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Abstract The neurophysiological processes underlying non-invasive brain activity measurements

are incompletely understood. Here, we developed a connectome-based brain network model that

integrates individual structural and functional data with neural population dynamics to support

multi-scale neurophysiological inference. Simulated populations were linked by structural

connectivity and, as a novelty, driven by electroencephalography (EEG) source activity. Simulations

not only predicted subjects’ individual resting-state functional magnetic resonance imaging (fMRI)

time series and spatial network topologies over 20 minutes of activity, but more importantly, they

also revealed precise neurophysiological mechanisms that underlie and link six empirical

observations from different scales and modalities: (1) resting-state fMRI oscillations, (2) functional

connectivity networks, (3) excitation-inhibition balance, (4, 5) inverse relationships between a-

rhythms, spike-firing and fMRI on short and long time scales, and (6) fMRI power-law scaling. These

findings underscore the potential of this new modelling framework for general inference and

integration of neurophysiological knowledge to complement empirical studies.

DOI: https://doi.org/10.7554/eLife.28927.001

Introduction
Empirical approaches to characterizing the mechanisms that govern brain dynamics often rely on the

simultaneous use of different acquisition modalities. These data can be merged using statistical

models, but the inferences are constrained by information contained in the different signals, render-

ing a mechanistic understanding of neurophysiological processes elusive. Brain simulation is a com-

plementary technique that enables inference on model parameters that reflect mechanisms that

underlie emergent behavior, but that are hidden from direct observation (Breakspear, 2017).

Brain network models are dynamical systems of coupled neural mass models for simulating large-

scale brain activity; coupling is often mediated by estimations of the strengths of anatomical
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connections based on diffusion-weighted MRI data (so-called structural connectivity or ‘connec-

tomes’). Here, we develop a novel type of brain network model, dubbed ‘hybrid model’, where each

subject’s EEG data is used to drive neural mass dynamics (Figure 1). In brief, we were able to use

the resulting hybrid models to reproduce ongoing subject-specific fMRI time series over a period of

20 min and a variety of other empirical phenomena (Figure 2). In contrast to previous brain network

models that used noise as input, hybrid models are driven by EEG source activity (i.e. EEG sensor

activity mapped onto cortical locations) and therefore simultaneously incorporate structural and

functional information from individual subjects (Figure 1). The injected EEG source activity serves as

approximation of excitatory synaptic input currents (EPSCs), which helps to increase the biological

plausibility of generated model activity (Buzsáki et al., 2012; Haider et al., 2016; Isaacson and

Scanziani, 2011; Nunez and Srinivasan, 2006). Individualized hybrid models yield predictions of

ongoing empirical subject-specific resting-state fMRI time series (Figure 3). Additionally, several

empirical phenomena from different modalities and temporal scales are reproduced: spatial topolo-

gies of fMRI functional connectivity networks (Figure 4), excitation-inhibition (E/I) balance of synaptic

input currents, the inverse relationship between a-rhythm phase and spike-firing on short time scales

(Figure 5), and the inverse relationship between a-band power oscillations and spike-firing, respec-

tively fMRI oscillations, on long time scales (Figure 6), and fMRI power-law scaling (Figure 7). More

importantly, our subsequent analysis of intrinsic model activity reveals neurophysiological processes

that could explain how brain networks produce the aforementioned signal patterns (Figures 5–

7). That is, simulation results not only predict ongoing subject-specific resting-state fMRI time series

and several empirical phenomena observed with invasive electrophysiology methods, but more

importantly, they also show how the network interaction of neural populations leads to the

eLife digest Neuroscientists can use various techniques to measure activity within the brain

without opening up the skull. One of the most common is electroencephalography, or EEG for

short. A net of electrodes is attached to the scalp and reveals the patterns of electrical activity

occurring in brain tissue. But while EEG is good at revealing electrical activity across the surface of

the scalp, it is less effective at linking the observed activity to specific locations in the brain.

Another widely used technique is functional magnetic resonance imaging, or fMRI. A patient, or

healthy volunteer, lies inside a scanner containing a large magnet. The scanner tracks changes in the

level of oxygen at different regions of the brain to provide a measure of how the activity of these

regions changes over time. In contrast to EEG, fMRI is good at pinpointing the location of brain

activity, but it is an indirect measure of brain activity as it depends on blood flow and several other

factors. In terms of understanding how the brain works, EEG and fMRI thus provide different pieces

of the puzzle. But there is no easy way to fit these pieces together.

Other areas of science have used computer models to merge different sources of data to obtain

new insights into complex processes. Schirner et al. now adopt this approach to reveal the workings

of the brain that underly signals like EEG and fMRI.

After recording structural MRI data from healthy volunteers, Schirner et al. built a computer

model of each person’s brain. They then ran simulations with each individual model stimulating it

with the person’s EEG to predict the fMRI activity of the same individual. Comparing these

predictions with real fMRI data collected at the same time as the EEG confirmed that the predictions

were accurate. Importantly, the brain models also displayed many features of neural activity that

previously could only be measured by implanting electrodes into the brain.

This new approach provides a way of combining experimental data with theories about how the

nervous system works. The resulting models can help generate and test ideas about the mechanisms

underlying brain activity. Building models of different brains based on data from individual people

could also help reveal the biological basis of differences between individuals. This could in turn

provide insights into why some individuals are more vulnerable to certain brain diseases and open

up new ways to treat these diseases.

DOI: https://doi.org/10.7554/eLife.28927.002
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emergence of these phenomena and how they are connected across multiple temporal scales in a

time scale hierarchy.

Resting-state fMRI studies identified so-called ‘resting-state networks’ (RSNs), which are wide-

spread networks of coherent activity that spontaneously emerge across a variety of species in the

absence of an explicit task (Biswal et al., 1995; Fox and Raichle, 2007; Raichle et al., 2001).

Despite correlations between fMRI and intracortical recordings (He et al., 2008; Logothetis et al.,

2001), EEG (Becker et al., 2011; Goldman et al., 2002; Mantini et al., 2007; Moosmann et al.,

2003; Ritter et al., 2009) and magnetoencephalography (Brookes et al., 2011; de Pasquale et al.,

2010) the link between RSNs and electrical neural activity is not fully understood. A prominent fea-

ture of electrical neural activity are oscillations in the a-band, which is rhythmic activity in the 8 to 12

Hz frequency range first discovered by Hans Berger (Berger, 1929). A growing body of research

indicates that changes in information processing, attention, perceptual awareness, and cognitive

performance are accompanied by rhythmic modulation of a-power and phase (Busch et al., 2009;

Klimesch, 1999; Mathewson et al., 2009). The observed inverse relationship between a-band activ-

ity and neural firing is central to hypotheses on its functional significance termed ‘gating by inhibi-

tion’ and ‘pulsed inhibition’ (Jensen and Mazaheri, 2010; Klimesch et al., 2007). Interestingly,

intracellular recordings showed that inhibitory events are inseparable from excitatory events, result-

ing in an ongoing excitation-inhibition balance (E/I balance) (Isaacson and Scanziani, 2011;

Okun and Lampl, 2008). The significance of the a-rhythm is underscored by strong negative correla-

tions between ongoing a-band power fluctuation and resting-state fMRI amplitude fluctuation

(de Munck et al., 2008; Feige et al., 2005; Goldman et al., 2002; Moosmann et al., 2003). Lastly,

despite wide-spread interest in critical dynamics (Bak, 2013), the key determinants of emergent

power-law scaling, a signal pattern that is ubiquitous in nature and commonly observed in neural

activity, are unclear (Beggs and Timme, 2012; Marković and Gros, 2014).

To illustrate the potential of this framework for inference of neurophysiological processes, we

show inferred mechanisms for three different empirical phenomena and how they relate to other

well-established neural signal patterns (Figure 2). Upon finding that the hybrid model predicts fMRI

activity, we first sought to identify how injected EEG drove the prediction of subject-specific fMRI

Figure 1. Hybrid modeling framework. Hybrid brain network models are constructed from diffusion-weighted MRI

tractography and region parcellations obtained from anatomical MRI. The nodes of the hybrid models are injected

with subject-specific EEG source activity time series instead of noise. Predicted fMRI time series are fit to each

subject’s empirical fMRI time series, which were simultaneously acquired with EEG. At each node (small red circles)

of the long-range network (green lines) are local networks of excitatory (E) and inhibitory (I) neural population

models that are driven by EEG source activity (red arrows). Nodes are globally coupled by structural connectomes

(green arrows) that represent the heterogeneous white matter coupling strengths between different brain areas.

Synaptic input currents (Equations 1 and 2), firing rates (Equations 3 and 4) and synaptic activity (Equations 5

and 6) underlying fMRI predictions are analysed to identify how neural population activity and network

interactions relate to observable neuroimaging signals. See also Video 1 for a visualization of brain network model

construction and exemplary results from hybrid model simulations.

DOI: https://doi.org/10.7554/eLife.28927.003
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time series. Analysis led us to a mechanism that transformed a-power fluctuations of injected EEG

source activity into fMRI oscillations. The identified mechanism may explain the empirically observed

correlation between EEG and fMRI on the longer time scale of slow fMRI oscillations. Consequently,

we asked how the inhibitory effect of increased a-band power was created on the faster time scale

of a-phase fluctuations. Analysis led us to the identification of an inhibitory effect resulting from the

interaction of postsynaptic current oscillations and local population circuitry. Interestingly, parameter

space exploration showed that prediction quality decreased when long-range coupling was deacti-

vated (i.e. when the nodes of the long-range network were isolated from each other). Therefore, we

interrogated the model for the influence of structural coupling on the emergence of fMRI oscillations

and found that global coupling amplified brain oscillations in a frequency-dependent manner, ampli-

fying slower oscillations more than faster oscillations, which facilitated the emergence of power-law

scaling. Starting with fast time scale effects, our first model outcome accounts for the invasively

observed inverse relationship between spike-firing and a-rhythm phase by identifying a mechanism

that relates this phenomenon to ongoing E/I balance. The second model outcome posits a neural

origin of fMRI RSN oscillations by identifying an explicit mechanism that transforms ongoing a-

power fluctuations into slow fMRI oscillations, which also explains the empirically observed anti-cor-

relations between a-power and fMRI time series. Our third model outcome indicates that scale

Figure 2. Overview of six empirical phenomena on different temporal scales reproduced by the hybrid model. (a) Neuron firing is inversely related to

the phase of a-waves: during peaks of a-waves, neurons fire the least, while they fire maximally during troughs (adapted from Haegens et al., 2011).

(b) Our simulations indicate that the inverse relationship between firing and a-phase is related to the ongoing balancing of neural excitation and

inhibition (adapted from Atallah and Scanziani, 2009). Reprinted with permission of Elsevier.). (c) On a longer time scale (<0.25 Hz), oscillations of

firing rates are inversely related to a-band power fluctuations (adapted from Haegens et al., 2011). (d) Model simulations suggest a mechanism that

transforms a-band power oscillations into fMRI oscillations, predicting subject-specific resting-state fMRI time series, corresponding spatial network

patterns and the inverse correlation between a-power and fMRI (adapted from de Munck et al., 2008. Reprinted with permission of Elsevier.). (e)

Emergence of scale-free fMRI power spectra (adapted from He, 2011) resulted from long-range network input. (f) Individual functional connectivity

matrices were predicted over long and short time windows (adapted from Allen et al., 2014).

DOI: https://doi.org/10.7554/eLife.28927.004
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invariance of fMRI power spectra results from self-reinforcing feedback excitation via long-range

structural connectivity, which leads to frequency-dependent amplification of neural oscillations.

In summary, our biophysically grounded brain model has the potential to test mechanistic hypoth-

eses about emergent phenomena such as scale-free dynamics, the crucial role of excitation-inhibition

balance and the haemodynamic correlates of a-activity. However, there is another perspective on

this form of hybrid modeling. Because it uses empirical EEG data to generate predictions of fMRI

responses, it can be regarded as a form of multimodal fusion under a generative model that is both

Figure 3. Person-specific fMRI time series prediction. (a) Example time series of the hybrid model and the three control scenarios from one subject. (b)

Box plots of average correlation coefficients between all simulated and empirical region time series (20.7 min) for each subject (n = 15; a-regressor

values were inverted for illustration purposes). (c) Scatter plot of RSN time course standard deviation (s.d.) versus prediction quality. Dots depict data

from the nine RSN time courses for each subject. (d) Comparison of prediction quality during upper versus lower quartile of epoch-wise RSN time

course s.d.s. Upper row: spatial activation patterns of nine RSNs. Middle row: correlation coefficients between RSN temporal modes and hybrid model

simulation results and the three control scenarios. Lower row: sliding window (length: 100 fMRI scans = 194 s; step width: one fMRI scan) correlations for

the upper (first and third boxplot per panel) and lower quartiles (second and fourth boxplot per panel) of window-wise RSN temporal mode for the

hybrid model and the a-regressor. Asterisks indicate significantly increased prediction quality of the hybrid model compared to control scenarios in

one-tailed Wilcoxon rank sum test (*p<0.05, **p<0.01). Additionally, all hybrid model correlations in (b) and (d) were tested for the null hypothesis that

they come from a distribution whose median is zero at the 5% significance level. All tests rejected the null hypothesis of zero medians except for RSN

correlations over 20 min for the executive control and the frontoparietal networks (middle row).

DOI: https://doi.org/10.7554/eLife.28927.005

The following figure supplement is available for figure 3:

Figure supplement 1. Parameter space exploration results.

DOI: https://doi.org/10.7554/eLife.28927.006
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physiologically and anatomically grounded. In addition, because we use connectivity constraints

based on tractography, it also serves to fuse structural with functional data.

Results

Hybrid models predict subject-specific fMRI time series
The used brain network models are dynamical systems where individual brain areas are simulated by

coupled neural mass models. Long-range coupling was weighted by heterogeneous strength esti-

mates obtained from white-matter tractography, a method that estimates neural tracts from diffu-

sion-weighted MRI data. The used neural mass models approximate the average ensemble

behaviour of networks of spiking neuron models and were derived in a previous study (Deco et al.,

2013) using a dynamic mean-field technique (Deco et al., 2008; Wong and Wang, 2006). In

Figure 4. Functional connectivity prediction. (a, b) Box plots show correlation coefficients obtained from correlating all subdiagonal entries of empirical

and simulated FC matrices. FC was computed for long epochs (static FC; computed over 20.7 min) and short epochs (dynamic FC; average sliding

window correlation; 100 fMRI scans window length; one fMRI scan step width). Results were compared for (a) the parameter set that generated the best

fMRI time series prediction and (b) the parameter set that yielded the best FC predictions for each subject. (c) Scatter plots compare empirical and

simulated average FC for hybrid model simulations and the a-regressor. Dots depict all pair-wise region time series correlations averaged over all

subjects. Asterisks in (a) and (b) indicate significantly increased prediction quality of the hybrid model compared to control conditions in one-tailed

Wilcoxon rank sum test (*p<0.05, **p<0.01).

DOI: https://doi.org/10.7554/eLife.28927.007

Figure 5. E/I balance generates the inverse relationship between a-phase and firing. (a) Histogram of population firing rates divided into six bins

according to a-cycle segments and normalized relative to the mean firing rate of each cycle. Population firing rates were highest during the trough and

lowest during the peak of a-cycles. (b) Grand average waveforms of population inputs and outputs time locked to a-cycles of injected EEG source

activity (black, column II). Left and right axes denote input currents to excitatory and inhibitory populations, respectively. Please refer to the main text

for a description of the mechanism that explains the inverse relationship between a-cycles and firing rates.

DOI: https://doi.org/10.7554/eLife.28927.008
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contrast to previous brain network models that used noise as input, the neural mass models of our

‘hybrid’ model are driven by EEG source activity that was simultaneously acquired with fMRI (Fig-

ure 1). Simulation results predicted a considerable part of the variance of ongoing subject-specific

resting-state fMRI time series (Figure 3) and spatial network topologies, that is, fMRI functional con-

nectivity (Figure 4; functional connectivity is here defined as the pair-wise correlation matrix

between region time series). Furthermore, fitted models reproduced a variety of empirical phenom-

ena observed with EEG and invasive electrophysiology (Figure 2) and, more importantly, simulation

results revealed mechanistic explanations for the emergence of these phenomena (Figures 5, 6 and

7).

We constructed individual hybrid brain network models for 15 human adult subjects using each

subject’s own structural connectomes and injected each with their own region-wise EEG source

activity time courses that were acquired simultaneously with the fMRI data subsequently predicted.

Using exhaustive searches, we tuned three global parameters for each of the 15 individual hybrid

brain network models to produce the highest fit between each of the subject’s empirical region-

Figure 6. a-power fluctuations generate fMRI oscillations. Grand average waveforms of population inputs and outputs on longer time scales. (a) Hybrid

models were injected with artificial a-activity consisting of 10 Hz sine oscillations that contained a single brief high-power burst (black, column I; orange:

signal envelope). While positive deflections of the a-wave generated positive deflections of inhibitory population firing rates, large negative deflections

were bounded by the physiological constraint of 0 Hz (blue, fifth column; black: moving average). (b) Hybrid models were injected models with 10 Hz

sine waves where ongoing power was modulated similar to empirical a-rhythms (0.01–0.03 Hz). Similarly to (a), but for a longer time frame, inhibitory

populations rectified negative deflections, which introduced the a-power modulation as a new frequency component into firing rates and fMRI time

series.

DOI: https://doi.org/10.7554/eLife.28927.009

The following figure supplement is available for figure 6:

Figure supplement 1. a-power predicts firing rate.

DOI: https://doi.org/10.7554/eLife.28927.010
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average fMRI time series and corresponding simulated time series (Figure 3—figure supplement 1).

Our motivation for choosing that parameter set that produced the highest correlation between simu-

lated and empirical fMRI time series is based on our goal to infer the underlying (but unobservable)

dynamics and parameters of the real system. This idea is based on the assumption that when the

model optimally fits observable brain activity, then also the underlying unobservable brain activity is

faithfully reproduced. The first parameter scales the global strength of long-range coupling between

regions. The second and third parameters scale the strengths of EEG source activity inputs injected

into excitatory and inhibitory populations, respectively. To better assess the quality of fMRI predic-

tions, we compared hybrid model results with three control scenarios: (i) the original noise-driven

brain network model, (ii) a variant of the hybrid model where the time steps of the injected EEG

source activity time series were randomly permuted and (iii) a statistical model where the ongoing a-

band power fluctuation of injected EEG source activity was convoluted with the canonical hemody-

namic response function (henceforth called a-regressor). The first two controls are brain network

models and the third is inspired by traditional analyses of empirical EEG-fMRI data. The controls

serve to exclude that the obtained correlations between simulated and empirical fMRI is a trivial out-

come that would also be produced by the original noise-driven model or with random input time

series.

Figure 7. Long-range coupling controls fMRI power-law scaling. (a) Power spectral densities of simulated and empirical fMRI and empirical a-band

activity (straight-line fits of power spectra are for illustration purposes only; scale-invariance was determined in the time domain using rigorous model

selection criteria, see Materials and methods). (b) As in Figure 6b, but with disabled long-range coupling. In contrast to Figure 6b, the amplitudes of

firing rates, synaptic gating and fMRI are equally large, while in Figure 6b amplitudes were larger during slower a-band power modulations.

DOI: https://doi.org/10.7554/eLife.28927.011

The following figure supplements are available for figure 7:

Figure supplement 1. As in Figure 7a, but simulations were performed with the simplified hybrid model, that is, the models used no feedback

inhibition control (FIC) and a single value for all local inhibitory connections Ji was used.

DOI: https://doi.org/10.7554/eLife.28927.012

Figure supplement 2. Fine-grained parameter space exploration of the simplified hybrid model for an exemplary subject.

DOI: https://doi.org/10.7554/eLife.28927.013
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Visual inspection of example time series

showed good reproduction of characteristic slow

(<0.1 Hz) RSN oscillations by the hybrid model

and the a-regressor (albeit inverted for the lat-

ter), but poor reproduction of temporal dynamics

in the case of noise and random permutations

models (Figure 3). We compared the average

correlation coefficients between all simulated and

empirical fMRI time series between all four sce-

narios (i.e. hybrid model and the three control

setups). Predictions from the hybrid model corre-

lated significantly better with empirical fMRI time

series than predictions from the two random

models and the a-regressor (Figure 3b). For the

hybrid model, five-fold cross-validation showed

no significant difference of prediction quality

between training and validation data sets (two-

tailed Wilcoxon rank sum test, p=0.71, t = 0.54,

Cliff’s delta d = 0.0044) and between validation

data sets and prediction quality for the full time

series (two-tailed Wilcoxon rank sum test,

p=0.42, t = �0.2, Cliff’s delta d = �0.067).

To estimate the ability of the four scenarios to

predict the time courses of different commonly

observed RSNs we performed a group-level spa-

tial independent component analysis (ICA) of the

empirical fMRI data. Next, we computed average correlation coefficients between each subject-spe-

cific RSN time course and the model regions at the position of the respective RSN. As in the case of

region-wise fMRI (Figure 3b), correlation coefficients of the hybrid model were significantly larger

than the control network models for most RSNs (Figure 3d). The sliding-window analyses showed

that prediction quality varied over time, regions and subjects: window-wise prediction quality was

highly correlated with the standard deviation of RSN temporal modes (Figure 3c,d). That is, the

higher the variance contributed to overall fMRI activity by an RSN in a given subject and time win-

dow, the better the prediction of empirical fMRI, which might reflect increased synchrony of electri-

cal activity (see Discussion). As a consequence, epochs in the upper quartile of RSN s.d.s were

significantly better predicted than epochs in the lower quartile (Figure 3d). In order to assess the

subject-specificity of fMRI time series predictions, we correlated all simulation results (i.e. for every

subject and every tested parameter combination) also with the empirical fMRI activity of all other

subjects. We found that the maximum correlation coefficients over all tested parameters were signif-

icantly larger when empirical and simulated data sets belonged to the same subject compared to

when they came from different subjects (p<<0.01, Wilcoxon rank sum test).

Next, we compared the ability of all four setups to predict the spatial topology of empirical fMRI

networks. In contrast to time series prediction, the a-regressor showed low correlations with empiri-

cal functional connectivity (FC). Compared to the a-regressor, all three model-based approaches

provided significantly better predictions of subjects’ individual long-epoch FC and short-epoch FC

(Figure 4). Furthermore, hybrid model simulation results correlated significantly better with empirical

network topology than predictions obtained from the noise-driven model (Figure 4a,b). Interest-

ingly, correlations for hybrid and random permutation models were effectively the same, likely

because the long-range network dynamics, which drive the emergence of FC by structural coupling,

would be relatively preserved when permuting injected activity. Prediction of group-average FC (all

pairwise FC values averaged over all subjects) was better for the hybrid model compared to the a-

regressor (Figure 4c).

Video 1. Reverse-engineering neural information

processing. The video shows how computational brain

network models are constructed from individual

neuroimaging data, how these models can be used to

simulate different types of neural activity of individual

subjects on multiple temporal scales and how model

activity can be used to derive mechanisms of brain

function.

DOI: https://doi.org/10.7554/eLife.28927.014
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E/I balance generates the inverse relationship between a-phase and
firing
After fitting the individual hybrid models for each of the 15 subjects, we analyzed the local popula-

tion activity to infer neurodynamic mechanisms underlying predicted fMRI time series. We found

that on the fast time scale of individual a-cycles (~100 ms) the optimized hybrid model reproduced

the inverse relationship between a-phase and firing rates observed in invasive recordings

(Haegens et al., 2011) (Figure 5a). To investigate these fast-acting dynamics related to a-phase, we

computed grand average waveforms of modeled synaptic inputs, population firing rates, and synap-

tic gating time-locked to the zero-crossings of a-cycles. Resulting waveforms illustrate how the

ongoing balancing of excitatory and inhibitory inputs generated the inverse relation between a-oscil-

lations and neural firing (Figure 5b).

In hybrid models, individual subject’s (Figure 5, column I) source activity (column II) is used as an

approximation of EPSCs (column III). As a result of optimizing the three model parameters, EPSCs

dominated the sum of synaptic input current to inhibitory populations (column IV). Consequently,

inhibitory populations’ (column V) firing rates (column VI) and synaptic gating (column VII) closely fol-

lowed the shape of EPSCs. Because of the monotonic relationship between input currents and out-

put firing rates (defined by Equation 3 and 4), the waveform of inhibitory firing rates and synaptic

gating also closely followed injected EPSCs. As increased input to inhibitory populations leads to

increased inhibitory effect and vice versa, resulting feedback inhibition waveforms (IPSC, column III)

were inverted to EPSCs. Furthermore, the amplitude fluctuation of EPSCs and IPSCs was propor-

tional. That is, stronger EPSCs preceded and helped to generate stronger IPSCs. In other words,

excitation and inhibition were balanced during each cycle, which is in accordance with published

electrophysiology results (Haider et al., 2016; Isaacson and Scanziani, 2011; Okun and Lampl,

2008; Xue et al., 2014). Consequently, IPSCs peaked during the trough of the a-phase and were

lowest during the peak of the a-phase. Fitting the models to fMRI activity resulted in a biologically

plausible ratio of EPSCs to IPSCs (Xue et al., 2014), with IPSC amplitudes being about three times

larger than EPSC amplitudes (compare left axes of EPSC and IPSC plots). Because IPSCs have domi-

nated excitatory population inputs, excitatory populations’ firing rates showed a similar shape as

IPSCs, that is, they peaked during the trough of the a-cycle and fell to their minimum during the

peak of the a-cycle, thereby reproducing the empirical relationship between a-cycle and firing rate

(Haegens et al., 2011). Columns IV, VI and VII refer to Equations 1, 3 and 5 (excitatory population)

and 2, 4 and 6 (inhibitory population), respectively.

In summary, the fast population activity underlying fMRI predictions showed a rhythmic modula-

tion of firing rates on the fast time scale of individual a-cycles in accordance with empirical observa-

tions (Haegens et al., 2011). Analyses revealed that periodically alternating states of excitation and

inhibition resulted from the ongoing balancing of EPSCs by feedback IPSCs, which explains a-phase-

related neural firing.

a-power fluctuations generate fMRI oscillations
Similar to intracranial recordings in monkey (Haegens et al., 2011), we found that increased a-

power of injected EEG source activity was accompanied by decreased firing rates (Figure 6—figure

supplement 1). Furthermore, we also observed the empirically observed inverse relationship

between a-power and fMRI amplitude (Goldman et al., 2002; Moosmann et al., 2003) in our empir-

ical data in the form of negative correlations between the a-regressor and fMRI activity (Figure 3).

Our findings raised the question what physiological mechanism led to this inverse relationship

between a-power and firing rate, respectively, fMRI amplitude. We therefore analyzed model activity

on the longer time scale of a-power fluctuations. To isolate the effects of a-waves from other EEG

rhythms, we replaced the injected EEG-source activity in the 15 individual hybrid models with artifi-

cial a-activity (Figure 6a, column I) and simulated all 15 hybrid models using the single parameter

set that previously generated the highest average fMRI time series prediction quality (Figure 3—fig-

ure supplement 1). Injected activity consisted of a 10 Hz sine wave that contained a single brief

high-power burst in its center in order to allow for model activity to stabilize for sufficiently long

phases before and after the high-power burst. After simulation, we computed grand average wave-

forms of model state variables over all simulated region time series and found that input currents, fir-

ing rates, synaptic activity and fMRI activity of excitatory populations decreased in response to the
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a-burst (Figure 6a). Notably, this behavior emerged despite the fact that injected activity (column I)

was centered at zero, that is, positive and negative deflections of input currents were balanced. The

reason for the observed asymmetric response to increasing input a-power levels originated from

inhibitory population dynamics: while positive deflections of a-cycles generated large peaks in ongo-

ing firing rates of inhibitory populations, negative deflections were bounded by 0 Hz (column V).

Because of this rectification of high-amplitude negative half-cycles, average per-cycle firing rates of

inhibitory populations increased with increasing a-power. As a result, also feedback inhibition (IPSC,

column II) had increased for increasing a-power, which in turn led to increased inhibition of excit-

atory populations, decreased average firing rates, synaptic gating variables (column VI) and ulti-

mately fMRI amplitudes (column VII).

We next analyzed the relationship between a-power fluctuations and fMRI oscillations. We gener-

ated artificial a-activity consisting of a 10 Hz sine wave that was amplitude modulated by slow oscil-

lations (cycle frequencies between 0.01 and 0.03 Hz) and injected it into the hybrid models of all

subjects (Figure 6b, column I). As in the previous example, inhibitory populations filtered negative

a-deflections during epochs of increased power (column V). This half-wave rectification led to a mod-

ulation of average per-cycle firing rates in proportion to a-power. Consequently, the power modula-

tion of the injected a-oscillation was introduced as a new slow frequency component into the

resulting time series. The activity of inhibitory populations can be compared to envelope detection

used in radio communication for AM signal demodulation. The new frequency component intro-

duced by half-wave rectification of a-activity modulated feedback inhibition (IPSC, column II), which

in turn modulated excitatory population firing rates (column V). Furthermore, the resulting oscillation

of firing rates was propagated to synaptic dynamics (column VI) where the large time constant of

NMDAergic synaptic gating (tNMDANMDA100 ms vs. tGABAGABA10 ms) led to an attenuation of

higher frequencies. The low-pass filtering property of the hemodynamic response additionally atten-

uated higher frequencies such that in fMRI signals (column VII) only the slow frequency components

remained, based on the assumption that neurovascular coupling was mediated exclusively by excit-

atory synaptic activity. To restate: a-power fluctuation introduced an inverted slow modulation of fir-

ing rates and synaptic activity; the low-pass filtering properties of synaptic gating and hemodynamic

responses attenuated higher frequencies such that only the slow oscillation remained in fMRI signals.

To check whether this mechanism is robust to the choice of the frequency of the injected a-rhythm

(10 Hz) we simulated otherwise identical models for artificial a-waves at 9 Hz and 11 Hz frequencies

and found qualitatively identical results: simulated fMRI and moving average firing rate time series

of the 9 Hz and the 11 Hz model had correlation coefficients r > 0.99 with the respective time series

of the 10 Hz model.

In summary, we found that increased a-power led to increased feedback inhibition of excitatory

populations introducing a slow modulation of population firing, which can explain the empirically

observed anticorrelation between a-power and fMRI.

Long-range coupling controls fMRI power-law scaling
Empirical fMRI power spectra follow a power-law distribution P / f b, where P is power, f is fre-

quency and b the power-law exponent. In accordance with systematic analyses of empirical data

(He, 2011), average power spectra of our empirical fMRI data obeyed power-law distributions with

exponent bemp = �0.82 (Figure 7a and Figure 7—figure supplement 1). We tested for the exis-

tence of power-law scaling in the time domain by using rigorous model selection criteria that over-

come the limitations of simple straight-line fits to power spectra (see Materials and methods; for

illustration purposes straight-line fits are shown in Figure 7a and Figure 7—figure supplement 1).

Our previous results associated resting-state fMRI oscillations with electrical neural activity by

identifying a neural mechanism that transforms a-band power fluctuations into fMRI oscillations (Fig-

ure 6). This mechanism suggests that EEG a-band power fluctuations are transformed into fMRI

amplitude fluctuations. Therefore, it is surprising that the power spectra of wide-band and a-band

EEG have considerably smaller negative exponents than empirical fMRI (ba-band = �0.53 for a-power

and bwide-band = �0.47 for wide-band power). However, in agreement with empirical fMRI, our simu-

lated fMRI had a larger negative exponent (bsim = �0.73) than the a-band power of the injected

EEG source activity (ba-band = �0.53). This result implies that the power-law slope increased during

the process that transformed electrical band-power fluctuations into fMRI amplitude fluctuations.

Indeed, comparison of power spectra indicated that simulated fMRI had a higher negative exponent
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than EEG source-activity, because the power of slower oscillations increased relative to the power of

faster oscillations (Figure 7a and Figure 7—figure supplement 1). That is, model dynamics trans-

formed synaptic input activity such that the amplitude of output oscillations increased inversely pro-

portional to their frequency. Interestingly, when long-range coupling was deactivated in simulations

that used EEG source activity as input, the power-law exponent of simulated fMRI

(bsim_Gzero = �0.54) was close to the exponent of the a-band power time course of the injected EEG

source activity (ba-band = �0.53). The effect was also visible when comparing our previous model sim-

ulations that used artificial a-activity (Figure 6b), with simulations where long-range coupling was

deactivated (Figure 7b). When long-range coupling was deactivated, the amplitudes of fMRI oscilla-

tions were equally large for all oscillation frequencies (Figure 7b, column VII). In contrast, when

long-range coupling was activated, with everything else being identical, the amplitudes of slower

fMRI oscillations were larger than the amplitudes of faster oscillations (Figure 6b, column VII),

although the amplitudes of the injected artificial a-band power oscillations were equally large for all

oscillations (Figures 6b and 7b, column I). When long-range coupling was present, the amplitudes

of slow oscillations increased and the relationship between power and frequency of oscillations

approximated the power-law exponent found in empirical fMRI power spectra (Figure 7a). With

everything else being identical, we concluded that long-range coupling was responsible for increas-

ing the power of slower oscillations relative to faster oscillation.

Comparison of the individual components of population inputs for activated (Figure 6b, column

II) vs. deactivated (Figure 7b, column II) long-range coupling reinforced that the only difference in

population inputs between both setups was the shape of long-range input. The amplitudes of long-

range input oscillations (Figure 6b, column II, green trace) were inversely proportional to the band-

power oscillation of injected artificial a-activity. In accordance with the effect of a-band power on

population activity that we described earlier, long-range input increased when a-band power

decreased, while during epochs of increased a-activity long-range coupling decreased. Conse-

quently, this fluctuation of long-range input was coherent with the fluctuation of IPSCs that resulted

from the fluctuation of a-band power, which further amplified the effect of a-band power on popula-

tion activity. During epochs of low a-activity long-range coupling conveyed feedforward excitation

that further reinforced the increasing of firing and synaptic gating. Because of this consensual modu-

lation of input currents, total input currents were increased when a-band power was decreased,

which resulted in larger amplitudes of firing rates, synaptic activity and fMRI.

Due to the large time constant of excitatory synaptic gating (tNMDA = 100 ms), long-range excita-

tion decayed relatively slowly, which enabled excitatory activity to accumulate and perpetually rein-

force within the long-range network. The period of time for which this feedforward excitation

persisted was longer during slower oscillations than during faster oscillations. Consequently, synaptic

activity (column VI) had more time to accumulate and was therefore larger during slower oscillations

compared to faster oscillations. As a result, the amplitudes of excitatory population output (columns

V, VI, and VII) reached higher values during slower oscillations than during faster oscillations when

long-range coupling was activated (Figure 6b). Accordingly, the power of slower oscillations, and

therefore the slope of the power spectrum, increases in the case of long-range coupling. Note that

this effect (i.e. that slower oscillations reach higher amplitudes) can already be observed in firing

rates and synaptic gating time series, which excludes an influence of the hemodynamic forward

model. In contrast, in the case of deactivated long-range coupling (Figure 7b) all amplitude peaks

are approximately equal, which was the expected result, since the amplitude-peaks of the power

modulation of injected a-activity were equally high by construction (column I, orange trace).

We asked how the relative strengths of white-matter excitation and feedback inhibition influence

power-law scaling. In order to test how E/I balance affects power-law scaling, we varied the strength

of long-range coupling and, also globally, the strength of feedback inhibition. That is, in contrast to

our previous simulations, the strength of feedback inhibition was controlled by a single parameter

for all inhibitory populations. The other parameters, that is the strengths of EEG source activity

injected into excitatory and inhibitory populations, were kept fixated. Screening of individual param-

eter spaces showed that the power-law exponent of simulated fMRI depended on the balance of

long-range excitation and local inhibition: the 2D distribution of the prediction quality of fMRI time

series, functional connectivity and the power-law exponent showed a characteristic diagonal pattern.

That is, increased long-range coupling required increased local feedback inhibition for producing

best predictions of fMRI, FC and power-law exponents, which demonstrated the crucial role of E/I
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balance for the emergence of scale invariance and long-range correlations (Figure 7—figure supple-

ment 1 and Figure 7—figure supplement 2).

Discussion
In this work, we describe a biophysically based brain network model that predicts a considerable

part of subject-specific fMRI resting-state time series on the basis of concurrently measured EEG.

Importantly, we show how this novel modelling approach can be used to infer the neurophysiological

mechanisms underlying neuroimaging signals. Instead of mere reproduction of empirical observa-

tions, our central aim was to provide an integrative framework that unifies empirical data with theory

of the nervous system in order to derive mechanisms of brain function underlying empirical observa-

tions across many scales. Clearly, the sequence of analyses and implicit hypothesis testing presented

in this paper represents one of many lines of enquiry. The more general point made by this report is

that our hybrid model can be used to both test hypotheses and to build hypotheses. In other words,

many of the questions (for which we offer answers) only emerged during application of the model,

which allowed us to pursue a particular narrative in understanding the genesis of different empirical

phenomena. A key point of consideration is that the brain model was built from networks of generic

neural population models that were constrained by empirical data, but not explicitly constructed to

address specific reproduced phenomena. This is mirrored by the emergence of processes at consid-

erably faster time scales than the subject-specific fMRI time series that were the target of the model

fitting. It is important to point out that the inferred mechanisms constitute candidate hypotheses

that require empirical falsification. The model-derived mechanisms make concrete predictions on the

waveforms of different input currents, output firing rates, synaptic activities and fMRI signals, which

can be empirically tested. Through ongoing integration of biological knowledge, falsification with

empirical data and subsequent refinement, hybrid brain network models are intended to represent a

comprehensive and increasingly accurate theory about large-scale brain function. The construction

of hybrid brain network models and our major results are visualized in Video 1.

Hybrid models draw on empirically estimated EEG source activity to constrain synaptic input cur-

rent dynamics. This approach is motivated by the need for a model that not only reproduces static

features of brain activity, like functional connectivity, but that produces these features on the basis

of biologically plausible time series dynamics. Underlying the approach is the consideration that

commonly used fitting targets of BNMs, like FC or power spectral features (e.g. slow BOLD oscilla-

tions, EEG a-peak), can in principle be generated by time series that are, except from the fitted fea-

tures, not necessarily biologically plausible. For example, a wide range of waveforms can produce

FC-like correlation patterns without necessarily having a biological underpinning. The goal was not

to have an abstract converter that simply transforms EEG into an fMRI modality such as time series.

Rather, EEG source activity serves as an approximation of ongoing subject-specific synaptic currents

and parameter fitting is performed to tune the model to optimally explain empirical fMRI time series.

In contrast to a simple ‘converter’, our biophysical model is able to additionally capture other fea-

tures of functional brain data not used for model fitting. We show that in fact the parameter space

converges for different metrics of brain activity toward a single optimal subspace indicating validity

of our model. In our approach, both functional datasets, EEG and fMRI, are fused within the frame-

work of a biophysically grounded and structurally constrained model in order to optimally approxi-

mate the underlying (but unobservable) behavior and parameters of the real system. Models, by

definition, omit features of the modeled system for the sake of simplicity, generality and efficiency.

Adding degrees of freedom renders parameter spaces increasingly intractable and increases the risk

of over-fitting. Injection of source activity is a way to systematically probe sufficiently abstract neural

systems while maintaining biologically realistic behavior. Thereby, the approach aims to balance a

level of abstraction that is sufficient to provide relevant insights, with being detailed enough to

guide subsequent empirical study. It is not the goal of this approach to attain the highest possible fit

between different imaging modalities at the cost of biological plausibility, which would be the case

for abstract statistical models that do not relate to biological entities and therefore preclude the

inference of neurophysiological knowledge. Here, imperfect reproduction of neural activity directly

points to deficits in our understanding and conceptualization of large-scale brain structure and func-

tion, which to iteratively improve is the goal of this approach. We note that our comparison of pre-

diction qualities of the hybrid model and the three control scenarios is not a result in the sense of
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formal model comparison where goodness of fit is assessed in light of model complexity. Rather, the

informal comparison serves to better assess the hybrid model’s prediction quality in relation to the

original model and the a-regressor. Although it was a priori clearly unlikely that the noise-driven

model or the injection of time permuted EEG would correlate with the empirical time series, these

controls serve to exclude that hybrid model correlations were obtained by a trivial mechanism

potentially also present in noise models. Furthermore, to test whether it is the specific temporal

sequence of time points in the injected activity that enabled fMRI prediction, we simulated the

hybrid model’s response to permuted input time series. More importantly, these correlations enable

us to show that although noise and permuted input do not produce noteworthy time series correla-

tions, like the a-regressor, they nevertheless predict FC, while the hybrid model predicts both, time

series and FC.Although the a-regressor makes noteworthy fMRI time series predictions, it yields low

correlations with FC and, importantly, it is unable to predict the electric neuronal phenomena that

have been reproduced with the hybrid model as it is not based on state variables that correspond to

biological entities like the hybrid model. Hence, if during formal model comparison model complex-

ity is penalized without accounting for the accuracy of the model to predict diverse data sets that

originate from different modalities and that involve different kinds of metrics (as the hybrid model

does), then it is likely that the a-regressor is favoured, because it relies on zero free parameters

while achieving similar time series prediction, despite the fact that it clearly has less power to con-

currently explain the different sorts of neuronal phenomena explained by the hybrid model. In order

to better estimate the relative quality of this kind of models, we are working on a theoretical frame-

work that extends existing Bayesian system identification frameworks (Friston et al., 2003) to

account for the concurrent prediction of the dynamics of different biological phenomena, data sets

and metrics which goes beyond the scope of this study and shall be the subject of an additional

publication.

The idea of the hybrid approach is to test how biophysically based and structurally constrained

models respond to biologically plausible synaptic input currents, comparable to in vivo or in vitro

electrophysiology current injection experiments. However, it must be noted that the hybrid model is

clearly limited by the fact that it is not an autonomous (self-contained) model of the brain, but

depends on externally injected activity. Furthermore, EEG-based approximation of local EPSCs is

limited by the coarse spatial resolution of EEG and the inability to disentangle local EPSCs from

other currents that contribute to EEG as all currents in the brain superimpose at any given point in

space to generate a potential at that location (Buzsáki et al., 2012). This limitation would become

apparent when the hybrid model is coupled with a forward model to predict EEG on the basis of the

entire sum of input currents (Equations 1 and 2). However, when predicting EEG on the basis of

local EPSCs only by application of the forward model, this would again yield the original EEG. Nota-

bly, EEG source activity can only be viewed as an approximation of EPSCs and it is unclear how EEG

exactly relates to EPSCs, that is, to which extend this approximation reflects biological reality.

Although theoretical considerations suggest that excitatory postsynaptic potentials dominate current

source density (CSD) amplitudes (Mitzdorf, 1985), empirical observations repeatedly showed excep-

tions to this proposition. For example, CSD profiles of neuronal oscillations that were entrained to

rhythmic stimulus streams showed a temporal alternation of states dominated by net ensemble

depolarization and hyperpolarization, indicating the contribution of IPSCs to CSD profiles

(Lakatos et al., 2008; Lakatos et al., 2013). Despite these limitations several empirical phenomena

were reproduced and the input injection approach opens up avenues for future research to investi-

gate the neural mechanisms underlying a wide range of different phenomena. For example, an

important feature of the a-rhythm is its characteristic bistable jumping between low-power and

high-power modes and a ‘dwelling’ in each state that follows a stretched-exponential (Freyer et al.,

2009a). This behavior was remarkably closely reproduced by a multistable corticothalamic model

that identified the underlying mechanism as a multistable switching between a fixed point and a limit

cycle attractor that is driven by noise (Freyer et al., 2011). Importantly, the closest reproduction of

EEG a-switching in the model of Freyer et al. (2011) emerged only when the uncorrelated Gaussian

noise term (injected into mean membrane potentials) was replaced by a state-dependent (autore-

gressive) noise term, which made the injected stochastic fluctuations effectively autocorrelated. This

result is interesting in the context of the present study as our simulations identified the switching

between high- and low-power modes of the a-rhythm as a potential generative mechanism underly-

ing fMRI resting-state oscillations. Extending from these results, future BNM studies could
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systematically investigate the role of autocorrelated compared to Gaussian inputs and their impact

on emerging fMRI dynamics (like FC dynamics), especially since inputs like the EEG source activity

used in our hybrid model better capture the autocorrelation structure of biological source currents,

which are different from white noise (Haider et al., 2016; Okun et al., 2010).

In line with our results, cellular-level studies indicate that rhythmic GABAergic input from the

interneuronal network is associated with E/I balance (Dehghani et al., 2016) and a-related firing

(Jensen and Mazaheri, 2010; Lorincz et al., 2009; Osipova et al., 2008). However, the identifica-

tion of an exact physiological mechanism that explains how a-rhythms can produce an inhibitory

effect remained elusive (Jensen and Mazaheri, 2010; Klimesch, 2012). Mazaheri and Jensen

(2010) suggest that a-related inhibition occurs due to an observed amplitude asymmetry of ongoing

oscillations, also termed baseline-shift. Our results suggest, in accordance with the model from

Mazaheri and Jensen (2010), that a symmetrically oscillating driving signal in the a-range leads to

asymmetric firing rates and synaptic currents, but we extend this scheme with an explicit explanation

of the generation of inhibitory pulses from oscillating input currents. Furthermore, our results with

artificial a-activity may help to shed new light on the ‘gating by inhibition’ hypothesis, which posits

that information is routed through the brain network by functionally blocking off task-irrelevant path-

ways and that this inhibition is reflected by a-activity (Jensen and Mazaheri, 2010). In agreement

with this hypothesis, we found that long-range input decreased during states of high a-power and

increased again when a-power decreased, but further studies are required to examine the effect of

a-power on long-range communication and its interaction with other frequency bands.

It is unclear to which degree non-neuronal processes affect the fMRI signal, as different physio-

logical signals such as respiration and cardiac pulse rate were shown to be correlated with resting-

state oscillations (Biswal et al., 1996; Power et al., 2017), which raised concerns that RSN oscilla-

tions may be unrelated to neuronal information processing, but rather constitute an epiphenomenon

(Birn et al., 2006; de Munck et al., 2008; Shmueli et al., 2007; Yuan et al., 2013). The interpreta-

tion and handling of these signal modulations is therefore hotly debated and they are often consid-

ered as artefactual and removed from fMRI studies (Birn et al., 2006; Chang and Glover, 2009).

Importantly, however, low-frequency BOLD fluctuations are also strongly correlated with electrical

neural activity, which was shown by studies that analysed fMRI jointly with EEG (Goldman et al.,

2002; Laufs et al., 2003; Moosmann et al., 2003), intracortical recordings (He et al., 2008;

Logothetis et al., 2001) or MEG (Brookes et al., 2011; de Pasquale et al., 2010). Similarly, strong

temporal correlations and spatially similar correlation maps of EEG a-power, respiration and BOLD

(Yuan et al., 2013), as well as of EEG a-power, heart rate variations and BOLD (de Munck et al.,

2008) suggest that these fMRI fluctuations are not unrelated to neural activity, but may be of neural

origin.

Our results extend the current understanding by showing an explicit mechanism for a neural ori-

gin of fMRI RSN oscillations that explains a large part of their variance by a chain of neurophysiologi-

cal interactions. That is, our simulated activity not only reproduces the negative correlation between

a-power fluctuations and BOLD signal, but also reveals a mechanism that transforms ongoing a-

power fluctuation into fMRI oscillations. The hybrid approach therefore constitutes a multimodal

data fusion approach (Friston, 2009; Valdes-Sosa et al., 2009) that enables the direct characteriza-

tion of the previously reported temporal correlations between BOLD and EEG signals in terms of the

underlying neural activity and explicit forward models. In addition to fMRI time series, the hybrid

model also reproduces the spatial topology of fMRI networks, which are not predicted by the a-

power regressor. These findings thereby add to accumulating evidence suggesting that RSNs origi-

nate from neuronal activity (Brookes et al., 2011; de Pasquale et al., 2010; Goldman et al., 2002;

He et al., 2008; Logothetis et al., 2001; Mantini et al., 2007; Moosmann et al., 2003) rather than

being a purely hemodynamic phenomenon that is only correlated, but not caused by it (Birn et al.,

2006; de Munck et al., 2008; Shmueli et al., 2007). The conclusions from these results have impor-

tant implications for future fMRI studies, as they implicate that low-frequency fMRI oscillations may

be attributed to a neural process that has a considerable state-dependent effect on neural informa-

tion processing as indicated by the large modulations of neuronal firing and synaptic activity. Meth-

ods for physiological noise correction might remove variance from fMRI experiments that is related

to neuronal activity and may therefore exclude relevant information for the interpretation of fMRI

data.
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Parameter space exploration shows that structural coupling is critical for fMRI prediction, as pre-

diction quality decreases for sub-optimal global coupling strengths or when global coupling is deac-

tivated altogether (Figure 3—figure supplement 1, Figure 7—figure supplement 2). In this study,

we did not address the effect of coupling time delays, as they were non-essential for the emergence

of the described phenomena. Our initial application of the novel hybrid model aimed to study the

effect of input injection while minimizing the degrees of freedom of the simulation and the set of

parameters to be varied. Further studies are required to determine the effect of coupling delays, as

previous studies demonstrated their important role for emerging large-scale dynamics (Deco et al.,

2011; Jirsa, 2008, 2009). We observed that the prediction quality of resting-state network activa-

tion time courses fluctuates over time and is highest during epochs of highest variance of the respec-

tive temporal mode. During these, time windows resting-state networks contribute the largest

variance to whole-brain fMRI, that is, they are the most active. A possible explanation may be that

during states of asynchronous neural activity (i.e. when the variance of RSN temporal modes is low)

volume conduction and cancellation of electromagnetic waves decreases the ability of source imag-

ing methods to reconstruct source activity.

It is important to note that the observed processes may not be specific to a-oscillations, but may

apply also to other frequencies or non-oscillatory signal components, for example, phase-locked dis-

charge of neurons occurs over a range of frequency bands and is not limited to the a-rhythm (Buz-

saki, 2006). Furthermore, the a-rhythm, though prominent, is certainly not superior to other rhythms

with respect to neuronal computation and cognition (Fries, 2015). In fact, it may be best thought of

as one of several modes of brain operation, even during the so-called resting-state (Engel et al.,

2013). Additional empirical and theoretical studies will be needed to address these limitations more

comprehensively. Although our analysis revolved around a-oscillations, the hybrid modeling

approach is not restricted to a-activity, as the injected EEG source activity was not limited to the a-

band. The hybrid modeling approach itself does not set any requirements on the frequency spec-

trum of the injected source activity. Importantly, our focus on a-rhythms was not ‘by construction’,

but, as outlined in the introduction, emerged from a sequence of analyses that we performed to

understand how the hybrid model generated the correlation with empirical fMRI time series. In this

regard, it is interesting to note that the time series correlations obtained by the a-regressor and the

hybrid model are comparable, which indicates that the a-rhythm was the main driver for the hybrid

model’s fMRI time series prediction.

Despite the ubiquity of scale invariant dynamics, models that generate power-law distributions

are often rather generic and detached from the details of the modeled systems (Bak et al., 1987;

Marković and Gros, 2014). Furthermore, the precise mechanisms that lead to the emergence of

fMRI power spectrum power-law scaling or the relationship between brain network interaction and

fMRI power-law scaling are unclear (He, 2011). Our simulation results indicate that fMRI spectra

power-law scaling is due to the observed frequency-dependent amplification of oscillatory activity in

networks that contain self-reinforcing feedback excitation together with slow decay of activity. Cen-

tral to theories on the emergence of criticality is the tuning of a control parameter (e.g. connection

strengths) that leads the system to a sharp change in one or more order parameters (e.g. firing rates)

when the control parameter is moved over a critical point that marks the boundary of a phase transi-

tion. It is important to point out that the existence of power-laws alone does not prove criticality.

Rather, criticality requires the existence of a control parameter that can be adjusted to move the sys-

tem through a phase transition at a critical point (Beggs and Timme, 2012). In vivo, in vitro and in

silico results show that the dynamical balance between excitation and inhibition was found to be

essential to move the system towards or away from criticality, for example, by pharmacologically

altering the excitation-inhibition balance in anesthetized rats (Osorio et al., 2010), acute slices

(Beggs and Plenz, 2003) or by changing parameters that control global excitation and inhibition in

computational models (Deco et al., 2014). However, the exact role played by excitation-inhibition

balance is unclear. In line with these results, we found that power-law scaling varied as a function of

the relative levels of global excitation and inhibition, further emphasizing the need for a proportional

relationship between these control parameters (Figure 7—figure supplement 2). Extending from

that, our simulation results indicate that E/I balance may cause a tuning of the relative strengths of

local and long-range inputs to neural populations that supports constructive interference between

the different input currents, which in turn amplifies slower oscillations more than faster oscillation.

These results address an open question on whether power-laws in neural networks result from
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power-law behavior on the cellular level or from a global network-level process (Beggs and Timme,

2012), by giving an explanation for scale-free fMRI power spectra as an emergent property of long-

range brain network interaction that does not require small-scale decentralized processes like the

constant active retuning of microscopic parameters as proposed in some theories of self-organized

criticality (Bak et al., 1987; Hesse and Gross, 2014). Furthermore, these results explicitly address

the effect of input activity, while in vitro and in silico studies have so far focused on systems without

or considerably decreased input (Hesse and Gross, 2014). The observed co-emergence of spatial

long-range correlations (i.e. functional connectivity networks) and power-law scaling may point to a

unifying explanation within the theory of self-organized criticality, as previously proposed by others

(Linkenkaer-Hansen et al., 2001). Note that we have used the hybrid model not simply to establish

the prevalence of scale invariant dynamics, but to use the power law scaling in a quantitative sense

to understand the mechanisms leading to particular power law exponents; for example, the impor-

tance of extrinsic (between node) connections in explaining the differences between power law scal-

ing at the electrophysiological and haemodynamic level. This is an important point because scale-

free behavior per se would be difficult to avoid in simulations of this sort.

A wide range of disorders like autism, schizophrenia, intellectual disabilities, Alzheimer’s disease,

multiple sclerosis or epilepsy have been linked to disruption of E/I balance (Marı́n, 2012) and altered

structural and functional network connectivity (Stam, 2014). The presented modelling approach may

therefore play a key role for identifying the precise mechanisms underlying the pathophysiology of

different disorders and assist in developing novel therapies that restore altered E/I balance or brain

connectivity, for example, by identifying the targets for neural stimulation therapies or by guiding

individually customized therapy. The ability of the hybrid model to infer precise neurophysiological

mechanisms that give rise to empirical phenomena and to link the involved mechanisms and signal

patterns across different scales and neuroimaging modalities makes it a potentially valuable tool for

neuroscience research.

Materials and methods

Computational model
The model used in this study is based on the large-scale dynamical mean field model used by Deco

and colleagues (Deco et al., 2014; Wong and Wang, 2006). Brain activity is modeled as the net-

work interaction of local population models that represent cortical areas. Cortical regions are mod-

elled by interconnected excitatory and inhibitory neural mass models. In contrast to the original

model, excitatory connections were replaced by injected EEG source activity. The dynamic mean

field model faithfully approximates the time evolution of average synaptic activities and firing rates

of a network of spiking neurons by a system of coupled non-linear differential equations for each

node i:

I
Eð Þ
i ¼WEI0þG

X

j

CijS
Eð Þ
j � JiS

Ið Þ
i þw

Eð Þ
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i ¼WI I0� S

Ið Þ
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Ið Þ
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dS
Ið Þ
i tð Þ

dt
¼�

S
Ið Þ
i

tI
þgIr

Ið Þ
i (6)

Here, ri
(E,I) denotes the population firing rate of the excitatory (E) and inhibitory (I) population of

brain area i. Si
(E,I) identifies the average excitatory or inhibitory synaptic gating variables of each

brain area, while their input currents are given by Ii
(E,I). In contrast to the model used by Deco et al.

(2014) that has recurrent and feedforward excitatory coupling, we approximate excitatory postsyn-

aptic currents IBG using region-wise aggregated EEG source activity that is added to the sum of

input currents Ii
(E,I). This approach is based on intracortical recordings that suggest that EPSCs are

non-random, but strongly correlated with electric fields in their vicinity, while IPSCs are anticorre-

lated with EPSCs (Haider et al., 2016). The weight parameters wBG
(E,I) rescale the z-score normalized

EEG source activity independently for excitatory and inhibitory populations. G denotes the long-

range coupling strength scaling factor that rescales the structural connectivity matrix Cij that denotes

the strength of interaction for each region pair i and j. All three scaling parameters are estimated by

fitting simulation results to empirical fMRI data by exhaustive search. Initially, parameter space (n-

dimensional real space with n being the number of optimized parameters) was constrained such that

the strength of inhibition was larger than the strength of excitation, satisfying a biological constraint.

Furthermore, for each tested parameter set (containing the three scaling parameters mentioned

above), the region-wise parameters Ji that describe the strength of the local feedback inhibitory syn-

aptic coupling for each area i (expressed in nA) are fitted with the algorithm described below such

that the average firing rate of each excitatory population in the model was close to 3.06 Hz (i.e. the

cost function for tuning parameters Ji was solely based on average firing rates and not on prediction

quality). The overall effective external input I0 = 0.382 nA is scaled by WE and WI, for the excitatory

and inhibitory pools, respectively. ri
(E,I) denotes the neuronal input-output functions (f-I curves) of the

excitatory and inhibitory pools, respectively. All parameters except those that are tuned during

parameter estimation are set as in Deco et al. (2014). Please refer to Table 1 for a specification of

state variables and parameters. BOLD activity was simulated on the basis of the excitatory synaptic

activity S(E) using the Balloon-Windkessel hemodynamic model (Friston et al., 2003), which is a

dynamical model that describes the transduction of neuronal activity into perfusion changes and the

coupling of perfusion to BOLD signal. The model is based on the assumption that the BOLD signal is

a static non-linear function of the normalized total deoxyhemoglobin voxel content, normalized

Table 1. State variables and parameters of the hybrid brain network model.

Quantity Value Description

State variables

ri(E,I) Population firing rate of the excitatory (E) or inhibitory (I) population in brain area i

Si(E,I) Average synaptic gating

Ii(E,I) Sums of all input currents

IBG EEG-derived input currents

Parameters

w+ 1.4 Local excitatory recurrence

Cij Obtained from diffusion tractography Structural connectivity matrix

gE, gI 6.41 � 10�4, 1.0 � 10�3 Kinetic parameters

aE, bE, dE, tE, WE 310 (nC�1), 125 (Hz), 0.16 (s), 100 (ms), 1 Excitatory gating variables

aI, bI, dI, tI, WI 615 (nC�1), 177 (Hz), 0.087 (s), 10 (ms), 0.7 Inhibitory gating variables

JNMDA 0.15 (nA) Excitatory synaptic coupling

JI Obtained by FIC heuristic (nA) Feedback inhibitory synaptic coupling

I0 0.382 (nA) overall effective external input

G Obtained from model fitting Global coupling scaling factor

w
Eð Þ
BG , w

Ið Þ
BG

Obtained from model fitting Weights for scaling EEG-derived input currents
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venous volume, resting net oxygen extraction fraction by the capillary bed, and resting blood vol-

ume fraction. Please refer to Deco et al. (2013) for the specific set of Ballon-Windkessel model

equations that we used in this study.

Parameter optimization
For each brain network model, three parameters were varied to maximize the fit between empirical

and simulated fMRI: the scaling of excitatory white-matter coupling and the strengths of the inputs

injected into excitatory and inhibitory populations (please refer to Table 2 for an overview over the

obtained parameter values). Following in vivo observations (Xue et al., 2014), we ensured that at

excitatory populations EPSC amplitudes are smaller than IPSC amplitudes by constraining the range

of values for the ratio wBG
(I) / wBG

(E) between 5 and 200, which we found through initial pilot simula-

tions. Note that the ratio wBG
(I) / wBG

(E) is not identical to the amplitude ratio of IPSCs vs. EPSCs, but

depends also on the specific settings of all other varied parameters. For example, a large ratio wBG
(I)

/ wBG
(E) can still lead to a small ratio of IPSCs vs. EPSCs amplitudes if the local feedback inhibition

parameter Ji is small. Apart from these initial pilot simulations to restrict the ratio of postsynaptic

currents to a biologically plausible range, the specific combination of all varied parameters was

exclusively found through fitting simulated to empirical fMRI time series under the constraint of plau-

sible firing rates. That is, besides tuning these three global parameters using the sole optimization

criterion of maximizing the fit between simulated and empirical fMRI time series, we adjusted local

inhibitory coupling strengths in order to obtain biologically plausible firing rates in excitatory popula-

tions. For this second form of tuning, termed feedback inhibition control (FIC), average population

firing rates were the sole optimization criterion, without any consideration of prediction quality,

which was only dependent on the three global parameters. FIC modulates the strengths of inhibitory

connections that is required to compensate for excess or lack of excitation resulting from the large

variability in white-matter coupling strengths obtained by MRI tractography, which is a prerequisite

to obtain plausible ranges of population activity that is relevant for some results (Figure 5 and Fig-

ure 6). Prediction quality was measured as the average correlation coefficient between all simulated

and empirical region-wise fMRI time series of a complete cortical parcellation over 20.7 min length

(TR = 1.94 s, 640 data points) thereby quantifying the ability of the model to predict the activity of

68 parcellated cortical regions. Accounting for the large-scale nature of fMRI resting-state networks,

the chosen parcellation size provides a parsimonious trade-off between model complexity and the

desired level of explanation. What this parcellation may lack in spatial detail, it gains in providing a

Table 2. Parameters of the 15 hybrid brain network models obtained by parameter tuning.

G w
Ið Þ
BG w

Ið Þ
BG=w

Eð Þ
BG

0.12 0.13 5

0.1 0.03 5

0.14 0.08 50

0.09 0.03 10

0.13 0.15 5

0.44 0.03 25

0.15 0.05 20

0.09 0.12 5

0.48 0.04 125

0.2 0.15 10

0.11 0.12 10

0.12 0.02 5

0.25 0.04 5

0.44 0.07 200

0.09 0.04 5
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full-brain coverage that can reliably reproduce ubiquitous large-scale features of empirical data,

which we further present below. To exclude overfitting and limited generalizability, a five-fold cross-

validation scheme was performed on the hybrid model simulation results. Therefore, the data was

randomly divided into two subsets: 80% as training subset and 20% as testing subset. Prediction

quality was estimated using the training set, before trained models were asked to predict the testing

set. Resulting prediction quality was compared between training and test data set and between test

data set and the data obtained from fitting the full time series. Furthermore, despite the large range

of possible parameters, the search converged to a global maximum (Figure 3—figure supplement

1). Therefore, we ensured that when the model has been fit to a subset of empirical data, that it was

able to generalize to new or unseen data. In contrast to model selection approaches, where the pre-

dictive power of different models and their complexity are compared against each other, we here

use only a single type of model.

Feedback inhibition control
The excitatory populations of isolated nodes of the original model described in Deco et al. (2014)

have an average firing rate of 3.06 Hz. That is, without long-range coupling G
P

j CijS
Eð Þ
j and without

injected activity w
Eð Þ
BG IBG and w

Ið Þ
BGIBG (cf. Equations 1 and 2), the used excitatory populations have an

average firing rate of 3.06 Hz. This value conforms to the empirically measured Poisson-like cortical

in vivo activity of ~3 Hz (Softky and Koch, 1993; Wilson et al., 1994) and results from the dynamic

mean field approximation of the average ensemble behaviour of a large-scale spiking neuron model

used in Deco et al. (2014). In contrast to isolated nodes, the firing rate of coupled nodes change in

dependence of the employed structural connectivity matrix and the injected input. To compensate

for a resulting excess or lack of excitation, a local regulation mechanism, called feedback inhibition

control (FIC), was used. The approach was previously successfully used to significantly improve FC

prediction as well as for increasing the dynamical repertoire of evoked activity and the accuracy of

external stimulus encoding (Deco et al., 2014). Despite the mentioned advantages of FIC tuning, it

has the disadvantage of increasing the number of open parameters of the model. To prove that pre-

diction quality is not due to FIC, but solely due to the three global parameters and to exclude con-

cerns about over-parameterization or that FIC may be a potentially necessary condition for the

emergence of scale-freeness, we devised a control model that did not implement FIC, but used a

single global parameter for inhibitory coupling strength. Instead of tuning the 68 individual local

coupling weights individually, only a single global value for all inhibitory coupling weights Ji was var-

ied. We compared the effect of FIC on time series prediction quality and found no significant differ-

ence in prediction quality to simulations that used only a single value for all local coupling weights Ji
per subject (one-tailed Wilcoxon rank sum test, p=0.36, z = �0.37, Cliffs’s delta d = �0.15). In con-

trast to simulations that are driven by noise (Deco et al., 2014), FIC parameters for injected input

must be estimated for the entire simulated time series, since the non-stationarity of stimulation time

series leads to considerable fluctuations of firing rates. Therefore, we developed a local greedy

search algorithm for fast FIC parameter estimation based on the algorithm in Deco et al. (2014). To

exert FIC, local inhibitory synaptic strength is iteratively adjusted until all excitatory populations

attained a firing rate close to the desired mean firing rates for the entire ~20 min of activity. During

each iteration, the algorithm performs a simulation of the entire time series. Then, it computes the

mean firing activity over the entire time series for each excitatory population and adapts Ji values

accordingly, that is, it increases local Ji values if the average firing rate over all excitatory populations

during the k-th iteration rbk is larger than 3.06 Hz and vice versa. In order to reduce the number of

iterations the value by which Ji is changed is, in contrast to the algorithm by Deco et al. (2014),

dynamically adapted in dependence of the firing rate obtained during the current iteration

Jkþ1

i ¼ Jki þðr̂k � 3:06Þtk (7)

where Ji
k denotes the value of feedback inhibition strength of node i and tk denotes the adaptive

tuning factor during the k-th iteration. In the first iteration, all Ji values are initialized with one and tk

is initialized with 0.005. The adaptive tuning factor is dynamically changed during each iteration

based on the result of the previous iteration:
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tkþ1 ¼ ð
X

i
ðJk�1

i � JkÞÞ=ðr̂k�1� r̂kÞ: (8)

For the case that the result did not improve during the current iteration, that is,

r̂� 3:06j j � r̂k�1 � 3:06
�� ��; (9)

the adaptive tuning factor is decreased by multiplying it with 0.5 and the algorithm continues with

the next iteration. After 12 iterations, all Ji values are set to the values they had during the iteration

k where |rbk – 3.06| was minimal.

MRI preprocessing
Structural and functional connectomes from 15 healthy human subjects (age range: 18–31 years,

eight female) were extracted from full data sets (diffusion-weighted MRI, T1-weighted MRI, EEG-

fMRI) using a local installation of a pipeline for automatic processing of functional and diffusion-

weighted MRI data (Schirner et al., 2015). From a local database of 49 subjects (age range 18–80

years, 30 female) that was acquired for a previous study (Schirner et al., 2015), we selected the 15

youngest subjects that fulfilled highest EEG quality standards after applying MR artefact correction

routines. EEG quality was assessed by standards that were defined prior to the experimental design

and that are routinely used in the field (Becker et al., 2011; Freyer et al., 2009b; Ritter et al.,

2010; Ritter et al., 2007): occurrence of spikes in frequencies > 20 Hz in power spectral densities,

excessive head motion and cardio-ballistic artefacts. Research was performed in compliance with the

Code of Ethics of the World Medical Association (Declaration of Helsinki). Written informed consent

was provided by all subjects with an understanding of the study prior to data collection, and was

approved by the local ethics committee in accordance with the institutional guidelines at Charité

Hospital Berlin. Subjects with a self-reported history of neurological, cognitive, or psychiatric condi-

tions were excluded from the experiment. Structural (T1-weighted high-resolution three-dimensional

MP-RAGE sequence; TR = 1,900 ms, TE = 2.52 ms, TI = 900 ms, flip angle = 9˚, field of view

(FOV) = 256 mm x 256 mm x 192 mm, 256 � 256 � 192 Matrix, 1.0 mm isotropic voxel resolution),

diffusion-weighted (T2-weighted sequence; TR = 7500 ms, TE = 86 ms, FOV = 192 mm x 192 mm,

96 � 96 Matrix, 61 slices, 2.3 mm isotropic voxel resolution, 64 diffusion directions), and fMRI data

(two-dimensional T2-weighted gradient echo planar imaging blood oxygen level-dependent contrast

sequence; TR = 1,940 ms, TE = 30 ms, flip angle = 78˚, FOV = 192 mm x 192 mm, 3 mm x 3 mm

voxel resolution, 3 mm slice thickness, 64 � 64 matrix, 33 slices, 0.51 ms echo spacing, 668 TRs, 7

initial images were acquired and discarded to allow magnetization to reach equilibrium; eyes-closed

resting-state) were acquired on a 12-channel Siemens 3 Tesla Trio MRI scanner at the Berlin Center

for Advanced Neuroimaging, Berlin, Germany. Extracted structural connectivity matrices intend to

give an aggregated representation of the strengths of interaction between regions as mediated by

white matter fiber tracts. As in the original model by Deco et al. (2014), conduction delays were

neglected in this study as they were non-essential for the described features. Strength matrices Cij

were divided by their respective maximum value for normalization. In short, the pipeline proceeds as

follows: for each subject a three-dimensional high-resolution T1-weighted image image was used to

divide cortical gray matter into 68 regions according to the Desikan-Killiany atlas using FreeSurfer’s

(Fischl, 2012) automatic anatomical segmentation and registered to diffusion data. The gyral-based

brain parcellation is generated by an automated probabilistic labeling algorithm that has been

shown to achieve a high level of anatomical accuracy for identification of regions while accounting

for a wide range of inter-subject anatomical variability (Desikan et al., 2006). The atlas was success-

fully used in previous modelling studies and provided highly significant structure-function relation-

ships (Honey et al., 2009; Ritter et al., 2013; Schirner et al., 2015). Details on diffusion-weighted

and fMRI preprocessing can be found in Schirner et al. (Schirner et al., 2015) Briefly, probabilistic

white matter tractography and track aggregation between each region-pair was performed as imple-

mented in the automatic pipeline and the implemented distinct connection metric extracted. This

metric weights the raw track count between two regions according to the minimum of the gray mat-

ter/white matter interface areas of both regions used to connect these regions in distinction to other

metrics that use the unweighted raw track count, which was shown to be biased by subject-specific

anatomical features (see Schirner et al. (2015) for a discussion). After preprocessing, the cortical

parcellation mask was registered to fMRI resting-state data of subjects and average fMRI signals for
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each region were extracted. The first five images of each scanning run were discarded to allow the

MRI signal to reach steady state. To identify RSN activity a spatial Group ICA decomposition was

performed for the fMRI data of all subjects using FSL MELODIC (Beckmann and Smith, 2004)

(MELODIC v4.0; FMRIB Oxford University, UK) with the following parameters: high pass filter cut off:

100 s, MCFLIRT motion correction, BET brain extraction, spatial smoothing 5 mm FWHM, normaliza-

tion to MNI152, temporal concatenation, dimensionality restriction to 30 output components. ICs

that correspond to RSNs were automatically identified by spatial correlation with the 9 out of the 10

well-matched pairs of networks of the 29,671-subject BrainMap activation database as described in

Smith et al. (2009) (excluding the cerebellum network). All image processing were performed in the

native subject space of the different modalities and the brain atlas was transformed from T1-space

of the subject into the respective spaces of the different modalities.

EEG preprocessing
Details of EEG preprocessing are described in supplementary material of Schirner et al.

(Schirner et al., 2015). First, to account for slow drifts in EEG channels and to improve template

construction during subsequent MR imaging acquisition artefact (IAA) correction all channels were

high-pass filtered at 1.0 Hz (standard FIR filter). IAA correction was performed using Analyser 2.0

(v2.0.2.5859, Brain Products, Gilching, Germany). The onset of each MRI scan interval was detected

using a gradient trigger level of 300 mV/ms. Incorrectly detected markers, for example due to shim-

ming events or heavy movement, were manually rejected. To assure the correct detection of the

resulting scan start markers each inter-scan interval was controlled for its precise length of 1940 ms

(TR). For each channel, a template of the IAA was computed using a sliding average approach (win-

dow length: 11 intervals) and subsequently subtracted from each scan interval. For further process-

ing, the data were down sampled to 200 Hz, imported to EEGLAB and low-pass filtered at 60 Hz.

ECG traces were used to detect and mark each instance of the QRS complex in order to identify bal-

listocardiogram (BCG) artefacts. The reasonable position and spacing of those ECG markers was

controlled by visual inspection and corrected if necessary. To correct for BCG and artefacts induced

by muscle activity, especially movement of the eyes, a temporal ICA was computed using the

extended Infomax algorithm as implemented in EEGLAB. To identify independent components (ICs)

that contain BCG artefacts the topography plot, activation time series, power spectra and heartbeat

triggered average potentials of the resulting ICs were used as indication. Based on established char-

acteristics, all components representing the BCG were identified and rejected, that is, the compo-

nents were excluded from back-projection. The remaining artificial, non-BCG components,

accounting for primarily movement events especially eye movement, were identified by their locali-

zation, activation, power spectral properties and ERPs. Detailed descriptions of EEG and fMRI pre-

processing have been published elsewhere (Becker et al., 2011; Freyer et al., 2009a; Ritter et al.,

2010; Ritter et al., 2007).

Biologically based model input
EEG source imaging was performed with the freely available MATLAB toolbox Brainstorm using

default settings and standard procedure for resting-state EEG data as described in the software doc-

umentation (Tadel et al., 2011). Source space models were based on the individual cortical mesh tri-

angulations as extracted by FreeSurfer from each subject’s T1-weighted MRI data and downsampled

by Brainstorm. From the same MRI data, head surface triangulations were computed by Brainstorm.

Standard positions of the used EEG caps (Easy-cap; 64 channels, MR compatible) were aligned by

the fiducial points used in Brainstorm and projected onto the nearest point of the head surface. For-

ward models are based on Boundary Element Method head models computed using the open-

source software OpenMEEG and 15002 perpendicular dipole generator models located at the verti-

ces of the cortical surface triangulation. The sLORETA inverse solution was used to estimate the dis-

tributed neuronal current density underlying the measured sensor data since it has zero localization

error (Pascual-Marqui, 2002). EEG data were low-pass filtered at 30 Hz and imported into Brain-

storm. There, the epochs before the first and after the last fMRI scan were discarded and the EEG

signal was time-locked to fMRI scan start markers. Using brainstorm routines, EEG data were pro-

jected onto the cortical surface using the obtained inversion kernel and averaged according to the

Desikan-Killiany parcellation that was also used for the extraction of structural and functional
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connectomes and region-averaged fMRI signals. The resulting 68 region-wise source time series

were imported to MATLAB, z-score normalized and upsampled to 1000 Hz using spline interpolation

as implemented by the Octave function interp1. To enable efficient simulations, the sampling rate of

the injected activity was ten times lower than model sampling rate. Hence, during simulation identi-

cal values have been injected during each sequence of 10 integration steps.

Simulation and analysis
Simulations were performed with a highly optimized C implementation of the previously described

model on the JURECA supercomputer at the Juelich Supercomputing Center. Simulation and analy-

ses code and used data is open source and available from online repositories (Schirner et al.,

2017a, see ‘Data and code availability’). An exhaustive brute-force parameter space scan using 3888

combinations of the parameters G and wBG
(E,I) was performed for each subject. Each of these combi-

nations was computed 12 times to iteratively tune Ji values. As control setup, further simulations

were performed with random permutations of the input time series. Therefore, the individual time

points of each source activity time series were randomly permuted (individually for each region and

subject) using the Octave function randperm() and injected into simulations using all parameter com-

binations that were previously used. As an additional control situation the original dynamic mean

field model as described in Deco et al. (2014) was simulated for the 15 SCs. Here, the parameters

G and JNMDA were varied and FIC tuning was performed using the same algorithm as used for the

source activity injection model. The simulation and FIC optimization process was identical for all

three models. The length of the simulated time series for each subject was 21.6 min. Simulations

were performed at a model sampling rate of 10,000 Hz. BOLD time series were computed for every

10th time step of excitatory synaptic gating activity using the Balloon-Windkessel model

(Friston et al., 2003). Since the Balloon-Windkessel model acts like a low-pass filter that attenuates

frequencies above ~0.15 Hz (Robinson et al., 2006), additional low-pass filtering was unnecessary

for downsampling of simulated fMRI time series. Hence, from the resulting time series every 1940th

step was stored in order to obtain a sampling rate of simulated fMRI that conforms to the empirical

fMRI TR of 1.94 s. The first 11 scans (21.34 s) of activity were discarded to allow model activity and

simulated fMRI signal to stabilize. For each subject and modelling approach the simulation result

that yielded the highest average correlation between all 68 empirical and simulated region time

series for all tested parameters was used for all analyses. To ensure region-specificity of simulation

results only corresponding simulated and empirical region time series were correlated in the case of

raw fMRI, respectively, for resting-state networks only simulated regions that overlap with the spatial

activation pattern of the respective network were used for estimating prediction quality. Specifically,

for RSN analysis, only those regions were compared with the temporal modes of RSNs that had a

spatial overlap of at least 40% of all voxels belonging to the respective region. To assess time-vary-

ing prediction quality, a correlation analysis was performed in which a window with a length of 100

scans (194 s) was slid over the 68 pairs of empirical and simulated time series and the average corre-

lation over all 68 regions was computed for each window. For the estimation of signal correlation,

the computation of entries of FC matrices and as a measure of similarity of FC matrices Pearson’s lin-

ear correlation coefficient was used. FC matrices were compared by stacking all elements below the

main diagonal into vectors and computing the correlation coefficient of these vectors. Short-epoch

FC prediction quality was estimated by computing the mean correlation obtained for all window-

wise correlations of a sliding window analysis of empirical and simulated time series (window-size:

100 scans = 194 s).

To ensure scale-freeness of empirical and simulated signals, region time series were tested using

rigorous model selection criteria; on average 79% of all 1020 region-wise time series (15 subjects x

68 regions) for the seven analyzed signal types (empirical fMRI, simulated fMRI, simulated fMRI with-

out global coupling, simulated fMRI without FIC, simulated fMRI without FIC and without global cou-

pling, a-power, a-regressor) tested as scale-free; for every signal type every subject had at least five

regions to test as scale-free. PSDs were computed using the Welch method as implemented in

Octave, normalized by their total power and averaged. Resulting average power spectra were fitted

with a power-law function f(x)=axb using least-squares estimation in the frequency range 0.01 Hz

and 0.17 Hz which is identical to the range for which the test for scale invariance was performed.

Frequencies below were excluded in order to reduce the impact of low-frequency signal confounds

and scanner drift, frequencies above that limit were excluded to avoid aliasing artefacts in higher
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frequency ranges (TR = 1.94 s, hence Nyquist frequency is around 0.25 Hz). In order to compare the

scale invariance of our empirical fMRI data with results from previous publications (He, 2011), we

also computed power spectra in a range that only included frequencies < 0.1 Hz.

In order to adequately determine the existence of scale invariance we applied rigorous model

selection to every time series to identify power-law scaling and excluded all time series from analyses

that were described better by a model other than a power-law. Nevertheless, we compared the

obtained results from this strict regime with results obtained when all time series were included and

found them to be qualitatively identical. To test for the existence of scale invariance we used a

method that combines a modified version of the well-established detrended fluctuation analysis

(DFA) with Bayesian model comparison (Ton and Daffertshofer, 2016). DFA is, in contrast to PSD

analyses, robust to both stationary and nonstationary data in the presence of confounding (weakly

non-linear) trends. It is important to note, that a simple linear fit of the detrended fluctuation curve

without proper comparison of the obtained goodness of fit with that of other models would entirely

ignore alternative representations of the data different than a power law. For quantification of the

goodness of fit with simple regression its corresponding coefficient of determination, R2, is ill-suited

as it measures only the strength of a linear relationship and is inadequate for nonlinear regression

(Ton and Daffertshofer, 2016). It is important to note that with this method the assessment of

power-law scaling is based on maximum likelihood estimation, which overcomes the limitations of a

minimal least-squares estimate obtained from linear regression in the conventional DFA approach.

Details of the used method are described elsewhere (Ton and Daffertshofer, 2016). For the differ-

ent signals the majority of time series were tested as being scale free: 83% for empirical fMRI, 69%

for simulated fMRI, 71% for simulated fMRI with deactivated FIC, 83% for simulated fMRI with deac-

tivated global coupling, 86% for simulated fMRI with deactivated global coupling and FIC, 90% for

a-power and 70% for the a-regressor.

To compute grand average waveforms, state-variables were averaged over all 15 subjects and 68

regions (N = 1020 region time series) time-locked to the zero crossing of the a-amplitude, which

was obtained by band-pass filtering source activity time series between 8 and 12 Hz; to obtain sharp

average waveforms, all a-cycle epochs with a cycle length between 95 and 105 ms were used

(N = 4,137,994 a-cycle). For computing ongoing a-power time courses, instantaneous power time

series were computed by taking the absolute value of the analytical signal (obtained by the Hilbert

transform) of band-pass filtered source activity in the 8–10 Hz frequency range; the first and last ~50

s were discarded to control for edge effects. To compute the a-regressor, power time series were

convolved with the canonical hemodynamic response function, downsampled to fMRI sampling rate

and shifted relative to fMRI time series to account for the lag of hemodynamic response. The highest

negative average correlation over all 68 region-pairs obtained within a range of ±3 scans shift was

used for comparison with simulation results.

Statistical analyses
All statistical analyses were performed using MATLAB (The MathWorks, Inc., Natick, Massachusetts,

United States). Data are represented as box-and-whisker plots. As normality was not achieved for

the majority of data sets (assessed by Lilliefors test at significance level of 0.05), differences between

groups were compared by non-parametric statistical tests, using either two-tailed Wilcoxon rank

sum test or, in case of directional prediction, one-tailed Wilcoxon rank sum test; a value p<0.05 was

considered significant.

Data and code availability
Brain network models are implemented in the open source neuroinformatics platform The Virtual

Brain (Ritter et al., 2013; Sanz-Leon et al., 2015, Sanz Leon et al., 2013) that can be downloaded

from thevirtualbrain.org. Code and data that support the findings of this study can be obtained from

https://github.com/BrainModes/The-Hybrid-Virtual-Brain (Schirner et al., 2017b; copy archived at

https://github.com/elifesciences-publications/The-Hybrid-Virtual-Brain) and https://osf.io/mndt8/

(Schirner et al., 2017a).
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Supercomputing Centre

Grant NIC#8344 Petra Ritter

Stiftung Charité/Private Exzel-
lenzinitiative Johanna Quandt
and Berlin Institute of Health

Petra Ritter

John von Neumann Institute
for Computing at Jülich
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