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We reveal the role of localized space charges in hole-only devices based on an organic semicon-

ductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce

the current density compared to a device without MNPs by a factor of 104 due to the build-up of

localized space charge. Dynamic MNPs charged neutrality can be realized during operation by

electron transfer from excitons created in the organic matrix, enabling light sensing independent of

device bias. In contrast to the previous speculations, electrical bistability in such devices was not

observed. VC 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4945710]

One type of next-generation non-volatile memory ele-

ments, governed by resistive bistability, has been suggested to

comprise an organic semiconductor (small molecules or poly-

mers) layer with embedded metal nanoparticles (MNPs),

sandwiched between two electrodes.1–5 The writing, reading,

and erasing of information is then based on resistive bistabil-

ity of the element. The use of organic materials offers the

advantages of low fabrication costs, easy scalability, and

printability on flexible supports.6,7 Moreover, the simple two-

terminal structure allows the realization of a simple cross-bar

architecture for memory arrays.8,9

Significant effort was devoted to reveal the resistive

switching mechanism in these bistable devices, and two

main—mutually exclusive—models were put forward. One

mechanism is based on space-charge build-up within the de-

vice during operation. The switching between the high- and

low-resistance state is then related to bias-dependent charg-

ing/de-charging of the embedded MNPs.10,11 The second

suggested mechanism is based on the filament formation/rup-

ture.12,13 The electrical switching to the low-resistance state

is explained by the formation of a highly conductive local-

ized path (filament). The filament formation is driven by

electrochemical dissolution of active electrodes (e.g., Al, Cu,

and Ag) into the organic matrix.14,15

Noteworthy, both mechanisms were alternatingly used

to explain the function of devices that exhibited almost iden-

tical electrical characteristics. Support for the second model

came recently from the work by Nau et al., who studied the

switching behavior of prototypical devices based on polymer

and small molecule matrices with and without embedded

MNPs.16 Independently of the presence of MNPs, the devi-

ces displayed the same electrical characteristics, reminiscent

of this type of non-volatile memory elements as also reported

by many other groups. With impedance spectroscopy studies,

they could unequivocally demonstrate that the resistive

switching is due to the formation/rupture of filaments formed

from electrode material, the only prerequisite being the

proper electrical pre-conditioning of the device.

On the other hand, the proposed switching mechanism

based on charging/de-charging of the MNPs lacks solid evi-

dence. This, in part, is due to the poor structural/morphologi-

cal characterization of the device structures employed so far.

In a previous study, we applied ultraviolet photoemission

spectroscopy on samples with high morphological precision,

where MNPs were deposited onto an organic semiconductor.

These studies indeed revealed space charge due to the accu-

mulation of holes on the MNPs.17 Furthermore, it was dem-

onstrated that charge neutrality of the MNPs can be re-

established by exciton-mediated electron transfer from the

organic semiconductor to the MNPs upon illumination with

light absorbed by the organic semiconductor.

Here, we report the electrical characteristics of reliably

fabricated organic matrix/MNP two-terminal devices with

defined MNP location, size, and density. The choice of the

materials (which does not provide ion dissolution) and the

performed electrical characterization were such that filament

formation was excluded. We confirm that, indeed, space

charge is accumulated on MNPs during device operation but

that the devices lack electrical bistability. Nonetheless, the

removal of the space charge by illumination, and the corre-

sponding resistance reduction, is also evidenced, opening al-

ternative routes for the control of electrical conductivity with

light.

Hole-only devices were prepared on glass substrates with

a patterned indium-tin-oxide (ITO) layer. The ITO/glass
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substrates were cleaned by sequential sonication in acetone,

detergent, deionized water, and isopropyl alcohol before sub-

sequent oxygen plasma treatment (200 W for 3 min). ITO was

coated with � 50 nm thick layer of poly(3,4-ethylenedioxy-

thiophene)/poly(styrene sulfonate) PEDOT:PSS (Clevios AI

4083) by spin-casting (30 s at 1500 rpm). The substrates were

first transferred to a nitrogen filled glove box and annealed at

180 �C for 10 min, and then—without air exposure—intro-

duced in a high vacuum (base pressure 1� 10�6 mbar) prepa-

ration chamber.

The preparation of reference devices (without MNP)

progressed in three steps: (i) vacuum deposition of 120 nm of

the hole transport organic semiconductor 4,4-bis[N-(1-naph-

thyl)-N-phenyl-amino]diphenyl (a-NPD, Sigma Aldrich),

thermal evaporation of (ii) 10 nm MoO3 and (iii) 100 nm

gold through a shadow. A schematic illustration of the de-

vice structure is depicted in Figure 1(a). The device-pixel

area was 0.15 cm2 (10 pixels produced on each substrate) as

defined by the geometric overlap between the bottom ITO

strips and the metal top electrodes. The whole process was

carried out without breaking the vacuum; deposition rates

were controlled by the respective evaporation source temper-

ature and monitored with quartz crystal microbalances.

Devices with embedded gold nanoparticles (AuNPs)

were fabricated in parallel with reference devices, which

were kept masked during AuNPs deposition. The electrodes

(bottom and top) of both the device types are therefore iden-

tical. The device structure is depicted in Figure 1(b). The

defined AuNPs were formed by the deposition of a small

amount of Au by thermal evaporation on top of a 60 nm thick

a-NPD layer. Subsequently, 60 nm of a-NPD and the top

electrode were deposited. The formation of AuNPs with

defined location within the devices was confirmed by trans-

mission electron microscopy (TEM). Figure 1(d) shows a top

view of a TEM bright field image of an equivalent sample

prepared on a TEM copper-grid. Consistently with our previ-

ous investigations,17 we find that Au does not percolate into

the organic layer, i.e., the non-perculated AuNPs form a

sharp layer within the amorphous a-NPD layer, as illustrated

by the cross sectional TEM tomography projection shown in

Figure 1(c). Statistical analysis gives an average AuNP di-

ameter (dAuNP) of (1.0 6 0.1) nm. The devices with nanopar-

ticles, therefore, comprise a horizontal structure with an a-

NPD length L¼ 120 nm and a narrow (h¼ 5 nm) interlayer

of dispersed AuNPs positioned at L/2 [see Figure 1(b)].

After sample preparation, the current density vs. voltage

(jU) characteristics of the reference devices and the AuNPs-

devices were measured by a computer controlled Keithley

2400 sourcemeter, in a nitrogen filled glove box, without

exposing the sample to air at any stage of the experiment.

The jU curves are measured with one sweep in stepped bias

mode. The jU-measurements were carried out at room tem-

perature under three different conditions: (i) dark, (ii) illumi-

nating the device through the glass with a red laser

(wavelength k¼ 685 nm), and (iii) a blue laser (k¼ 405 nm).

The laser beams were broadened with an optical lens in order

to irradiate the whole active device-pixel; the light power

density was � 0.05 mW cm�2. Note that the power density

was sufficient to reach the saturation of the observed effect

(vide infra). The wavelengths of the light were chosen

according to the optical properties of the organic material, in

order to be within (blue) and outside (red) the a-NPD optical

absorption. Figure 1(e) shows the ultraviolet-visible (UV-

VIS) absorbance spectrum of a 60 nm thick a-NPD film and

the vertical lines indicate the employed light wavelengths.

The jU characteristics of the reference device (topmost

curves with filled symbols) are shown on a semi-log scale in

Figure 2(a) and a log-log scale in Figure 2(b). The arrows in

Figure 2(a) indicate the applied bias sweep. No difference is

observed in the jU curves with respect to the sweep direc-

tion. Forward bias indicates the bottom electrode (ITO/

PEDOT:PSS) to be negatively biased, i.e., positive charges

injected from the top electrode (MoO3/Au), as schematically

shown in Figure 2(c). The jU curve is asymmetric due to the

different top and bottom electrodes. While a-NPD is Fermi-

level pinned at both the electrodes, the hole injection from

MoO3/Au is yet to be improved over that from PEDOT:PSS

due to the doping of the organic semiconductor close to the

interface.18,19

When charge carriers are injected through ohmic con-

tacts, the current density is expected to be limited by the

accumulation of injected charge carriers in the bulk. In an

ideal trap-free medium, this is described by the Mott-Gurney

law

jMG ¼
9

8
e0er l

U2

L3
;

where e0 is the vacuum permittivity, er is the dielectric con-

stant of the semiconductor, l its carrier mobility, and L is the

distance between the electrodes. Consistently, the reference

devices’ jU-curves at forward bias match this law well [see

the log-log plot in Figure 2(b)]. The mobility la�NPD of the

pristine organic layer is extracted from the best fit, assuming

L¼ 120 nm and er¼ 3 (Ref. 20) in good agreement with liter-

ature as 7.5� 10�6 cm2 V�1 s�1.20–22

Reference devices do not exhibit any resistance bistabil-

ity (the resistance does not abruptly change upon a critical

FIG. 1. Top view (a) and cross sectional (b) typical TEM cross-sectional

slice extracted from the 3D reconstruction obtained by the electron tomogra-

phy for AuNPs within a-NPD. The schematic of the experimental setup is

illustrated in (c). UV-VIS absorbance spectra of a-NPD in (d).
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value of bias),23 independent of bias sequence and condition.

In addition, neither red nor blue light irradiation affects the

jU curves compared to the dark, i.e., the photocurrent is

negligible.

We now turn towards the device with the AuNPs inter-

layer, see Figure 1(b). The bottommost curves in Figure 2(a)

are the jU curves of the AuNPs-device measured in dark

(empty black diamond symbols) and with illumination with

red (empty red triangles) and blue light (empty blue squares).

As for the reference devices, no resistance bistability is

observed;23 instead, the overall current density of the AuNPs-

device is ca. four orders of magnitude lower in the dark and

with red light illumination.

The differences in the jU curves of the reference and the

AuNPs-devices [represented in Figures 2(c) and 2(e), respec-

tively] are the result of the AuNPs incorporation within the

a-NPD. AuNPs behave as deep-traps for the charge carriers

(holes) because of the energy alignment between Au and a-

NPD,24 see Figure 2(f). The Fermi level of the AuNPs lies

between the molecular frontier energy levels. For holes, it is

therefore energetically favorable to become trapped and

remain on the AuNPs, as the hole-injection barrier from

AuNPs into a-NPD is 1.4 eV.25 Therefore, a localized space

charge formed by positively charged AuNPs occurs in the

middle of the organic layer, thereby inhibiting the drift of

holes through the device. Furthermore, the thermal deposi-

tion of AuNPs onto the organic layer changes its electronic

properties. The interaction between AuNPs and the a-NPD

results in an increased width of the conduction level energy

distribution, described by the effective width parameter r,17

which reduces carrier mobility. Therefore, the interlayer

comprising AuNPs with neighboring a-NPD has a wider r
with respect to the ra-NPD of the pristine a-NPD. For conven-

ience, we indicate as rAuNPs the effective parameter of the

midway-localized AuNPs/a-NPD interlayer of at least 5 nm

thickness (with rAuNPs>ra-NPD). The overall carrier

mobility depends on r, as well as temperature T, carrier den-

sity p, and the electric field E, i.e., l¼ l(T, p, E, r).26,27

While the space charge on the AuNPs globally reduces j
through the device due to an electric field re-distribution, the

carrier mobility decreases locally at and near the interlayer

with respect to the mobility of the pristine molecular bulk.

Furthermore, as direct consequence of the carrier-trapping

nature of the AuNPs, j can no longer be described by the

simple Mott-Gurney law, see Figure 2(b) and Ref. 23.

Red light illumination has no notable impact on the jU
characteristics, see Figure 2(a). When AuNPs-devices are

measured with blue light illumination (absorbed by a-NPD),

the current density instantly increases by a factor of � 100

with respect to one measured in dark, and immediately returns

to the lower value when the light is switched off. The higher

current measured upon illumination cannot be attributed to

the photogeneration at the electrodes interface, because no

effect was seen for the reference devices. Instead, we ascribe

the observed effect to the photogeneration and dissociation of

excitons created in a-NPD. Here, excitons generated on a-

NPD diffuse to the positively charged MNP layer, where they

FIG. 2. The jU characteristic of the reference device and the AuNPs-device on a semi-log and a log-log scale, respectively, in (a) and (b). The jU curves were

measured in dark as well as with illumination (maximum light power available, close to saturation). The schematic for the reference upon forward bias and its

energy diagram in (c) and (d), respectively. The positive carriers (“þ” symbol) are injected from the top electrode. The AuNPs-device schematic and its energy

level diagram in dark are depicted in (e) and (f), respectively. The hole-injection barrier from AuNPs to a-NPD is indicated in (f). The case relative to the AuNPs-

device upon blue light illumination in (g) and (h). The promotion of electrons (“�” symbol) in the LUMO of a-NPD via light absorption is shown in (h).

FIG. 3. AuNPs-device current density (at 5 V bias) vs. incident normalized

light power (blue light). The solid line is a guide for the eyes.
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dissociate by donating an electron to an MNP as shown in the

schematic Figure 2(h); this removes positive charge trapped

on the AuNPs while at the same time creating a mobile hole

on the a-NPD matrix. Figure 3 shows in a semi-log plot the

current density measured at 5 V versus the light intensity.

Light intensity was gradually lowered via gray filters. The

solid line serves as a guide for the eye. The maximum light in-

tensity available in our experiments is close to reach the satu-

ration regime, i.e., establishing almost charge-neutral AuNPs.

Since now essentially all charge traps are dynamically

removed, the jU curve can again be well described by the

Mott-Gurney law, see Figure 2(b) and Ref. 23. Even under

illumination with blue light of (close-to) saturation power, j is

still about 3 orders of magnitude lower compared to the refer-

ence device. This is due to the increased width of the conduc-

tion level energy distribution (rAuNPs) in proximity of the

MNP layer, due to the AuNP-organic interaction as discussed

above.

Despite the above-demonstrated ability to (optically-)

remove the space charge localized at the AuNPs interlayer,

the devices do not display any bistability. It is worth to notice

that the materials used for electrodes (ITO/PEDOT:PSS and

MoO3/Au) do not allow for electrochemical dissolution of

ions, which leads to the filament formation. This suggests that

the MNPs charging/discharging mechanism is not a sufficient

condition for resistivity switching.

In order to prove whether filament-formation is a neces-

sary condition for bistability, a modified device was fabricated:

the bottom contact (ITO/PEDOT:PSS) remained the same as

in the devices described above, but the top contact was substi-

tuted with an electrochemical active material, Al (thickness

100 nm).28,29 The layer of a-NPD had the same nominal thick-

ness (120 nm) as the previous devices. No metal NPs were

intentionally introduced within the a-NPD film. The device’s

structure is illustrated in Figure 4(a). Figure 4(b) displays the

jU curve of the ITO/PEDOT:PSS/a-NPD/Al after adequate

conditioning (by means of repeated set/reset cycles, see supple-

mentary material). In contrast to the above-discussed devices

with electrochemically inert electrodes (PEDOT:PSS and

MoO3), the device with Al-electrode displays resistive bistabil-

ity. The insert in Figure 4(b) displays the measured current in

linear scale upon forward bias. The resistance values for the

high-resistance state (HRS) and the low-resistance state (LRS)

are calculated from the curve linear best-fit (dashed lines);

RLRS � 2:8�105 X and RHRS � 4:9�102 X. Sebastian et al.
reported on a conceptually identical device (ITO/a-NPD/Al).29

Accordantly, the impedance spectroscopy analysis reveals the

filamentary nature of the switching.

In summary, we realized hole-only devices based on a-

NPD with spatially defined AuNPs to unravel whether charge

accumulation on the metal nanoparticles can be used to realize

resistively switching non-volatile memory elements. We find

that AuNPs do behave as deep traps for holes and that a space

charge within the device can be built up. However, electrical

bistability is not observed, confirming that the resistance

switching mechanism in such type of devices is due to fila-

ment formation. Nonetheless, the space charge on the AuNPs

can be reduced (and eventually removed) by electron transfer

from excitons created in the organic layer by light absorption.

The dynamic range of wavelength-dependent light-controlled

current in these very simple and easy-to-make two-terminal

devices covers two orders of magnitude at any applied voltage

and polarity. By further optimization of organic semiconduc-

tor materials and metal nanoparticle size and distribution,

highly sensitive light sensors should become possible.
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