
Chapter 5

Closed Solution

of Several Specific Cases

5.1 Doubly-Periodic Homogeneous

Cylindrical Inlay CPS Problem

In this section, as a practical application we deal with the doubly-periodic

cylindrical inlay CPS problem. After referring to the transformation intro-

duced in Chapter 1, the boundary value problems are transfered into doubly

quasi-periodic boundary value problems, then, by employing the solutions of

the doubly quasi-periodic boundary value problem we obtain the general solu-

tion in closed form. For an illustrating example of practical interest, e.g. the

doubly-periodic circular cylindrical inlay CPS problem, the exact solution is

obtained. And when we fix one of its periods, say ω1 = aπ and let |ω2| → ∞
in such a way that Im(ω2

ω1
> 0), as a by-product we get the exact solution of

the singly-periodic case with primitive period aπ, furthermore, when we let

|ω1| → ∞ and |ω2| → ∞ in the doubly-periodic case, or a→ ∞ in the singly-
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periodic case, we have immediately the solution of the non-periodic case, which

is identical with the classical one.

Let there be given an elastic body with cylindrical holes, which distrbuted

doubly-periodically on the x1, x2 plane, and let solid cylindrical inlays of the

same material be inserted into these holes. It will be supposed that the in-

terfaces of the inserted inlays and of the corresponding holes are brought into

contact without any gaps. Then, there are doubly-periodic gaskets on the

x1, x2 transverse cross section (see Figure 5.1). The primitive periods will be

2ω1, 2ω2 such that Im
(

ω2

ω1

)
> 0, Im(ω1) = 0. The doubly periodic funda-

mental parallelogram on the x1, x2 plane of the elastic body will be denoted

by P00. Its vertices are 0, 2ω1, 2ω1 + 2ω2 and 2ω2. The boundary of P00 will

be denoted by Γ =
⋃

i=
Γi with the positive direction taken to be anticlock-

wise, L =
m−1⋃
j=0

Lj being the interface of the elastic gaskets in P00, the positive

direction of L is taken to be clockwise. In the doubly periodic fundamental

parallelogram P00, the elastic regions located on the left-hand and right-hand

sides of L are denoted by S+
0 and S−

0 , respectively (see Figure 5.1), the aggre-

gate of S±
0 and all its congruent regions will be denoted by S±, respectively.

It will be assumed that S+ and S− are made up of the same material. The

displacement discontinuity function on L

g(t) = [u+(t) + iv+(t)] − [u−(t) + iv−(t)]

and e3 = constant are given, and assume g′(t) ∈ H(L). In addition, the stress

resultant principal vectors Fk on Γk, k=1, 2, on the x1, x2 plane, and the shear

stress Tk, k = 1, 2, in the x3 direction are given, too.

In this case, proceeding in an analogous manner, one finds, in the former

notation, the boundary conditions

φ+(t) + tφ′+(t) + ψ+(t) = φ−(t) + tφ′−(t) + ψ−(t), t ∈ L(m,n), (5.1)
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Figure 5.1: Model of the doubly-periodic cylindrical inlay CPS problem
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κφ+(t)−tφ′+(t)−ψ+(t) = κφ−(t)−tφ′−(t)−ψ−(t)+2µg(t), t ∈ L(m,n), (5.2)[
φ(z) + zφ′(z) + ψ(z)

]
Γk

= iFk, k = 1, 2, (5.3)

F+(t) + F+(t) = F−(t) + F−(t), t ∈ L(m,n), (5.4)[
F+(t) − F+(t)

]
=
[
F−(t) − F−(t)

]
, t ∈ L(m,n), (5.5)

µ
[
F (z) − F (z)

]
Γk

= |ωk|Tk, k = 1, 2. (5.6)

After adding boundary conditions (5.1) and (5.2), and considering the

conjugation of condition (5.1), we obtain the Riemann boundary value jump

problems

φ+(t) − φ−(t) =
2µ

κ+ 1
g(t), t ∈ L(m,n), (5.7)

ψ+(t) − ψ−(t) = −
[
φ+(t) − φ−(t)

]
− t

d

dt

[
φ+(t) − φ−(t)

]
=

2µ

κ+ 1
h(t), t ∈ L(m,n), (5.8)

where

h(t) = −g(t) − tg′(t).

For the doubly-periodic plane elasticity problem, taking Lemma 1.1.2 into

account, for obtaining a doubly-periodic solution, we introduce a transforma-

tion  φ(z) = φ0(z),

ψ(z) = D(z)φ′
0(z) + ψ0(z).

(5.9)

Then, φ0(z) and ψ0(z) both are doubly quasi-periodic functions. Here, the

notation D(z) is given by (1.48).

Substituting the transformation (5.9) into the boundary conditions (5.7)

and (5.8) we get the simplest doubly quasi-periodic Riemann boundary value

problems

φ+
0 (t) − φ−

0 (t) =
2µ

κ+ 1
g(t), t ∈ L(m,n), (5.10)
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ψ+
0 (t) − ψ−

0 (t) =
2µ

κ+ 1
h(t) −D(t)

d

dt

[
φ+

0 (t) − φ−
0 (t)

]
=

2µ

κ+ 1
h0(t), t ∈ L(m,n), (5.11)

where

h0(t) = −g(t) −m(t)g′(t), (5.12)

and D(z) is given by (1.64).

Substituting the transformation (5.9) into boundary conditions (5.3), due

to the fact that m(z) and φ′
0(z) both are doubly-periodic, we have

[
φ0(z) + ψ0(z)

]
Γk

= iFk, k = 1, 2. (5.13)

By Corollary 1.2.1, it is easy to obtain the general solutions of (5.10)

and (5.11),

φ0(z) =



µ

(κ+ 1)πi

∫
L
g(t)ζ(t− z)dt+ C1z + C +mg1 + ng2,

if z = [z]0 + Ωmn ∈ S+,
µ

(κ+ 1)πi

∫
L
g(t)ζ(t− z)dt+ C1z + C, if z ∈ S−,

(5.14)

ψ0(z) =



µ

(κ+ 1)πi

∫
L
h0(t)ζ(t− z)dt+ C2z + C +mg1 + ng2,

if z = [z]0 + Ωmn ∈ S+,
µ

(κ+ 1)πi

∫
L
h0(t)ζ(t− z)dt+ C2z + C, if z ∈ S−,

(5.15)

where [z]0 indicates the congruent point in P00 of z, and C may be an arbitrarily

fixed constant.

Substituting (5.14) and (5.15) into the boundary conditions (5.13) we ob-

tain

C1 =
1

iS

[
µδ2
κ+ 1

∫
L
g(t)dt− µ

2(κ+ 1)

∫
L
h0(t)dt+ i(ω1F2 − ω2F1)

]
, (5.16)

C2 =
1

S

[
iµ

2(κ+ 1)

∫
L
g(t)dt− iµδ2

κ + 1

∫
L
h0(t)dt+ (ω2F1 − ω1F2)

]
, (5.17)
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where S is the area of the fundamental periodic-parallelogram P00.

Then, we get φ(z) and ψ(z) immediately by (5.14), (5.15) and (5.9).

Smilarly, after adding boundary conditions (5.4) and (5.5) we get

F+(t) = F−(t), t ∈ L(m,n). (5.18)

Then, we obtain its solution immediately by Corollary 1.2.1 as

F (z) =

 C3z + C +mg1 + ng2, z = [z]0 + Ωmn ∈ S+,

C3z + C, z ∈ S−.
(5.19)

Substituting (5.19) into the boundary conditions (5.6) we have

C3 =
ω2|ω1|
µ

T1 − ω1|ω2|
µ

T2. (5.20)

Now we consider a special case, e.g. the doubly-periodic circular cylindrical

inlay CPS problem. We assume that there is only one circular cylindrical inlay

in the doubly-periodic fundamental parallelogram, namely one gasket in P00

on the x1, x2 transverse cross section. L0, the boundary of the gasket, is a

circle |z − b| = r (see Figure 5.2), and

g(t) = −εeiθ = −ε(t− b)

r
, t = b+ reiθ ∈ L0. (5.21)

Hence, from (5.12) and (5.21) we have

h0(t) =
2rε

t− b
+
[
b+D(t)

] ε
r
. (5.22)

By (5.14), (5.15) and (5.9) we get the solution of this case after omitting the

trival translation constants

φ(z) =


C0

1z +mg1 + ng2, z = [z]0 + Ωmn ∈ S+,

− 2µε

(κ + 1)r
(z − b) + C0

1z, z ∈ S−,
(5.23)
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ψ(z) =


− 4µεr

κ + 1
ζ(b− z) + C0

2z +mg1 + ng2, z = [z]0 + Ωmn ∈ S+,

4µεr

κ + 1

[
1

z − b
+ ζ(b− z)

]
+ C0

2z, z ∈ S−,

(5.24)

where

C0
1 =

µ

(κ+ 1)S
[2πrε+ i(ω1F2 − ω2F1)] ,

C0
2 =

µ

(κ+ 1)S

[
(ω2F1 − ω1F2) − 4πδ2rε

]
.

and F (z) is obtained by (5.19) and (5.20).

For contrasting with the classical results in non-periodic cases of [49], we

consider a special case of the doubly-periodic circular cylindrical inlay prob-

lem, namely the doubly-periodic circular gasket problem in two dimensional

elasticity theory, say, Tk = 0, k = 1, 2, and e3 = 0, therefore, the boundary

conditions (5.4)-(5.6) disappear in this case, due to ζ(−z) = −ζ(z), we get the

solution in P00 immediately,

φ(z) =


C0

1z, z ∈ S+
0 ,

− 2µε

(κ + 1)r
(z − b) + C0

1z, z ∈ S−
0 ,

(5.25)

ψ(z) =


− 4µεr

(κ + 1)
ζ(z − b) + C0

2z, z ∈ S+
0 ,

4µεr

κ+ 1

[
1

z − b
− ζ(z − b)

]
+ C0

2z, z ∈ S−
0 ,

(5.26)

Now, we investigate the limiting case. When ω1 = aπ, ω2 → ∞, the

domain S+
0 in the doubly-periodic fundamental parallelogramP00 will be ex-

tended to the domain in periodic strip except S−
0 in the singly-periodic case.

When ω1 → ∞, ω2 → ∞, the domain S+
0 in the doubly-periodic fundamen-

tal parallelogramP00 will be extended to the whole plane except S−
0 in the

non-periodic case. In the limiting case, when we let Fk = 0, k = 1, 2, say, the
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stresses vanish at infinity. Taking the following limiting functions into account,

namely [5]

lim
ω1=aπ

|ω2|→∞
ζ(z) =

1

3a2
z +

1

a
cot

(
z

a

)
, (5.27)

lim
|ω1|→∞
|ω2|→∞

ζ(z) =
1

z
, (5.28)

and (1.43) and (1.74) we get

lim
ω1=aπ

|ω2|→∞
C0

1 = lim
ω1=aπ

|ω2|→∞
C0

2 = 0, (5.29)

lim
|ω1|→∞
|ω2|→∞

C0
1 = lim

|ω1|→∞
|ω2|→∞

C0
2 = 0, (5.30)

Furthermore, we obtain the solutions

φ(z) =


0, z ∈ S+

0 ,

− 2µε

(κ + 1)r
(z − b), z ∈ S−

0 ,

(5.31)

ψ(z) =


− 4µεr

(κ + 1)a

[
1

3a
(z − b) + cot

(
z − b

a

)]
, z ∈ S+

0 ,

4µεr

κ + 1

{
1

z − b
− 1

a

[
1

3a
(z − b) + cot

(
z − b

a

)]}
, z ∈ S−

0 ,

(5.32)

for the singly-periodic circular gasket problem, and

φ(z) =


0, z ∈ S+

0 ,

− 2µε

(κ + 1)r
(z − b), z ∈ S−

0 ,

(5.33)

ψ(z) =


− 4µεr

κ + 1

1

z − b
, z ∈ S+

0 ,

o, z ∈ S−
0 ,

(5.34)

for the non-periodic circular gasket problem, which is identical with the clas-

sical solution (see [49]).
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Figure 5.3: Displacement u for −1 < x < 2, 0.75 < y < 2

When |ω1|, |ω2| and a are large enough, or ε is small enough, we get the

same displacement distribution plots shown in Fig. 5.3,Fig. 5.4, Fig. 5.5 and

Fig. 5.6 for the above three cases in some region when κ = 2, µ = 0.5, ε = 0.01,

b = 1
2

+ 1
2
i and r = 1

4
.

5.2 Effect of Homogeneous Cylindrical Inlay

on Cracks in the Doubly-Periodic CPS

Problem

Effect of homogeneous cylindrical inlay on cracks in the doubly-periodic CPS

problem is investigated in this section. By employing the solutions of dou-

bly quasi-periodic and doubly-periodic Riemann boundary value problem we
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Figure 5.4: Displacement v for −1 < x < 2, 0.75 < y < 2

obtain the general solution in closed form.

Let there be given a three-dimensional elastic body with cylindrical holes

and cracks, which distributed doubly-periodically on the x1, x2 transverse cross

section, and let solid cylindrical of the same material be inserted into these

holes. The primitive periods will be 2ω1 = a− ib, 2ω2 = a+ ib with Im
(

ω2

ω1

)
>

0. The doubly-periodic fundamental parallelogram P00 on the x1, x2 plane of

the elastic body has the shape of a rhombus. Its vertices are 0, 2ω1, 2ω1 +2ω2

and 2ω2. The boundary of P00 will be denoted by Γ with the positive direction

taken to be anticlockwise. Inside P00 there are one hole with the centre a

(hence, one elastic gasket in P00 ) and two cracks γ1 and γ2, of the same length

situated along a diagonal symmetrically with respect to the centre of P00 (see

Fig. 5.7). We denote γ = γ1
⋃
γ2, and let a1, b1, a2, b2 be the co-ordinates of
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Figure 5.5: Displacement u for −1 < x < 1, y = 0

the ends of the cracks:

a2 = 2ω1 + 2ω2 − b1, b2 = 2ω1 + 2ω2 − a1.

The positive direction of L is taken to be clockwise. The elastic regions lo-

cated on the left-hand and right-hand sides of L are denoted by S+
0 and S−

0 ,

respectively. The displacement discontinuity of the two sides of the interface

L

g(t) = [u+(t) + iv+(t)] − [u−(t) + iv−(t)] (5.35)

is given, strain e3 = constant, and normal load p(t) is given at the edges of

the cracks, and the shearing stresses are zero. In addition, the stress resultant

principal vectors Fk on Γk, k=1, 2, and the shear stress Tk, k = 1, 2, in the x3

direction are given, too. Then,

σ2(x,±0) − iτ12(x,±0) = −p(x), x ∈ γ, (5.36)

2µ(u+ + iv+) − (u− + iv−) = g(t), t ∈ L, (5.37)
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Figure 5.6: Displacement v for −1 < x < 1, y = 0

p(t) (∈ H) is a known function on γ, g(t) is a known function on L, and we

assume g′(t) ∈ H .

The combinations of stresses σ1 + iτ12 and σ2 − iτ12 expressed in terms of

Φ(z) and Ψ(z) is of the form [49], σ1 + iτ12 = Φ(z) + Φ(z) − zΦ′(z) − Ψ(z),

σ2 − iτ12 = Φ(z) + Φ(z) + zΦ′(z) + Ψ(z).
(5.38)

Under these conditions one has the following boundary conditions at first,

φ+(t) + tφ′+(t) + ψ+(t) = φ−(t) + tφ′−(t) + ψ−(t), t ∈ L
⋃
γ, (5.39)

κφ+(t)−tφ′+(t)−ψ+(t) = κφ−(t)−tφ′−(t)−ψ−(t)+2µG(t), t ∈ L
⋃
γ, (5.40)[

φ(z) + zφ′(z) + ψ(z)
]
Γk

= iFk, k = 1, 2. (5.41)

F+(t) + F+(t) = F−(t) + F−(t), t ∈ L
⋃
γ, (5.42)[

F+(t) − F+(t)
]

=
[
F−(t) − F−(t)

]
, t ∈ L

⋃
γ, (5.43)
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µ
[
F (z) − F (z)

]
Γk

= |ωk|Tk, k = 1, 2, (5.44)

where

G(t) = 2µ[u+(t) + iv+(t)] − [u−(t) + iv−(t)] =

 g(t), t ∈ L,

ω(t), t ∈ γ.
(5.45)

Here ω(t) is an unknown displacement discontinuity function on γ

From (5.39) and (5.40), after simple evaluation, we have the Riemann

boundary value problems

φ+(t) − φ−(t) =
2µ

κ+ 1
G(t), t ∈ L

⋃
γ, (5.46)

ψ+(t) − ψ−(t) =
2µ

κ+ 1
h(t), t ∈ L

⋃
γ, (5.47)

where

h(t) =

 −g(t) − tg′(t), t ∈ L,

−ω(t) − tω′(t), t ∈ γ.
(5.48)

For obtaining a doubly quasi-periodic boundary value problems, considering

the double periodicity of the stress components, we still use the transforma-

tion (5.9). Substituting transformation (5.9) into conditions (5.46) and (5.47)

we get the simplest doubly quasi-periodic Riemann boundary value problems

φ+
0 (t) − φ−

0 (t) =
2µ

κ+ 1
G(t), t ∈ L

⋃
γ, (5.49)

ψ+
0 (t) − ψ−

0 (t) = −
{[
φ+

0 (t) − φ−
0 (t)

]
+m(t)

d

dt

[
φ+

0 (t) − φ−
0 (t)

]}

=
2µ

κ+ 1
h0(t), t ∈ L

⋃
γ, (5.50)

where φ0(z) and ψ0(z) both are doubly quasi-periodic functions, and

h0(t) =

 h1(t) = −ω(t) −m(t)ω′(t), t ∈ γ,

h2(t) = −g(t) −m(t)g′(t), t ∈ L.
(5.51)
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We obtain the solutions of (5.49) and (5.50) as follows,

φ0(z) = φ1(z) + φ2(z), (5.52)

ψ0(z) = ψ1(z) + ψ2(z), (5.53)

where

φ1(z) =
µ

(κ+ 1)πi

∫
γ
ω(t)ζ(t− z)dt, (5.54)

φ2(z) =
µ

(κ+ 1)πi

∫
L
g(t)ζ(t− z)dt, (5.55)

ψ1(z) =
µ

(κ+ 1)πi

∫
γ
h1(t)ζ(t− z)dt, (5.56)

ψ2(z) =
µ

(κ+ 1)πi

∫
L
h2(t)ζ(t− z)dt. (5.57)

Substituting formulae (5.52)-(5.57) into the condition (5.36), taking the

single-valued condition of displacement, we get

Φ+
1 (x) + Φ−

1 (x) = p(x) − q(x), x ∈ γ, (5.58)

where

q(x) = Φ2(x) +m′(x)Φ2(x) +m(x)Φ′
2(x) − Ψ2(x). (5.59)

Here Φ2(z) = φ′
2(z) and Ψ2(z) = ψ′

2(z) have been known functions by virtue

of formulae (5.55) and (5.57).

Referring to (5.54) we know φ1(z) has been an odd doubly quasi-periodic

function, then Φ1(z) = φ′
1(z) is an even doubly-periodic function. Therefore,

(5.58) is an even doubly-periodic Riemann boundary value problem. We obtain

the solution as follows[6],

Φ1(z) =
1

2πi
X(z)

∫
L

[p(t) − q(t)]℘′(t)dt
X+(t)[℘(t) − ℘(z)]

+
1

2
X(z) [ι1 + ι2℘(z)] , (5.60)
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where

X(z) = {[℘(a1) − ℘(z)] [℘(a1) − ℘(z)]} 1
2 , (5.61) X+(x) = i {[℘(a1) − ℘(x)] [℘(a1) − ℘(x)]} 1

2 , a1 < x < b1,

X+(x) = −i {[℘(a1) − ℘(x)] [℘(a1) − ℘(x)]} 1
2 , a2 < x < b2.

(5.62)

Due to the conditions of mirror symmetry about the x1, x2 axes and ℘(z) =

℘(z), ι1 and ι2 are real undetermined constants.

To ensure the double periodicity of the stress components, additional con-

ditions (5.41) must be satisfied, substituting (5.9) into (5.41), we have

[
φ0(z) + ψ0(z)

]
Γk

= iFk, k = 1, 2. (5.63)

By integration of Φ1(z) we get φ1(z), from (5.52) and (5.50) we obtain φ0(z)

and ψ0(z), respectively, then, we find constants ι1 and ι2 from (5.63). As

in Section 5.1, one finds that the solution of (5.42)-(5.44) is still obtained

by (5.19). When there is no any holes and gaskets in P00 and e3 = 0, Fk = 0,

Tk = 0, k = 1, 2, and constant load p applied at the edges of the crack, we

have the simpler expression of Φ1(z),

Φ1(z) =
p

2
− pX(z)

4
[℘(a1) + ℘(b1) − 2℘(z)]

+
X(z)

2
[ι1 + ι2℘(z)] , (5.64)

and the approximate expression of the stress intensity factor at the point a1,

KI = lim
x1→a

√
2π(a1 − x1)σ2(x1, 0)|x1<a1

≈ 2 lim
x1→a

√
2π(a1 − x1)Φ(x1) = 2 lim

x1→a

√
2π(a1 − x1)Φ1(x1)

≈ −
√
π

2

p[℘(a1) − ℘(b1)] − 2ι1 − 2ι2℘(a1)√
−℘′(a1)[℘(a1) − ℘(b1)]

, (5.65)

where

ι01 =
1

2
p

{
δ0
1ImI2 − iδ0

2ReI2
ImI1ReI2 − ReI1ImI2

− [℘(a1) − ℘(b1)]

}
(5.66)
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ι02 = p− 1

2
p

δ0
1ReI1 − iδ0

2ImI1
ImI1ReI2 − ReI1ImI2

, (5.67)

δ0
1 = (ω1 + ω2), δ0

2 = (ω1 − ω2),

I1 =
∫ ω1

0
X(z)dz, I2 =

∫ ω1

0
℘(z)X(z)dz,

which is identical with the known results in [53].

5.3 CPS Problem of a Nonhomogeneous Body

with a Doubly-Periodic Set of Cylindrical

Inlay

In this section, we study the CPS problem of a nonhomogeneous body with

a doubly-periodic set of cylindrical inlay, We obtain the general solution in

closed form. For an illustrating example, e.g. the doubly-periodic circular

cylindrical inlay problem, the exact solution is obtained. When we fix one of

its periods, say ω1 = aπ and let |ω2| → ∞ in such a way that Im(ω2

ω1
> 0),

we get the exact solution of the singly-periodic case with the primitive period

aπ, this solution is identical with the known solution (see [44]), furthermore,

when we let |ω1| → ∞ and |ω2| → ∞ in the doubly-periodic case, or a → ∞
in the singly-periodic case, we have immediately the exact solution of the non-

periodic case.

Let there be given an elastic body with a doubly-periodic set of holes, and

let solid cylindrical inlays of a different isotropic material, but with the same

modulus of elasticity µ, be inserted into these holes. All the notations are the

same as in Section 5.1.

In this case, one gets the boundary conditions.

φ+(t) + tφ′+(t) + ψ+(t) = φ−(t) + tφ′−(t) + ψ−(t), t ∈ L(m,n), (5.68)
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κ+φ+(t) − tφ′+(t) − ψ+(t) = κ−φ−(t) − tφ′−(t) − ψ−(t)

+ 2µ
[
g(t) + (ν+ − ν−)t

]
, t ∈ L(m,n), (5.69)

[
φ(z) + zφ′(z) + ψ(z)

]
Γk

= iFk, k = 1, 2. (5.70)

F+(t) + F+(t) = F−(t) + F−(t), t ∈ L(m,n), (5.71)[
F+(t) − F+(t)

]
=
[
F−(t) − F−(t)

]
, t ∈ L(m,n), (5.72)

µ
[
F (z) − F (z)

]
Γk

= |ωk|Tk, k = 1, 2. (5.73)

Similarly to Section 5.1 from the boundary conditions (5.68) and (5.69),

we have the Riemann boundary value problems

φ+(t) =
κ− + 1

κ+ + 1
φ−(t) +

2µ

κ+ + 1

[
g(t) + (ν+ − ν−)t

]
, t ∈ L(m,n), (5.74)

ψ+(t) − ψ−(t) = −
{[
φ+(t) − φ−(t)

]
+ t

d

dt

[
φ+(t) − φ−(t)

]}
, (5.75)

Substituting the transformation (5.9) into the boundary conditions (5.74)

and (5.75) we get the doubly quasi-periodic Riemann boundary value problems

φ+
0 (t) =

κ− + 1

κ+ + 1
φ−

0 (t) +
2µ

κ+ + 1

[
g(t) + (ν+ − ν−)t

]
, (5.76)

ψ+
0 (t) − ψ−

0 (t) = h1(t), t ∈ L(m,n), (5.77)

where

h1(t) = −
{[
φ+

0 (t) − φ−
0 (t)

]
+m(t)

d

dt

[
φ+

0 (t) − φ−
0 (t)

]}
. (5.78)

By Corollary 1.2.1, one gets the general solutions of (5.76) and (5.77),

φ0(z) =



µ

(κ+ + 1)πi

∫
L
g(t)ζ(t− z)dt+ C4z + C +mg1 + ng2,

if z = [z]0 + Ωmn ∈ S+,
µ

(κ− + 1)πi

∫
L
g(t)ζ(t− z)dt+ e3(ν

+ − ν−)z + C5z + C,

if z ∈ S−,

(5.79)
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ψ0(z) =



1

2πi

∫
L
h1(t)ζ(t− z)dt+ C6z + C +mg1 + ng2,

if z = [z]0 + Ωmn ∈ S+,
1

2πi

∫
L
h1(t)ζ(t− z)dt+ C7z + C, if z ∈ S−,

(5.80)

Substituting (5.79) and (5.80) into the boundary conditions (5.13) we have

C4 =
1

iS

[
µδ2

κ+ + 1

∫
L
g(t)dt− 1

2

∫
L
h1(t)dt+ i(ω1F2 − ω2F1)

]
, (5.81)

C5 =
1

iS

[
µδ2

κ− + 1

∫
L
g(t)dt− 1

2

∫
L
h1(t)dt+ i(ω1F2 − ω2F1)

]
, (5.82)

C6 =
1

S

[
iµ

2(κ+ + 1)

∫
L
g(t)dt− iδ2

∫
L
h1(t)dt+ (ω2F1 − ω1F2)

]
, (5.83)

C7 =
1

S

[
iµ

2(κ− + 1)

∫
L
g(t)dt− iδ2

∫
L
h1(t)dt+ (ω2F1 − ω1F2)

]
. (5.84)

where S is given by (1.74) Then, we can obtain φ(z) and ψ(z) immediately

by (5.79), (5.80) and (5.9).

Smilarly, we get the solution of (5.71) and (5.72) by the formulae (5.19)

and (5.20).

For example, in the plane elasticity problem, namely e3 = 0, when

∫
L
g(t)ζ(t− z)dt = 0, z ∈ S−, (5.85)

then φ−
0 (z) ≡ 0. From (5.76) we have

φ+
0 (t) =

2µ

κ+ + 1
g(t), (5.86)

therefore,

h1(t) =
2µ

κ+ + 1

[
−g(t) +m(t)g′(t)

]
=

2µ

κ+ + 1
h0(t). (5.87)

It is interesting that we observe the fact, after comparing equations (5.14)

and (5.15) with (5.79) and (5.80), that similar results hold for the solution
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of (5.10)-(5.11) with the solution of (5.76)-(5.77) in the case that g(t) satis-

fies (5.85) when z ∈ S− (or z ∈ S+), only κ has to be replaced by κ+ (or κ−)

for the latter.

Now, we consider the doubly-periodic circular cylindrical inlay CPS prob-

lem. Let L0 be the circle |z − b| = r, and g(t) be given by (5.21). Hence,

from (5.12) and (5.21) we have

h1(t) =
2µ

κ+ + 1

{
2rε

t− b
+
[
b+D(t)

] ε
r

}
, (5.88)

and condition (5.85) is automatically satisfied, thus, we get the solution after

omitting the trival translation constants.

φ(z) =


C0

1z +mg1 + ng2, z = [z]0 + Ωmn ∈ S+,

− 2µε

(κ+ + 1)r
(z − b) + C0

1z, z ∈ S−,
(5.89)

ψ(z) =


− 4µεr

κ+ + 1
ζ(b− z) + C0

2z +mg1 + ng2, z = [z]0 + Ωmn ∈ S+,

4µεr

κ+ + 1

[
1

z − b
+ ζ(b− z)

]
+ C0

2z, z ∈ S−,

(5.90)

where

C0
1 =

µ

(κ+ + 1)S
[2πrε+ +i(ω1F2 − ω2F1)] ,

C0
2 =

µ

(κ+ + 1)S

[
(ω2F1 − ω1F2) − 4πδ2rε

]
.

and F (z) can be obtained by (5.19) and (5.20).

Similarly, to the doubly-periodic circular gasket problem in two dimen-

sional elasticity theory, say, Tk = 0,k = 1, 2, and e3 = 0, we get the solution in

P00 immediately,

φ(z) =


C0

1z, z ∈ S+
0 ,

− 2µε

(κ+ + 1)r
(z − b) + C0

1z, z ∈ S−
0 ,

(5.91)
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ψ(z) =


− 4µεr

(κ+ + 1)
ζ(z − b) + C0

2z, z ∈ S+
0 ,

4µεr

κ+ + 1

[
1

z − b
− ζ(z − b)

]
+ C0

2z, z ∈ S−
0 ,

(5.92)

and solutions in the limiting cases, e.g. when ω1 = aπ, ω2 → ∞, we obtain

φ(z) =


0, z ∈ S+

0 ,

− 2µε

(κ+ + 1)r
(z − b), z ∈ S−

0 ,

(5.93)

ψ(z) =


− 4µεr

(κ+ + 1)a

[
1

3a
(z − b) + cot

(
z − b

a

)]
, z ∈ S+

0 ,

4µεr

κ+ + 1

{
1

z − b
− 1

a

[
1

3a
(z − b) + cot

(
z − b

a

)]}
, z ∈ S−

0 ,

(5.94)

for the singly-periodic circular gasket problem, which is identical with the

known solution (see [44]). When ω1 → ∞, ω2 → ∞, we have

φ(z) =


0, z ∈ S+

0 ,

− 2µε

(κ+ + 1)r
(z − b), z ∈ S−

0 ,

(5.95)

ψ(z) =


− 4µεr

κ+ + 1

1

z − b
, z ∈ S+

0 ,

o, z ∈ S−
0 ,

(5.96)

for non-periodic circular gasket problem.
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