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Abstract: The actual metabolic capacity of the liver is crucial for disease identification, liver
therapy, and liver tumor resection. By combining induced drug metabolism and high sensitivity
IR spectroscopy of exhaled air, we provide a method for quantitative liver assessment at bedside
within 20 to 60 min. Fast administration of 13C-labelled methacetin induces a fast response of
liver metabolism and is tracked in real-time by the increase of 13CO2 in exhaled air. The 13CO2

concentration increase in exhaled air allows the determination of the metabolic liver capacity
(LiMAx-test). Fluctuations in CO2 concentration, pressure and temperature are minimized by special
gas handling, and tracking of several spectrally resolved CO2 absorption bands with a quantum
cascade laser. Absorption measurement of different 12CO2 and 13CO2 rotation-vibration transitions in
the same time window allows for multiple referencing and reduction of systematic errors. This FLIP
(Fast liver investigation package) setup is being successfully used to plan operations and determine
the liver status of patients.

Keywords: QCL; liver status; 13CO2; breath test; LiMAx; rotation-vibration spectroscopy

1. Introduction

Exhaled air provides information on the concentration of volatile organic compounds, oxygen,
CO2, and other gases (e.g., HCN) in the blood. These compounds can reflect metabolic processes
and storage of gases inhaled before [1]. One of the main compounds in exhaled air is CO2.
Concentration changes of CO2 in exhaled air can result from the metabolism of nutrients and from
changes in metabolism. Therefore, it is a difficult task to assign concentration changes to a specific
metabolic process. The LiMAx test (liver maximal capacity) describes a procedure to assign 13CO2

concentration changes in exhaled breath to a single metabolic process in liver cells. The most important
point is fast intravenous (IV) administration of the drug 13C-methacetin—much faster than the
redistribution processes within the human body. The drug 13C-methacetin is solely metabolized
by the enzyme cytochrome P450 1A2 (CYP450 1A2) into 13CO2 and paracetamol. Since CYP450
1A2 exists only in liver cells, the additionally generated 13CO2 reflects the metabolism of the liver.
Under normal conditions, the proportion of exhaled 13CO2 in the breath volume amounts to 1% of
the exhaled 12CO2 due to its natural abundance, and is about 0.02%–0.05% of the exhaled volume.
The ratio, R, of 13CO2 to 12CO2 is expected to be constant and is measured to identify alterations due
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to additional metabolic processes of administered 13C enriched substrates [2]. Typically, this ratio (R)
is constant with only small and slow variations of less than ˘1‰ reflecting the natural abundance of
13C in nutrients [3]. Upon administration of 13C-methacetin, followed by metabolization into 13CO2, R
increases on a time scale of the metabolic process. The change of R as a function of time is plotted as
DOB (Delta over baseline) kinetic in per-mil.

The LiMAx test uses the maximum of the DOB kinetics to calculate the LiMAx value using
Equation (1) [4]:

LiMAx “
pDOBptmaxq ´ DOBpt0qqRPDBPM

m
(1)

Here, DOB(tmax) is the maximum of the DOB kinetics, and DOB(t0) the constant value before
13C-methacetin administration. The amplitude of the DOB kinetics is directly proportional to the
LiMAx value. The natural abundance of 13C is taken into account by RPDB = 0.0112375 [5], P is the
calculated average molar CO2 production of the patient [6,7], m is the body weight of the patient,
and M is the molar mass of methacetin. The administered dose of 13C-methacetin was 2 mg/kg body
weight. The LiMAx value provides a personalized measure of a metabolic liver parameter. This value
encompasses an average property of the metabolic capacity of the liver, since CYP450 1A2 is evenly
distributed in the liver cells. Specific information on metabolic processes in liver subsections or on
circulatory problems in the liver are not included. Nevertheless, information on the metabolic liver
status is essential for operations, in particular, liver operations. Included in the clinical routine, the
LiMAx test allows for a reduction in the mortality rate after liver resections by more than 70% [8,9].

For an individual patient, the accuracy of the LiMAx value is dominated by the precision of the
detection of the DOB kinetics. Here, we describe the FLIP device (fast liver investigation package)
developed for precise measurement of the DOB kinetics at bedside.

2. Materials and Methods

2.1. Handling of Breath Gas

A single exhaled breath contains a mixture of gases, changing in concentration and composition,
during exhalation. Typically, the CO2 concentration is maximal at the final part of the exhaled air, since
this volume stays the longest in the lung and is minimal at the beginning due to the non-enrichment of
the inhaled air [10]. In Figure 1, the CO2 concentration is depicted for several breaths as a function
of time (black line). The concentration was measured by spectrally broad integrated absorption of
rotation-vibration transitions of 13CO2 and 12CO2 [11]. The setup we used for all measurements is
depicted in Figure 2. The prototype of this FLIP setup was described earlier [10]. Here, we focus
on differences made to develop the FLIP device for medical certification and daily application in
a hospital. As depicted in Figure 2, the complete breath is exhaled into the FLIP device. The respiration
of the person transports the gas into and through the sample chamber. Every new breath presses the
previous breath out of the FLIP device. No valves or pumps are needed. While the whole breath flows
through the FLIP, absorption measurements were performed in the sample chamber.

In Figure 1, the detected CO2 concentration and the gas flow is presented for two situations. First,
the complete setup is used, second, the measurements were performed without the mixing chamber
depicted in Figure 2. Without the mixing chamber, the black line reflects the concentration change
in the sample chamber, and, the blue line, the gas flow. The decrease of the concentration reflects
the first part of the breath with low a CO2 concentration, followed by the second part of the breath
with an increasing CO2 concentration. Between the breaths (blue line), the gas concentration stays
constant in the sample chamber, as indicated by the plateaus (black line). Thus, diffusion of CO2 out
of the chamber is slow and negligible. The gas flow was measured by a spirometer (Go-Link)—with
home built calibration—indicating the breath cycle and movement of the gas [11]. Combination of
the gas flow, the sample chamber size, and the concentration allows determination of the absolute
exhaled CO2 amount as a function of time. The concentration of the exhaled CO2 depicted in Figure 1
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shows rather constant CO2 concentrations in the later part of exhalation, with relative changes of
about 0.6%. These small alterations are on the same order as expected relative to the changes of 13CO2

exhalation after 13C-methacetin administration in the LiMAx test. It has been long known that alveolar
gas exchange is dependent on ventilation, pulmonary perfusion, and the blood:air partition coefficient,
and that breath samples are not well reproducible [12]. Thus, the 12CO2 and 13CO2 concentrations
have to be measured at the same or on a time scale much faster than the breath cycle. In the beginning
of exhalation, the CO2 concentration is low since the inhaled air is poorly mixed with gas from the
alveolar region. With an increasing fraction of alveolar air, the concentration rises strongly until the
contribution by the air in the airways is negligible. Hence, the concentration varies strongly during
the complete breath cycle, making high demands on the dynamic range of the measurement device.
Moreover, the temperature of the exhaled gas changes with increasing residence time in the lung, and
the pressure of the exhaled air also varies during exhalation. In order to balance the inhomogeneity of
the concentration, and temperature we used a mixing chamber of an average breath volume of ~0.5 L.
The mixing chamber is depicted in Figure 2 and consists of a part with a sympatex membrane reducing
the water content in the breath. In the second part, the gas is mixed by several continuations at three
different positions along the gas stream, as detailed elsewhere [13]. As presented in Figure 1 (green
line), the mixing chamber smooths the CO2 concentration considerably, enabling measurements with
a high signal to noise ratio for successive breaths. In the whole setup, the cross section is constant to
ensure a laminar gas flow. Furthermore, the setup always has an open gas exit, as depicted in Figure 2,
preventing pressure increase in the device.
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Figure 1. CO2 concentrations of exhaled breaths (left scale) and the associated gas flow induced by the
breathing cycle (right scale): Successive exhaled breaths measured in the FLIP (fast liver investigation
package) device without mixing chamber: CO2 concentration (black line) and gas flow (blue line),
concentration changes are mainly due to alterations of the alveolar air proportion; successive exhaled
breaths measured in the FLIP device with mixing chamber: CO2 concentration (green line) and gas
flow (dark yellow line).
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database for a simulated linewidth of 0.19 cm−1 (FWHM) Right scale: Detected absorption in optical 
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Figure 2. Schematic setup of a FLIP device with mixing chamber, sample chamber with sapphire
windows, detectors D1 and D2, quantum cascade laser (QCL), lenses L, and flow meter. The exhaled
breath is pushed through the setup by respiration (see arrows). Note, the cross section of the whole
setup is kept constant to ensure a laminar flow of the gas. The sample chamber, framed by the
two sapphire windows W1 and W2, has a length of 10 cm, and a cross sectional area of 5 cm2.

2.2. Spectral Tuning

We decided to use infrared (IR) absorption spectroscopy to measure the concentration of 12CO2

and 13CO2 in exhaled air, because this method is very fast and achieves a high sensitivity and resolution.
The high sensitivity is essential, because the dosage of methacetin should be as low as possible. As is
visible in Figure 3, the high spectral resolution is needed for exact separation of 12CO2 and 13CO2

contributions in the breath without any cross-talk. Comparing the slow exhalation time of a breath on
a time scale of seconds with the fast measurement of a spectrum presented in Figure 3 on a time scale
of ms, it is evident that the fast method allows for multiple averages on a time scale of almost constant
breath concentration. Rotation-vibration transitions of 12CO2 and 13CO2 absorption with a relative
high extinction coefficient in the spectral range around 2200 cm´1 to 2400 cm´1 [10].

Photonics 2016, 3, 31 4 of 11 

 

 

Figure 2. Schematic setup of a FLIP device with mixing chamber, sample chamber with sapphire 

windows, detectors D1 and D2, quantum cascade laser (QCL), lenses L, and flow meter. The exhaled 

breath is pushed through the setup by respiration (see arrows). Note, the cross section of the whole 

setup is kept constant to ensure a laminar flow of the gas. The sample chamber, framed by the two 

sapphire windows W1 and W2, has a length of 10 cm, and a cross sectional area of 5 cm2. 

2.2. Spectral Tuning 

We decided to use infrared (IR) absorption spectroscopy to measure the concentration of 12CO2 

and 13CO2 in exhaled air, because this method is very fast and achieves a high sensitivity and 

resolution. The high sensitivity is essential, because the dosage of methacetin should be as low as 

possible. As is visible in Figure 3, the high spectral resolution is needed for exact separation of 12CO2 

and 13CO2 contributions in the breath without any cross-talk. Comparing the slow exhalation time of 

a breath on a time scale of seconds with the fast measurement of a spectrum presented in Figure 3 on 

a time scale of ms, it is evident that the fast method allows for multiple averages on a time scale of 

almost constant breath concentration. Rotation-vibration transitions of 12CO2 and 13CO2 absorption 

with a relative high extinction coefficient in the spectral range around 2200 cm−1 to 2400 cm−1 [10]. 

 

Figure 3. Selected spectral window and simulated positions of 12CO2 (black lines) and 13CO2 (blue 

lines) absorption. Left scale: Absorption in cm2 per molecule as a function of wavenumber. Positions 

and absorption/extinction coefficients were taken from the HITRAN (High Resolution Transmission) 

database for a simulated linewidth of 0.19 cm−1 (FWHM) Right scale: Detected absorption in optical 

density OD (without units) according to Lambert Beer law (green circles and lines, right scale). 

Figure 3. Selected spectral window and simulated positions of 12CO2 (black lines) and 13CO2

(blue lines) absorption. Left scale: Absorption in cm2 per molecule as a function of wavenumber.
Positions and absorption/extinction coefficients were taken from the HITRAN (High Resolution
Transmission) database for a simulated linewidth of 0.19 cm´1 (FWHM) Right scale: Detected absorption
in optical density OD (without units) according to Lambert Beer law (green circles and lines, right scale).
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A spectral region where absorptions of 12CO2 and 13CO2 in the exhaled breath have the same
order of magnitude is depicted in Figure 3. An optimal light source to spectrally resolve the absorption
lines in this spectral range is a quantum cascade laser (QCL) [14–16]. Our pulsed QCL from Alpes
Lasers with a driver unit from neoplas control GmbH is tunable in a spectral window of about 2 cm´1

width within 10 ms by a voltage ramp (sweep) and a laser repetition rate of 100 kHz. Another 10 ms
was used to let the QCL temperature equilibrate. Thus, we collect spectra with 50 Hz. Our home built
electronics enables us to detect up to 1000 spectral positions per sweep. The exact frequency positions
are calibrated by the known absorption frequencies, and the linearity by measurements with a Ge
etalon (MG optical solutions GmbH). The spectral position of the QCL is adjusted by a temperature
controller to 2298 cm´1 (neoplas control GmbH).

2.3. Spectral Readjustment

With this setup we are able to perform repetitive measurements of absorption spectra as depicted
in Figure 3. Nevertheless, the temperature controller showed some small fluctuations resulting in
clearly visible spectral shifts in the absorption spectrum. Therefore, we use the positions of the
absorption peaks to readjust the temperature controller by an automatic feedback loop. A robust
method to identify spectral shifts is presented in Figure 4. Symmetric to the maximum of each
absorption peak, we integrated areas on the high energy (left) and low energy (right) side of the peak.
A change of the ratio of both areas were used as an indication of a spectral peak shift. The spectral shift
is corrected by readjustment of the temperature controller. This procedure results in absorption spectra
without detectable spectral shifts, i.e., with spectral shifts smaller than ~0.01 cm´1. This enabled us
to average multiple spectra to increase the signal to noise ratio. This procedure was used during
measurements of DOB kinetics is shown in Figure 5.
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exhalation into the setup. Data acquisition is performed at 100 kHz with a laser repetition rate of 100 kHz, 

Figure 4. Absorption spectrum measured by the voltage ramp [17]. The peak positions at channel 18
(blue line) and channel 36 (red line) reflect 12CO2 and 13CO2 absorption lines, respectively. This method
can be used without calibration and conversion of channels to wavenumbers. Every datapoint defines
a channel. Integrated areas, symmetric to the left and right of the absorption maxima of both peaks are
highlighted (crosshatched areas). The ratio of crosshatched areas for each peak are used to identify
peak position shifts. Presented absorption lines are crosshatched in Figure 2.

2.4. Setup

The setup is depicted in Figure 2. The exhaled air flows through the mixing chamber (blue box)
into the sample chamber (black box) where the concentrations are measured continuously. The gas
flow is measured behind the sample chamber with a spirometer (magenta box) before the gas left
the setup. We use a special face mask with valves separating inhaled and exhaled air, allowing only
exhalation into the setup. Data acquisition is performed at 100 kHz with a laser repetition rate of
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100 kHz, and 16 bit resolution (A/D converter). As presented in Figure 2, the laser pulse of several
nanoseconds is collimated and split by the entrance window of the sample chamber (W2, orange line)
into a probe and reference beam. The reference beam is directed and focused on a MCT (photovoltaic
mercury cadmium telluride, from Laser components) detector D2 to measure the intensity signal I2

without breath gas absorption. The probe beam passes through the sample chamber filled with exhaled
air. Then the beam is focused on a MCT detector D1 to measure the intensity signal I1. The direct
absorption of the exhaled air is calculated from I1 and I2 at every specific wavenumber using Lambert
Beers law. We used a pulsed distributed feedback QCL from Alpes Lasers with an average output
power of ~1 mW tuned to a spectral position at 2298 cm´1 by temperatures of about 10 ˝C. By scanning
the QCL a whole absorption spectrum is obtained (see Figure 3). Typically, we average up to five
absorption spectra before simulating the spectra with a multi Lorentzian-fit. The areas under the
Lorentzian fits correspond to the absorption in the sample and are used to calculate the ratio of 13CO2

and 12CO2 absorption. Typical errors for the areas of the fit are about 1%. The obtained ratio is
corrected for temperature dependencies and specific properties of the measured rotation-vibrational
transition [18,19]. The temperature is measured with a Pt100 sensor.

This setup allows for continuous measurement of 12CO2 and 13CO2 absorption spectra during
respiration with online presentation of the DOB kinetics at bedside.

2.5. Operation Planning

The volumetric data before surgery is determined by CT volumetry in a four-phase contrast
enhanced examination technique (LightSpeed 64®; GE Medical Systems, Milwaukee, IL, USA).
The volumetric measurement was performed using AMIRA software (Mercury Computer Systems,
Chelmsford, MA, USA) that had been validated in a prior experimental study [20]. The present study
does not represent a single clinical trial. The LiMAx test had been evaluated in several clinical trials at
the Charité in Berlin, which had all obtained approval of the ethics review board of the Charité medical
faculty before the first patient was included. All participants gave written informed consent prior to study
inclusion. In addition to the clinical trials, the test was applied in clinical routine, too. All patients gave
written informed consent to perform the LiMAx test. The clinical data and DOB kinetics presented in
the present manuscript were derived from a database containing all LiMAx measurements performed at
the Charité. The DOB kinetics were measured with the described certificated FLIP device (Humedics GmbH,
Berlin, Germany). A number of clinical trails have been published [4,21–28].

3. Results

3.1. DOB Kinetics

In Figure 5, DOB kinetics of patients with differing medical conditions are displayed.
The individual data points of the DOB kinetics represent the 13CO2 increase in the complete breath
with respect to the baseline taken before 13C-methacetin administration. The measured average
increase of 13CO2 in the exhaled breath within a time window of ~40 s is displayed by a single data
point. The DOB kinetics display distinct shapes with a rise after time zero, when 13C-methacetin is
administered, a maximal value ranging from 1 DOB to about 50 DOB, followed by a signal decrease.
The LiMAx value evaluates from the maximum of the DOB kinetics and is presented as a color coded
number in µg/kg/h next to the DOB kinetics in Figure 5. Since the signal decrease after reaching the
DOB maximum is not relevant for the LiMAx value, the measurements are stopped after determination
of the maximum. This procedure enables short measurement times as short as about 10 min after
13C-methacetin administration (blue filled squares, and wine triangles in Figure 5). The presented
rise times are in the range of 1 min–2 min for LiMAx values above 310 µg/kg/h. LiMAx values of
311 µg/kg/h and higher were assigned to normal liver capacities [4,23,29]. Fast rise times can only be
observed with a high data density. We displayed data points every ~40 s to maintain high data density
and make the interpretation of the kinetics easier. In Figure 5 two pairs of DOB kinetics are plotted
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for patients before and after liver surgery. The blue curves represent the DOB kinetics of a patient
with metastatic colorectal cancer. Before operation the LiMAx value was determined to 649 µg/kg/h
with a fast rise of the kinetic and a maximum of about 48 DOB as displayed in Figure 5 (blue filled
squares). After liver resection the DOB kinetic exhibits a lower maximum of 20 DOB reached at
~20 min after 13C-methacetin administration. Nevertheless, the LiMAx value of 283 µg/kg/h was
close to the normal liver capacity. The black curves represent the DOB kinetics of another patient with
cholangiocellular carcinoma before (solid black circles) and after liver resection (open black circles).
The LiMAx value dropped upon liver resection from 409 µg/kg/h to 132 µg/kg/h, directly visible by
the maximum decrease from 28 DOB to 9 DOB, respectively. The rise of the DOB kinetics after liver
resection (open black circles) are slowed down about five-fold, reflecting the smaller liver capacity of
the reduced liver volume. The liver resections are often the exclusive curative treatment. The liver can
recover completely after operation, if the remaining metabolic liver function remains above a certain
threshold [21,30]. Three additional DOB kinetics are plotted in Figure 5. The green curve reflects the
DOB kinetic of a patient with liver metastases after chemotherapy. Despite the toxic chemotherapy
the liver capacity of this patient is in good condition again with a LiMAx value of 597 µg/kg/h.
This measurement is an example for the usefulness of the LiMAx test in chemotherapy, providing
information on the stressed liver.

Photonics 2016, 3, 31 7 of 11 

 

metastatic colorectal cancer. Before operation the LiMAx value was determined to 649 µg/kg/h with 

a fast rise of the kinetic and a maximum of about 48 DOB as displayed in Figure 5 (blue filled squares). 

After liver resection the DOB kinetic exhibits a lower maximum of 20 DOB reached at ~20 min after 
13C-methacetin administration. Nevertheless, the LiMAx value of 283 µg/kg/h was close to the normal 

liver capacity. The black curves represent the DOB kinetics of another patient with cholangiocellular 

carcinoma before (solid black circles) and after liver resection (open black circles). The LiMAx value 

dropped upon liver resection from 409 µg/kg/h to 132 µg/kg/h, directly visible by the maximum 

decrease from 28 DOB to 9 DOB, respectively. The rise of the DOB kinetics after liver resection (open 

black circles) are slowed down about five-fold, reflecting the smaller liver capacity of the reduced 

liver volume. The liver resections are often the exclusive curative treatment. The liver can recover 

completely after operation, if the remaining metabolic liver function remains above a certain 

threshold [21,30]. Three additional DOB kinetics are plotted in Figure 5. The green curve reflects the 

DOB kinetic of a patient with liver metastases after chemotherapy. Despite the toxic chemotherapy 

the liver capacity of this patient is in good condition again with a LiMAx value of 597 µg/kg/h. This 

measurement is an example for the usefulness of the LiMAx test in chemotherapy, providing 

information on the stressed liver.  

  

Figure 5. DOB kinetics of five different patients (blue, green, black, wine, and red) with different liver 

statuses as a function of time. Administration of 13C-methacetin is at time zero. A patient with mCRC 

(metastatic colorectal cancer) before and after operation (filled and open blue squares), patient with 

liver metastases and after chemotherapy (green pentagon), patient with CCC (cholangiocellular 

carcinoma), before and after operation (filled and open black circles), patient with heart problems 

(wine triangles), and a patient with CCC, cirrhosis, and alcohol abuse (red diamond). LiMAx values 

in µg/kg/h for presented DOB kinetics are given as numbers next to the kinetics. 

Moreover, the LiMAx test can be used for risk assessment, for example before heart operations 

(wine curve in Figure 5). The LiMAx value can indicate if the liver can afford the additional stress of 

the operation. Here, the LiMAx value shows a normal liver status with no additional risk for the 

operation. The red curve displays the DOB kinetic of a patient with cholangiocellular carcinoma, 

cirrhosis, and alcohol abuse. The DOB kinetic shows no visible rise, a maximum of 1 DOB, and a 

LiMAx value of 19 µg/kg/h. This curve clearly reflects liver failure. 

3.2. Operation Planning 

The DOB kinetics provide extremely useful information on the liver status, and the LiMAx value 

can be used to assess the liver capacity of a patient at bedside. As presented in Figure 5, the DOB and 

LiMAx values provide direct access to the liver status before and after operation. This capability is 

used to plan liver operations with a reduced mortality risk [31]. A typical procedure is sketched in 

the following. The 3D structure of the liver is taken by CT volumetry as shown in Figure 6. Areas with 

Figure 5. DOB kinetics of five different patients (blue, green, black, wine, and red) with different
liver statuses as a function of time. Administration of 13C-methacetin is at time zero. A patient with
mCRC (metastatic colorectal cancer) before and after operation (filled and open blue squares), patient
with liver metastases and after chemotherapy (green pentagon), patient with CCC (cholangiocellular
carcinoma), before and after operation (filled and open black circles), patient with heart problems
(wine triangles), and a patient with CCC, cirrhosis, and alcohol abuse (red diamond). LiMAx values in
µg/kg/h for presented DOB kinetics are given as numbers next to the kinetics.

Moreover, the LiMAx test can be used for risk assessment, for example before heart operations
(wine curve in Figure 5). The LiMAx value can indicate if the liver can afford the additional stress of the
operation. Here, the LiMAx value shows a normal liver status with no additional risk for the operation.
The red curve displays the DOB kinetic of a patient with cholangiocellular carcinoma, cirrhosis, and
alcohol abuse. The DOB kinetic shows no visible rise, a maximum of 1 DOB, and a LiMAx value of
19 µg/kg/h. This curve clearly reflects liver failure.

3.2. Operation Planning

The DOB kinetics provide extremely useful information on the liver status, and the LiMAx value
can be used to assess the liver capacity of a patient at bedside. As presented in Figure 5, the DOB and
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LiMAx values provide direct access to the liver status before and after operation. This capability is
used to plan liver operations with a reduced mortality risk [31]. A typical procedure is sketched in the
following. The 3D structure of the liver is taken by CT volumetry as shown in Figure 6. Areas with
liver tumors and metastases can be identified for resection. Here, the green volume of the liver is to be
resected, while the yellow part, liver segment 2 and 3, should remain. The measured LiMAx value
before operation is 639 µg/kg/h with a liver volume of 2.124 liters. The yellow volume has 31% of the
total. The predicted LiMAx value after surgery is approximately 31% of 639 µg/kg/h. This value of
198 µg/kg/h is below the normal liver capacity, but in a range in which the recovery of the liver is
expected without complications [21,30,32–36]. Thus, it is possible to predict this operation is safe.
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Figure 6. 3D picture of the liver before surgery measured by CT volumetry. LiMAx value before
surgery was 639 µg/kg/h. Liver segment 2 and 3 (yellow) are identified to remain after surgery with
a calculated remnant volume of 31%.

4. Discussion and Conclusions

High precision detection of 13CO2 and 12CO2 in exhaled breath was reported before [10,37]. Here,
we present an improved setup based on time resolved infrared absorption spectroscopy to measure
an increase of the 13CO2 concentration in the breath of humans [10]. A quantum cascade laser is
used to continuously acquire absorption spectra of 12CO2 and 13CO2 during respiration. We stabilize
the frequency position of the QCL by an automatic feedback loop. We use the complete breath of
the patients and a mixing chamber to circumvent difficult breath separation procedures. Our fast
detection scheme allows for averaging, and attains a high sensitivity in the clinical routine at the
bedside. The very high data density follows the true increase of the DOB kinetics, that is, 13CO2

generation and release. The additionally generated and exhaled 13CO2 can be considered to come
solely from 13C-methacetin metabolization in the liver cells. Thus, the fast increase of the DOB kinetics
directly reflects the liver metabolization of 13C-methacetin by cytochrome P450 1A2. The precise
detection of the DOB kinetics by the described FLIP device allows for accurate determination of the
personalized LiMAx value. The LiMAx value is successfully used in clinical routine to reduce the
mortality rate upon liver resections by more than 70% [8,9]. A variety of other application areas have
been reported [26,29,38–40]. The combination of the LiMAx test with the QCL-based FLIP device
presented here will revolutionize liver therapy and medical fields in which the liver plays a vital role.
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