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In this paper, we develop a simple theory to study the effects of ionic size on ionic distributions around
a charged spherical particle. We include a correction to the regular Poisson-Boltzmann equation in
order to take into account the size of ions in a mean-field regime. The results are compared with
Monte Carlo simulations and a density functional theory based on the fundamental measure approach
and a second-order bulk expansion which accounts for electrostatic correlations. The agreement is
very good even for multivalent ions. Our results show that the theory can be applied with very
good accuracy in the description of ions with highly effective ionic radii and low concentration,
interacting with a colloid or a nanoparticle in an electrolyte solution. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4990737]

I. INTRODUCTION

Many complex systems of paramount relevance in the
fields of biology and physical chemistry can be to some
extent mapped into a simplified picture in which nanopar-
ticles of different sizes and shapes coexist with smaller
components in a solvent environment. In many practical
applications, these particles are constrained to move in nar-
row regions whose typical sizes have range of magnitudes
not too far from the particles suspended in it.1 A classi-
cal example is the compact environment inside the inter-cell
space, where many different species coexist. In these crowded
environments, exclusion volume effects between the different
constituents play a key role in determining the majority of
system properties.2–9 In some cases, the nanoparticles can be
permeable to some of the smaller ones, in which case exclu-
sion volume effects will strongly influence the osmotic flow
at the nanoparticle interface, eventually leading to particle
size fluctuations.10–12 Apart from such volume changes, soft
nanoparticles can also display strong shape deformations due
to their exclusion volume interactions with the different sys-
tem components—giving rise to complex and rich equilibrium
particle topologies that are dictated by both size and concen-
tration of the smaller components.7,13,14 Hard nanoparticles
are on the other hand not allowed to fluctuate in neither shape
nor size. These constraints force particles to be arranged in
ordered structures whenever the overall packing fraction is
sufficiently high. This is not only the case of the aforemen-
tioned molecular crowding, but might also occur, for instance,
in nano-confined solvents or ionic liquids. Such ordered struc-
tures are clearly a result of strong positional correlations
among the hard particles. The physical mechanisms behind
these packing effects go way beyond the classical interpreta-
tion based on the entropy loss induced by exclusion volume
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effects—as reflected by the reduced space available for par-
ticles to diffuse in. Indeed, an accurate description of such
correlation-induced effects in hard systems requires the use of
sophisticated approaches, generally non-local in nature.15–18

Even standard molecular simulation techniques have to be
adapted in order to circumvent problems associated with the
small particle mobility resulting from frequent particle col-
lisions.19 In spite of this underlying complexity in particle
structure, it is important to emphasize that still many impor-
tant properties of polydisperse hard systems can be pretty well
understood on the basis of the simplified picture of entropy
reduction resulting from exclusion volume effects,20 whose
theoretical description dates back to the pioneering work of
Asakura and Oosawa.21 It is the case, for instance, of the
well-known attraction between nanoparticles driven by deple-
tion effects upon addition of smaller hard components,22–26

which is very important in a number of applications involving
nanoparticle stabilization.20,27,28

The system complexity increases even further when, apart
from finite size effects, electrostatic interactions become also
relevant. This is usually the case when the nanoparticles are
suspended in an aqueous solvent, which favors the partial dis-
sociation of ionic groups at their surfaces.29 Addition of salt
is also a possibility, in general aimed to avoid irreversible
particle aggregation driven by the aforementioned depletion
attractions and van der Waals forces. For hard nanoparti-
cles, the strong electrostatic correlations will result in a large
number of small ions surrounding their surfaces to form a
charge structure which is widely known as the Electric Dou-
ble Layer (EDL).26,29 In some situations, such ionic adsorp-
tion at the nanoparticle surface will be crucial to determine
the ionic induced, effective interactions among them.27,29–31

Size effects, on the other hand, will limit the number of such
smaller components that can be assembled at the vicinity of the
charged surfaces. Depending on the strength of ion-ion elec-
trostatic interactions, positional correlations driven by these
interactions can also become very relevant.29 Many interesting
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(and sometimes quite counter-intuitive) phenomena can appear
as a consequence of electrostatic correlations,1,32–38 the the-
oretical description of which is a difficult task. How relevant
these correlations will be depends on a fine tuning between
ionic charge, size, and the dielectric constant of the solvent
they are embedded into.29 The relative strength of electro-
static correlations can be quantified via the so-called coupling
parameter,39–42 which measures the ratio between the elec-
trostatic energy at ionic contact and the ionic thermal energy.
Even if the ions bear relatively large charges (e.g., multiva-
lent ions), their size can be large enough such as to prevent a
close center-to-center approach, thereby limiting the strength
of the electrostatic interactions. Finite size correlations should
then play the major role in determining the structure of the
EDL.

When the ionic coupling is not too high, the electro-
static correlations are in general weak enough to be safely
neglected. In such cases, the mean-field Poisson-Boltzmann
(PB) theory is known to accurately describe the EDL struc-
ture, provided the ionic components are not too large in size.
Since the mean-field theory is originally designed to deal
with point-like ions, it is not able to properly distinguish
electrostatic forces among charged particles having differ-
ent sizes. Therefore, in situations of large ions or at high
electrostatic couplings, the theory is no longer able to cap-
ture the EDL features resulting from strong ionic correla-
tions, in such a way that more elaborated theories—such
as the Density Functional Theory (DFT),43–48 integral equa-
tions theory,49–57 or theoretical field approaches40,58,59—have
to be employed. Although these theories go far beyond the
range of validity of the traditional PB approach, they some-
times lack in physical transparency and in most cases their
implementation is far from straightforward. In order to keep
the simplicity and numerical efficiency inherent to the PB
approach—and yet to be able to accurately describe systems
with non-negligible ionic correlations—many attempts have
been made over the years towards the direction of extending
the mean-field approach to incorporate both size60–67 and elec-
trostatic68–72 correlation effects. This has resulted in what is
generally known as the modified Poisson-Boltzmann (mPB)
approaches. Many of these modifications provide indeed quite
an improvement over the mean-field predictions, although
their range of validity is usually restricted to some specific
situations that have to be further tested against more refined
approaches.

Quite recently, one such mPB has been designed by dos
Santos et al.73 in order to account for finite size effects on the
adsorption of charged hard nanoparticles at a charged interface.
The model is based on a local approximation that renormal-
izes the screening length taking proper account for the finite
colloidal size. The predictions for the distribution of charged
nanoparticles near the interfaces were compared with Monte
Carlo simulations in the dilute regime, showing a very good
agreement.73 Since the numerical simulation of concentrated
charged nanoparticles is a very challenging task, it is not clear
whether the model will be accurate for concentrated hard sys-
tems as well, as the finite size effects become very strong. In
the present work, we aim to adopt a similar model to describe
the distribution of polydisperse hard ions around a charged

spherical colloid. Instead of a planar geometry, we will adopt
a spherical cell (SC) model, suited for concentrated colloidal
dispersions.74 The SC model allows one to compare simulation
and theory from moderate to high concentrations, providing a
perfect framework to test the range of validity of the underlying
theoretical assumptions. Besides, we will proceed to investi-
gate the relative influence of finite size effects on both hard-
core and electrostatic correlations in suspensions containing
multivalent ions of different sizes. To this end, we will apply
a DFT that combines hard sphere and electrostatic correlation
effects through the Fundamental Measure Theory (FMT) and
a second-order bulk expansion, respectively. The DFT allows
one to easily control different correlations in order to investi-
gate the regimes in which their relative strengths become more
relevant.

The paper is structured as follows. In Sec. II, the sys-
tem under consideration is described in some detail. The mPB
that incorporates finite ionic sizes into the PB framework is
presented hereafter. Next, we summarize the DFT approach
to be applied, as well as the MC techniques used to obtain
the ionic density profiles. Finally, predictions from the differ-
ent approaches for the ionic distributions in the context of the
SC cell model are shown and discussed in detail. Conclusions
and perspective for future applications are then outlined in
Sec. VII.

II. MODEL SYSTEM

We adopt a SC model, a sphere with radius R, see Fig. 1.
The colloid is represented by a sphere of radius a whose cen-
ter is located at the origin, bearing a uniformly distributed
negative surface charge �Zq, where q is the proton charge.
The radius of colloid is set to a = 50 Å, while its charge is

FIG. 1. Schematic representation of the system under investigation. A colloid
of charge �Zq and radius a is centered in a confining SC of radius R. Ions of
charges ±q and effective radius ri (length not represented in this view), and
ions of charges +αq and effective radius rI are also present in solution.
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Z = 60. Besides Z positive counterions, modeled as hard
spheres with radius ri and charges +q, there are, in addition,
ions from dissociation of two different salts. The counterions
from dissociation of asymmetric α : 1 salt are modeled as
hard spheres with radius rI and charges +αq, while coions are
modeled as hard spheres with radius ri and charges �q. We
also add symmetric 1:1 salt whose counterions and coions are
modeled as hard spheres with radius ri and charges ±q. In
summary, there are three ionic species, bearing charges +αq
and ±q and effective radius rI and ri, respectively. The α : 1
salt concentration is ρα, while 1:1 salt concentration is ρ1.
The number of ions is defined as Nα = ραV , N+ = Z + ρ1V ,
and N− =

[
αρα + ρ1

]
V , where V = 4π

3

[
R3 − a3

]
. We con-

sider the primitive model in which the dielectric constant of
the medium is uniform, ε . The Bjerrum length, defined as
λB = βq2/ε , is set to 7.2 Å, the value corresponding to water at
room temperature, where β = 1/kBT , kB being the Boltzmann
constant and T the temperature. The radii of coions, counte-
rions, and ions from 1:1 salt are set to ri = 2 Å, while the
radius of α-valent ions is rI = 8 Å. The SC radius is set to
R = 150 Å.

III. THE MODIFIED POISSON-BOLTZMANN
APPROACH

We intend to use a mean-field theory to study this system.
The PB theory can be applied with a very good precision to
electrolytes with small ionic radii. If the ions are big enough,
the PB theory breaks down, as a consequence of the excluded
region delimited by ionic particles, which is not taken into
account at the traditional PB level. If we want to treat these
particles at the PB point-particle level, we must consider that
the ionic charge is modified by this exclusion region of radius
ri + rI , see Fig. 2.

To see how this charge rescaling can be performed, con-
sider a point particle with charge +αq with a spherical exclu-
sion region around it of radius ri + rI , located at the origin of
an electrolyte solution with inverse Debye length κ, given by
κ =

√
4πλB(2ρ1 + αρα). One can solve the linear PB equa-

tion for inside (empty) and for outside (electrolyte) regions
considering the standard boundary conditions imposed by the
Maxwell equations.75 This results in an electrostatic potential
Φ(r) for the region outside the ionic core which can be written
as

Φ(r) =
αqeκ(ri+rI )

[1 + κ(ri + rI )]
e−κr

εr
, (1)

where r is the distance from the origin. This linearized potential
is the basis of the electrostatic part of Derjaguin-Landau-
Verwey-Overbeek (DLV) potential,76 widely applied for col-
loidal stability. For a point particle with no exclusion region,
the solution is the well-known Yukawa potential,

Φ(r) =
αqe−κr

εr
. (2)

We can then understand that the spherical exclusion region

“changes” the ionic charge by the factor
eκ(ri+rI )

[1 + κ(ri + rI )]
. With

this interpretation in mind, our method is based on a mPB
equation in which the α-valent ionic charge is rescaled by

FIG. 2. A centered ion of charge +αq and radius rI in an electrolyte solution
of ions with charge ±q and radii ri.

this factor. The prefactor that renormalizes the ionic charge is
therefore

θ =
eκ(ri+rI )

[1 + κ(ri + rI )]
. (3)

The non-linear mPB equation can be written as

∇
2φ(r) = −

4πq
ε

[
−Zδ(r − a) + αρα(r) + ρ+(r) − ρ−(r)

]
,

(4)
where φ(r) represents the electrostatic potential around the
centered colloid, and ρα(r) is the α-valent local ionic concen-
tration. The ionic distributions read as

ρα(r) = Aαe−βqαθφ(r)−βUe(r), (5)

ρ±(r) = A±e∓βqφ(r). (6)

The concept of effective ionic charge is obtained with a lin-
earized PB equation, see Eq. (1), and used in the nonlinear PB
equation as a first approximation to define a finite-size cor-
rection for the ionic charge. Notice that the Boltzmann factor
corresponding to theα-valent ionic distribution has been renor-
malized via the replacement α → αθ. The potential Ue(r),
in Eq. (5), is an exclusion potential which avoids α-valent
ions to overlap the colloidal core and the SC boundary. The
normalization constants are given by

Aα = Nα/

[
4π

∫ R−ri

a+ri

dr r2e−βαqθφ(r)−βUe(r)
]

, (7)

A± = N±/

[
4π

∫ R−ri

a+ri

dr r2e∓βqφ(r)
]

. (8)

Equation (4) can be solved iteratively together with
Eqs. (7) and (8), with a mixing parameter to get convergent
profiles. It is important to mention that the boundary conditions
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considered in the linearized PB equation that leads to Eq. (1)
have nothing to do with the boundary conditions imposed in the
mPB equation, Eq. (4). The linearized PB equation was con-
sidered only to construct the concept of ionic effective charges
that incorporate ionic finite size effects.

IV. MONTE CARLO SIMULATIONS

In order to test our theory, we compare our results with
MC simulations. The system under study is illustrated in Fig. 1.
The total energy used in simulations can be written as

E = −
N∑

j=1

qjZq

εrj
+

N∑
j=1

∑
k>j

qjqk

εrjk
, (9)

where N = Nα + N+ + N−, rj is the distance of ion j from
the center of the cell, qj is the charge of ion j, and rjk is the
distance between ions j and k. The first term on the right-
hand side corresponds to the ionic electrostatic interactions
with the centered colloid, whereas the second term is the ion-
ion electrostatic interactions. Two types of ionic moves are
considered—short and long random moves from the previous
position. The movements that lead to overlaps between ions,
between ions and the colloid, and between ions and the limit
of SC are rejected. The regular Metropolis algorithm is used
with 1× 105 steps per particle to equilibrate and 1× 103 steps
per particle to get a saved sample. The density profiles are
obtained with 3 × 105 samples.

V. DENSITY FUNCTIONAL THEORY

Apart from the above outlined mPB theory, we also apply
a DFT approach in order to test the accuracy of the new model,
as well as to access the relevance of the different ionic correla-
tions to this system. We now briefly summarize the underlying
approximations. Taking into consideration hard-core and elec-
trostatic ionic interactions, the total free energy can be split
into ideal and mean-field interactions, as well as hard-core and
electrostatic correlation contributions. Accordingly, the ionic
chemical potentials are separated into these different contribu-
tions, and a straightforward application of the Euler-Lagrange
condition leads to the following ionic contributions:

ρi(r) = Aie
−βqziφ(r)−βµhc

i (r)−βµel
i (r), (10)

where µhc
i (r) and µel

i (r) represent local chemical potentials
resulting from ionic hard-sphere interactions and electrostatic
correlations, respectively. Similar to the PB approach, the nor-
malizing constants Ai should be calculated so as to ensure the
condition of fixed number of ions within the cell (canonical
formulation). Notice that when both hard-sphere and electro-
static correlations’ contributions are neglected, the mean-field
ionic profiles are naturally recovered.

The hard-sphere contributions µhc
i (r) are calculated in the

framework of Rosenfeld’s FMT, known to provide a very accu-
rate description of confined hard spheres up to reasonably high
packing fractions.77–79 In general lines, the hard-sphere func-
tional Fhc is obtained from a local free-energy density Ψ (r)
as

Fhc[ρi(r)] =
∫
Ψ (r)dr, (11)

whereΨ (r) is considered to be a local function of weighted-
densities, nα(r) =

∑
i ∫ dr′ρi(r′)w

(α)
i (r − r′). The weighted

functions wαi (r − r′) represent fundamental measures of the
underlying spherical geometry and read as

w(3)
i (r) = Θ(ai − r), (12)

w(2)
i (r) = δ(ai − r), (13)

w(2)
i (r) =

r
r
δ(ai − r) = −∇w(3)

i (r), (14)

along with the combinations w(1)
i (r)= w(2)

i (r)/4πai, w(0)
i

(r) = w(2)
i (r)/4πa2

i , and w(1)
i (r) = w(2)

i (r)/4πai, where ai is the
radius of the ith ionic component. The hard-sphere chemical
potentials µhc

i (r) follow directly from the functional derivative
of Eq. (11),

µhc
i (r) =

∑
α

∫
∂Ψ

∂nα(r′)
w(α)

i (r′ − r)dr′, (15)

and possess in the present situation radial symmetry. The
local free-energy densityΨ (nα) can be obtained from differ-
ent approximations, based on different limiting behaviors for
the bulk limit.79 Here, we adopt the White-Bear functional,
in which Ψ (nα) is chosen such as to recover the Mansoori-
Carnahan-Starling-Leland (MCSL) equation of state in the
limit of bulk concentrations.78,80

As for electrostatic correlations, µel
i (r), we apply a

second-order functional expansion of the residual (over mean-
field) electrostatic functional about a reference bulk fluid.45

There is some freedom in choosing the appropriate bulk fluid
around which the perturbation expansion is performed.48 Here
we take the bulk electrolyte to be the neutral electrolyte with
concentrations equal to the mean ionic concentrations inside
the SC. In this approximation, the chemical potential which
accounts for electrostatic correlations reads as

µel
i (r) = −

∑
j

∫
cres

ij (r − r′)δρj(r′)dr′, (16)

where cres
ij (r − r′) = cij(r − r′) + zizjλB/|r − r′ | is the residual

pair direct correlation function for ions i and j [cij(r−r′) being
the corresponding electrostatic direct correlations for the bulk
solutions], and δρj(r′) is the difference between the inhomo-
geneous profiles and the bulk ones. In this work, these direct
correlations will be computed in the framework of the Mean
Spherical Approximation (MSA), for which closed analytical
expressions are available.44 It is important to notice at this
point that cij(r − r′) depends on the size of ions i and j, and
therefore finite size effects might also have a non-trivial influ-
ence on the electrostatic correlations, even in situations where
the electrostatic couplings are weak. For dilute systems, these
contributions from size effects on electrostatic correlations can
be even more relevant than the direct hard sphere correlations
represented by Eq. (15).

The bulk expansion approximation invoked in Eq. (16)
will be clearly less accurate as the ionic profiles start to con-
siderably deviate from their bulk regimes (e.g., when they
undergo strong variations close to highly charged interfaces).
Obviously, the electrostatic and hard-sphere correlations as
calculated from Eqs. (15) and (16) are treated at different
accuracy levels. Quite recently, a DFT approach has been
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designed which allows one to introduce MSA electrostatic
correlations at a level of approximation similar to the FMT for
hard-spheres.81 Since our main goal here is only to establish
the relative influence of ionic size effects on both hard-sphere
and electrostatic correlations, we do not need to go beyond
the simple MSA-bulk expansion approximation employed in
Eq. (16).

VI. RESULTS

We are now going to compare the predictions of the
different approaches for describing ionic profiles of the three-
component system described in Sec. II. The parameters cho-
sen correspond to a colloidal packing fraction of η ≈ 0.04.
The concentration of added 1:1 electrolyte is set to be ρ1

= 150 mM. In Fig. 3, we show density distributions for the case
of asymmetric 3:1 electrolyte of concentrations ρα = 10 mM
(upper panels) and ρα = 50 mM (lower panels). Recall that
the α-valent ions are much larger in size (rI = 8 Å) in com-
parison with the monovalent ones (for which ri = 2 Å). As
we can see, both mPB (dashed curves) and DFT (solid lines)

FIG. 3. Ionic density profiles for a mixture of monovalent and trivalent salts.
Symbols represent MC simulations data, dashed lines represent the solution
of mPB theory, while the solid lines are results from the FMT-MSA approach.
The dotted-dashed lines represent the solution of the traditional PB, setting
θ = 1. The parameters are ρα = 10 mM and ρα = 50 mM, for top and
bottom figures, respectively.

theories describe very well the MC profiles. The agreement is
excellent in the case of dilute electrolyte ρα = 10 mM, where
the density profiles show strict monotonic behaviors. As the
concentration becomes larger (bottom curves), the ionic dis-
tributions start to present non-monotonic structures close to
the colloidal surface, which cannot be properly captured by
PB-based approaches. Such structures are clearly driven by
positional ionic correlations: the high concentration of mul-
tivalent counterions electrostatically attached to the charged
colloid makes it very unlike to find a neighboring layer of
counterions close by, therefore favoring the emergence of a
second layer of neutralizing coions. This layering-like struc-
ture is a well-known feature of electrostatic correlations82 and
is expected to be more pronounced as the ionic concentrations
increase. It is important however to note that the proposed
mPB is still able to describe the adsorption of counterions at
the colloidal surface very well.

There are basically three main mechanisms dictating the
adsorption of the large α-valent counterions onto the colloidal
surface. First, their strong electrostatic interactions with the
central colloid lead to a large accumulation of these particles
close to the colloidal core. This ionic condensation is how-
ever limited by the large ionic size, which strongly restrict
the number of counterions that can be assembled at the col-
loidal interface. This effect is further enhanced by the finite
surface curvature. Apart from such finite size effects, posi-
tional correlations driven by the mutual electrostatic repulsion
of neighboring counterions will also limit the degree of counte-
rion association. Neither of these effects are taken into account
by the traditional PB approach, which models the ions as
point-like particles and completely disregard their electrostatic
correlations. However, with the simple ionic charge renormal-
ization proposed in the present mPB approach, size effects
can be easily incorporated into the mean-field model, result-
ing in an accurate description of the adsorption of large ions at
the colloidal surface. It is important to notice that, in spite of
their higher charge, the electrostatic coupling between triva-
lent ions ΓII = α2λB/2rI ≈ 4 is not too strong due to their
large size. Indeed, this value is compatible with electrolytes
made of monovalent ions of size ri = 0.9 Å, for which the
PB approach is known to work reasonably well. We there-
fore expect finite size effects to play the dominant role here, at
least for not too high ionic concentrations. In this limit, it is the
colloid-ion correlations—instead of the ion-ion correlations—
that play the major role. These colloid-ion correlations can be
accurately well captured by the proposed ionic charge rescal-
ing. As the salt concentration becomes larger, ionic positional
correlations driven by the presence of α-valent ions become
the leading contributions, giving rise to the non-monotonic
structures observed in Fig. 3.

Figure 4 shows the same results for the case of diva-
lent ions, α = 2. Again, a quite good agreement between
both theories and simulations is observed. By decreasing the
electrostatic coupling (i.e., the ionic charge), positional corre-
lations driven by electrostatic interactions become weaker. As
a consequence, the profiles become less structured in compar-
ison with the trivalent case, as we can see by comparing the
lower panels of Figs. 3 and 4. This renders the proposed mPB
more accurate for a larger range of ionic concentrations.
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FIG. 4. Ionic density profiles for a mixture of monovalent and divalent salts.
Symbols represent MC simulations data, dashed lines represent the solution
of mPB theory, while the solid lines represent the FMT-MSA theory. The
dotted-dashed lines represent the solution of the traditional PB, setting θ = 1.
The parameters are ρα = 10 mM and ρα = 50 mM, for top and bottom
figures, respectively.

Although the proposed mPB predicts ion density profiles
that significantly deviates from PB results, the values at the
cell boundary—and therefore the system equation of state—do
not deviate much from their PB counterparts for moderate salt
concentrations. The present method can be also used to obtain
the fraction of adsorbed ions (FAI). We obtain the FAI as a
function of the colloidal volume fraction, φc = a3/R3, for the
trivalent salt, see Fig. 5. This is defined as the fraction of ions
which are located at distances less than 2rI from the colloidal
surface. It is obtained from the density profile. The agreement
between simulations and mPB solutions is very good, whereas
the results from the standard PB approach start to considerably
deviate from simulation predictions as the confining effects
become stronger.

It is quite straightforward to extend our model to study
electrolytes with more ionic components. We mix 1:1, 2:1, and
3:1 salts considering a four component system. The parame-
ters are the same as in Fig. 3 (top panel), however with the
addition of 2:1 salt at concentration 0.01 M. The effective
+2 radius is 7 Å, different from +3 ionic radius, which is
8 Å. The κ parameter must be updated in order to consider
the stronger electrolyte, κ =

√
4πλB(2ρ1 + 3ρ3 + 2ρ2). Apart

FIG. 5. Fraction of adsorbed ions (FAI) as a function of the colloidal volume
fraction, φ. The parameters are the same as in Fig. 3, top panel, except by the
spherical cell radius, R.

from the trivalent ions, the bivalent big ions also have their
charges renormalized using the proposed ansatz. Also, the
mPB equation, Eq. (4), must be corrected in order to include
one more ionic component. The agreement between mPB and
simulations is still very good, as can be seen in Fig. 6.

In order to perform a deeper analysis on the inter-
play between electrostatic and size correlations in our three-
component system, we show in Fig. 7 the profiles of α-valent
ions for the dilute concentration ρα = 10 mM. In the frame-
work of the DFT formalism, the effects from different correla-
tions on the density profiles can be conveniently “triggered” by
setting either µhc

i (r) or µel
i (r) to be zero in Eq. (10). This allows

one to remove the electrostatic correlations and check the
effects of hard-sphere interactions separately. In the absence
of any correlations [µhc

i (r) = µel
i (r) = 0], the PB profiles

are recovered. In Fig. 7, it can be clearly observed that the
traditional PB theory strongly underestimates the adsorption
of multivalent ions. Interesting enough, the scenario does not
change much when only hard-sphere correlations are taken into
account through the FMT approach. It is only when the elec-
trostatic correlations are “switched on” that the counterions

FIG. 6. Density profiles of +3 and +2 ions for a 4 component mixture of
monovalent, divalent, and trivalent salts. The 2:1 and 3:1 salts are at concen-
tration 0.01 M. Symbols represent MC simulations data, solid lines represent
the solution of the mPB equation, while dotted-dashed lines represent the
solution of the traditional PB equation.



014104-7 Colla, Lopes, and dos Santos J. Chem. Phys. 147, 014104 (2017)

FIG. 7. Ionic distributions for trivalent (a) and divalent (b) ions at the smallest
concentration of α : 1 electrolyte ρα = 10 mM. Symbols represent MC
simulations data, the solid curves are results from the traditional PB approach,
while dotted-dashed and dashed curves contain additional effects from size
(FMT) and electrostatic (FMT + MSA) effects, respectively. The dotted curves
represent the results of mPB approach.

are pushed toward the colloidal surface, thereby reproduc-
ing the higher adsorption predicted by the simulation results.
We can therefore conclude that it is the size effects on the
electrostatic correlations—rather than the direct hard-sphere
correlations—that play the major role in the dilute regime.

The different mechanisms that lead to finite size effects
can be interpreted as follows. Let us assume that a cavity is
created around a point-like particle, see Fig. 2. As the cavity
is created, the neighboring particles have to be “expelled out”
from the cavity region. The work required for this particle re-
arrangement is closely related to the hard-core chemical poten-
tial µhc

i (r) given by Eq. (15) and leads to hard-core positional
correlations. On the other hand, in an electrolyte solution, the
emergence of a cavity also removes charge carries away from
the cavity volume around the point charge—which requires
additional work to be performed against electrostatic forces.
Since these charges are responsible for electrostatic screening,
the electrostatic potential around the centered ion, in Fig. 2,
becomes less screened at a given position beyond the cavity
region, leading to an enhancement of electrostatic interactions.
In order to replace a finite-sized charge by a point charge,
this charge must be enhanced such as to take into account the
loss in screening caused by the void. At the MSA level of

approximation, for instance, the point-like charges can be
interpreted as spherical shells in which the charge is effectively
smeared out over the shell surface.81,83 At low ionic con-
centrations, such a screening mechanism dominates over the
hard-core effects. In particular, it renders the electrostatic inter-
actions between the colloid and α-valent ions stronger, which
explains the higher ionic adsorption of these ions as their finite
size is properly taken into account. Since the PB approach is
unable to distinguish electrostatic interactions between point-
like or finite size objects, it cannot describe such enhancement
of counterions adsorption resulting from size effects. However,
we show that a simple rescaling of the ionic charges is able
to recover the PB accuracy, whose numerical implementation
is way much simpler than the bulk expansions applied for the
electrostatic correlations.

VII. CONCLUSIONS

In this work, we developed a simple theory based on a
correction to the PB equation to properly quantify the con-
centration of ions with high effective radius near a spherical
colloid/nanoparticle. The ionic charge considered in the PB
theory takes into account the excluded region around the big-
ger ion. This is accomplished by identifying an effective charge
comparing the solution of linear PB equation with and with-
out an exclusion region around the ionic charge. We show
that the theory can be applied also for multivalent ions, as
their radii are big enough to avoid electrostatic ion-ion corre-
lations. Besides, we applied a DFT to investigate both size and
electrostatic effects and the interplay between these effects.
When the ionic concentration becomes sufficiently large, non-
monotonic behaviors typical of electrostatic correlation effects
start to emerge, leading to the breakdown of mean-field based
approaches. In this regime, the proposed DFT based on FMT
and bulk-MSA expansion is still able to accurately predict the
MC ionic profiles.

The ionic profiles obtained with the proposed mPB
approach compare very well with MC simulations for the dif-
ferent combinations of ionic size and charge asymmetries con-
sidered, remarkably improving over PB results. The adopted
concept of renormalizing charges in order to partially incor-
porate size and/or nonlinear effects in a simple and intuitive
way has been widely applied to a number of charged sys-
tems. The theory breaks down in the regime from moderate
to high ionic concentrations, when packing effects resulting
from strong size and electrostatic correlations lead to layer-
ing structures at the vicinity of the charged interface. The
net adsorption of counterions onto the colloidal surface can
still be captured to a reasonable degree of accuracy by the
present mPB approach. This is to be contrasted to traditional
mPB approaches based on either local functional approxima-
tions or lattice-based models, which typically fail to predict
the ionic concentrations at the contact with a charged sur-
face. While the lattice-based approaches predict ionic profiles
that saturate close to the charged interface at large ionic con-
centrations,84,85 local approximations tend to overestimate
the ionic adsorption, as the (unbound) local ionic chemical
potentials become increasingly large close to highly charged
surfaces.64,75
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Finally, we point out that the applied SC model can be
used as a basis to investigate a number of important properties
of concentrated system of nanoparticles, such as the nanoparti-
cle renormalized charges and osmotic properties. The models
outlined in this work can therefore be applied to a number of
potential applications involving nanoparticles coexisting with
polydisperse electrolytes.
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35M. Quesada-Pérez, E. González-Tovar, A. Martı́n-Molina, M. Lozada-
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