
Chapter 1

First Fundamental CPS

Problem of a Nonhomogeneous

Body with a Doubly-Periodic

Set of Cracks

1.1 Preliminaries, Definition and Lemmas

We consider a three-dimensional piecewise homogeneous isotropic elastic body

with a doubly-periodic set of cracks on the x1, x2 transverse cross section.

The primitive periods will be 2ω1, 2ω2 with Im
(

ω2

ω1

)
> 0, Im(ω1) = 0. The

doubly-periodic fundamental parallelogram on the x1, x2 plane of the elastic

body will be denoted by P00. Its vertices are ±ω1 ± ω2. The boundary of P00

will be denoted by Γ with the positive direction taken to be anticlockwise,

and Γ =
⋃

i=
Γi. It will be assumed that inside each doubly-periodic parallelo-

gram Pmn(m,n = 0,±1, · · ·) there exists a hole, and let another different solid

4



isotropic material be inserted into this hole. The interface of the two isotropic

materials is composed by simply, closed, smooth and non-intersecting con-

tours denoted by L ≡ L (mod 2ω1, 2ω2), oriented clockwise as its positive

direction. L is the interface of the two materials in P00 (see Fig. 1.1). We will

assume that there exists a system of m cracks distributed in the two materials

in P00, denoted by γj = âjbj (j = 0, 1, · · · , m − 1), which are smooth and

non-intersecting curve segements, and non-intersecting with L. The positive

directions of γj (j = 0, 1, · · · , m − 1) are taken to be from aj to bj , and we

denote γ =
m−1⋃
j=0

γj . The system of cracks inside Pmn(m,n = 0,±1,± · · ·) is

congruent to γ in P00. The elastic regions located on the left-hand and right-

hand sides of L in P00 except cracks are denoted by S+
0 and S−

0 , respectively

(see Figure 1.1), the aggregate of S±
0 and all its congruent regions will be de-

noted by S±, with modulus of elasticity κ± and Poisson ratio µ±, respectively,

hence the elastic region on the transverse cross section of the elastic body will

be S = S+ ⋃S−. The origin will be chosen inside S+
0 and will not be on the

cracks.

The investigation on the doubly-periodic problem will be restricted to

doubly-periodic stress distributions in the elastic body

σ1(z + 2ωk) = σ1(z) = σ1(x1, x2),

σ2(z + 2ωk) = σ2(z) = σ2(x1, x2),

τ12(z + 2ωk) = τ12(z) = τ12(x1, x2),

τ13(z + 2ωk) = τ13(z) = τ13(x1, x2),

τ23(z + 2ωk) = τ23(z) = τ23(x1, x2),

(1.1)

where z = x1 + ix2.

By the generalized Hook’s Law, the strain tensors e1, e2, e3, e12, e13, and e23

can be expressed in terms of the stress components by the following formulae
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Figure 1.1: A nonhomogeneous body with a doubly-periodic set of cracks
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(see [3], [49]) 

e1 = 1
E

[σ1 − ν(σ2 + σ3)],

e2 = 1
E

[σ2 − ν(σ1 + σ3)],

e3 = 1
E

[σ3 − ν(σ1 + σ2)],

e12 = 1+ν
E
τ12, e23 = 1+ν

E
τ23, e13 = 1+ν

E
τ13,

(1.2)

where ν is the Poisson’s ratio and E the Young’s modulus.

And the strain components in terms of the displacements are determined

by the formulae 
e1 = ∂u

∂x1
, e2 = ∂v

∂x2
, e3 = ∂w

∂x3
,

e13 = 1
2

(
∂u
∂x3

+ ∂w
∂x1

)
, e12 = 1

2

(
∂v
∂x1

+ ∂u
∂x2

)
,

e23 = 1
2

(
∂w
∂x2

+ ∂v
∂x3

)
.

(1.3)

The so-called complete plane strain (CPS) state is
σ1 = σ1(x1, x2), σ2 = σ2(x1, x2),

τ12 = τ12(x1, x2), τ13 = τ13(x1, x2),

τ23 = τ23(x1, x2), e3 = constant.

(III)

We can resolve the special three-dimensional elastic system (III) into two

linearly independent plane elastic systems by the superposition principle of

forces [20], one is the generalized plane strain state
σ1 = σ1(x1, x2), σ2 = σ2(x1, x2),

τ12 = τ12(x1, x2), τ13 = τ23 = 0,

e3 = constant,

(I)

and another is the longitudinal displacement state
σ1 = σ2 = τ12 = 0,

τ13 = τ13(x1, x2), τ23 = τ23(x1, x2),

e3 = 0.

(II)
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The stress equilibrium equations for the plane elastic system (I)
∂σ1

∂x1
+
∂τ12
∂x2

= 0,

∂σ2

∂x2
+
∂τ12
∂x1

= 0,

(1.4)

and the compatibility equation

∆(σ1 + σ2) = 0 (1.5)

together can be simplified to one single equation with one single unknown

function U(x1, x2) which is called a real stress function or Airy function [49],

∆2U ≡ ∂4U

∂x4
1

+ 2
∂4U

∂x2
1∂x

2
2

+
∂4U

∂x4
2

(1.6)

where

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

.

Equation (1.6) is called biharmonic equation.

Furthermore, according to Goursat’s formula, the biharmonic function

U(x1, x2) may be represented in terms of two analytic functions [49]

u(x1, x2) = Re[zφ(z) + χ(z)], z = x1 + ix2,

where φ(z) and χ(z) are analytic functions in S.

The derivatives of U(x1, x2) can be expressed in a very simple manner by

the help of two so-called complex stress functions φ(z) and ψ(z) ,

∂U

∂x1
+ i

∂U

∂x2
= φ(z) + zφ′(z) + ψ(z), (1.7)

where ψ(z) = χ′(z). The functions φ(z) and ψ(z) are referred to as Goursat

functions in some references, e.g. [46], etc.
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Then, the stress and displacement components for the elastic system (I)

will be expressed by the complex stress functions φ(z), ψ(z), Φ(z) = φ′(z) and

Ψ(z) = ψ′(z) as follows [49],[20]

σ1 + σ2 = 4Re{Φ(z)}, (1.8)

σ2 − σ1 + 2iτ12 = 2[zΦ′(z) + Ψ(z)], (1.9)

2µz(u+ iv) = κzφ(z) − zφ′(z) − ψ(z) − 2µze3νzz, (1.10)

σ3 = 2µz(1 + νz)e3 + νz(σ1 + σ2), (1.11)

w = e3x3, (1.12)

where

µz =

 µ+, z ∈ S+,

µ−, z ∈ S−,
, νz =

 ν+, z ∈ S+,

ν−, z ∈ S−,

µ± =
E±

2(1 + ν±)
,

u, v, and w are displacement components in x1, x2, x3 directions. κz = 3−4νz.

E± (> 0), ν± (0 < ν± < 1
2
) are elastic Young’s modulus and Poisson ratio of

the materials in S±, respectively.

The longitudinal stress and displacement components for the elastic system

(II), taking double periodicity into account, will be expressed by the third

complex stress function F (z) which is called the complex torsion function [49]

as follows [20]

τ13 − iτ23 = 2µzF
′(z), (1.13)

w = F (z) + F (z). (1.14)

Now, we consider the properties of the complex stress functions and dis-

placements when the stress distributions are doubly-periodic. At first, we

introduce
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Definition 1 Let 2ω1, 2ω2 be a pair of primitive periods such that Im(ω1/ω2) >

0, a function which is analytic (except isolated singular points) and satisfies

the equations  f(z + 2ω1) = f(z) + f1,

f(z + 2ω2) = f(z) + f2,
(1.15)

for all values of z for which f(z) exists, is called a doubly quasi-periodic func-

tion. Here the constants f1 and f2 are called cyclic increments of f(z).

Then we have

Lemma 1.1.1 When the stress distributions are doubly-periodic in the elastic

body, then the displacements are doubly quasi-periodic.

Proof From the equations (1.1) and (1.2), it follows immediately that all

strain components e1, e2, e3, e12, e23 and e13 are doubly-periodic. Hence, from

equation (1.3) the displacement components u, v and w are doubly quasi-

periodic.

Lemma 1.1.2 When the stress distributions are doubly-periodic in the elastic

body, then the complex stress function φ(z), the expression zφ′(z) + ψ(z) and

the complex torsion function F (z) are all doubly quasi-periodic.

Proof Due to the doubly-periodic stress distributions in the elastic body,

from equations (1.1) and (1.8), Φ(z) must have a doubly-periodic real part,

and hence it must be a doubly-periodic function, i.e.

Φ(z + 2ωk) = Φ(z), (k = 1, 2). (1.16)

Integration of equation (1.16) results in

φ(z + 2ωk) = φ(z) + 2αk, (k = 1, 2). (1.17)
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This result expresses the fact that φ(z) is a quasi-periodic function with

cyclic increments 2αk.

From equation (1.10) we have

zφ′(z) + ψ(z) = κzφ(z) − 2µze3νzz − 2µz(u+ iv). (1.18)

Taking Lemma 1.1.1 into account, we know immediately the right hand of

equation (1.18) is doubly quasi-periodic, so that the expression zφ′(z) + ψ(z)

is doubly quasi-periodic. Due to equations (1.1), (1.13) and (1.14), one obtains

F ′(z) is doubly-periodic, then, F (z) is doubly quasi-periodic.

Let X1 + iX2 be the external resultant principal vector of the tractions

exerted on an arc AB, then [49],

X1 + iX2 =
∫

AB
(X1n + iX2n) ds, (1.19)

where X1n + iX2n is the external stress on the arc AB. Because [49]

X1n =
d

ds

(
∂U

∂x2

)
, X2n = − d

ds

(
∂U

∂x1

)
.

or in complex form

(X1n + iX2n) ds = −id
(
∂U

∂x1
+ i

∂U

∂x2

)
.

Hence, on account of equation (1.7),

X1 + iX2 = −i
[
∂U

∂x1
+ i

∂U

∂x2

]B

A

= −i
[
φ(z) + zφ′(z) + ψ(z)

]B
A
. (1.20)

where [ ]BA denotes the increment of the expression in the brackets as the point

z passes along the arc from A to B.

Now, in our case, let Fk = X1Γk
+iX2Γk

(k = 1, 2), be the external resultant

principal vectors on the boundary Γk (k = 1, 2) of the fundamental periodic
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parallelogram P00. Due to the equilibrium of forces, that of Γ and Γ will be

−F1 and −F2, repectively. In fact,

Fk =
∫

Γk

[X1n(τ) + iX2n(τ)]dσ, (1.21)

where X1n(τ) + iX2n(τ), τ ∈ Γk, be the external stress functions on Γk, σ is

the arc-length parameter of Γ .

Then, from equation (1.19)-(1.21)[
φ(z) + zφ′(z) + ψ(z)

]
Γk

= iFk, k = 1, 2. (1.22)

Let

f(τ) = i
∫ τ

0
[X1n(τ) + iX2n(τ)]dσ, τ ∈ Γ. (1.23)

Because ∫
Γ
[X1n(τ) + iX2n(τ)]dσ = F1 + F2 − F1 − F2 = 0, (1.24)

hence there is a single-valued function f(τ) on Γ such that

Fk = −i[f(τ)]Γk
, k = 1, 2, (1.25)

where [ ]Γk
denotes the increment of the expression in brackets along Γk in

positive direction.

Let X±
1n(τ)+iX±

2n(τ), τ ∈ γj, be the external stress function on the positive

and negative sides of γj (j = 0, 1, · · · , m − 1) satisfying a Hoelder condition.

X±
1j + iX±

2j =
∫
γk

[X1n(τ)+ iX2n(τ)]ds (j = 0, 1, · · · , m− 1) will be the external

resultant principal vectors on the positive and negative sides of γj, where s is

the arc-length parameter of γj. Hence,

X1j + iX2j = (X+
1j + iX+

2j) + (X−
1j + iX−

2j).

We set

f+
j (τ) = i

∫ τ

aj

[X+
1n(τ) + iX+

2n(τ)]ds, (1.26)
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f−
j (τ) = i(X1j + iX2j) − i

∫ τ

aj

[X−
1n(τ) + iX−

2n(τ)]ds. (1.27)

According to the equilibrium principle of forces, taking (1.24) into account,

one has
m−1∑
j=0

(X1j + iX2j) = 0. (1.28)

When each X1j + iX2j = 0 on γj (j = 0, 1, · · · , m−1), then formulae (1.26)

and (1.27) become

f±
j (τ) = ±i

∫ τ

aj

[X±
1n(τ) + iX±

2n(τ)]ds, (1.29)

and thereby

f±
j (aj) = 0, f+

j (bj) = f−
j (bj). (1.30)

Let

F (τ) = f+
j (τ) − f−

j (τ), G(τ) = f+
j (τ) + f−

j (τ), τ ∈ γj, (1.31)

so that

F (aj) = F (bj) = 0. (1.32)

Denote

f±
j (τ) = f±

j1(τ) + f±
j2(τ),

then, from (1.29)

df±
j1(τ) = ∓X±

2n(τ)ds, df±
j2(τ) = ∓X±

1n(τ)ds.

Thus, the resultant moments on the two sides of γj about the origin of the

coordinate system will be

M±
j =

∫
γj

[t1X
±
2n(τ) − t2X

±
1n(τ)]ds

= ∓
∫ bj

aj

[t1df
±
j1(τ) − t2df

±
j2(τ)]

= ∓Re
∫ bj

aj

τdf±
j (τ)

= ∓Re[τf±
j (τ)]bj

aj
± Re

∫ bj

aj

f±
j (τ)dτ , (1.33)
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where τ = t1 + it2.

Remembering (1.30), one gets

Mj = M+
j +M−

j = Re
∫ bj

aj

[f+
j (τ) − f−

j (τ)]dτ . (1.34)

The resultant moment on Γ about the origin of the coordinate system will be

MΓ =
∫

Γ
[ξX2n(t) − ηX1n(t)]dσ

= Im
∫

Γ
t[X1n(t) + iX2n(t)]dσ, (1.35)

where we have put t = ξ + iη.

On the other hand, considering the double periodicity of the stress com-

ponents,

X1n(t+ 2ωk) = −X1n(t), X2n(t+ 2ωk) = −X2n(t), (1.36)

from (1.35), taking (1.21) into account, we obtain

MΓ = 2Im[ω1F2 − ω2F1]. (1.37)

According to the equilibrium principle of resultant moments,

MΓ +
m−1∑
j=0

Mj = 0. (1.38)

Then from (1.34) and (1.37), one obtain

2Im[ω1F2 − ω2F1] +
m−1∑
j=0

{∫ bj

aj

[f+
j (τ) − f−

j (τ)]dτ

}
= 0. (1.39)

Therefore

Re
{∫

γ
[f+(τ) − f−(τ)]dτ − 2i[ω1F2 − ω2F1]

}
= 0. (1.40)

The complex stress functions φ(z) and ψ(z) need not always be single-

valued in a multiply connected region, although of course the components of

stress and displacement are single-valued. In order to separate the multi-valued

parts of φ(z) and ψ(z), we need to construct the Kolosov functions.
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1.2 Kolosov Functions

Here we need not only to separate the multi-valued parts but must keep the

double peridicity of them. For doing this, we prove

Lemma 1.2.1 A doubly quasi-periodic function f(z) with cyclic increments f1

and f2, which is analytic (except at the simple pole z = z0), can be expressed

as

f(z) = δ0
1z + δ0

2ζ(z − z0) + C, (1.41)

where

δ0
1 =

1

πi
(f2η1 − f1η2) , δ

0
2 =

1

πi
(f1ω2 − f2ω1) ,

C is an arbitrary constant, ζ(z) is the Weierstrass zeta function, namely

ζ(z) =
1

z
+
∑
m,n

′
{

1

z − Ωmn
+

1

Ωmn
+

z

Ω2
mn

}
,

where Ωmn = 2mω1 + 2nω2, the prime of
∑

above indicates that m and n will

not be zero simultaneously. In fact, ζ(z) is a doubly quasi-periodic function

with cyclic increments 2ηk, k = 1, 2, such that

ζ(z + 2ωk) = ζ(z) + 2ηk, (1.42)

ηk = ζ(ωk), k = 1, 2,

ω2η1 − ω1η2 =
π

2
i. (1.43)

Proof Let f(z) be any doubly quasi-periodic function with cyclic increments

f1 and f2, which is analytic (except at the simple pole z = z0). Because δ0
1z+

δ0
2ζ(z − z0) is a doubly quasi-periodic function with cyclic increments f1 and

f2, which has only a simple pole at the point z = z0 due to (1.42) and (1.43),

then, f(z)− [δ0
1z + δ0

2ζ(z − z0)] is therefore a doubly-periodic analytic function

15



without any pole in the complex plane. By Liouville’s theorem it should be

merely a constant, namely

f(z) −
[
δ0
1z + δ0

2ζ(z − z0)
]

= C,

and so (1.41) is established.

Corollary 1.2.1 A doubly quasi-periodic elliptic function f(z) with cyclic in-

crements f1 and f2, which has no poles, has the representation

f(z) = δ1z + C, (1.44)

where, C is an arbitrary constant,

δ1 =
f1

2ω1
= − f2

2ω2
.

Now, we construct the Kolosov functions in our case as follows.

φ(z) =
−1

4π(κz + 1)

m−1∑
j=0

{(X1j + iX2j) [log σ(z − aj)σ(z − bj) −Hj(z)]}

+φ0(z), (1.45)

ψ(z) =
κz

4π(κz + 1)

m−1∑
j=0

{(X1j + iX2j) [log σ(z − aj)σ(z − bj) −Hj(z)]}

+D(z)φ′(z) −D(z)φ′(0) + ψ0(z), (1.46)

where

Hj(z) =
∫

γj

hj(τ)ζ(τ − z)dτ,

hj(τ) =
2τ − aj − bj
bj − aj

.

It is easy to prove that Hj(z) will be a doubly-periodic function with the

same singularities as log(z − aj) and log(z − bj) at aj , bj, respectively. σ(z) is

the Weierstrass sigma function

σ(z) = z
∏
m,n

′
(
1 − z

Ωmn

)
exp(

z

Ωmn
+

z2

2Ωmn
),
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which has a relationship with ζ(z), namely

ζ(z) =
σ′(z)
σ(z)

. (1.47)

Here we have constructed by Lemma 1.2.1

D(z) = δ1ζ(z) + δ2z, (1.48)

δ1 =
2

πi
(ω2ω1 − ω1ω2), δ2 =

2

πi
(ω1η2 − ω2η1).

D(z) will be a doubly quasi-periodic function with cyclic increments −2ωk

(k = 1, 2),

D(z + 2ωk) = D(z) − 2ωk, k = 1, 2. (1.49)

We note that the first parts (multi-valued parts) of the right-hand sides

of equations (1.45) and (1.46) are doubly-periodic functions, respectively, as a

result of (1.28) and the property of σ(z), namely

σ(z + 2ωk) = −e2ηk(z+ωk)σ(z), k = 1, 2.

Then, φ0(z) and ψ0(z) are single-valued, sectionally holomophic, doubly quasi-

periodic functions.

1.3 Formulation of the First

Fundamental CPS Problem

Let us consider the first fundamental CPS problem: The external stress func-

tions X±
1n + iX±

2n on the positive and the negative sides of γj are given, re-

spectively. This implies that f±
j are known functions from (1.26) and (1.27),

and the discontinuties in the displacements for a passage through L are given,
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too. This means if we denote u±(t) + iv±(t) as the displacements on the posi-

tive and negative sides of the point t ∈ L, respectively, then the displacement

discontinuity function

g(t) = [u+(t) + iv+(t)] − [u−(t) + iv−(t)] (1.50)

will be given. Assume X±
1n(τ) + iX±

2n(τ) ∈ H(γj), τ ∈ γj, g(t) ∈ H(L), t ∈ L.

In addition, the stress resultant principal vectors Fk, on Γk, k=1,2, in the

x1, x2 plane, and the shear stress Tk, k = 1, 2, in the x3 direction are given,

too. The strain e3 = constant. Then, by the external stress conditions, from

formulae (1.29) and (1.19)-(1.20) we have the boundary conditions on γj and

their congruents for the elastic system (I)

φ±(τ)+τφ′±(τ)+ψ±(τ)] = f±
j (τ)+Cj(m,n), τ ∈ γj(m,n) = γj

⋃
Ωmn, (1.51)

where the Cj(m,n) may be arbitrarily fixed constants.

The external stresses applied to the two sides of L(m,n) must be in equi-

librium. Then, from formulae (1.19)-(1.20) we have

φ+(t) + tφ′+(t) + ψ+(t)]

= φ−(t) + tφ′−(t) + ψ−(t)], t ∈ L(m,n) = L
⋃

Ωmn, (1.52)

Moreover, by the displacement discontinuity conditions of the two sides of

L(m,n), from formula (1.10) we get the boundary condition

α+φ+(t) − β+[tφ′+(t) + ψ+(t)] − ν+e3t

= α−φ−(t) − β−[tφ′−(t) + ψ−(t)]

−ν−e3t+ 2g(t), t ∈ L(m,n), (1.53)

where we have put

α± =
κ±

µ± , β± =
1

µ± .
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On account of the double quasi-periodicity of the complex stress function

φ(z) and the expression zφ′(z) + ψ(z), we have

[
φ(z) + zφ′(z) + ψ(z)

]
Γk

= iFk, k = 1, 2. (1.54)

Similarly, we have the following boundary conditions for the plane elastic

system (II)

F±(τ) − F±(τ) = iC∗
j (m,n), τ ∈ γj(m,n), (1.55)

F+(t) + F+(t) = F−(t) + F−(t), t ∈ L(m,n), (1.56)

µ+
[
F+(t) − F+(t)

]
= µ− [F−(t) − F−(t)

]
, t ∈ L(m,n), (1.57)

µz

[
F (z) − F (z)

]
Γk

= |ωk|Tk, k = 1, 2, (1.58)

where C∗
j (m,n)’s may be arbitrarily fixed constants.

In fact, paying attention to the Kolosov functions (1.45) and (1.46), with-

out loss of generality, we may assume that each X1j + iX2j = 0, then

φ(z) = φ0(z), ψ(z) = D(z)φ′(z) −D(z)φ′(0) + ψ0(z). (1.59)

For the double periodicity, we only need to consider the solution in the

fundamental periodic-parallelogram [41]. After substituting (1.59) into the

boundary conditions (1.51)-(1.54), we get

φ±
0 (τ) +m(τ)φ′±

0 (τ) + ψ±
0 (τ) = f±

j0(τ) + Cj, τ ∈ γj, (1.60)

φ+
0 (t) +m(t)φ′+

0 (t) + ψ+
0 (t) = φ−

0 (t) +m(t)φ′−
0 (t) + ψ−

0 (t), t ∈ L, (1.61)

α+φ+
0 (t) − β+[m(t)φ′+

0 (t) + ψ+
0 (t)] = α−φ−

0 (t) − β−[m(t)φ′−
0 (t) + ψ−

0 (t)]

+g0(t), t ∈ L, (1.62)

[
φ0(z) +m(z)φ′

0(z) −D(z)φ′
0(z) + ψ0(z)

]
Γk

= iFk, k = 1, 2, (1.63)
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where

m(z) = z +D(z) (1.64)

will be a non-analytic doubly-periodic function [27],

f±
j0(τ) = f±

j (τ) + φ′
0(0)D(τ),

g0(t) = 2g(t) − (β+ − β−)φ′
0(0)D(t) + (ν+ − ν−)e3t.

1.4 Solution, Reduction to Integral Equations

In order to solve the boundary value problems (1.60)-(1.63), a new unknown

function ω(t) ∈ H, t ∈ L
⋃
γ, will be introduced, and we construct the general

representation for the solution in the form

φ0(z) =
1

2πi

∫
L
⋃

γ
ω(t)ζ(t− z)dt+ Azz, (1.65)

ψ0(z) = − 1

2πi

∫
L
⋃

γ
[ω(t) +m(t)ω′(t)]ζ(t− z)dt

+
1

2πi

∫
γ
F (τ)ζ(τ − z)dτ +Bzz, (1.66)

where

Az =

 A+, if z ∈ S+
0 ,

A−, if z ∈ S−
0 ,

Bz =

 B+, if z ∈ S+
0 ,

B−, if z ∈ S−
0 .

After integrating by parts, we have

φ′
0(z) =

1

2πi

∫
L
⋃

γ
ω′(t)ζ(t− z)dt+ Az. (1.67)

We assume temporarily [39]

ω(aj) = ω(bj) = 0, j = 0, 1, · · · , m− 1, (1.68)

the validity of it will be proved later.
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Substituting equations (1.65)-(1.67) into the left-hand side of the condi-

tion (1.63), we get

[φ0(z) + zφ′
0(z) +D(z)φ′

0(z) − ψ0(z)
]
Γk

=
iηk

π

∫
L
⋃

γ
ω(t)dt+

ηk

πi

∫
γ
F (τ)dτ

+
iηk

π

∫
L
⋃

γ
[ω(t) +m(t)ω′(t)]dt

− ωk

πi

∫
L
⋃

γ
ω′(t)η(t)dt

+ 4(ReA+)ωk + 2B+ωk. (1.69)

If one replaces φ0(z) by φ0(z) + iεz + c (ε is a real and c is a complex

constant), the left-hand side of equation (1.63) is not altered, then the state of

stress is neither changed. So A+, B+ can not be obtained directly from the sys-

tem of algebraic equations obtained from equation (1.63) and equation (1.69).

It will be expedient to modify the system of algebraic equations by adding

ImA+ to ReA+ in (1.69) [34]. As will be proved later

ImA+ = 0, (1.70)

if the solution exists. Thus, we get the following modified system of algebraic

equations

4A+ωk + 2B+ωk
iηk

π

∫
L
⋃

γ
ω(t)dt− ωk

πi

∫
L
⋃

γ
ω′(t)η(t)dt

+
iηk

π

∫
L
⋃

γ
[ω(t) +m(t)ω′(t)]dt+

ηk

πi

∫
γ
F (τ)dτ = iFk, k = 1, 2. (1.71)

It can be rewritten as

4A+ω1 + 2B+ω1 =
η1

πi

∫
L
⋃

γ
ω(t)dt+

ω1

πi

∫
L
⋃

γ
ω′(t)η(t)dt

+
η1

πi

∫
L
⋃

γ
[ω(t) +m(t)ω′(t)]dt

+
iη1

π

∫
γ
F (τ)dτ + iF1,
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(1.72)

4A+ω2 + 2B+ω2 =
η2

πi

∫
L
⋃

γ
ω(t)dt+

ω2

πi

∫
L
⋃

γ
ω′(t)η(t)dt

+
η2

πi

∫
L
⋃

γ
[ω(t) +m(t)ω′(t)]dt

+
iη2

π

∫
γ
F (τ)dτ + iF2.

The determinant of the system of equations (1.72) is∣∣∣∣∣∣∣
4ω1 2ω1

4ω2 2ω2

∣∣∣∣∣∣∣ = 8(ω1ω2 − ω2ω1) = −4iS 6= 0, (1.73)

where

S = 2i(ω1ω2 − ω2ω1) (1.74)

is exactly the area of the fundamental periodic-parallelogram P00 (on account

of Im(ω1) = 0). Hence, we can obtain A+, B+ uniquely as

A+ =
1

4S

{
2 [ω1F2 − ω2F1] + i

∫
γ
F (τ)dτ − iδ2

∫
L
⋃

γ
ω(t)dt

}

− i

4S

∫
L
⋃

γ

[
ω(t) +m(t)ω′(t)

]
dt+

1

4πi

∫
L
⋃

γ
ω′(t)η(t)dt,

(1.75)

B+ =
1

2S

{
2 [ω2F1 − ω1F2] + iδ2

∫
γ
F (τ)dτ − i

∫
L
⋃

γ
ω(t)dt

}

−iδ2
2S

∫
L
⋃

γ

[
ω(t) +m(t)ω′(t)

]
dt.

By use of the modified Plemelj formulae [27]

Φ̃±(t) = ±1

2
φ̃(t) +

1

2πi

∫
L
φ̃(τ)ζ(τ − t)dτ,

where

Φ̃(z) =
1

2πi

∫
L
φ̃(τ)ζ(τ − z)dt.

Letting z → t ∈ L and substituting equations (1.65), (1.66) into equa-

tion (1.61) we have

A+t+m(t)A+ +B+t = A−t+m(t)A− +B−t, t ∈ L. (1.76)
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Obviously the two sides of equation (1.76) are doubly quasi-periodic, then,

the cyclic increments of them must be equal, respectively, A+ω1 +B+ω1 = A−ω1 +B−ω1,

A+ω2 +B+ω2 = A−ω2 +B−ω2.
(1.77)

Hence, on account of Im (ω2/ω1) > 0,

A+ = A−, B+ = B−,

follows immediately. Then equation (1.61) will be identically satisfied.

For convenience, we denote

A+ = A− = A, B+ = B− = B. (1.78)

Letting z → t0 ∈ γ and substituting equations (1.65) and (1.66) into equa-

tion (1.60) , either for the positive or negative boundary value, by employing

the modified Plemelj formulae and taking equations (1.68) and (1.78) into

account, we get the same equation

1

πi

∫
L
⋃

γ
ω(t)ζ(t− t0)dt− 1

2πi

∫
γ
ω(t)d

[
log

σ(t− t0)

σ(t− t0)

]

− 1

2πi

∫
γ
ω(t)d

{
[m(t) −m(t0)] ζ(t− t0)

}
+M1[ω(t), t0] = N1(t0),(1.79)

where

M1[ω(t), t0] = 2(ReA)t0 +Bt0 +D(t0)

[
A− 1

2πi

∫
L
⋃

γ
ω′(t)ζ(t)dt

]
− Cj,

N1(t0) =
1

2πi

∫
γ
F (t)ζ(t− t0)dτ +

1

2
G(t0).

Substituting equations (1.65) and (1.66) into equation (1.62) we have

1

2
(α+ + α− + β+ + β−)ω(t0) +

α+ − α−

2πi

∫
L
⋃

γ
ω(t)ζ(t− t0)dt

+
β− + β+

2πi

∫
L
⋃

γ
ω(t)d

{
[m(t) −m(t0)] ζ(t− t0)

}
+
β− + β+

2πi

∫
L
⋃

γ
ω(t)ζ(t− t0)dt+M2[ω(t), t0] = N2(t0), (1.80)
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where

M2[ω(t), t0] = (α+ − α−)At0 + (β− − β+)Bt0 −A(β+ − β−)m(t0)

+(β− − β+)

[
A− 1

2πi

∫
L
⋃

γ
ω′(t)ζ(t)dt

]
D(t0),

N2(t0) = g(t0) − β+ − β−

2πi

∫
γ
F (τ)ζ(τ − t0)dτ.

Then, equations (1.79) and (1.80) as a whole constitute a singular integral

equation with the Weierstrass zeta kernel along L
⋃
γ, the dominant part of

the singular operator corresponding to it will be

A(t0)ω(t0) +
B(t0)

πi

∫
L
⋃

γ
ω(t)ζ(t− t0)dt, (1.81)

where

A(t0) =

 0, if t0 ∈ γ,

α+ + α− + β+ + β−, if t0 ∈ L,

B(t0) =

 1, if t0 ∈ γ,

α+ − α− − β+ + β−, if t0 ∈ L.

Since A(t0) ± B(t0) 6= 0 on L
⋃
γ, so it is a normal type singular integral

equation. We need to find its solution in class h2m, i.e., ω(aj), ω(bj) have to

be finite. Now, we verify that, if this equation has a solution in h2m, then

equation (1.68) is really valid. In fact, due to F (aj) = F (bj) = 0, hence the

expression
1

2πi

∫
γ
F (t)ζ(t− t0)dt

will be bounded at the end points t0 = aj , bj of γj. Then the left-hand side

of equation (1.79) is bounded at the points t0 = aj , bj, too. However, the

integrals of the right-hand side of equation (1.79) are regular integrals except

the term
1

πi

∫
L
⋃

γ
ω(t)ζ(t− t0)dt. (1.82)
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Comparing the two sides of equation (1.79), then, the integral term (1.82)

must be bounded at the points t0 = aj, bj . Hence (1.68) is really valid, other-

wise, (1.82) has at least a logarithmic singularity.

From (1.56) we get

F±(z) = I(z), z ∈ S±
0 . (1.83)

In order to solve the boundary value problem (1.56)-(1.58), we construct

the modified Sherman transform

I(z) =
1

2πi

∫
L
i∆(t)ζ(t− z)dt+

1

2πi

∫
γ
∆(t)ζ(t− z)dt+ Ez, (1.84)

where ∆(t) is a new unknown real function, E is an undetermined complex

constant.

Substituting equation (1.84) into equation (1.58) by separating the real and

imaginary parts of E, we get a system of algebraic equations for the unknown

real constants ReE and ImE

(ωk −ωk)ReE+(ωk +ωk)ImE =
1

4µ+
|ωk|Tk − 1

πi
Re[ηk∆(t)], k = 1, 2, (1.85)

the determinant of coefficients of which will be∣∣∣∣∣∣∣
ω1 − ω1 i(ω1 + ω1)

ω2 − ω2 i(ω2 + ω2)

∣∣∣∣∣∣∣ = S 6= 0. (1.86)

Thus, taking equation (1.43) into account, we can obtain ReE and ImE

uniquely.
ReE =

Im∆(t)

2S
+
Re[iδ2∆(t)]

2πS
+
Re(ω2)|ω1|T1 − (Re(ω1)|ω2|T2

µ+S
i,

ImE = −Im∆(t)

2S
− Re[iδ2∆(t)]

2πS
+
Im(ω2)|ω1|T1 − (Im(ω1)|ω2|T2

µ+S
i.

(1.87)

Substituting equation (1.84) into equation (1.56), it is observed that equa-

tion (1.56) is identically satisfied. Then, substituting equation (1.84) into
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equations (1.57), (1.55) we obtain

∆(t) +
µ∗

2πi

∫
L

∆(t)d

[
log

σ(t− t0)

σ(t− t0)

]
−µ

∗

π

∫
γ
∆(t)d log |σ(t− t0)|

−2iµ∗Re(Et) = 0, (1.88)

and

1

2πi

∫
L
i∆(t)d

[
log

σ(t− t0)

σ(t− t0)

]
+
µ∗

π

∫
γ
∆(t)d log |σ(t− t0)|

−2iIm(Et) − ic∗j = 0, (1.89)

respectively, where

µ∗ =
µ+ − µ−

µ+ + µ− . (1.90)

Equations (1.88) and (1.89) as a whole constitute a Fredholm integral

equations of the second kind.

1.5 Unique Solvability of the First

Fundamental CPS Problem

At first, it will now be shown that, if equations (1.79) and (1.80) have a solution

ω(t), then, by A, B obtained from equation (1.75), and φ0(z), ψ0(z) from equa-

tions (1.65) and (1.66), φ(z), ψ(z) from equations (1.45) and (1.46), then (1.70)

will be satisfied. In fact, taking the modified system of equation (1.71) into

account,

[
φ(z) + zφ′(z) + ψ(z)

]
Γk

= i [Fk − 4(ImA)ωk] , k = 1, 2. (1.91)

This means the external resultant principal vectors on the boundary Γk

(k = 1, 2) of the fundamental periodic-parallelogram P00 are Fk − 4(ImA)ωk
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(k = 1, 2) as a result of (1.20). According to the equilibrium principle of

resultant moments, we have

Re
{∫

γ
[f+(τ) − f−(τ)]dτ − 2i[ω1F2 − ω2F1] + 8i(ImA)(ω2ω1 − ω1ω2)

}
= 0.

(1.92)

Considering the condition (1.40), we get

8(ImA)Im(ω2ω1 − ω1ω2) = 0. (1.93)

Because

8Im(ω2ω1 − ω1ω2) = 4S 6= 0,

then,

ImA = 0. (1.94)

Therefore, (1.70) is indeed satisfied.

It will now be proved that if Cj (j = 0, 1, · · · , m − 1) will be suitably

chosen (also uniquely), then equations (1.79) and (1.80) are solvable in h2m.

Similarly to [49], for this purpose, the homogeneous equation, obtained from

equation (1.79) and (1.80) for f±
j (τ) = 0, g(t) = 0, e3 = 0, will be considered

and it will be shown that it has no non-trival solutions. This means if ω0(t)

be any solution of this equation, after Cj = C0
j (j = 0, 1, · · · , m− 1) be taken,

then ω0(t) = 0 everywhere on L
⋃
γ (and hence C0

j = 0 necessarily).

It is obvious that (1.40) is satisfied in this case. Let φ0
0(z), ψ

0
0(z), φ

0(z),

ψ0(z), A0, B0 be the corresponding values of φ0(z), ψ0(z), φ(z), ψ(z), A, B

determined by equations (1.65), (1.66), (1.45 ), (1.46), and equation (1.75)

for ω(t) = ω0(t). It is easy to verify that they satisfy the corresponding

boundary conditions (1.51)-(1.54), which form the first fundamental problem

under homogeneous conditions. By the uniqueness theorem [39], [49] , the

elastic region may only have a rigid motion.

φ0(z) = iεzz + cz, ψ
0(z) = −cz, (1.95)

27



with a sectionally real constant

εz =

 ε+, if z ∈ S+
0 ,

ε−, if z ∈ S−
0 ,

and a sectionally complex constant

cz =

 c+, if z ∈ S+
0 ,

c−, if z ∈ S−
0 .

From equations (1.45), (1.46) and (1.95), it follows that

φ0
0(z) = φ0(z) = iεzz + cz, ψ

0
0(z) = ψ0(z) = −cz. (1.96)

Substituting equation (1.96) into equation (1.61) we arrive at the equality

ε+ = ε−. (1.97)

Substituting equation (1.96) into equation (1.62) we get (α+ + β+)ε+ = (α− + β−)ε−,

(α+ + β+)c+ = (α+ + β+)c−.
(1.98)

Referring to formulae (1.65) and (1.66), and noting (1.96), we have

φ0
0(z) = iεzz + cz =

1

2πi

∫
L
⋃

γ
ω0(t)ζ(t− z)dt+ A0z, (1.99)

ψ0
0(z) = −cz = − 1

2πi

∫
L
⋃

γ
[ω0(t) +m(t)ω′

0(t)]ζ(t− z)dt+B0z. (1.100)

When z ∈ S+
0 , considering quasi-periodicity of the two sides of equa-

tions (1.99) and (1.100), we obtain

A0 = iε+, B0 = 0, (1.101)

1

2πi

∫
L
⋃

γ
ω0(t)dt = 0,

1

2πi

∫
L
⋃

γ
[ω0(t) +m(t)ω′

0(t)]dt = 0. (1.102)
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Taking equation (1.101) into account, from equation (1.75) we can get

A0 = 0. (1.103)

Hence, from equations (1.101) and (1.97) we have

ε+ = ε− = 0. (1.104)

By the Plemelj formulae from equation (1.99), we get immediately

ω0(t) = φ0+
0 (t) − φ0−

0 (t) = 0, t ∈ γ, (1.105)

and

ω0(t) = c+ − c−, t ∈ L. (1.106)

Substituting equations (1.105), (1.106) back into equations (1.99), (1.100)

we obtain

cz =
c+ − c−

2πi

∫
L
ζ(t− z)dt, −cz =

c+ − c−

2πi

∫
L
ζ(t− z)dt. (1.107)

Setting z = 0 in equation (1.107), we get

c+ = 0. (1.108)

From equation (1.98) we obtain

c− = 0. (1.109)

At last, from equations (1.105), (1.108), (1.109) and (1.106) we have

ω0(t) ≡ 0, t ∈ L
⋃
γ. (1.110)

If only the distribution of stress are required (not necessarily for displace-

ments), we may take derivatives of both sides of equations (1.79), (1.80) and so
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obtain a singular integral equation with density function Ω(τ) = ω′(τ), which

has to be solved in class h0 with the additional conditions∫
γj

Ω(τ)dτ = 0, j = 0, 1, · · · , m− 1. (1.111)

The obtained equations do not contain any undetermined constants, which

simplifies the process of solving.

We now turn to prove the equations (1.88) and (1.89) to be uniquely solv-

able. To do this, we must prove ∆0(t) ≡ 0, t ∈ L
⋃
γ under homogeneous

conditions of the first fundamental problem. Analogously to [20], in this case

we have

I(z) = Iz, Iz =

 I+, if z ∈ S+
0 ,

I−, if z ∈ S−
0 ,

(1.112)

where I+, I− are constants.

Substituting equation (1.112) into equations (1.56)-(1.57), we get

ReI+ = ReI−, (1.113)

µ+ImI+ = µ−ImI−. (1.114)

Then, referring to equation (1.84) we arrive at the equality

Iz =
1

2πi

∫
L
i∆0(t)ζ(t− z)dt+

1

2πi

∫
γ
∆0(t)ζ(t− z)dt+ E0z. (1.115)

On account of the doubly-periodic properties of the two sides of equa-

tion (1.115) we obtain

1

2πi

∫
L
i∆0(t)dt+

1

2πi

∫
γ
∆0(t)dt = 0. (1.116)

E0 = 0. (1.117)

By the Plemelj formulae on γ, from equations (1.112) and (1.115) we get

∆0(t) = 0, t ∈ γ. (1.118)
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By the Plemelj formulae on L, from equations (1.112) and (1.115) we have

∆0(t) = I+ − I−, t ∈ L. (1.119)

Substituting equations (1.116)-(1.118), into equation (1.115) we obtain

Iz =
I+ − I−

2π

∫
L
ζ(t− z)dt. (1.120)

Putting z = 0 in equation (1.120), it follows immediately that

I+ = 0. (1.121)

Substituting equation (1.121) into equations (1.113) and (1.114), we find

I− = 0. Then, from equation (1.119) we get

∆0(t) = 0, t ∈ L. (1.122)

Hence, referring to equations (1.118) and (1.122) we have proved

∆0(t) ≡ 0, t ∈ L
⋃
γ. (1.123)

Thus, the first fundamental CPS problem is solved.
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