6.7)

• Energy Consumption: The energy a client consumes since posing a query
until the requested subset is actually fetched in its local storage. It is the
energy consumed in doze mode waiting for appropriate data in the downlink
channel EQ, plus the consumed energy being in active mode and receiving
data from the downlink channel EC , plus the energy consumed for local data
processing EL.

Eall = EQ + EC + EL (6.8)

• Generated Traffic: Amount of data transmitted by the server into the wire-
less network. Experimentally, it can be quantified with several metrics: gen-
erated traffic per issued query Trq, generated traffic per broadcast Trb or
total amount of generated traffic Trsum.
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Table 6.5: Real data mart metadata

Dimension Hierarchical levels Cardinality
A 4 55000
B 4 1826
C 3 503
D 3 72
E 2 5

6.6 Experimental Evaluation

This section presents the results of extensive experimental evaluation of FCLOS.
Our system is compared against the state of the art mOLAP systems STOBS and
SBS using a simulator written in C. We do not include a point-to-point system in
our evaluation, since it has been shown to exhibit much poorer performance than
both SBS and STOBS [141, 139].

6.6.1 Simulation Environment

Mobile clients, randomly distributed in a square plane, query a data mart. Queries
are propagated periodically using an 802.11 wireless network. When a suitable
answer is received, the client issues a new query after a uniformly distributed
time span. A complete evaluation of mOLAP systems requires the considera-
tion of many parameters. The following paragraphs explain the details about the
dataset, the workload and the client model used. Note that the same simulation
environment is used in the following chapters as well.

Dataset

We used both synthetic and real datasets. However, we used a real but anonymized
dataset as default. It is a data mart consisting of 5 hierarchical dimensions and
918,843 tuples. For each dimension, the number of hierarchical levels and its
cardinality are shown in Table 6.5. The DCL for this dataset consists of 32 nodes,
whereas the respective hDCL of 1200 nodes. As already discussed in Section 6.3.3,
the size of the dimension tables is practically negligible compared to the size of
the fact table. This is the case for this dataset too.

We created a semi-synthetic dataset in the following way. Based on the meta-
data of the real data mart used in [149], we populated the schema using an 80/20
self similar distribution. Self-similar distributions [55] have the property that
within any region of the distribution, the skew is the same as in any other region.
So, for example, all subranges of the 80/20 self similar distribution follow the
80/20 rule (h=0.20). For integers in [1, N ], the first h × N integers get 1 − h of
the distribution. For example: if N=25 and h=0.20, then 80% of the weight goes
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Table 6.6: Semi-synthetic data mart metadata

Dimension Hierarchical levels Cardinality
A 6 7458
B 4 2765
C 4 3857
D 3 213
E 1 3247
F 1 660
G 1 4
H 1 4

to the first 5 integers and 64% of the weight goes to the first integer. Self-similar
distributions have been extensively used to produce skewed database datasets.
Figure 6.6 shows the histogram.

This data mart consists of 8 hierarchical dimensions. For each dimension, the
number of hierarchical levels and its cardinality are shown in Table 6.6. The DCL
for this dataset consists of 256 nodes, whereas the respective hDCL of 11200 nodes.

Query Distribution

While the server employs query mapping, clients are unaware of that. Conse-
quently, in our experiments clients issue queries, exactly as they would in a tradi-
tional desktop environment. Similarly to [149] we use the following probabilities
to model the query distribution:

• Pdim: The probability that each dimension is selected to participate in the
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Table 6.7: Query distribution’s characteristics

Workload Pdim Pnew Pdrill Proll Ppoint

WLA 50% 50% 25% 25% 50%
WLB 50% 30% 35% 35% 50%
WLC 50% 100% 0% 0% 50%

new query. For example, for a 6-dimensional cube, if Pdim=0.5, then new
queries include 3 dimensions on average.

• Pnew: The probability that the new query is not related to the previous
query. In OLAP applications, users typically perform a query, and then
often execute a series of roll-up or drill-down queries.

• Pdrill: The probability that the new query is a drill-down of the previous
query.

• Proll: The probability that the new query is a roll-up of the previous query.

• Ppoint: The probability that we specify just a single value for each dimension
participating in a query. Otherwise, with probability 1-Ppoint we will specify
a range query for that dimension.

Table 6.7 shows the values for the aforementioned probabilities, for the 3 query
distributions used in the experiments.

Client Model

This paragraph explains the simulated client model. More specifically, we explain
how TL and EL are measured.

The time a client Mc locally processes the data TL is:

TL = TDR + TAggr (6.9)

TAggr represents the time Mc spends aggregating a dataset in order to create the
results of its initial query. If the received dataset is exactly whatMc had requested,
then obviously TAggr=0. If Mc is able to answer a query locally, i.e., relying on
stored data, TDR represents the necessary time to retrieve the data from the hard
disk to the RAM.

The time for x bytes of data to be aggregated in the cache is:

TAggr(x) =
x

BusBandwidth
(6.10)

The time for x bytes of data to be transferred from the hard disk to the RAM is:

TDR(x) =
x

TRHD
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Electrical energy consumption for a time span t is generally given by the fol-
lowing equation:

E = P × t⇐⇒ E = V × I × t (6.11)

where P is the electrical power, V the voltage supply and I the current.
The energy consumption for x bytes of data to be received by the wireless card:

EC(x) =
PRx × x

WBandwidth
(6.12)

where PRx is the electrical power during reception.
Similarly for the energy consumption EL it is:

EL = EDR + EAggr (6.13)

EAggr represents the energy Mc consumes aggregating a dataset in order to create
the results of its initial query. If the received dataset is exactly what Mc had
requested, then obviously EAggr=0. If Mc is able to answer a query locally, i.e.,
relying on stored data, EDR represents the energy consumed to retrieve the data
from the hard disk to the RAM.

The energy consumed for x bytes of data to be aggregated in the cache is:

EAggr(x) = TAggr × PCPU (6.14)

The energy consumption for x bytes of data to be fetched by the hard disk:

EDR(x) = TDR(x)× PDiskRead (6.15)

Table 6.8 summarizes the mobile client’s simulated characteristics. Note that
these values constitute a worst case scenario, since they correspond to PDA clients.
If values for typical laptops are used instead, our system would only benefit, since
our assumption of the wireless channel being the bottleneck would become even
more valid.

6.6.2 Basic Evaluation

Table 6.9 provides an overview of the simulation parameters. Throughout the
next paragraphs, unless explicitly defined, the default simulation values are used.
Moreover, mean stands for the arithmetic mean defined as 1

k

∑k
i=1 xi, where k the

number of repetitions and xi the measurement for repetition i.

Query Access Time

We begin the experimental evaluation with the results of the mean query access
time Tall. According to the cost model of Section 6.5 it is Tall = TQ+TC +TL. Fig-
ure 6.7 reveals the superiority of FCLOS against its competitors. Unsurprisingly,
STOBS and SBS essentially exhibit the same performance, since as explained in
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Table 6.8: Mobile client technical characteristics

Metric Value
Processor-RAM (Source: [2])

RAM Clock Frequency 54 MHz
CPU Frequency 312 MHz
Bus Width 32 bits
Bus Bandwidth 1728 Mbit/s
Power (PCPU ) 2 mW

Wireless Card (Source: [4])
Voltage Supply 3.3V
Rx 170 mA
Tx 265 mA
Idle 75 mA
Bandwidth 11-54 Mbit/s
Hard Drive (Microdrive) (Source: [1])
Voltage Supply 3.3V
Write Consumption 240 mA
Read Consumption 230 mA
Transfer Rate (TRHD) 10 Mbyte/s

Section 5.3, they constitute very similar approaches. The novel approach of FC-
LOS not only achieves a reduction of over 50%, but proves scalable too. As the
client population grows, so does the number of incoming queries. FCLOS manages
to build bigger BCLs and thus serve more clients per broadcast. On the contrary,
its competitors, resembling traditional on-demand systems and sub-optimally ex-
ploiting subsumptions, experience slightly increased access time.

Naturally, it is necessary to analyze the effect of each factor TQ, TC and TL

to the sum Tall. The results of Fig. 6.9 reveal that while for FCLOS TQ and
TC represent 41% and 53% of Tall, respectively, TL represents only 6% of Tall.
This is a very important ascertainment, since it confirms that server and wireless
channel are the system’s bottlenecks indeed. The same applies for STOBS and
SBS regarding the Tall. However, in their case Tall is dominated by the TQ,
confirming the scheduling algorithm’s inefficiency. On the contrary, in FCLOS Tall

is more influenced by TC . This is justified by the fact that FCLOS generates more
traffic per broadcast, prolonging the TC , as shown in the following paragraphs. [t]

In the next experiment, we investigate the percentage of online and offline an-
swers. We call offline the queries that were able to be answered locally, without
any server interaction, and online the ones that need a server transmission. Fig-
ure 6.10 demonstrates a critical system behavior. FCLOS does not have to resort
to a server connection in 81% of its queries, while its competitors in approximately
60%. The conclusion is twofold. On the one hand, online performance is enhanced
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Table 6.9: Overview of simulation parameters

Simulation Parameter Range Default
Bandwidth 1-54 Mbit/s 11 Mbit/s
Client Population 50-250 100
Dataset real, synthetic real
Cube Dimensionality 4-8 5
Workload WLA, WLB, WLC WLA

Query Interval 1-20s 3s
Queries per client 5-15 10
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Figure 6.8: Mean query access time
without offline answers

because queries that do not have to be sent to the server not only are served faster,
but alleviate the server as well, thus accelerating the execution of the rest of the
queries. On the other hand, offline functionality is substantially increased.

But does FCLOS perform so well, simply because it answers more frequently
queries locally? The answer is no. Figure 6.8 provides a subset of the results
of Fig. 6.7. It represents the access time for the online queries only. Again the
superiority of FCLOS is evident, retaining the desired scalability. Naturally, the
optimization for these queries is not so big. Remember that the fundamental
objective of FCLOS is to facilitate offline functionality, so that a connection is
not necessary. However, it is evident that even without exploiting client local
resources, FCLOS outperforms its competitors.

Energy Consumption

The energy consumption overhead is a crucial metric, given the objective of maxi-
mizing the operating time of mobile devices. The results of Fig. 6.11 are reasonably
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similar to the ones of the query access time. The reason for that is that the two
metrics are related. The more a client waits for the answer, the more energy it
consumes.

Similarly to Fig. 6.9, Fig. 6.12 depicts the effect of each factor EQ, EC and EL

to the sum Eall. The main distribution difference compared to the access time, is
that the energy consumption is dominated by EC . This is justified by two facts.
Not only are clients in active mode when downloading and in doze mode when
waiting for the requested data to appear in the downlink channel, but moreover
as seen in Fig. 6.9, FCLOS queries spend more time in the downlink channel than
in the queue as well.

Generated Traffic

The amount of per query generated traffic is a very important metric, since other
applications may be running through the wireless gateway. Moreover, this is al-
ways a significant factor in volume based networks. The importance becomes even
bigger, considering that the wireless channel is the system’s main bottleneck.

Figure 6.13 depicts the generated traffic per issued query. Remember that each
broadcast serves more than one query. Again the superiority of FCLOS is evident,
reducing the generated traffic by over 50%. Remarkably, all approaches scale
well. This justifies the subsumption based scheduling followed by all approaches,
regardless of the specific implementation.
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In Fig. 6.14 on the contrary, where the per broadcast generated traffic is de-
picted, a completely different behavior can be observed. FCLOS transmits clearly
more data per broadcast. Despite the emerged contradiction with Fig. 6.13, the re-
sults are absolutely consistent. The intuition behind FCLOS is exactly to transmit
bigger data cubes and thus serve more clients, hence requiring fewer broadcasts.
Indeed, in this experiment FCLOS had to broadcast almost three times less than
its competitors. In the same context, Fig. 6.15 shows the average queue length, and
the number of requests served and not served per broadcast. Evidently, not only
the average queue length of FCLOS is smaller, but every transmission manages
to serve around 50% of the pending queries.

Stretch

The stretch for a request i is stretchi =
ATi

STi
, as defined in Section 4.1.1. In

mOLAP, if request i is the only system job, then TQ=0, TC is the transmission
time for exactly the required dataset (no subsumption), and TL=0. Figure 6.17
demonstrates a weakness of FCLOS. Evidently, FCLOS exhibits a poor perfor-
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mance in comparison with its competitors. This comes without surprise though.
FCLOS fundamental design principle is to serve as many clients as possible with
each broadcast. Inevitably, queries targeting smaller datasets frequently have to
deal with bigger datasets and increased local processing. This inevitably incurs
increased stretch.

Nevertheless, stretch is an indicator of fairness, not performance. In order to
investigate how different query classes are treated, we partitioned the set of all
sub-cubes into four classes according to size. Class A represents the smallest in
size sub-cubes and class D the biggest in size sub-cubes (classes B, C accordingly
in between). Figure 6.18 reveals that despite its poor stretch, FCLOS outperforms
its competitors for each query class. We argue that the improvement achieved by
FCLOS is for each class so strong, that it is essentially of minor importance if the
stretch deteriorates.
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(Tall) for different job classes

a-optimizer

Presenting STOBS in Section 5.3.2, we explained its flexibility in searching for an-
cestors of broadcast clusters. This flexibility is controlled by the a-optimizer. This
is a very important configuration parameter for STOBS, since in [139], the authors
identify an inherent tradeoff between the optimization of energy consumption and
access time, which can be controlled through the a-optimizer. Although theoreti-
cally this could be employed by FCLOS as well, this is not necessary as revealed
by Fig. 6.19. For both approaches we implemented extensions using the values
1, 3 and 5 for a. Value a=5 results in full flexibility (because the used dataset
consists of 5 dimensions), exactly how default FCLOS operates. In accordance
with the results presented in [139], higher value of a reduces STOBS ’ access time,
but at the cost of increased energy consumption. On the contrary, the value a=5
guarantees optimization of both metrics in FCLOS. Therefore, FCLOS not only
avoids one additional configuration parameter, but optimizes both metrics as well.
FCLOS does not need any kind of tunable parameter to control the exploitation
of subsumptions. Note that every previous experiment involving STOBS assumes
a=5. Due to the similarity of the definition of a in SBS and the produced results,
its results are omitted in this chart.

6.6.3 Further Evaluation

The performance of mOLAP systems is subject to many parameters. In order to
ensure a complete evaluation, the following paragraphs analyze the performance
under different influencing factors: dataset, query distribution, query rate and
bandwidth.
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Figure 6.21: Mean query access time
(Tall) vs. query distribution

Dataset

The following experiment reveals the effect of dimensionality on mOLAP archi-
tectures. For this purpose, we use the semi-synthetic dataset described in 6.6.1,
keeping the number of tuples to 500K. Dimensionality D is a critical parameter
because the number of DCL nodes is 2D, and thus directly influences query map-
ping. Figure 6.20 confirms the superiority of FCLOS, regardless of the number
of dimensions. Despite the increase of access time as the number of dimensions
grows (which is expected because the size of cubes also increases), FCLOS copes
with more dimensions better than its competitors. The slight difference between
STOBS and SBS, particularly when the dimensionality becomes higher, can be
justified by their similar, but not identical, a-optimizer components.
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(Tall) vs. query rate
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Query Distribution

In this experiment, we analyze the effect of different types of query distributions on
the query access time. Apart from the default workload WLA, we test two further
workloads described in Section 6.6.1. WLB represents a workload where roll-ups or
drill-downs occur more frequently than in WLA. Exploiting their local resources,
all approaches perform better, exhibiting slightly reduced access time, as shown in
Fig. 6.21. WLc represents a workload where roll-ups or drill-downs never occur.
Although this is practically unrealistic, we can conclude that although there is
an increase in access time, this is relatively low. All approaches are sufficiently
resilient as far as query distribution is concerned. This confirms the usefulness of
query mapping. FCLOS retains its advantage.

Query Rate

One of the requirements defined in Section 6.2 is that the system can efficiently op-
erate under relatively low and high incoming loads. The incoming load is directly
related to the query rate. After receiving an answer, clients issue a new query
after a uniformly distributed time interval of [ t

2 , t]s. This uniform distribution is
used to ensure that no artificial concurrent requests arrive, which would enable
the server to build bigger broadcast clusters. Figure 6.22 shows the results. On
the one hand, as the query interval increases, both STOBS and SBS, principally
being on-demand systems, perform slightly better. On the other hand, FCLOS
performs slightly worse because its objective of fully exploiting subsumptions is
hampered by lower number of pending requests. In other words, the size of BCLs
decreases. However, the increase is relatively low and FCLOS proves fairly self
adaptive.

Apart from the access time, it is important to examine the amount of total
generated traffic with several incoming loads in order to evaluate the scalability of
FCLOS. Figure 6.23 depicts an unconventional behavior for all approaches. As the
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Figure 6.24: Mean query access time (Tall) vs. bandwidth

query interval increases, and consequently the incoming load is less concurrent, all
approaches perform worse. This is justified by the fact that when requests are less
concurrent, subsumptions become less possible and thus each broadcast, regardless
of the mOLAP architecture, serves fewer requests.

Bandwidth

The final experiment reveals the impact of available bandwidth on mOLAP ar-
chitectures. As already explained, mOLAP architectures try to cope with the
bottleneck caused by wireless bandwidth. Naturally, as shown in Fig. 6.24, as
bandwidth increases, all approaches exhibit enhanced performance, since TC di-
rectly and TQ indirectly (when the transmissions last shorter, indirectly pending
requests will experience shorter queue time) decrease. Nevertheless, FCLOS main-
tains its superiority.

As seen, the performance of mOLAP systems is influenced by many factors.
For reasons of completeness, in Appendix A we use parallel coordinates [75] in
order to give an even more detailed insight into the effect of these factors.

6.7 Summary

This chapter presents the fundamental components of the mOLAP architecture
FCLOS. FCLOS addresses both server and client architectural issues. The main
architectural idea is to exploit semantic dependencies between broadcast sub-cubes
in order to serve multiple clients with one transmission, even though the initiating
queries are not identical. To achieve that, clients receive fact table data and
perform the necessary processing.

Although the semantic dependencies between sub-cubes are given, it is unclear
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how these can be exploited in the mOLAP domain. FCLOS addresses this issue
by intelligent scheduling. Essentially, the scheduling algorithm is its fundamental
component. Contrary to the well established notion of prioritizing smaller in size
items, FCLOS does exactly the opposite. Although this might be not a good
choice in general broadcast systems, it is perfectly suited for the mOLAP domain.
Subsumption exploitation cannot be maximized when prioritizing smaller sub-
cubes.

The experiments revealed the superiority of FCLOS on all relevant criteria:
query access time, energy consumption overhead and total generated traffic are
reduced by over 50%. Not only does our system significantly improve performance,
it also exhibits remarkable scalability and robustness. Apart from that, it enables
enhanced online and offline functionality.
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