
Chapter 4

Modified Doubly-Periodic

Second Fundamental CPS

Problems with Relative

Displacements

4.1 Three Formulations of MDPP

A new formulation on the second fundamental problem with relative displace-

ments has been posed for plane elasticity problem in the non-periodic case

by [42]. In this chapter we pose three formulations of the modified doubly-

periodic second fundamental CPS problem with relative displacements. A

three-dimensional elastic body with cylindrical holes is considered. It will be

assumed that there exists a system ofm holes with smooth and non-intersecting

boundaries Lj ≡ Lj (mod 2ω1, 2ω2), (j = 0, 1, · · · , m−1) inside of each periodic

parallelogram on the x1, x2 plane, and Lj (j = 0, 1, · · · , m−1), the boundaries
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of holes in the doubly periodic fundamental parallelogram P00, are denoted by

L =
m−1⋃
j=0

Lj . The elastic regions located on the left-hand and right-hand sides

of L in P00 on the x1, x2 plane are denoted by S0 and S−
j , respectively (see

Figure 4.1). The origin will be chosen inside S0. The so-called second fun-

damental CPS problem with relative displacement is, when the displacements

gj(t) = uj(t) + ivj(t) (j = 0, 1, · · · , m − 1) given on Lj are relative to certain

rigid motions which are different to each other for different contours, to deter-

mine the elastic equilibrium. It means the undetermined real displacements

should be gj(t) + iαjt+ c′j , (j = 0, 1, · · · , m− 1), here αj (j = 0, 1, · · · , m− 1)

will be undetermined real constants, while the c′j are complex. And the dis-

placement w(t) on Lj in x3-direction with cyclic increments wk (k = 1, 2) is

also given. The strain e3 is constant.

In addition, for the unique existence of solution in the present case, the

external resultant principal vector X1j + iX2j and moment Mj of the tractions

exerted on Lj must be given. To be specific, we assume α0 = 0.

The stress functions φ(z) and ψ(z) have the following expressions in this

case,

φ(z) =
−1

2π(κ+ 1)

m−1∑
j=0

(X1j + iX2j) log σ(z − zj) + φ0(z), (4.1)

ψ(z) =
κ

2π(κ+ 1)

m−1∑
j=0

(X1j − iX2j) log σ(z − zj) + ψ0(z), (4.2)

where zj are points arbitrarily situated inside Sj, φ0(z) and ψ0(z) are holo-

morphic functions and hence single-valued in S0. We have the derivatives of

φ(z) and ψ(z) as follows,

Φ(z) =
−1

2π(κ+ 1)

m−1∑
j=0

(X1j + iX2j) ζ(z − zj) + Φ0(z), (4.3)

Ψ(z) =
κ

2π(κ+ 1)

m−1∑
j=0

(X1j − iX2j) ζ(z − zj) + Ψ0(z). (4.4)
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Figure 4.1: Model of an elastic body with a doubly-periodic set of holes
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From (1.10), (4.1) and (4.2) one has immediately

2µ(u+ iv) = − κ

π(1 + κ)

m∑
j=1

(X1j + iX2j)log|σ(z − zj)|

+
z

2π(1 + κ)

m∑
j=1

(X1j + iX2j)logζ(z − zj)

+ κφ0(z) − zφ′
0(z) − ψ0(z) − 2µe3νz. (4.5)

Then we have the displacement conditions on the boundaries of the holes

κφ0(t) − tφ′
0(t) − ψ0(t)] = 2µg∗(t) + iβjt+ cj , t ∈ Lj , (4.6)

where

2µg∗(t) = 2µ [g(t) + e3νt] +
κ

π(1 + κ)

m∑
j=1

(X1j + iX2j)log|σ(z − zj)|

− t

2π(1 + κ)

m∑
j=1

(X1j + iX2j)logζ(z − zj), (4.7)

g(t) = gj(t) + iαjt+ c′j, t ∈ Lj

βj = 2µαj, cj = 2µc′j, j = 0, 1, · · · , m− 1.

We can simplify the formula of moment conditions. In fact, the moment

of the tractions exerted on an arc ÂB (from positive side) can be expressed as

[49]

M
ÂB

= Re
[
χ(z) − zψ(z) + |z|2φ′(z)

]B
A
, (4.8)

when the arc ÂB be choosen as closed contour C in S0, because φ′(z) is single-

valued in S0, we have immediately,

MC = Re [χ(z) − zψ(z)]C

= Re
∫

C

d

dz
[χ(z) − zψ(z)] dz

= −Re
∫

C
zψ′(z)dz. (4.9)
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As we are interested in the moment of the tractions exerted on Lj . Let

C = Lj (j = 0, 1, · · · , m − 1), in equation (4.9). Substituting (4.4) into equa-

tion (4.9), we get

Re


∫

Lj

t

 κ

2π(1 + κ)

m−1∑
j=0

(X1j − iX2j)ζ(t− zj) + ψ′
0(t)

 dt
 = −Mj . (4.10)

Because ψ0(z) is single-valued in the region S0, by integration by parts,

hence, ∫
Lj

tψ′
0(t)dt = −

∫
Lj

ψ0(t)dt.

Furthermore, from (4.10),

Re
∫

Lj

ψ0(t)dt = Mj +Re

 κ

2π(1 + κ)

m−1∑
j=0

∫
Lj

(X1j − iX2j)tζ(t− zj)dt

 .
(4.11)

Because as known

ζ(z − zj) =
1

z − zj

+ ζ0(z, zj),

where ζ0(z, zj) is a holomophic function, so, one gets

Re
∫

Lj

ψ0(t)dt = Mj +
κ

κ + 1
Im[zj(X1j − iX2j)]. (4.12)

Thus, we may give three formulations of the modified doubly-periodic sec-

ond fundamental CPS problem with relative displacements (MDPP), say,

(MDPP1), (MDPP2) and (MDPP3), respectively.

The first formulation is, except the above formulated conditions, given the

external resultant principal vectors Fk on Γk (k = 1, 2), to find the state of

elastic equilibrium. In this case, proceeding in an analogous manner, one finds,

in the former notation, the boundary conditions
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(MDPP1)



κφ0(t) − tφ′
0(t) − ψ0(t) = 2µg∗(t) + iβjt+ cj , t ∈ Lj,[

φ0(z) + zφ′
0(z) + ψ0(z)

]
Γk

= iFk, k = 1, 2,

Re

[∫
Lj

ψ0(t)dt

]
= Mj , j = 0, 1, · · · , m− 1,

F (t) + F (t) = w(t), t ∈ L,[
F (z) + F (z)

]
Γk

= wk, k = 1, 2.

(4.13)

If the displacement’s cyclic increment g1 and the external resultant prin-

cipal vectors F2 are given, we get the boundary conditions for the second

formulation as

(MDPP2)



κφ0(t) − tφ′
0(t) − ψ0(t) = 2µg∗(t) + iβjt+ cj , t ∈ Lj,[

κφ0(z) − zφ′
0(z) − ψ0(z)

]
Γ

= 2µg1,[
φ0(z) + zφ′

0(z) + ψ0(z)
]
Γ

= iF2,

Re
∫

Lj

ψ0(t)dt = Mj , j = 0, 1, · · · , m− 1,

F (t) + F (t) = w(t), t ∈ L,[
F (z) + F (z)

]
Γk

= wk, k = 1, 2.

(4.14)

If the displacement cyclic increments g1 and g2 are given, we get the boundary

conditions for the third formulation in the form

(MDPP3)



κφ0(t) − tφ′
0(t) − ψ0(t) = 2µg∗(t) + iβjt+ cj , t ∈ Lj,[

κφ0(z) − zφ′
0(z) − ψ0(z)

]
Γk

= 2µgk, k = 1, 2,

Re
∫

Lj

ψ0(t)dt = Mj , j = 0, 1, · · · , m− 1,

F (t) + F (t) = w(t), t ∈ L,[
F (z) + F (z)

]
Γk

= wk, k = 1, 2.

(4.15)

4.2 Solution of MDPP

Because the multi-valued parts of φ(z) and ψ(z) have been separeted out, for

convenience, we can assume X1j + iX2j = 0, j = 0, 1, · · · , m − 1. At first, let
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βj = 0, j = 0, 1, · · · , m− 1. We consider

κφ00(t) − tφ′
00(t) − ψ00(t) = 2µg∗(t) + cj0, t ∈ Lj . (4.16)

This is the boundary condition of the second fundament problem with relative

displacements to translation. In fact, this is a special case of a problem treated

in Chapter 3. Then, the Sherman transform takes the simpler form,

φ00(z) =
1

2πi

∫
L
ω0(t) [ζ(t− z) − ζ(t)] dt+

m−1∑
j=0

bjζ(z − zj) + Az, (4.17)

ψ00(z) =
1

2πi

∫
L

{
[(ω0(t)dt+ ω0(t)dt] [ζ(t− z) − ζ(t)]

}
− 1

2πi

∫
L
ω0(t) [t℘(t− z) − ρ1(t− z)] dt

+
m−1∑
j=0

bj [ζ(z − zj) + ρ1(z − zj)] +Bz, (4.18)

bj =
1

2πi

∫
Lj

[
ω0(t)dt− ω0(t)dt

]
, j = 0, 1, · · · , m− 1. (4.19)

Then, considering the boundary value problem for fixed k, k = 1, · · · , m − 1,

respectively,

κφk(t) − tφ′
k(t) − ψk(t) = iδkjt+ cjk, t ∈ Lj , j = 0, 1, · · · , m− 1, (4.20)

where δkj is the Kronecker symbol,

δkj =

 1, k = j,

0, k 6= j.

This is also a special case from Chapter 3. The representations used for the

functions φk(z) and ψk(z) in the present case are

φk(z) =
1

2πi

∫
L
ωk(t) [ζ(t− z) − ζ(t)] dt+

m−1∑
j=0

bjζ(z − zj), (4.21)
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ψk(z) =
1

2πi

∫
L

{
[(ωk(t)dt+ ωk(t)dt] [ζ(t− z) − ζ(t)]

}
− 1

2πi

∫
L
ωk(t) [t℘(t− z) − ρ1(t− z)] dt

+
m−1∑
j=0

bj [ζ(z − zj) + ρ1(z − zj)] . (4.22)

We know that if (4.17) and (4.18) are solution of equation (4.16), (4.21)

and (4.22) are solution of equation (4.20), then

φ0(z) = φ00(z) +
m−1∑
k=1

βkφk(z),

ψ0(z) = ψ00(z) +
m−1∑
k=1

βkψk(z),

Cj = Cj0 +
m−1∑
k=1

Cjk, j = 1, · · · , m− 1,

(4.23)

will be a solution of equation (4.6).

As an example, the solution method for (MDPP2) will be given.

From (4.14), (4.23) we have{
κφ00(z) − zφ′

00 − ψ00(z) +
m−1∑
k=1

βk

[
κφk(z) − zφ′

k − ψk(z)
]}

Γ

= 2µg1, (4.24)

{
φ00(z) + zφ′

00 + ψ00(z) +
m−1∑
k=1

βk

[
φk(z) + zφ′

k + ψk(z)
]}

Γ

= iF2, (4.25)

Subsituting (4.17), (4.18), (4.21) and (4.22) into equation (4.24) and (4.25),

we get  (κA− A)ω1 − Bω1 = δ1 + µg1,

(A+ A)ω2 +Bω2 = δ2 + 1
2
F2i,

(4.26)

where

δ1 = κb0η1 + a0η1 − b0r1 +
m−1∑
k=1

βk(κbkη1 + akη1 − bkr1),

δ2 = b0η2 − a0η2 + b0r2 +
m−1∑
k=1

βk(bkη2 − akη2 + bkr2),

a0 =
1

πi

∫
L
ω0(t)dt, ak =

1

πi

∫
L
ωk(t)dt,
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b0 =
1

2πi

∫
L

[
ω0(t)dt− ω0(t)dt

]
,

bk =
1

2πi

∫
L

[
ωk(t)dt− ωk(t)dt

]
.

Taking the complex conjugate of the system of equations (4.26), we obtain

a system of equations with unknown A, A, B and B,

κω1A− ω1A− ω1B = δ1 + µg1,

ω2A+ ω2A + ω2B = δ2 + 1
2
F2i,

−ω1A + κω1A− ω1B = δ1 + µg1,

ω2A+ ω2A + ω2B = δ2 − 1
2
F2i.

(4.27)

The determinant of the system of equations (4.27) is∣∣∣∣∣∣∣∣∣∣∣∣∣∣

κω1 −ω1 0 −ω1

ω2 ω2 0 ω2

−ω1 κω1 −ω1 0

ω2 ω2 ω2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −iκSRe(ω1ω2) 6= 0, (4.28)

Hence, we can obtain A and B uniquely,

A =
iω1ω2

2(δ1 + µg1) − κω2ω1
2(iδ2 − 1

2
F2)

κSRe(ω1ω2)
, (4.29)

B =
κω2

1ω2(
1
2
F2 + iδ2) − iω2

2ω1(δ1 + µg1)

κSRe(ω1ω2)
. (4.30)

Letting z → t0 ∈ L and substituting (4.17) and (4.18) into equation (4.16),

by employing the modified Plemelj formulae one obtains

κω0(t0) +
κ

2πi

∫
L
ω0(t)d

[
log

σ(t− t0)σ(t)

σ(t− t0)σ(t)

]

+
1

2πi

∫
L
ω0(t)d

[
ζ(t− t0) − (t− t0)ζ(t− t0)

]
(4.31)

+M7[ω0(t), t0] = N7(t0), (4.32)
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where

M7[ω0(t), t0] =
1

2πi

∫
L
ω0(t)

[
t℘(t− t0) − ρ(t− t0)

]
dt

+
m−1∑
j=0

bj
[
2Reζ(t0 − zj) + ρ1(t0 − zj) − t0℘(t0 − zj) + (κ− 1)ζ(t0 − zj)

]
+
∫

Lj

ω0(t)ds+ κAt0 −At0 +Bt0, t0 ∈ L,

N7(t0) = 2µ [g(t0) + e3νt0] ,

ζ ′0(z) = −ρ(z), ζ0(0) = 0,

g(t0) = gj(t0), t0 ∈ Lj.

Substituting formulae (4.21) and (4.22) into equation (4.20) we get

κωk(t0) +
κ

2πi

∫
L
ωk(t)d

[
log

σ(t− t0)σ(t)

σ(t− t0)σ(t)

]

+
1

2πi

∫
L
ω0(t)d

[
ζ(t− t0) − (t− t0)ζ(t− t0)

]
(4.33)

+M8[ωk(t), t0] = N8(t0), (4.34)

where

M8[ωk(t), t0] =
1

2πi

∫
L
ωk(t)

[
t℘(t− t0) − ρ(t− t0)

]
dt

+
m−1∑
j=0

bj
[
2Reζ(t0 − zj) + ρ1(t0 − zj) − t0℘(t0 − zj) + (κ− 1)ζ(t0 − zj)

]
+
∫

Lj

ωk(t)ds+ κAt0 −At0 +Bt0, t0 ∈ L,

N8(t0) = iδkjt0.

As a special case of equation (3.28), after choosing c00 = 0 and

cj0 = −
∫

Lj

ω0(t)ds, j = 1, · · · , m− 1, (4.35)
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equation (4.31) has a unique solution ω0
0(t). Then by the formulae (4.17), (4.18)

and (4.35), one gets 
φ00(z) = φ0

00(z) + Az,

ψ00(z) = ψ0
00(z) +Bz,

cj0 = c0j0,

(4.36)

where

φ0
00(z) =

1

2πi

∫
L
ω0

0(t) [ζ(t− z) − ζ(t)] dt+
m−1∑
j=0

b0jζ(z − zj), (4.37)

ψ00(z) =
1

2πi

∫
L

{
[(ω0

0(t)dt+ ω0
0(t)dt] [ζ(t− z) − ζ(t)]

}
− 1

2πi

∫
L
ω0

0(t) [t℘(t− z) − ρ1(t− z)] dt

+
m−1∑
j=0

b0j [ζ(z − zj) + ρ1(z − zj)] , (4.38)

b0j =
1

2πi

∫
Lj

[
ω0

0(t)dt− ω0
0(t)dt

]
, j = 0, 1, · · · , m− 1. (4.39)

Similarly, after choosing c0k = 0 and

cjk = −
∫

Lj

ωk(t)ds, j = 1, · · · , m− 1, (4.40)

equation (4.33) has a unique solution ω0
k(t).

By formulae (4.21), (4.22) and (4.40), one has

φk(z) = φ0
k(z), ψk(z) = ψ0

k(z), cjk = c0jk. (4.41)

Substituting (4.23) into (4.12), taking X1j = X2j = 0 into account, one

has immediately

Re
∫

Lj

[ψ00(t) +
m−1∑
k=1

βkψk(t)dt] = Mj , j = 1, · · · , m− 1, (4.42)

or rewritten as

m−1∑
k=1

Ajkβk = Mj −Bj , j = 1, · · · , m− 1, (4.43)
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where

Ajk = Re
∫

Lj

ψk(t)dt, j, k = 1, · · · , m− 1, (4.44)

Bj = Re
∫

Lj

ψ00(t)dt, j = 1, · · · , m− 1. (4.45)

Because ∫
Lj

Btdt = 0, j = 1, · · · , m− 1, (4.46)

then, all Ajk, Bj are known constants. Then (4.43) will be a system of lin-

ear algbraic equations with unknowns βk. Now, we prove that (4.43) will be

uniquely solvable. In fact, we only need to prove that the metrix (Ajk) is non-

singular. For this purpose, we consider the homogeneous condition: gj(t) = 0,

X1j(t) + iX2j(t) = 0, Mj = 0, j = 0, 1, · · · , m − 1. In this case, the real

displacement is iαjt+ c′j . As in [49], consider the integral

J =
∫

L
(X1nu+X2nv) ds, (4.47)

where  X1n = σ1cos(n, x1) + σ12cos(n, x2),

X2n = σ21cos(n, x1) + σ2cos(n, x2).
(4.48)

By Green’s theorem, we know the classical formula [49]

J =
∫∫
S0

[
λ(e1 + e2)

2 + 2µ(e21 + 2e212 + e22)
]
dx1dx2. (4.49)

In our case,

J =
∫

L
(X1nu+X2nv) ds

=
m−1∑
j=0

∫
Lj

{[
−αjx2 +Re(c′j)

]
X1n +

[
αjx1 + Im(c′j)

]
X2n

}
ds

=
m−1∑
j=0

[
−αj

∫
Lj

(x1X2n − x2X1n)ds+Re(c′j)
∫

Lj

X1nds+ Im(c′j)
∫

Lj

X2nds

]

=
m−1∑
j=0

[
−αjMj +Re(c′j)X1j + Im(c′j)X2j

]
. (4.50)
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Taking the above homogeneous conditions we have

J = 0. (4.51)

Because the integrand on the right-hand side of (4.49) is a positive definite

quadratic form, we have immediately,

e1 = e2 = e12 = 0. (4.52)

Thus, there is only a rigid body displacement now, due to the fact that we

have assumed α0 = 0. So there is no rotation any more. Therefore, all αj =

0, j = 0, 1, · · · , m − 1, furthermore, all βj = 2µαj = 0, j = 0, 1, · · · , m − 1.

This means the matrix (Ajk) is nonsingular, so we can obtain a unique solution

βj (j = 0, 1, · · · , m− 1) from the system of equations (4.43).

By representing F (z) as in (3.31), only the integral curve L
⋃
γ being re-

placed by L, we may solve the last two boundary value problems of (MDPP2)

in the same way used in Chapter 3.
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