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Abstract
Protein binding often involves conformational changes. Important questions are whether a

conformational change occurs prior to a binding event (‘conformational selection’) or after a

binding event (‘induced fit’), and how conformational transition rates can be obtained from

experiments. In this article, we present general results for the chemical relaxation rates of

conformational-selection and induced-fit binding processes that hold for all concentrations

of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation

of large ligand concentration. These results allow to distinguish conformational-selection

from induced-fit processes—also in cases in which such a distinction is not possible under

pseudo-first-order conditions—and to extract conformational transition rates of proteins

from chemical relaxation data.

Author Summary

The function of proteins is affected by their conformational dynamics, i.e. by transitions
between lower-energy ground-state conformations and higher-energy excited-state con-
formations of the proteins. Advanced NMR and single-molecule experiments indicate that
higher-energy conformations in the unbound state of proteins can be similar to ground-
state conformations in the bound state, and vice versa. These experiments illustrate that
the conformational change of a protein during binding may occur before a binding event,
rather than being induced by this binding event. However, determining the temporal
order of conformational transitions and binding events typically requires additional infor-
mation from chemical relaxation experiments that probe the relaxation kinetics of a mix-
ture of proteins and ligands into binding equilibrium. These chemical relaxation
experiments are usually performed and analysed at ligand concentrations that are much
larger than the protein concentrations. At such high ligand concentrations, the temporal
order of conformational transitions and binding events can only be inferred in special
cases. In this article, we present general equations that describe the dominant chemical
relaxation kinetics for all protein and ligand concentrations. Our general equations allow
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to clearly infer from relaxation data whether a conformational transition occurs prior to a
binding event, or after the binding event.

Introduction
Protein function often involves conformational changes during the binding to ligand molecules
[1]. Advanced NMR experiments [2–7] and single-molecule spectroscopy [8–10] indicate that
these conformational changes can occur without ligand, or with bound ligand and thus point
to an intrinsic conformational dynamics of the proteins. An important question is how the
conformational dynamics is coupled to the binding events. Two mechanisms for this coupling
are ‘conformational selection’ [11] and ‘induced fit’ [12] (see Fig 1(a) and 1(b)). In conforma-
tional-selection binding, a conformational change occurs prior to the binding of a ligand mole-
cule, as a conformational excitation from the unbound-ground state conformation of the
protein. In this mechanism, the ligand seems to ‘select’ and stabilize a higher-energy conforma-
tion for binding. In induced-fit binding, the conformational change occurs after ligand binding
and is a conformational relaxation into the bound ground-state conformation that is appar-
ently ‘induced’ by the ligand. These two mechanisms are in particular plausible for small ligand
molecules that can quickly ‘hop’ in and out of the protein binding pocket, i.e. that can enter
and exit this binding pocket within transition times that are significantly smaller than the resi-
dence or dwell times of the proteins in the different conformations [13].

A central problem is to identify protein binding mechanisms based on experimental data
[13–24]. Advanced NMR experiments and single-molecule spectroscopy can reveal higher-
energy conformations that are necessary for conformational-selection or induced-fit binding,

Fig 1. Characteristic chemical relaxation of induced-fit and conformational-selection binding. (a) In induced-fit binding, the change between the
conformations P1 and P2 of the protein occurs after binding of the ligand L. The intermediate state P1L relaxes into the bound ground state P2L with rate kr,
and is excited from the ground state with rate ke. (b) In conformational-selection binding, the conformational change of the protein occurs prior to ligand
binding. The intermediate state P2 is excited from the unbound ground state P1 with rate ke, and relaxes back into the ground state with rate kr. (c) The
dominant, smallest relaxation rate kobs of induced-fit binding is minimal at the total ligand concentration ½L�min

0 ¼ ½P�0 � Kd where [P]0 is the total protein
concentration and Kd the overall dissociation constant. As a function of [L]0, the dominant rate kobs is symmetric with respect to this minimum. (d) The
dominant, smallest relaxation rate kobs of conformational-selection binding has a characteristic minimum as a function of [L]0 for ke > k

−

, but is not
symmetric with respect to this minimum. (e) The dominant rate kobs of conformational-selection binding decreases monotonically with [L]0 for ke < k

−

.

doi:10.1371/journal.pcbi.1005067.g001
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but do not directly indicate the binding mechanism because such higher-energy conformations
may exist both in the bound and unbound state of the protein [4, 8]. In principle, both confor-
mational-selection or induced-fit binding then are possible. Standard mixing or temperature-
jump experiments that probe the chemical relaxation into the binding equilibrium can provide
additional information that allows to identify the binding mechanism [22, 25–28]. Of particu-
lar interest is the dominant, slowest relaxation rate kobs observed in the experiments, and how
this rate depends on the total ligand concentration [L]0 [22, 25, 28]. The chemical relaxation
experiments are often performed and analysed under pseudo-first-oder conditions, i.e. at
ligand concentrations that greatly exceed the protein concentrations [22, 25, 29–36]. In the
case of induced-fit binding, the dominant relaxation rate kobs increasesmonotonically with the
ligand concentration [L]0 under pseudo-first-oder conditions. In the case of conformational-
selection binding, kobs decreasesmonotonically with increasing [L]0 for conformational excita-
tion rates ke < k−, and increasesmonotonically with [L]0 for ke > k− where k− is the unbinding
rate of the ligand from the bound ground-state conformation of the protein (see Fig 1(b)). A
decrease of the dominant relaxation rate kobs with increasing ligand concentration [L]0 thus
indicates conformational-selection binding [25]. However, an increase of kobs with [L]0 under
pseudo-first-order conditions is possible both for induced-fit binding and conformational-
selection binding and does not uniquely point towards a binding mechanism [22].

In this article, we present general analytical results for the dominant relaxation rate kobs of
induced-fit binding and conformational-selection binding processes that hold for all ligand and
protein concentrations. Our general results are based on an expansion of the rate equations for
these binding processes around the equilibrium concentrations of ligands and proteins, and
include the pseudo-first-order results in the limit of large ligand concentrations. In the case of
induced-fit binding, we find that kobs exhibits a minimum at the total ligand concentration

½L�min
0 ¼ ½P�0 � Kd for total protein concentrations [P]0 that are larger than the overall dissocia-

tion constant Kd of the binding process. As a characteristic feature, the function kobs([L]0) for
induced-fit binding is symmetric with respect to this minimum. At sufficiently large protein con-
centrations [P]0, the function kobs([L]0) tends to identical values for small ligand concentrations
[L]0� [P]0 and for large ligand concentrations [L]0� [P]0 because of its symmetry (see Fig 1
(c)). In the case of conformational-selection binding, we find that kobs exhibits a minimum for
conformational excitation rates ke> k− and sufficiently large protein concentrations [P]0 (see Fig

1(d)). The location ½L�min
0 of this minimum depends on [P]0, Kd, and the rates ke and k− (see Eq

(10) below). In contrast to induced-fit binding, the function kobs([L]0) for conformational-selec-
tion binding is not symmetric with respect to this minimum. At sufficiently large protein concen-
trations [P]0, the function kobs([L]0) attains values for small ligand concentrations [L]0� [P]0
that can greatly exceed the values for large ligand concentrations [L]0� [P]0 (see Fig 1(d)). For
excitation rates ke< k− of conformational-selection binding processes, the dominant relaxation
rate kobs decreases monotonically with increasing ligand concentration [L]0 (see Fig 1(e)). Our
general results for the dominant relaxation rate kobs of induced-fit and conformational-selection
binding processes allow to clearly distinguish between these two binding mechanisms for suffi-
ciently large protein concentrations [P]0 (see Figs 2 and 3 below for numerical examples).

Results
Solving the rate equations of the induced-fit and conformational-selection binding models
shown in Fig 1(a) and 1(b) is complicated by the fact that the binding steps in these models are
second-order reactions that depend on the product of the time-dependent concentrations of
unbound proteins and unbound ligands. In the standard pseudo-first-order approximation,
the rate equations are simplified by assuming that the total ligand concentration greatly
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exceeds the total protein concentration, so that the amount of ligand consumed during binding
is negligible compared to the total amount of ligand. The concentration of the unbound ligand
then can be taken to be constant, and the rate equations only contain terms that are linear in
the time-dependent concentration of the protein, which makes them solvable. In our more gen-
eral approach, a linearization of the rate equations is achieved by expanding around the equi-
librium concentrations of the bound and unbound proteins and ligands (see Methods). This
expansion captures the final relaxation into equilibrium, which is governed by the smallest,
dominant relaxation rate kobs, for all concentrations of proteins and ligands, and leads to gen-
eral results for kobs that include the results from the pseudo-first-order approximation in the
limit of large ligand concentrations.

Dominant relaxation rate of induced-fit binding
Expanding the rate equations of the induced-fit binding mechanism shown in Fig 1(a) around
the equilibrium concentrations of proteins and ligands leads to the dominant, smallest

Fig 2. Numerical example for conformational-selection binding with the rate constants ke = 10 s−1, kr = 100 s−1, k+ = 100 μM−1s−1, and k
−

= 1 s−1.
(a) Relaxation data for the bound complex obtained by numerical integration of the rate equations and subsequent addition of Gaussian noise with
amplitude 0.002 μM at the total protein concentration [P]0 = 0.5 μM and exemplary total ligand concentrations [L]0. The black lines represent multi-
exponential fits of the data points. (b) to (d) Comparison of kobs values obtained frommulti-exponential fits of numerical relaxation data (points) to our
theoretical results for kobs (lines) at the three different total protein concentrations [P]0 = 0.5 μM, 1.0 μM, and 1.5 μM and total ligand concentrations [L]0
between 0.1 μM and 10 μM. The full lines represent fits of Eq (6) for conformational-selection binding (blue) and of Eq (1) for induced-fit binding (orange),
with fit parameter values specified in the figure. In these fits, the dissociation constant Kd = 0.11 μM is assumed to be known from equilibrium data. The
dashed blue lines are obtained from Eq (6) for the ‘true’ rate constants of the numerical example.

doi:10.1371/journal.pcbi.1005067.g002
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relaxation rate (see Methods)

kobs ¼ ke þ kr þ
1

2
g� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4k�kr

p
ð1Þ

with

g ¼ �ke � kr þ k� þ kþ d� Kdð Þ ð2Þ

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½L�0 � ½P�0 þ Kd

� �2 þ 4½P�0Kd

q
ð3Þ

and with the overall dissociation constant

Kd ¼
k�ke

kþðke þ krÞ
ð4Þ

Fig 3. Numerical example for induced-fit binding with the rate constants k+ = 100 μM−1s−1, k
−

= 100 s−1, ke = 1 s−1, and kr = 10 s−1. (a) Relaxation
data for the bound complex obtained by numerical integration of the rate equations and subsequent addition of Gaussian noise with amplitude 0.004 μM
at the total protein concentration [P]0 = 1 μM and exemplary total ligand concentrations [L]0. The black lines represent multi-exponential fits of the data
points. (b) to (d) Comparison of kobs values obtained frommulti-exponential fits of numerical relaxation data (points) to our theoretical results for kobs
(lines) at the three different total protein concentrations [P]0 = 1 μM, 2 μM, and 3 μM and total ligand concentrations [L]0 between 0.1 μM and 10 μM. The
full lines represent fits of Eq (1) for induced-fit binding (blue) and of Eq (6) for conformational-selection binding (orange), with fit parameter values
specified in the figure. In these fits, the dissociation constant Kd = 1/11 μM is assumed to be known from equilibrium data. The dashed blue lines are
obtained from Eq (1) for the ‘true’ rate constants of the numerical example.

doi:10.1371/journal.pcbi.1005067.g003
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of induced-fit binding. This general result for kobs holds for all total ligand concentrations [L]0
and protein concentrations [P]0. In the limit of large ligand concentrations [L]0 � [P]0, we
obtain δ’ [L]0 + Kd and γ’ − ke − kr + k− + k+[L]0 from Eqs (2) and (3), which agrees with
results derived in pseudo-first-order approximation [21, 22].

As a function of the total ligand concentration [L]0, the dominant relaxation rate kobs exhib-
its a minimum at

½L�min
0 ¼ ½P�0 � Kd ð5Þ

for total protein concentrations [P]0 > Kd. The function kobs([L]0) is symmetric with respect to

½L�min
0 (see (Fig 1(c)). This symmetry and the location ½L�min

0 of the minimum result from the

fact that kobs depends on [L]0 only via the term δ, which is minimal at ½L�min
0 and symmetric

with respect to ½L�min
0 . The dominant relaxation rate kobs is minimal when δ is minimal. For

large ligand concentrations [L]0, kobs tends towards the maximum value ke + kr as in pseudo-

first-order approximation. The location ½L�min
0 of the minimum and the symmetry of the func-

tion kobs([L]0) with respect to this minimum are properties that the induced-fit binding model
appears to ‘inherit’ from the elementary binding model P + LÐ PL (see Eq (46) in Methods
section). However, the function kobs([L]0) of the elementary binding model is V-shaped and
does not tend to a constant maximum value for large ligand concentrations [L]0.

Dominant relaxation rate of conformational-selection binding
For the conformational-selection binding mechanism shown in Fig 1(b), an expansion of the
rate equations around the equilibrium concentrations of proteins and ligands leads to the dom-
inant, smallest relaxation rate (see Methods)

kobs ¼ ke þ
1

2
a� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
ð6Þ

with

a ¼ kr � ke þ
k� ð2ke þ krÞdþ kr ½L�0 � ½P�0 � Kd

� �� �
2keKd

ð7Þ

b ¼ 2kr 2ke � k� � k� d� ½L�0 þ ½P�0
� �

Kd

� �
ð8Þ

and δ as in Eq (3), and with the overall dissociation constant

Kd ¼
k�ðke þ krÞ

kþke
ð9Þ

of conformational-selection binding. This general result for kobs holds for all total ligand con-
centrations [L]0 and protein concentrations [P]0. In the limit of large ligand concentrations
[L]0 � [P]0, we obtain α’ − ke + kr + k− + k+[L]0 and β’ 4kr(ke − k−) from Eqs (3), (7) and
(8), in agreement with results derived in pseudo-first-order approximation [21, 22].

For conformational-selection binding, the shape of the function kobs([L]0) depends on the
values of the conformational excitation rate ke and the unbinding rate k− (see Fig 1(d) and 1
(e)). For ke < k−, the dominant relaxation rate kobs decreases monotonically with increasing
total ligand concentration [L]0. For ke > k−, the dominant relaxation rate kobs exhibits a mini-
mum as a function of [L]0 at sufficiently large total protein concentrations [P]0. The minimum
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is located at (see Methods)

½L�min
0 ’ ke þ k�

ke � k�
½P�0 � Kd ð10Þ

if the conformational relaxation rate kr is much larger than the excitation rate ke, which typically
holds for the conformational exchange between ground-state and excited-state conformations
of proteins. In contrast to induced-fit binding, the function kobs([L]0) is not symmetric with
respect to this minimum. For large ligand concentrations, the limiting value of the dominant
relaxation rate is kobs(1) = ke as in pseudo-first-order approximation. For vanishing ligand con-
centrations [L]0! 0, the limiting value is kobs(0) = ke + kr for total protein concentrations
[P]0> Kd(ke + kr − k−)/k− and kobs(0) = k−([P]0 + Kd)/Kd for [P]0< Kd(ke + kr − k−)/k−.

Distinguishing induced fit and conformational selection
The general results for the dominant relaxation rate kobs presented in the previous sections
allow to clearly distinguish induced-fit from conformational-selection binding processes. In Fig
2, we consider a conformational-selection binding process with the rate constants ke = 10 s−1,
kr = 100 s−1, k+ = 100 μM−1s−1, and k− = 1 s−1 as a numerical example. The data points in Fig 2(a)
represent relaxation curves for the bound complex that have been generated by numerical inte-
gration of the rate equations and subsequent addition of Gaussian noise to mimic measurement
errors. The black lines in Fig 2(a) are multi-exponential fits of the data points. The number of
exponentials in these fits has been determined with the Akaike information criterion (AIC),
which is a standard criterion for the trade-off between quality of fit and number of fit parame-
ters, and ranges from 2 to 4. The data points in Fig 2(b) to 2(d) represent the dominant relaxa-
tion rates kobs that are obtained from multi-exponential fits of relaxation curves for different
total ligand concentrations [L]0 and total protein concentrations [P]0. The dominant relaxation
rate kobs here is identified as the smallest relaxation rate of a multi-exponential fit. The full blue
lines in Fig 2(b) to 2(d) result from fitting our general result Eq (6) for conformational-selection
binding to the kobs data points. The full orange lines represent fits of our general result Eq (1)
for induced-fit binding. For all fits, we assume that the dissociation constant Kd = 0.11 μM is
known from equilibrium data, and use ke, kr, and k− as fit parameters. Finally, the blue dashed
lines in Fig 2(b) to 2(d) are the kobs curves obtained from Eq (6) for the ‘true’ rate constants of
the conformational-selection binding process given above. These dashed lines agree with the
data points, which indicates that the kobs values frommulti-exponential fits as in Fig 2(a) are
identical to the values obtained from Eq (6) within the statistical errors of the numerical
example.

The fits in Fig 2(b) to 2(d) clearly identify conformational selection as the correct binding
mechanism in this example. The blue fit curves for conformational selection agree with the
data points within statistical errors, while the orange fit curves for induced fit deviate from the
data. For conformational-selection binding, the fit values of the conformational transition rates
ke and kr and of the unbinding rate k− specified in the figure agree with the correct values
ke = 10 s−1, kr = 100 s−1, and k− = 1 s−1 of the numerical example within statistical errors.

In Fig 3, we consider an induced-fit binding process with rate constants k+ = 100 μM−1s−1,
k− = 100 s−1, ke = 1 s−1, and kr = 10 s−1 as a second numerical example. The kobs data points in
Fig 3(b) to 3(d) are again obtained from multi-exponential fits of relaxation curves that have
been generated by numerical integration of the rate equations and subsequent addition of
Gaussian noise (see Fig 3(a)). The fits in Fig 3(b) to 3(d) clearly identify induced-fit binding as
the correct mechanism in this example. The full blue curves that represent fits of Eq (1) for
induced-fit binding are in overall agreement with the kobs points, while the orange fit curves of
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Eq (6) for conformational-selection binding deviate from the data. The fit values of the confor-
mational transition rates ke and kr for the induced-fit binding model are in good agreement
with the correct values ke = 1 s−1, and kr = 10 s−1 of the example. The dashed blue curves in Fig
3(b) to 3(d), which are obtained from Eq (1) for the ‘true’ rate constants of the induced-fit
binding process, are in overall agreement with the data points. Slight deviations result from the
fact that the amplitude of the slow relaxation mode with rate kobs is rather small compared to
the amplitude of the fast modes (see Fig 3(a)), which can lead to numerical inaccuracies.

In both numerical examples of Figs 2 and 3, the correct binding mechanism cannot be iden-
tified under pseudo-first-order conditions because kobs is monotonically increasing with [L]0
for ligand concentrations that greatly exceed the protein concentration [P]0 [22].

Analysis of chemical relaxation rates for recoverin binding
Chakrabarti et al. [28] have recently investigated the conformational dynamics and binding
kinetics of the protein recoverin with chemical relaxation and advanced NMR experiments.
Recoverin exhibits a conformational change during binding of its ligand, which is a rhodopsin
kinase peptide fused to the B1 domain of immunoglobulin protein G in the experiments of
Chakrabarti et al. [28]. The data points in Fig 4 represent the dominant relaxation rates kobs
obtained by Chakrabarti et al. from relaxation experiments at the temperatures 30°C and 10°C
for a recoverin concentration of 10μM. The lines in Fig 4 result from fitting our general results
Eqs (1) and (6) for the dominant relaxation rate kobs of induced-fit and conformational-selec-
tion binding processes. In these fits, we have used the values Kd = 1.0 ± 0.2 μM and
Kd = 1.8 ± 0.2 μM obtained by Chakrabarti et al. from isothermal titration calometry experi-
ments at 30°C and 10°C, which reduces the parameters to ke, kr, and k−. The fits of our general
result Eq (6) for conformational-selection binding are rather insensitive to the relaxation rate
kr, which is illustrated in Fig 4 by nearly identical fits for kr = 100 s−1 and kr = 1000 s−1

Fig 4. Analysis of experimentally determined relaxation rates kobs for the binding of recoverin to a rhodopsin kinase peptide ligand. The data
points represent results of Chakrabarti et al. [28] obtained from chemical relaxation experiments at the temperatures 30°C and 10°C for a recoverin
concentration of 10 μM. The blue lines result from fits of Eq (6) for conformational-selection binding with the values kr = 1000 s−1 (full) and kr = 100 s−1

(dashed) of the conformational relaxation rate. At 30°C, the parameter values obtained from fitting are ke = 31.5 ± 0.8 s−1 and k
−

= 5.1 ± 0.4 s−1 for
kr = 1000 s−1, and ke = 31.1 ± 0.8 s−1 and k

−

= 5.0 ± 0.4 s−1 for kr = 100 s−1. At 10°C, the fit parameter values are ke = 19.3 ± 1.4 s−1 and k
−

= 3.9 ± 0.7 s−1

for kr = 1000 s−1, and ke = 19.0 ± 1.3 s−1 and k
−

= 3.8 ± 0.7 s−1 for kr = 100s−1. The yellow lines represent fits of Eq (1) for induced-fit binding with
constraints on the conformational excitation and relaxation rates ke and kr. At 30°C, the obtained fit values for the conformational exchange rates are
ke = kr = 15 ± 10 s−1 for the constraint kr > ke, ke = 3.1 ± 1.9 s−1 and kr = 31 ± 4s−1 for the constraint kr > 10ke, and ke = 1.1 ± 0.8 s−1 and kr = 44 ± 8 s−1 for
kr > 40ke. At 10°C, the fit values are ke = 4.5 ± 4.0 s−1 and kr = 14 ± 10 s−1 for the constraint kr > ke, ke = 1.9 ± 1.5 s−1 and kr = 19 ± 5 s−1 for kr > 10ke, and
ke = 0.7 ± 0.5 s−1 and kr = 28 ± 11 s−1 for kr > 40ke. In all fits of Eq (1) for induced-fit binding, we obtain k

−

� kr, i.e. the fit values of the unbinding rate k
−

are
much larger than the conformational relaxation rate kr and cannot be specified.

doi:10.1371/journal.pcbi.1005067.g004
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(see dashed and full blue lines). Our fit values for the conformational excitation rate ke specified
in the figure caption agree with the values ke = 33 ± 5 s−1 and ke = 23 ± 5 s−1 obtained by Chak-
rabarti et al. from advanced NMR experiments at 30°C and 10°C, respectively. From these
experiments, Chakrabarti et al. obtain the values kr = 990 ± 100 s−1 and kr = 920 ± 200 s−1 at
30°C and 10°C, which cannot be deduced from our fits of the kobs data because these fits are
insensitive to kr. The NMR experiments indicate that the higher-energy conformation of
unbound recoverin resembles the ground-state conformation of bound recoverin [28] as
required for the conformational-selection binding mechanism illustrated in Fig 1(b), and that
the excited-state conformation of unbound recoverin has the equilibrium occupancy
Pe = ke/(kr + ke) = 3.2% ± 0.5% at 30°C and Pe = 2.4% ± 0.7% at 10°C, relative to the ground-
state conformation.

Fits of our general result Eq (1) for the dominant relaxation rate kobs of induced-fit binding
with unconstrained parameters ke, kr, and k− lead to fit values for the conformational exchange
rates ke and kr with ke � kr. For such values of ke and kr, the conformation 1 of the induced-fit
binding model illustrated in Fig 1(a) is the ground-state conformation both for the unbound
state and the bound state of recoverin, which contradicts the experimental observation that
recoverin changes its conformation during binding [28]. Distinct ground-state conformations
for the unbound and bound state of recoverin can be enforced by constraining kr to values
larger than ke. The yellow lines in Fig 4 result from fits with the constraints kr > ke, kr > 10ke,
and kr > 40ke. These constraints correspond to equilibrium occupancies Pe of the excited-state
conformation of bound recoverin with Pe < 50%, Pe < 9.1%, and Pe < 2.4%, respectively. The
fits of Eq (1) for induced-fit binding with the constraints kr > 10ke and kr > 40ke deviate rather
strongly from the two data points with the smallest ligand concentrations [L]0 = 3 μM and
5 μM, in contrast to fits of Eq (6) for conformational-selection binding (blue lines). A Bayesian
model comparison of conformational-selection binding and induced-fit binding based on Eqs
(1) and (6) leads to Bayes factors of 9.8 � 1013 and 1.5 � 1023 at 30°C for the constraints
kr > 10ke and kr > 40ke, and to Bayes factors of 4.2 � 103 and 9.6 � 109 at 10°C for kr > 10ke, and
kr > 40ke, respectively (see Methods for details). These Bayes factors indicate that the kobs data
of Fig 4 strongly point towards conformational-selection binding. Bayes factors larger than 102

are generally considered to be decisive [37]. For the bound recoverin complex, Chakrabarti
et al. did not observe an excited-state conformation in NMR experiments, which limits the
excited-state occupancy Pe to undetectable values smaller than 1% for a conformational
exchange that is fast compared to the NMR timescale as in the case of unbound recoverin. The
analysis of the experimental data for the dominant relaxation rate kobs of recoverin binding
based on our general results Eqs (1) and (6) thus indicates a conformational-selection binding
mechanism, in agreement with a numerical analysis of Chakrabarti et al. [28]. In this numerical
analysis, Chakrabarti et al. include the chemical relaxation data for recoverin binding, addi-
tional relaxation data from dilution experiments, the values for the conformational exchange
rates ke and kr obtained from NMR experiments, and the Kd values deduced from isothermal
titration calometry [28]. In contrast, our analysis of the kobs data in Fig 4 from the chemical
relaxation experiments of recoverin binding only includes the Kd values from isothermal titra-
tion calometry as additional input.

Discussion
We have shown here that the dominant rate kobs of chemical relaxation experiments with total
protein and ligand concentrations of comparable magnitude conveys information on the bind-
ing mechanism and conformational transition rates of proteins. For sufficiently large protein
concentrations [P]0, the function kobs([L]0) obtained from such experiments has characteristic
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features that are clearly distinct for induced-fit binding and conformational-selection binding.
The function kobs([L]0) of induced-fit binding exhibits a characteristic symmetry around a
minimum and tends to identical values for small and large ligand concentrations [L]0 as in Fig
1(c) if the protein concentration [P]0, which determines the location of the minimum, is suffi-
ciently large. In contrast, the function kobs([L]0) of conformational-selection binding is either
monotonically decreasing for ke < k−, or asymmetric around a minimum for ke > k−. In both
cases, kobs([L]0) tends for small ligand concentrations [L]0 to values that exceed the values for
large ligand concentrations as in Fig 1(d) and 1(e) if the protein concentration [P]0 is suffi-
ciently large.

Our general results for the dominant rate kobs of chemical relaxation experiments thus pro-
vide a transparent route to distinguish induced-fit binding from conformational-selection
binding based on the shape of the function kobs([L]0), and to infer conformational transition
rates from fitting. Alternatively, these binding mechanisms can be identified from a numerical
analysis of time-dependent relaxation curves [26–28], based on steric effects that may prohibit
ligand entry and exit in the bound ground-state conformation of the protein and, thus, rule out
conformational-selection binding [15], from a comparison of conformational excitation rates
to overall, effective binding and unbinding rates [4, 13], or from the effect of distal mutations
that mainly affect the conformational exchange, but not the binding kinetics in different pro-
tein conformations [13, 16, 21, 38]. Of particular interest is how such mutations change the
overall binding and unbinding rates. If both conformational-selection and induced-fit binding
are viable, increasing the ligand concentration may shift the binding mechanism from confor-
mational selection to induced fit [16, 18, 26, 39, 40].

Methods

Near-equilibrium relaxation of induced-fit binding
The induced-fit binding model of Fig 1(a) leads to the four rate equations

d
dt

½P1� ¼ �kþ½P1�½L� þ k�½P1L� ð11Þ

d
dt

½L� ¼ �kþ½P1�½L� þ k�½P1L� ð12Þ

d
dt

½P1L� ¼ kþ½P1�½L� � k�½P1L� þ ke½P2L� � kr½P1L� ð13Þ

d
dt

½P2L� ¼ kr½P1L� � ke½P2L� ð14Þ

that describe the time-dependent evolution of the concentration [P1] of the unbound protein,
the concentration [L] of the unbound ligand, and the concentrations [P1L] and [P2L] of the
bound complexes. These four rate equations are redundant because the total concentrations
[P]0 and [L]0 of proteins and ligands are conserved:

½P1L� þ ½P2L� þ ½P1� ¼ ½P�0 ð15Þ

½L� þ ½P1L� þ ½P2L� ¼ ½L�0 ð16Þ

With Eqs (15) and (16), the concentrations [P1] and [P1L] can be expressed in terms of [L] and
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[P2L], which results in the two non-redundant rate equations

d
dt

½L� ¼ �kþð½L� � ½L�0 þ ½P�0Þ½L� þ k�ð½L�0 � ½L� � ½P2L�Þ ð17Þ

d
dt

½P2L� ¼ krð½L�0 � ½L� � ½P2L�Þ � ke½P2L� ð18Þ

These rate equations can be written in the vectorial form

d
dt

c ¼ FðcÞ ð19Þ

with

cðtÞ � ½L�ðtÞ
½P2L�ðtÞ

 !
ð20Þ

The two components of the vector F(c) in Eq (19) are the right-hand sides of the Eqs (17) and
(18). The rate equations describe the temporal evolution of the concentrations [L] and [P2L]
towards equilibrium, and are nonlinear because of the quadratic term in [L] on the right-hand
side of Eq (17).

To obtain linearized versions of the rate equations that describe the slow processes corre-
sponding to the final relaxation into equilibrium, we expand the vector F(c) in Eq (19) around
the equilibrium concentrations ceq:

FðcÞ ¼ Fðceq þ DcÞ ’ FðceqÞ þ JðceqÞDc ¼ JðceqÞDc ð21Þ

Here, J is the Jacobian matrix of F with elements Jij = @Fi/@cj. The right-hand side of Eq (21)
follows from F(ceq) = 0. Inserting the expansion (21) into Eq (19) and making use of
d
dt
c ¼ d

dt
ðceq þ DcÞ ¼ d

dt
Dc leads to the linearized rate equations

d
dt

Dc ¼ JðceqÞDc ð22Þ

with

JðceqÞ ¼
kþ ½L�0 � 2½L�eq � ½P�0
� �

� k� �k�

�kr �ke � kr

0
@

1
A ð23Þ

and the equilibrium concentration of the unbound ligand

½L�eq ¼
1

2
½L�0 � ½P�0 � Kd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½L�0 � ½P�0 þ Kd

� �2 þ 4½P�0Kd

q� �
ð24Þ

The overall dissociation constant Kd of the induced-fit binding process is given in Eq (4). The
relaxation rates of the linearized rate Eq (22) are the two eigenvalues of the matrix −J(ceq).
These eigenvalues are kobs given in Eq (1) and

k2 ¼ ke þ kr þ
1

2
gþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4k�kr

p
ð25Þ

with γ and δ given in Eqs (2) and (3). The relaxation rate kobs is smaller than k2 and, thus, dom-
inates the final relaxation into equilibrium.
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Near-equilibrium relaxation of conformational-selection binding
The four rate equations of the conformational-selection binding model of Fig 1(b) are

d
dt

½P1� ¼ �ke½P1� þ kr½P2� ð26Þ

d
dt

½P2� ¼ ke½P1� � kr½P2� þ k�½P2L� � kþ½P2�½L� ð27Þ

d
dt

½L� ¼ k�½P2L� � kþ½P2�½L� ð28Þ

d
dt

½P2L� ¼ �k�½P2L� þ kþ½P2�½L� ð29Þ

The total concentrations [L]0 and [P]0 of the ligands and proteins are conserved:

½L� þ ½P2L� ¼ ½L�0 ð30Þ

½P1� þ ½P2� þ ½P2L� ¼ ½P�0 ð31Þ

With these equations, the concentrations [P1] and [P2L] can be expressed in terms of [L] and
[P2], which leads to the two rate equations

d
dt

½P2� ¼ ke ½P�0 � ½P2�
� �� ðkr þ kþ½L�Þ½P2� þ ðk� � keÞð½L�0 � ½L�Þ ð32Þ

d
dt

½L� ¼ k�ð½L�0 � ½L�Þ � kþ½P2�½L� ð33Þ

These rate equations can be written in the vectorial form of Eq (19) with

cðtÞ � ½P2�ðtÞ
½L�ðtÞ

 !
ð34Þ

and with a vector F(c) that contains the right-hand sides of the Eqs (32) and (33) as compo-
nents. An expansion of the vector F(c) around the equilibrium concentrations ceq leads to Eq
(22) with the Jacobian matrix

JðceqÞ ¼ �
kr þ ke þ kþ½L�eq �ke þ k� þ kþ½P2�eq

kþ½L�eq k� þ kþ½P2�eq

 !
ð35Þ

and the equilibrium concentrations

½P2�eq ¼
1

2Kd

k�
kþ

½P�0 � ½L�0 � Kd þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½P�0 � ½L�0 � KdÞ2 þ 4Kd½P�0

q� �
ð36Þ

½L�eq ¼
1

2
½L�0 � ½P�0 � Kd þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½P�0 � ½L�0 � KdÞ2 þ 4Kd½P�0

q� �
ð37Þ

The overall dissociation constant Kd of the conformational-selection binding process is given
in Eq (9). The relaxation rates of the linearized rate equations are the two eigenvalues of the
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matrix −J(ceq). These eigenvalues are kobs given in Eq (6) and

k2 ¼ ke þ
1

2
aþ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

p
ð38Þ

with α and β given in Eqs (7) and (8). The relaxation rate kobs is smaller than k2 and therefore
dominates the final relaxation into equilibrium.

To derive Eq (10) for the location of the minimum of kobs as a function of the total ligand
concentration [L]0, we now consider the near-equilibrium relaxation of the conformational-
selection model in quasi-steady-state approximation (qssa), which assumes that the concentra-
tion of the intermediate [P2] does not change in time. The left-hand side of Eq (32) then is
equal to zero, and the two Eqs (32) and (33) reduce to the single equation

d
dt

½L� ¼ �kek�
½L� þ Kdð Þ ½L� � ½L�0

� �þ ½L�½P�0
k�½L� þ keKd

¼ f ð½L�Þ ð39Þ

An expansion of the function f([L]) around the equilibrium concentration [L]eq leads to the lin-

ear equation d½L�=dt ’ �kðqssaÞobs ð½L� � ½L�eqÞ with

kðqssaÞobs ¼ �df ð½L�Þ
d½L�

				
½L�¼½L�eq

¼ k�ked
keKd þ k�½L�eq

ð40Þ

and δ and [L]eq given in Eqs (3) and (37). The derivative of kðqssaÞobs is zero at ½L�0 ¼ ½L�min
0 with

½L�min
0 given in Eq (10). In general, the quasi-steady-state result kðqssaÞobs is a good approximation

of kobs if the rates for the transitions out of the intermediate state P2 of conformational-selec-
tion binding are much larger than the rates for the transitions to P2. A numerical analysis

shows that the location ½L�min
0 of the minimum of kðqssaÞobs ð½L�Þ is in good agreement with the loca-

tion of the minimum of kobs([L]) for conformational transitions rates with kr � ke.

Multi-exponential relaxation
In the numerical examples illustrated in Figs 2 and 3, chemical relaxation curves for conforma-
tional-selection and induced-fit binding are fitted with a multi-exponential model. Such multi-
exponential models are an adequate description for the time evolution of concentrations in
first-order chemical reactions. However, the binding steps of the induced-fit and conforma-
tional-selection models of Fig 1(a) and 1(b) are of second order. To justify that multi-exponen-
tial models can also be used to approximate the chemical relaxation of second-order reactions,
we consider here the elementary binding model

Pþ L Ð
kþ½P�½L�

k�
PL ð41Þ

of a protein P and ligand L. For the initial condition [PL](0) = 0, the rate equation of the ele-
mentary binding model can be written as

d
dt

½PL� ¼ kþ ½P�0 � ½PL�� � ½L�0 � ½PL�� �� k�½PL� ð42Þ

and has the analytical solution [38]

½PL�ðtÞ ¼ � l1 eðl1�l2Þt � 1ð Þ
kþ eðl1�l2Þt � l1=l2ð Þ ð43Þ
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with

l1;2 ¼ � 1

2
kþ ½P�0 þ ½L�0 þ Kd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P�0 þ ½L�0 þ Kd

� �2 � 4½P�0½L�0
q� �

ð44Þ

where Kd = k−/k+ is the dissociation constant of the elementary binding model.
We first show that λ2 − λ1 is identical to the dominant relaxation rate kobs obtained from a

linear expansion around equilibrium. An expansion of the right-hand side of Eq (42) around
the equilibrium concentration

½PL�eq ¼
1

2
½P�0 þ ½L�0 þ Kd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½L�0 � ½P�0 þ KdÞ2 þ 4Kd½P�0

q� �
ð45Þ

leads to the linear equation d[PL]/dt’ −kobs([PL] − [PL]eq) with

kobs ¼ kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½L�0 � ½P�0 þ KdÞ2 þ 4Kd½P�0

q
ð46Þ

This dominant relaxation rate kobs is identical to λ2 − λ1. As a function of [L]0, the dominant

rate kobs of the elementary binding model exhibits a minimum at ½L�min
0 ¼ ½P�0 � Kd and is sym-

metric with respect to this minimum.
We next use the limit of the geometric series

P1
n¼0 q

n ¼ 1=ð1� qÞ with q = e−kobs t λ2/λ1 to
rewrite Eq (43) as

½PL�ðtÞ / l2 þ l2 � l1ð Þ
X1
n¼1

e�nkobst

l1=l2ð Þn ð47Þ

which shows that the chemical relaxation of the elementary binding model can be described as
an infinite sum of exponential functions. The exponents of these functions are integer multiples
of kobs, which is reminiscent of the higher harmonics in oscillatory phenomena. The prefactors
(λ2/λ1)

n in Eq (47) decay exponentially with the order n of the harmonic because of λ2/λ1 < 1.
The infinite sum of Eq (47) therefore can be truncated in practical situations. Under pseudo-
first-order conditions, Eq (47) reduces to a single-exponential relaxation.

In analogy to the elementary binding model, we propose that the time evolution of the con-
centrations in the induced-fit and conformational-selection models can be represented as a
sum of exponentials where the exponents are integer combinations −ikobs − jk2 with i, j = 0, 1,
2, 3, . . . of the relaxation rates kobs and k2 obtained from a linear expansion around the equilib-
rium concentrations. Under pseudo-first-order conditions, the chemical relaxation reduces to
a double-exponential relaxation [16, 21, 22].

In the numerical examples of Figs 2 and 3, the chemical relaxation of the bound complexes
is fitted with a multi-exponential model

½bound�ðtÞ ¼ A0 þ
XN
n¼1

Ane
�knt ð48Þ

with kn > 0 for all n. We have used the routine NonlinearModelFit of the software Mathema-
tica [41] with the differential evolution algorithm [42], which was repeatedly run with different
values of its F parameter ranging from 0.1 to 1 for a given number of exponentials N. Among
different runs, we have selected fit results based on the residual sum of squares, after discarding
fits with singular results in which two rates kn coincide within 95% confidence intervals, or in
which one or more rates kn are identical to 0 within 95% confidence intervals. We have then
determined the number of exponentials N based on the small-sample-size corrected version of
Akaike’s information criterion (AIC) [43].
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Bayes factors
The Bayes factor K is as measure for how plausible one model is relatively to an alternative
model, given experimental data [44]. The Bayes factor for the plausibility of the conforma-
tional-selection binding model relative to induced-fit binding model is

K ¼
R
pðdata j conformational� selection binding; yÞpðyÞdyR

pðdata j induced � fit binding; yÞpðyÞdy ð49Þ

Here, p(data jM, θ) is the probability that the data were produced by the modelM with given
parameters θ, whereM either stands for conformational-selection binding or induced-fit bind-
ing, and p(θ) is the prior distribution on the parameter values, which encodes any prior knowl-
edge that we have about the parameters. The integrals of Eq (49) are taken over all parameter
values and result in the probability p(data jM) that the data were produced by the model,

regardless of specific parameter values. The data here consist of the slowest relaxation rates kðiÞobs
with i = 1, 2, . . ., N obtained from multi-exponential fits of the N time series with ligand con-

centrations ½L�ðiÞ0 , and the errors σi of these rates. Following standard approaches [44], the prob-
ability that the data were generated by the modelM with parameters θ = (ke, kr, k−, Kd, [P]0) is

pðdata j M; yÞ /
YN
i¼1

exp �
kðiÞobs � kMobs y; ½L�ðiÞ0

� �� �2

2s2
i

2
64

3
75 ð50Þ

for kr> nke, and 0 otherwise. The inequality kr> nke reflects constraints on the conformational
relaxation rate kr and excitation rate ke of the models (see section “Analysis of chemical relaxa-

tion rates for recoverin binding”). Eq (50) implies that the errors kðiÞobs � kMobsðy; ½L�ðiÞ0 Þ are inde-
pendently and normally distributed random variables with standard deviations σi. Depending

on the modelM, we either use Eqs (1) or (6) to determine kMobsðy; ½L�ðiÞ0 Þ. For simplicity, Kd and
[P]0 are kept fixed at the experimentally measured values. We choose a prior p(θ) that is uni-
form in the logarithm of the rates ke, kr, k−. Taking the logarithm of the rates is not crucial, as a
uniform prior on the rates gives similar results in the analysis of recoverin binding and, thus,
leads to the same conclusions. The prior p(θ) here can be chosen to be uniform because it is
identical for both the induced-fit and conformational-selection binding models due to the
equivalent parameters of the models [45].
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