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Abstract 
Over the past years, a decline of the most commonly domesticated European honey bee (Apis 

mellifera) populations has been reported, mainly caused by infestation with an ecto-parasitic 

mite Varroa destructor. Selective breeding of genetically superior bees can help to establish 

resistant lines which will prevent losses due to the parasite. It will also improve several other 

economically important quantitative traits such as honey yield, swarming tendency and 

calmness. However, this requires a robust breeding program and the implementation of genetic 

evaluation to predict the ‘breeding values’ for selecting genetically superior individuals based on 

information on phenotype, pedigree and genotype. 

This thesis describes a method to integrate high-density single nucleotide polymorphism (SNP) 

data for genetic evaluation in the honey bee using the ‘unified approach’. In order to assess the 

potential of this approach and its applicability to the honey bee population, a simulation study 

was conducted. A framework for simulating a honey bee population was developed by modelling 

the reproductive and genetic biology of the honey bee such as high genomic recombination rates, 

haplo-diploid sex determination, polyandry, uncertain paternity and negative correlation between 

maternal and direct effects. This provided genomic, pedigree and phenotypic datasets required 

for implementing the unified approach. The linear mixed model equations were solved to obtain 

the ‘best linear unbiased predictions’ of breeding values based on the unified approach. The 

influence of maternal effects, negative correlation between maternal and direct effects, uncertain 

paternity and different magnitudes of maternal and direct heritabilities were also addressed, thus 

making this study of interest for research in other livestock species as well. In addition, a 44k 

SNP assay was designed for the purpose of genome-wide association studies and marker based 

selection strategies. 

This is the first study that gives background knowledge about the simulation and modelling of 

genomic and pedigree datasets in honey bees for genetic evaluation, thus, providing an important 

framework for future studies. The unified approach is a progressive step for the genetic 

evaluation in honey bees. It is expected that the study will give directions to further research in 
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the honey bee as well as other species concerning genetic evaluation based on high-density 

molecular marker data. 



9 

 

Contents 

Introduction ................................................................................................................... 13 

Objectives .................................................................................................................................................................... 15 

Survey of contents ....................................................................................................................................................... 16 

Chapter 1. Background .................................................................................................. 18 

1.1. Overview of the honey bee biology ...................................................................................................................... 18 

1.2. Fundamental concepts related to genetic evaluation ............................................................................................. 22 

Chapter 2. A new framework for modelling and simulation of a honey bee population .... 34 

2.1. Population modelling ............................................................................................................................................ 34 

2.2. Simulation ............................................................................................................................................................. 53 

2.3. Future Ideas: Methods for obtaining approximate genotypic information for an average worker........................ 62 

Chapter 3. A new approach of genetic evaluation in the honey bee .................................. 68 

3.1. Review: The progress of genetic evaluation in honey bees .................................................................................. 68 

3.2. Development of BLUP and the mixed model equations by Henderson ............................................................... 70 

3.3. Maternally influenced traits .................................................................................................................................. 73 

3.4. Method of genetic evaluation ............................................................................................................................... 73 

3.5. Future Ideas: Modification of the numerator relationship matrix to account for the composite structure of the 
dummy sire and average worker .................................................................................................................................. 80 

Chapter 4. Towards analysis of real data: Development of a 44k SNP assay .................... 86 

4.1. Experimental work ............................................................................................................................................... 86 

4.2. Data analysis ......................................................................................................................................................... 91 

4.3. Selection of SNP for the 44k SNP assay .............................................................................................................. 91 



10 

 

Chapter 5. Results and Discussion .................................................................................. 93 

5.1. Results .................................................................................................................................................................. 93 

5.2. Discussion ........................................................................................................................................................... 101 

5.3. The 44k SNP assay ............................................................................................................................................. 104 

Chapter 6. Conclusion and Future work ....................................................................... 106 

6.1. Conclusion .......................................................................................................................................................... 106 

6.2. Future work ........................................................................................................................................................ 107 

Bibliography ................................................................................................................ 109 

Appendix ..................................................................................................................... 123 

Zusammenfassung........................................................................................................ 126 



11 

 

List of Figures 

Figure 1.1. Global distribution of the Apis sp. ............................................................................................ 19 

Figure 1.2. a. A brood infested with Varroa b. Damage caused by infection due to Varroa. .................... 21 

Figure 1.3. A worker bee exhibiting the hygienic behaviour. ..................................................................... 22 

Figure 2.1. General mating scheme for the base population. ...................................................................... 39 

Figure 2.2. Multiple mating in the base population. ................................................................................... 40 

Figure 2.3. Selection scheme. ..................................................................................................................... 43 

Figure 2.4. Pedigree diagram. ..................................................................................................................... 44 

Figure 2.5. Mating scheme in the simulated population. ............................................................................ 47 

Figure 2.6. A scheme for distributing QTL to simulate maternal and direct effects. ................................. 57 

Figure 3.1. Sister queens constituting a dummy sire. ................................................................................. 80 

Figure 4.1. A pipeline showing the procedure of development of the 44k SNP assay. .............................. 87 

Figure 5.1. The average value of r2 plotted against the number of generations for a population consisting 
of 220 queens. ............................................................................................................................................. 95 

Figure 5.2. The average value of r2 plotted against the number of generations for a population consisting 
of 550 queens. ............................................................................................................................................. 96 

Figure 5.3. The effect of correlation between maternal and direct effects and heritability on the accuracy 
of the overall estimated breeding values (EBV) for juvenile queens. ....................................................... 100 

Figure 5.4. The effect of correlation between maternal and direct effects and heritability on the accuracy 
of the overall estimated breeding values (EBV) for all queens................................................................. 101 



12 

 

List of Tables 

Table 1.1. Summary of different models. ................................................................................................... 27 

Table 2.1. Summary of the chromosome length, number of SNP and Ri. .................................................. 36 

Table 2.2. A summary of the simulated number of markers on each chromosome of the honey bee. ....... 41 

Table 2.3. An example pedigree. ................................................................................................................ 45 

Table 2.4. Allele and genotype frequencies. ............................................................................................... 49 

Table 2.5. Example data for allele frequencies. .......................................................................................... 50 

Table 2.6. Population mean. ....................................................................................................................... 54 

Table 2.7. Breeding values for a single locus. ............................................................................................ 56 

Table 2.8. Heritability of direct effects at different values of simulated heritability of maternal effects and 
correlation between maternal and direct effects.......................................................................................... 61 

Table 2.9. Fictitious genotyping information for five workers at 10 loci. .................................................. 62 

Table 2.10. Probability of genotypes for ungenotyped animals derived from genotyped ancestors. ......... 64 

Table 3.1. An example relationship matrix between workers of a single colony assuming that all drones 
are from a single queen. .............................................................................................................................. 82 

Table 3.2. An example relationship matrix between workers of a single colony assuming that drones come 
from different queens. ................................................................................................................................. 84 

Table 5.1. Accuracy of the overall estimated breeding values.................................................................... 97 

Table 5.2. Accuracy of the direct and maternal estimated breeding values. ............................................... 99 



13 

 

Introduction 
The honey bee (Apis sp.) is an important species that serves as a major pollinator of wild plants 

and agricultural crops. It contributes significantly to the agricultural economy, as a large fraction 

(Roubik, 1995) of the agricultural crops is being pollinated by honey bees. Furthermore, the 

honey bee exhibits high degree of ‘eusociality’, and owing to this characteristic it has been 

recognized as a model organism for understanding and studying the dynamics of social 

interaction (Oldroyd and Thompson, 2007). An important milestone for research in fields 

associated with the honey bee was the sequencing of the genome of Apis mellifera (The 

Honeybee Genome Sequencing Consortium, 2006). The unique properties associated with its 

genome (The Honeybee Genome Sequencing Consortium, 2006) such as high A+T content, high 

CpG content, fewer genes for innate immunity, absence of transposons, slower rate of evolution, 

similarity to vertebrates for circadian rhythm, RNA interference and DNA methylation genes 

show that it is a promising model organism for elucidating key biological processes. For 

example, honey bees possess a rather simple nerve system but still show repertoire of cognitive 

behaviour, thus, can serves as a model organism for investigating the fundamentals of learning 

behaviour, memory consolidation, circadian rhythms etc. It can help to examine how the 

insulin/insulin-like growth factor signalling pathway could have been modified to extend 

lifespan without negatively affecting reproductive capabilities (The Honeybee Genome 

Sequencing Consortium, 2006). Apart from the area of biological sciences, the swarming 

behaviour of honey bees has also inspired researchers in the field artificial intelligence 

(Karaboga, 2005; Karaboga and Akay, 2009). 

Over the past years, a decline of the most commonly domesticated European honey bee (Apis 

mellifera) population has been reported (Brown and Paxton, 2009; De la Rúa et al., 2009; 

Neumann and Carreck, 2010), mainly caused by infestation with an ecto-parasitic mite (Varroa 

destructor). It has been observed that honey bees show resistance to Varroa mite (Boecking and 

Drescher, 1992; Spivak, 1996) through the manifestation of ‘hygienic behaviour’. Hygienic 

behaviour can be defined as the ability of worker bees to detect and remove infected broods 

before the pathogen reaches the stage of infection (Spivak and Gilliam, 1998). Several studies 

suggest that the hygienic behaviour is a heritable trait (Harbo and Harris, 1999; Boecking et al., 
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2000; Lapidge et al., 2002). Thus, through selective breeding, it would be possible to exploit the 

heritability to establish resistant lines in the honey bee as well as to improve several important 

quantitative traits such as honey yield, swarming tendency and calmness. Selective breeding 

requires a robust breeding program and the implementation of genetic evaluation. Until now, a 

method based on the pedigree and phenotypic information has been used for genetic evaluation 

in the honey bee (Bienefeld et al., 2007). In other species, this approach has been mostly 

succeeded by marker based methodologies that employ high-density marker information across 

the genome such as the single nucleotide polymorphism1

Over the last decade, a high-density marker based methodology known as ‘genomic selection’ 

has replaced most other genetic evaluation methodologies in the livestock species. It is now 

established as a ‘state of the art’ method for genetic evaluation that has resulted in a significant 

advancement in the field of animal breeding. In order to implement genetic evaluation based on 

the genomic selection strategy, a multi-step procedure was proposed for many livestock species, 

for example, in the US dairy cattle (VanRaden, 2009) and pigs (Ostersen et al., 2011). However, 

this multi-step procedure has certain disadvantages with respect to the honey bee. In comparison 

to cattle, it is complicated to define the daughter yield deviation

 (SNP) for genetic evaluation. Marker 

based selection has been widely tested in several species either with simulated datasets 

(Sonesson and Meuwissen, 2009; Christensen and Lund, 2010) or with real datasets (Dekkers 

and Hospital, 2002; de Roos et al., 2007; Legarra et al., 2008; Aguilar et al., 2010) but, to date, 

not in honey bees. Therefore, one of the main objectives of this study was to integrate SNP 

information into the genetic evaluation of the honey bee. 

2

                                                           
1 A single nucleotide polymorphism is a difference in the DNA sequence among individuals resulting from the 
variation of a single nucleotide i.e. A, G, C or T.  

 in the honey bee because of its 

complex population structure as well as due to the influence of maternal effects on traits. In 

addition, due to economical and technical constraints, it may not be possible to genotype all 

animals in the population. Thus, instead of a multi-step procedure, this thesis describes the 

implementation of a single-step ‘Unified Approach’ for the integration of molecular marker 

information (i.e. SNP) for genetic evaluation in the honey bee. The unified approach, first 

proposed by Legarra et al. (2009) and Christensen and Lund (2010), combines full pedigree and 

2 Daughter yield deviation is defined as a weighted average of the yield deviation of all progeny of a sire corrected 
for fixed effects and the breeding values of the mates of the sire (Mrode, 2005). 
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genomic information from both genotyped and ungenotyped individuals. The advantage of this 

procedure over the multi-step approach is that it gives a more accurate estimate of the breeding 

values for ungenotyped animals (Aguilar et al., 2010; Christensen and Lund, 2010) and is 

resistant to selection bias (Vitezica et al., 2011). Moreover, it is simpler to implement as 

compared to the multi-step approach and provides an easy extension to a multi-trait model with 

maternal effects in honey bees. 

This thesis illustrates the implementation of the unified approach in honey bees using 

simulations. A dataset was generated by modelling and simulating the reproductive and genetic 

biology characteristics of the honey bee. Comparative analyses of the unified and the traditional 

pedigree based genetic evaluation approaches was performed on the simulated population. 

Additionally, since future studies require a real genotyping dataset for implementing the unified 

approach, a 44k SNP assay was developed during the study. To the best of the knowledge, this is 

the first study that assesses the impact of both negative correlation between maternal and direct 

effects and uncertain paternity on marker based genetic evaluation. Thus, the study is of great 

interest for research concerning genetic evaluation in other species as well. 

Objectives 
The primary objective of this thesis was to integrate high-density marker information (i.e. SNP) 

into the genetic evaluation of the honey bee. This integration of marker information into genetic 

evaluation of the honey bee was achieved by completing the following milestones in the study:  

1. Developing a theoretical framework for modelling the reproductive and genetic biology 

of the honey bee. 

2. Developing a software program for simulating a honey bee population and for analyzing 

the generated genomic, pedigree and phenotypic datasets. 

3. Implementing the unified approach of genetic evaluation in the honey bee to investigate 

(a) the accuracy of the estimated breeding values and (b) the applicability of this 

approach. 
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4. Designing a 44k SNP assay (Spötter et al., 2012) that will be used for the purpose of 

genome-wide association studies and marker based selection strategies. 

Survey of contents 
Chapter 1: To enable a comprehensive understanding of the thesis, Chapter 1 introduces the 

essential aspects of the honey bee’s biology and explains the principles integral to genetic 

evaluation. It summarizes honey bee’s taxonomic classification, reproductive biology, genome 

characteristics and addresses a key issue related to threat due to Varroa infestation. Furthermore, 

it explains the fundamental concepts associated with genetic evaluation such as quantitative 

traits, breeding values and the methodology of genetic evaluation. 

Chapter 2: This chapter describes the generation of a dataset for the honey bee population. It 

deals with the important aspects of population modelling and simulation. In addition, it also 

describes the simulation of true breeding values, phenotypic values, a negative correlation 

between maternal and direct effects, heritability, genetic and residual variances. Ideas that could 

be exploited in future to derive genotyping information for ungenotyped animals are presented at 

the end of the chapter. 

Chapter 3: This chapter gives a chronological review of the progress in genetic evaluation in 

honey bees along with an introduction to the best linear unbiased prediction methodology, mixed 

model equations and maternal effects. It presents the implementation of the following genetic 

evaluation methods: (1) traditional approach using pedigree and phenotypic data (PED_BLUP) 

(2) the advanced unified approach using marker, pedigree and phenotypic data (UNI_BLUP). In 

addition, ideas for improving the method of construction of the numerator relationship matrix in 

the honey bee are discussed. 

Chapter 4: This chapter outlines the procedure of development and a preliminary test of a 44k 

SNP assay for the honey bee required for future association studies and genetic evaluation. 

Chapter 5: This chapter presents the results and discussion of this thesis. It describes the 

validation results for the base population simulation software program. Furthermore, for the 

comparative analyses of the unified and pedigree based approaches, results are reported 

regarding the accuracy of the overall, direct and maternal estimated breeding values under 
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varying heritability of trait and correlation between maternal and direct effects. The discussion 

section describes the effect of the unified approach on the accuracy of estimating breeding values 

with regard to the influence of heritability of the trait and the genetic correlation between 

maternal and direct effects. Towards the end of this chapter, the results and discussion about the 

44k SNP assay are presented. 

Chapter 6: This chapter gives the conclusion and presents the possible future work which can be 

undertaken in the direction of marker based genetic evaluation. 
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Chapter 1. Background 
To enable a comprehensive understanding the thesis, this chapter introduces the essential aspects 

of the honey bee’s biology and explains the principles integral to genetic evaluation. This chapter 

has been divided into two sections. The first section summarizes honey bee’s taxonomic 

classification, reproductive biology, genome characteristics and addresses a key issue related to 

threat due to Varroa infestation. The second section introduces fundamental concepts associated 

with genetic evaluation such as quantitative traits, breeding values and the methodology of 

genetic evaluation. 

1.1. Overview of the honey bee biology 

1.1.1. Taxonomy 
The honey bee (Apis sp.) belongs to a large family of bees, Apidae, which are characterized by 

the presence of a pollen basket. Taxonomically, this family is classified under the phylum 

Arthropoda, class Insecta and order Hymenoptera. The genus Apis evolved in tropical Eurasia 

(Ruttner, 1988; The Honeybee Genome Sequencing Consortium, 2006), migrating to northern 

and western regions, eventually reaching Europe by the end of the Pleistocene epoch, 10,000 

years ago (The Honeybee Genome Sequencing Consortium, 2006). Several species and sub-

species of the honey bee, distributed in different regions of the world (Figure 1.1), have been 

recognized. One of the most commonly domesticated species is the European honey bee, Apis 

mellifera. On the basis of morphometric, mtDNA and microsatellite studies, the subspecies 

within Apis mellifera have been grouped into three main evolutionary branches (Franck et al., 

1998), the African subspecies (branch A), northern Mediterranean subspecies (branch C) and 

western European subspecies (branch M). 
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Figure 1.1. Global distribution of the Apis sp. 

(Source: Encyclopedia of life http://eol.org/pages/104135/maps) 

1.1.2. Reproductive biology 
The honey bee exhibits a high degree of social organization. It has a complex colony structure 

consisting of individuals belonging to three different castes i.e. queen, workers and drones, each 

specialized to perform distinctive functions. An important feature of the honey bee is its unique 

reproductive biology. Sex determination in the honey bee is neither determined by the presence 

or absence of a sex chromosome nor the ploidy of the organism. Interestingly, a sex 

determination locus harbouring the complementary sex determiner gene (csd gene) (Beye et al., 

2003) is responsible for the sex in honey bees. The csd gene encodes a potential splicing factor 

that exists in at least 15 allelic variants (Hasselmann and Beye, 2004). Thus, honey bees possess 

a ‘Complementary sex determination’ system; individuals which are hemizygous or homozygous 

for this gene develop into male drones whereas heterozygous individuals develop into female 

queens and workers. The fertilized homozygous males are sterile and are eaten by workers 

shortly after emerging (Woyke, 1963). The caste differentiation between a queen and a worker 

results from the selective feeding of the royal jelly protein. This selective feeding leads to 
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differential DNA methylation which causes different reproductive and behavioural statuses in 

workers and queens (Kucharski et al., 2008). Thus, the genes encoding the major royal proteins 

play a key role in the establishment of this highly evolved social structure (The Honeybee 

Genome Sequencing Consortium, 2006). 

In addition to the characteristics described above, the honey bee also exhibits polyandry3

1.1.3. Genome 

. A 

queen can be inseminated by approximately 10-15 drones (Trjasko, 1951; Woyke, 1960; Kerr et 

al., 1962, Adams et al., 1977) which varies among different populations and species. A virgin 

queen begins mating about one week after exiting the colony and getting oriented outside the 

colony (Ruttner, 1956). A queen can have up to four mating flights (Roberts, 1944) on average, 

during which it flies to a drone congregation area and mates with drones. After mating flights, 

queens begin oviposition (laying of eggs) and never mate again during the rest of their life span 

(Tarpy et al., 2000). A drone consists of a haploid set of chromosomes. Since there is no 

reductional division during the production of sperms, all sperm cells produced by a drone are 

genetically identical and are clones of the drone. When several drones inseminate a queen, 

millions of copies of each drone in the form of sperms are stored in the spermathecae of the 

queen which can later fertilize eggs produced by the queen. 

One important landmark for research in honey bees was the sequencing of the genome of Apis 

mellifera (The Honeybee Genome Sequencing Consortium, 2006). The honey bee genome 

consists of 16 linkage groups with an approximate length of 236 Mb (The Honeybee Genome 

Sequencing Consortium, 2006). The SNP dataset (approximately 1 million) is also published that 

can be used to map important genes (The Honeybee Genome Sequencing Consortium, 2006). As 

compared to other species, the honey bee genome has distinctive characteristics such as high 

A+T and CpG contents and the lack of major transposon families (The Honeybee Genome 

Sequencing Consortium, 2006), making it an interesting candidate for further research. 

Moreover, the honey bee exhibits an extremely high recombination rate of 19 cM/Mb (Beye et 

al., 2006; The Honeybee Genome Sequencing Consortium, 2006) which is several-folds higher 

than that reported for any other higher eukaryotic species. For detailed information about the 
                                                           
3 Polyandry, commonly referred to as multiple mating, is a phenomenon observed in honey bee whereby a queen 
mates with multiple drones (average of 10 to 20 drones). 
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genome of the honey bee please refer to the publication by The Honeybee Genome Sequencing 

Consortium (2006) and the genome databases, Honey bee genome project 

(www.hgsc.bcm.tmc.edu/projects/honeybee/) and National center for biotechnology information 

for Apis mellifera (www.ncbi.nlm.nih.gov/genome?term=apis%20mellifera/). 

1.1.4. Varroa infestation 
Considering its unique biological characteristics, honey bees make an interesting candidate as a 

model organism for future studies. Apart from it contribution to honey and wax production, it is 

one of the most important pollinator of wild plants and agricultural crops. However, to be able to 

exploit this species, its maintenance and conservation is essential. Apis mellifera faces threats to 

survival due to several diseases and parasites. Varroa has emerged as one of the biggest threats 

to the honey bee (Figure 1.2.a). It serves as a vector for several viral infections (Allen and Ball, 

1996; Nordström, 1999) and has been associated with the occurrence of acute bee paralysis 

(Batuev, 1979; Ball, 1985; Allen et al., 1986; Ball and Allen, 1988; Bakonyi et al., 2002), slow 

paralysis virus (Ball, 1989; Santillán-Galicia et al., 2010), deformed winged virus (Ball, 1989; 

Bowen-Walker et al., 1999; Santillán-Galicia et al., 2010) and Kashmir bee virus (Chen et al., 

2004). It has been observed that heavily infested colonies have a reduced life span and a low 

number of workers (Figure 1.2.b). This leads to poor hygienic behaviour, giving rise to bacterial 

and viral infection that eventually results into the terminal collapse of colonies. 

            

Figure 1.2. a. A brood infested with Varroa b. Damage caused by infection due to Varroa. 

©  Länderinstitut für Bienenkunde Hohen Neuendorf e.V. 

The use of pesticides is not the most optimal solution as they pose the hazard of contaminating 

the surrounding environment and the commercial products obtained from the honey bee. In 

http://www.hgsc.bcm.tmc.edu/projects/honeybee/�
http://www.ncbi.nlm.nih.gov/genome?term=apis%20mellifera/�
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addition, the effectiveness gets diminished eventually due to the development of resistant strains 

(Milani, 1999). One of the best solutions for the management of honey bees is selective breeding 

to create resistant lines. Several researchers (Bienefeld et al., 1999, 2008; Büchler et al., 2010; 

Rinderer et al., 2010) are working to breed bees showing the ‘hygienic behaviour’ (Figure 1.3). 

Furthermore, selective breeding can be exploited to improve other economically important traits 

in the honey bee such as honey production, swarming, aggressiveness and calmness. 

 

Figure 1.3. A worker bee exhibiting the hygienic behaviour. 

© Institut für den Wissenschaftlichen Film, Göttigen 

1.2. Fundamental concepts related to genetic evaluation 

1.2.1. Quantitative trait loci 
Usually a phenotype is assumed to be determined by the genotype at a single gene/locus. It is 

important to understand that a majority of the phenotypic variation is a result of the interaction of 

multiple genes and the environmental conditions. This class of phenotypes is usually referred to 

as ‘Quantitative traits’ or ‘Multi-factorial traits’ (Hamilton, 2009). In quantitative genetics, the 

terms phenotype, trait and character are all considered synonymous (Hamilton, 2009). Over the 

years, genetic improvement of quantitative traits in important plant and animal species has been 

achieved through artificial selection. This has contributed greatly to the increase in quality of the 

phenotype which was under selection (Dekkers and Hospital, 2002). 

The variation in a quantitative trait can be attributed to several loci/regions across the genome. 

Two theories were proposed to explain the genetic variance associated with a quantitative trait: 
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(1) the infinitesimal model and (2) the finite site model. According to the infinitesimal model, 

proposed by Fisher (1918), very many independently segregating loci additively affect the trait 

and it is assumed that each locus has an infinitesimal effect on the trait (Weller, 2001). This 

model forms the background for the estimation of breeding values. The finite site model, on the 

other hand, assumes that there is a finite number of loci in the genome as the genome itself 

consist of a finite number of genes. It has been shown that a large number of the quantitative trait 

loci (QTL) have an extremely small effect and very few have a large effect on the phenotype 

(Shrimpton and Robertson, 1988; Hayes and Goddard, 2001). In this study, the finite site model 

was exploited to simulate QTL effects. 

1.2.2. Breeding values 
This section explains the concept of breeding values. More details can be found in Falconer and 

Mackay (1996), Mrode (2005) and Hamilton (2009). In animal breeding programs, usually a 

planned mating of selected individual is performed with the aim to genetically improve 

important traits. The selection of candidate is made through ‘genetic evaluation’ which predicts 

the ‘breeding values’ of individuals based on information about phenotypes, pedigree or 

genotypes. 

For a quantitative trait, a phenotypic observation of an individual is determined by genetic 

factors, environmental factors and interaction between genetic and environmental factors. A 

phenotypic observation can be expressed in the following form (Falconer and Mackay, 1996; 

Mrode, 2005): 

effects Residual ffects  Genetic etsntal effec Environmeon observatiPhenotypic ++=  

or ijiiij egy ++= µ  1.1 

where ijy is the thj  phenotypic observation of the thi  individual, iµ  is the identifiable fixed 

environmental effects on the phenotype such as apiary or bee breeder on the thi  individual, ig  is 

a sum of additive, epistatic and dominance genetic effects of the thi  individual and ije  is the 
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unidentifiable random environmental effects on the thj  phenotypic observation of the thi  

individual. 

The epistatic effect is an inter-locus interaction where one gene locus affects the expression of 

another gene locus. The dominance effect is an intra-locus interaction where one allele affects 

the expression of the other allele at the same gene locus. The additive genetic effect results from 

the average effect (see Chapter 2) of allele substitution (Falconer and Mackay, 1996; Wu et al., 

2007). The average effect is the only component that can be selected, as it is a function of the 

genes which an individual inherits from its parent (Mrode, 2005). The breeding value of an 

individual is equal to the sum of average effects of the alleles it carries i.e. the summation over 

the pair of alleles at each locus and over all loci (Falconer and Mackay, 1996). In other words, 

the average additive genetic effect of genes an individual inherits from its parents represents the 

breeding value of an individual. The epistatic and dominance effects which cannot be selected 

are ignored and assumed to be a part of the random environmental effects, thus the previous 

equation can now be represented as (Mrode, 2005): 

*
ij

a
iiij egy ++= µ  1.2 

where *
ije  represents the sum of random environmental effects, epistatic effects and dominance 

effects and a
ig  represents the sum of additive genetic effects of the thi  individual. 

Since each parent contributes only one-half of its genes to the progeny, the breeding value of an 

individual ( ia ) can also be defined as follows: 

ids
a
ii maaga ++==

2
1

2
1

 
1.3 

where sa  is the additive genetic effect/breeding value of the sire, da  is the additive genetic 

effect/breeding value of the dam and im  is Mendelian sampling effect of the thi  individual. For 

an individual, each parent explains only one-quarter of the total additive genetic variance. In 

other words, the variance of additive genetic effects of both sire and dam explain only one-half 
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of the progeny’s additive genetic variance. Therefore, for individuals with the same parents, the 

other half of the additive genetic variance cannot be explained by the additive genetic effects of 

the sire and dam. This effect is termed as the Mendelian sampling effect (Quaas and Pollock, 

1980; Weller, 2001). It is the specific genetic component passed to an individual that 

differentiates this individual from his full sibs (Weller, 2001). 

1.2.3. Methodology of genetic evaluation 
Breeding values serve as a measure on the basis of which selection is implemented. Thus, 

accurate estimation of breeding values is crucial for genetic improvement. Usually, the method 

of estimating breeding values is based on the available information about pedigree, phenotypic 

and/or genotyping data. Traditionally, selection of quantitative traits has been based on 

phenotypic and pedigree data. The advancement in high-throughput genotyping technology 

permits the use of molecular genetic markers, such as SNP, to be used in breeding programs for 

genetic improvement. Another important requirement for the estimation of breeding values is a 

statistical model that describes the data. Likewise, different methods, such as Selection Index, 

Best Linear Unbiased Prediction (BLUP) and Bayesian approaches, have been used to estimate 

breeding values. BLUP is the most commonly used methodology for the estimation of breeding 

values in almost all livestock species. BLUP, developed by Henderson (1975, 1988), allows to 

estimate both fixed and random effects simultaneously (see Chapter 3). It is also used for genetic 

evaluation in the honey bee (Bienefeld et al., 2007). Therefore, in order to perform genetic 

evaluation one requires data on phenotype, pedigree or genotype, a statistical model and a 

solving procedure. A brief summary is given in the following sections. 

1.2.3.1. Data 

Pedigree record 
Genetic evaluation of a population is impossible without pedigree information. Pedigree records 

also help to standardize the breeding program. Pedigree recording requires unique identifiers for 

all animals, their sires and their dams. Additionally, information about the origin, breed, birth-

date, number of relatives, genotyping information can also be recorded. 
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Phenotypic record 
Complete and accurate recording of phenotyping data for economically important traits is 

necessary. Recording should be unbiased and measured objectively for all animals within a 

production unit (apiary, herd, ranch or flock). Phenotyping data for an animal should also include 

information about the date of recording and possible factors that could influence the animal’s 

performance. 

Genotyping record 
With the rapid advancement in genotyping technology, it has become possible to easily genotype 

individuals and utilize this information about QTL and/or markers for genetic evaluation. Data 

for genotyping should include information about the allelic variations and the associated allele 

frequency in a population. 

Apart from the pedigree, phenotyping and genotyping information described above, it is 

extremely important to understand the reproductive peculiarities of a species in order to design 

an optimum mating and selection strategy. For example, it important to have information about 

the following aspects (Schaeffer, 2010): the gestation length, the age at first breeding, number of 

offspring per female per gestation and method employed for fertilization, e.g. artificial 

insemination or island mating in the honey bee. All this information can be used to formulate 

appropriate linear models for the analysis of the data and the accurate estimation of breeding 

values of animals (Schaeffer, 2010). 

1.2.3.2. Linear Model 
An important requirement for the estimation of breeding values is a ‘linear model’. The model 

assumes that different factors affect a trait in a linear fashion, i.e. each factor has an additive and 

independent effect on the trait (Schaeffer, 2010). These models are an approximation of how 

different factors affect a trait (Schaeffer, 2010). The choice of a model depends upon the animal 

that is to be evaluated and its suitability to describe the data. The most suitable model is the one 

that is able to account for the most part of the variation. These models rely strongly on statistical 

knowledge and require computing expertise. Mrode (2005) provided a good description of 

different models used for estimating breeding values depending on the type of information 

available on the selection candidate. A summary of most of the models is given in Table 1.1. For 

details please refer to Mrode (2005). 
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Table 1.1. Summary of different models. 

 

Model Description Matrix notation 

Uni-variate model 

(Single random 

effect) 

Animal model 
Breeding values are estimated for 

all animals in the pedigree. 
eZaXby ++=  

Sire model 
Breeding values are estimated 

only for sires 
eZsXby ++=  

Reduced animal 

model 

Breeding values are estimated 

only for parents. Breeding values 

for non-parents are expressed as 

the average of parental breeding 

values plus Mendelian sampling. 

Solutions for non-parents are 

obtained using the solutions for 

the fixed effects and parents. 

Model for parents: 

epZabpXpy ++=  

Model for non-parents: 

*epa1ZbnXny ++=  or 

































++= *e

e
pa

1Z

Z
b

nX

pX

ny

py
 

Animal model 

with groups 

This model accounts for the 

subpopulation structure through 

proper grouping of the base 

animals. 

eZaZQgXby +++=  

Models with 

random 

environmental 

effect (This model 

includes an 

additional random 

environmental 

effect) 

Repeatability 

model 

Applicable when multiple 

measurements on the same trait 

are recorded for an individual. 

Accounts for the permanent 

environmental effects. 

eWpeZaXby +++=  

Model with 

common 

environmental 

effects 

Common environmental effects 

are included in the model. It 

accounts for the additional 

covariance between members of a 

family and the increased variance 

between families. 

eWcZaXby +++=  
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Multi-variate 

animal model 

(Multiple random 

effects) 

Model with 

multiple traits 

Suitable for multiple trait 

evaluation. 

An example model with two traits: 






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


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
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


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
















++

=

2e
1e

2a
1a

2Z0

01Z
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1b

2X0

01X

2y
1y

 

Maternal-trait 

model (For 

maternally 

influenced traits 

such as weaning 

weight in cattle) 

Animal model for 

a maternal trait 

The maternal and direct breeding 

values are estimated for all 

animals in the pedigree. 

e SpeWmZu  Xb y ++++=  

Reduced maternal 

model with 

maternal effect 

The maternal and direct breeding 

values are estimated only for 

parents. Breeding values for non-

parents are expressed as the 

average of parental breeding 

values plus Mendelian sampling. 

Solutions for non-parents are 

obtained using the solutions for 

the fixed effects and parents. 




















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
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







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nZ
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b
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ny
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Multivariate 

maternal animal 

model 

Suitable for multiple trait 

evaluation with maternal and 

direct effects. 

An example model with two traits: 
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Non-additive 

animal model 

(Prediction of 

Animal model 

with dominance 

effects 

A dominance relationship matrix 

is required apart from the 

numerator relationship matrix. 

eWdZaXby +++=  
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dominance and 

epistatic effects 

in addition to 

additive genetic 

effects) 

Animal model 

with epistatic 

effects 

Prediction of epistatic effects. An 

epistatic relationship matrix is 

required which can be derived 

from the numerator relationship 

matrix and the dominance 

relationship matrix. 

eSepWdZaXby ++++=  

 

Currently, an animal model with maternal effects (Bienefeld et al., 2007) is used in the honey 

bee for genetic evaluation. 

1.2.3.3. Genetic evaluation approaches 
On the basis of information used for the estimation of breeding values, genetic evaluation can be 

classified into (1) pedigree based approaches and (2) marker based approaches. These 

approaches have been further categorized on the basis of the type of information available about 

the selection candidate. 

Pedigree based approaches 
The pedigree based approach relies on the pedigree information. The estimation of breeding 

values based on this approach requires knowledge about the genetic covariance between 

individuals in the pedigree. The genetic covariance among relatives is determined by the additive 

genetic variance, dominance variance and the epistatic variance (Mrode, 2005). Usually, the 

latter two are not included in the genetic component and instead form a part of the residual 

effects. The additive genetic variance is crucial to the estimation of breeding values and requires 

the construction of an ‘additive genetic relationship matrix’. The additive genetic relationship 

matrix (A), also called as the ‘numerator relationship matrix’, provides an estimate of the degree 

of relatedness between individuals based on the probability of genes being identical by descent4

iF+1

. 

The A matrix is symmetrical. Diagonal elements are equal to  ( iF  stands for the inbreeding 

coefficient for the ith individual) whereas off-diagonal elements denote the relationship between 

individuals which is equal to twice the ‘Coancestry’ or the ‘Kinship Coefficient’ (Falconer and 

Mackay, 1996; Mrode, 2005). The covariance between breeding values is given as Aσa, where σa 

                                                           
4 Two alleles may be called identical by decent if they have originated from the replication of one single allele in a 
previous generation (Falconer and Mackay, 1996) 
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is the additive genetic variance (Mrode, 2005). Since honey bees have unique reproductive 

characteristics, Chapter 3 describes the assumptions and methodology for constructing the 

numerator relationship matrix for the honey bee. 

Marker based approaches 
With the advancement in genotyping technology, it has become possible to include molecular 

marker information for genetic evaluation. The different methodologies that employ marker data 

for selection are described in the following section. 

Marker-assisted selection - The use of marker information together with traditional animal 

breeding methodology is termed marker-assisted selection (MAS). It has been utilized for the 

breeding programmes of crops (Davierwala et al., 2001, Flint-Garcia et al., 2003), dairy cattle 

(Boichard et al., 2002; Bennewitz et al., 2003), pigs (Visscher and Haley, 1995; Hayes and 

Goddard, 2003) and fishes (Sonesson, 2007). The methodology of MAS relies on the association 

of marker loci with the QTL responsible for the trait of interest. It can be based on the linkage 

equilibrium (LE5 5) of the QTL with markers (LE-MAS), linkage disequilibrium (LD ) of the QTL 

with markers (LD-MAS) or the causative mutation itself resulting in the QTL effect (Hayes, 

2008). The concept of LE and LD are explained in more detail in Chapter 2. The methodology of 

incorporating marker information in the BLUP procedure for genetic evaluation was developed 

by Fernando and Grossman (1989). The model is given as follows: 

ii
m
i

p
iii eavvxy ++++= β  1.4 

where iy  is the phenotype of the ith animal, β  is the fixed effect, p
iv and m

iv are the effects of the 

paternally and maternally inherited QTL alleles of the ith animal and ia  is the additive genetic 

effect of the remaining QTL not linked to the marker locus of the ith animal. The covariance 

matrix for the additive genetic effects i.e. the numerator relationship matrix A, requires 

information about the relationship among individuals. The covariance matrix for the effect of 

QTL alleles, Gv, depends both on the relationship and marker information. The Gv matrix 

                                                           
5 LE is observed if the expected value of a genotype frequency is the product of its allele frequencies. Any deviation 
from this equilibrium is LD which results due to the non-random association of alleles at two loci. 
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becomes equivalent to the A matrix as the distance between the markers and the QTL increases, 

and the marker based estimates approaches the non-marker based estimates of breeding values. 

The advantage of MAS over the use of a pedigree based approach is that genetic markers can 

yield a more accurate estimate of the breeding values as markers capture the variance associated 

with genes/regions affecting the trait more precisely (Weller, 2001; Mrode, 2005; Hayes, 2008). 

A drawback associated with MAS is that it only takes into account those few regions that have a 

large effect on the trait of interest and a large number of regions having small effect on the trait 

are excluded (Thallman, 2009). For more information about MAS, please refer to Fernando and 

Grossman (1989), Weller (2001), Dekkers (2004), Mrode (2005) and Hayes (2008). 

Genomic selection - An alternative to the MAS approach is the ‘Genomic selection’ strategy 

(Meuwissen et al., 2001) that takes into account all regions that influence a trait, thus also 

accounting for the relatively large number of regions with small effects. The whole genome 

sequencing of most agricultural animals and the availability of a large number of SNP has made 

it possible to use high-density marker information for genetic evaluation. Meuwissen et al. 

(2001) proposed the methodology of genomic selection that exploits this dense marker 

information for genetic evaluation. The high-density of marker ensures all QTL are in LD5 with a 

marker or a marker-haplotype, thus accounting for the entire genetic variance across the genome. 

In general, the implementation of genomic selection requires the following two steps 

(Meuwissen et al., 2001; Hayes, 2008): 

Step 1: Estimation of marker/haplotype6

Step 2: Prediction of the genomic breeding values in the selection candidates which have been 

genotyped. The genomic estimated breeding values of individuals with genotyping data can be 

given as 

 effects in each chromosome segment in the reference 

population containing both genotypic and phenotypic information. 

∑
=

n

i
ii

1
ĝX , where n is the number of chromosome segments across the genome, iX  is a 

                                                           
6 A haplotype refers to a group of alleles at adjacent marker loci on a chromosome which is assumed to be 
transmitted together from a parent. 
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design matrix allocating animals to the marker/haplotype effects in the thi  chromosome segment 

and iĝ  is a vector of marker/haplotypes effects in the thi  chromosome segment. 

It should be noted that the number of chromosome segment effects to be estimated is much larger 

than the number of records. As a result, there are not enough degrees of freedom to fit all effects 

simultaneously. Meuwissen et al. (2001) proposed some approaches to circumvent this shortage 

of the degree of freedom. These approaches are (1) Least-squares (2) BLUP and (3) Bayesian 

methods (BayesA and BayesB using Gibbs sampling and Metropolis-Hastings algorithm, 

respectively). Meuwissen et al. (2001) discussed the different attributes of these three approaches 

with respect to the estimation of allelic effects and compared them for their accuracy of 

predicting the breeding values. In the least squares approach, the simultaneous estimation of all 

chromosome segment effects is not possible, so Meuwissen et al. (2001) adopted a step-wise 

approach where the chromosome segments are fitted one by one. The chromosome segments that 

increase the log-likelihood by more than 14 units are assumed to be significant and included in 

the model. This approach makes no assumptions regarding the distribution of chromosome 

segment effects because it treats these effects as fixed. The BLUP approach allows simultaneous 

estimation of all chromosome segment effects. It is based on the assumption that the 

chromosome segment effects come from a distribution and the variance of effect at each 

chromosome segment are identical. In the Bayesian method, the chromosome segment effects are 

also assumed to have a prior distribution, but the variance of chromosome segment effect varies 

for different chromosome segments. Thus, during the estimation of the effects of haplotypes or 

single markers within the chromosome segments, the Bayesian approach allows to capture a 

more realistic situation by considering the fact that there will be chromosome segments 

containing QTL with large, moderate or small effects as well as chromosome segments with no 

QTL. 

Apart from the approaches described above, the genomic selection can also be implemented by 

using a ‘genomic relationship matrix’ (VanRaden et al., 2008) instead of the numerator 

relationship matrix. Hayes et al. (2009) demonstrated that this method of predicting breeding 

values was equivalent to the genomic selection methodology when the effects of QTL 

contributing to variation in the trait were assumed to be normally distributed. The genomic 
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relationship matrix (G) is constructed from the marker information obtained from the genotyped 

individuals. The methodology for estimating breeding values is similar to pedigree based BLUP; 

however, instead of the relationship matrix (A) derived from pedigree, the genomic relationship 

matrix is used. The procedure of constructing the G matrix will be discussed in more detail in 

Chapter 3. 

The unified approach - Genetic evaluation based on the genomic selection methodologies 

requires a multi-step procedure. This may lead to the loss of some information and to selection 

bias (Vitezica et al., 2011). Also, it is a well known fact that not all individuals in a pedigree can 

be genotyped due to technical and economical constraints. Thus, a single-step procedure, ‘the 

unified approach’, was proposed by Legarra et al. (2009) and Christensen and Lund (2010). It 

integrates phenotypic, pedigree and genotyping information from both genotyped and 

ungenotyped animals for the prediction of breeding values. The unified approach provides an 

optimal solution for the integration of molecular marker data for the estimation of breeding 

values in the honey bee. Considering the complex population structure of the honey bee, the 

unified approach will prove to be an advantageous method for improving the accuracy of 

estimation of breeding values, response to selection, genetic gain and lowering the rate of 

inbreeding. More details on the implementation of the unified approach in honey bees are given 

in Chapter 3. 
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Chapter 2. A new framework for modelling 
and simulation of a honey bee population 
Prior to performing a study with an actual genotyping dataset, it is important to validate any 

genetic evaluation methodology through simulations. Simulation studies require molecular 

genetic and pedigree datasets to ascertain selection methods. This chapter describes the 

generation of a dataset for a honey bee population. Sections 2.1 and 2.2 deal with the important 

aspects of population modelling and simulation as well as the method of simulation of key 

statistical quantities required for genetic evaluation. Population modelling took into account the 

reproductive and genetic peculiarities of the honey bee such as a high recombination rate, haplo-

diploid sex determination, arrhenotoky and polyandry. At the end of Section 2.1, key population 

statistics such as allele frequency, minor allele frequency, Hardy-Weinberg equilibrium and 

linkage disequilibrium are defined. Section 2.2 describes the simulation of true breeding values, 

phenotypic values, negative correlation between maternal and direct effects, heritability, genetic 

and residual variances. Furthermore, ideas that could be exploited in future to obtain genotyping 

information for ungenotyped animals are presented in Section 2.3. 

2.1. Population modelling 

2.1.1. Base population for the honey bee 
A base population is used as a starting point for simulation studies. It is composed of individuals 

in a pedigree for which no ancestral information is available, and is assumed to be in mutation-

drift equilibrium with linkage disequilibrium (LD). Thus, a software program was developed that 

was capable of producing a dataset for a base population in the honey bee. It provided the 

possibility to investigate the effect of parameters like mutation rate, density of markers and 

number of individuals on the extent of LD in a population. 

In order to generate a dataset according to the requirements specific to honey bee populations, 

the software program allows to input: (1) number of generations, (2) number of sire queens, (3) 

number of dam queens, (4) number of marker loci, (5) forward and backward mutation rates, (6) 

minor allele frequencies and (7) number of marker loci to be selected as SNP on the basis of 
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minor allele frequency. Further details for implementing the program are provided in the 

appendix. The features of the software program and modelling of the population structure, the 

genome and the evolutionary processes are described below. 

2.1.1.1. Structure of the base population 
The software program constructs a population structure according to the provided input. The 

input data includes number of sire queens and dam queens (with a ratio of 10:1), number of 

generations and total number of marker loci to be simulated (assumed to be bi-allelic). In order 

to model the haploid drones, a sire queen is defined that represents a drone-producing colony. 

Two matrices with a size equal to number of individuals by number of marker loci represent the 

genome of diploid sire queens and dam queens, respectively. The population size remains 

constant in every generation according to the Fisher-Wright population model. Furthermore, all 

simulated generations are non-overlapping. 

2.1.1.2. Genome 
A diploid genome, consisting of 16 linkage groups, is simulated for sire and dam queens. The 

length of each chromosome is simulated according to the actual length of all honey bee 

chromosomes. The number of marker loci ( N ) to be simulated along the genome can be 

provided as input. In the software program, the number of marker loci to be distributed per 

chromosome, iN  ( 16,.....2,1=i ), is based on the actual proportion of SNP loci present on each 

honey bee chromosome and is computed using the following formula: 

Number of marker loci on the thi  chromosome, ii NRN =  2.1 

where iR  is equal to the actual ratio between number of SNP loci on the thi  chromosome and 

total number of SNP loci in the honey bee genome. Positions of all loci on all chromosomes are 

sampled from a uniform distribution. The number of SNP loci per chromosome and the length of 

all 16 chromosomes were obtained from the honey bee SNP database 

(www.hgsc.bcm.tmc.edu/projects/honeybee/;http://www.ncbi.nlm.nih.gov/genome?term=apis%2

0mellifera) as shown in Table 2.1.  

http://www.hgsc.bcm.tmc.edu/projects/honeybee/�
http://www.ncbi.nlm.nih.gov/genome?term=apis%20mellifera�
http://www.ncbi.nlm.nih.gov/genome?term=apis%20mellifera�
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Table 2.1. Summary of the chromosome length, number of SNP and Ri. 

Chromosome length and SNP data were obtained from the honey bee genome database; Ri is the actual 
ratio between the number of SNP on the ith chromosome and the total number of SNP in the honey bee 
genome; this information is used to simulate the genome and to distribute markers across the 
chromosomes. 

Chromosome Length (in base-pairs) Number of SNP Ri 

1 29,893,408 140,148 0.1414 

2 15,549,267 62,801 0.0633 

3 13,234,341 70,577 0.0712 

4 12,718,334 55,407 0.0559 

5 14,363,272 62,750 0.0633 

6 18,472,937 78,086 0.0788 

7 13,219,345 59,210 0.0597 

8 13,546,544 61,811 0.0623 

9 11,120,453 55,302 0.0558 

10 12,965,953 50,243 0.0507 

11 14,726,556 68,972 0.0696 

12 11,902,654 57,616 0.0581 

13 10,288,499 50,380 0.0508 

14 10,253,655 48,322 0.0487 

15 10,167,229 38,452 0.0388 

16 7,207,165 31,295 0.0316 

Total 219,629,612 991,372  
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2.1.1.3. Evolution 
To simulate an evolutionary process, recombination and mutation are implemented during the 

process of gamete formation in every generation. Multiple mating is modelled in the parental 

generations. The processes are briefly described below. 

Recombination 
Recombination is the exchange of chromosomal segments between paternal and maternal 

chromosomes. It is implemented in the software program as follows. The recombination 

probability (θ ) between two adjacent loci on a chromosome is calculated from the Haldane 

mapping function (Haldane, 1919), which is the most commonly used mapping function. It is 

based on the assumption that crossovers in any given chromosomal segment follow a Poisson 

distribution, with no interference between crossovers. The recombination probability is 

calculated using the following expression: 

( )[ ]||2exp1
2
1 x−−=θ

 
2.2 

where exp denotes the exponential function and || x  stands for the absolute value of the map 

distance between adjacent loci. The Haldane mapping function requires that distances are 

expressed in Morgan units, therefore, distances between two loci are converted from base-pairs 

to Morgan using the reported recombination rate of 19 cM/Mb (Beye et al., 2006, The Honeybee 

Genome Sequencing Consortium, 2006). 

Mutation 
Mutation is implemented in the software program to create polymorphisms. All loci in all 

individuals belonging to generation zero have a single allele coded as 1. Both forward and 

backward mutations are modelled, allowing each locus to mutate from allele 1 to allele 2 and 

from allele 2 to allele 1. The required rates of forward and backward mutations can be specified 

in the input as mutation rates per locus per gamete per generation. The advantage of modelling a 

bi-directional mutation is that different values of forward and backward mutation rates can be 

chosen. Setting the backward mutation rate to zero will result in an infinite site model of 

mutation (Kimura, 1969) where each locus can only mutate once over all generations and 

mutation will result in the formation of allele 2. The infinite site model of mutation can be useful 
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when simulating an extremely high initial marker density with a low mutation rate and a large 

number of generations as shown in studies by Sonesson and Meuwissen (2009) and Calus et al. 

(2008), where 1 million and 300,000 marker loci were simulated for a genome of size 10 M and 

3 M, respectively. 

Multiple mating 
Figure 2.1 describes the general mating scheme followed during the simulation. Polyandry, 

commonly referred to as multiple mating, is a phenomenon observed in honey bee whereby a 

queen mates with multiple drones (average of 10 to 20 drones). To model this situation in the 

software program, a dam queen and a group of 10 sire queens (a sire queen represents a drone-

producing colony) are assumed as mating partners. To form groups, all sire queens are randomly 

permuted and thereafter divided into groups consisting of 10 sire queens. 

A detailed mating scheme, showing how gametes from a dam queen are combined with the 

drones from a group of sire queens is illustrated in Figure 2.2. A dam queen generates a total of 

11 gametes, of which 10 give rise to sire queens and one to a dam queen in the next generation. 

Since a gamete produced by a sire queen is regarded as a drone, it is assumed to occur in 

multiple copies. One of the 10 sire queens of a group contributes a drone, which combines with a 

gamete from the dam queen to produce a new dam queen for the next generation. In addition to 

the drone generated for the formation of a dam queen, each of the 10 sire queens of a group 

produces one drone, thus a group contributes a total of 11 drones. During the formation of a sire 

queen, all 11 drones of a group have an equal probability to be drawn as a gamete. Since drones 

in a set are sampled with replacement, the resulting progenies are related as super-sibs 

(coefficient of relatedness = 0.75), full-sibs (coefficient of relatedness = 0.5) or half-sibs 

(coefficient of relatedness = 0.25). 
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Figure 2.1. General mating scheme for the base population. 

m = total number of dam queens; since there is a 1:10 ratio between number of dams and sires, 
the number of sire queens is “mx10”; in every generation, all sire queens are randomly 
permuted and grouped; each group consists of 10 sire queens; a dam queen and a group of sire 
queens are the mating partners; all generations are non-overlapping and the population size is 
kept constant across all generations. 
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Figure 2.2. Multiple mating in the base population. 
Multiple mating between a dam queen and 11 drones from a group. The resulting offspring 
consist of one dam queen and 10 sire queens; all drones are sampled with replacement which 
models the phenomenon of producing multiple copies of identical gametes by a drone. 

2.1.1.4. Base population structure for this study 
For this study, a population with 550 queens, 500 sire queens and 50 dam queens, were 

simulated with 100,000 marker loci (Table 2.2) for 1000 generations to obtain a base population 

in mutation-drift equilibrium. The forward and backward mutation rates were taken to be 0.0025. 

In the resulting base population, 44,000 marker loci (Spötter et al., 2012) with the highest minor 

allele frequency were chosen. Out of these 44,000 marker loci, 250 with the highest minor allele 

frequency were chosen as QTL and the remaining as SNP. Consequently, the average distance 

between adjacent SNP loci was approximately 0.001 M. QTL alleles received an effect drawn 

from a normal distribution ( )10,N . 
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In addition, a validation was performed with populations consisting 220 and 550 queens. The 

achieved LD was compared with the theoretical value of LD. Results are presented in Chapter 5. 

Table 2.2. A summary of the simulated number of markers on each chromosome of the honey 
bee. 

Chromosome Number of marker 

1 14,137 

2 6,335 

3 7,119 

4 5,589 

5 6,330 

6 7,877 

7 5,973 

8 6,235 

9 5,578 

10 5,068 

11 6,957 

12 5,812 

13 5,082 

14 4,874 

15 3,879 

16 3,155 

Total 100,000 
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2.1.2. Modelling a ‘natural’ population structure - Subsequent populations from the base 
population 
Five additional overlapping generations were simulated from the base population. A realistic 

structure was modelled for the subsequent generations since they composed the population that 

was used to test the methodology of genetic evaluation. In the following section, modelling of 

these five additional generations is described. 

2.1.2.1. Mating and selection scheme 
As described earlier, the base population consisted of 550 unrelated queens in total. From these 

550 queens, 50 queens were selected as dam queens and the remaining queens were used as 

drone-producing queens. Each of the generations 1-5 consisted of 500 potential-dam queens and 

250 drone-producing queens. From these 500 potential-dam queens, 10% (i.e. 50 queens) were 

randomly selected (Figure 2.3) as dam queens. 

In each generation, the 50 selected dam queens produced a total of 500 potential-dam queens. In 

addition, half of the dam queens (i.e. 25 dam queens) also produced 250 drone-producing 

queens. As a result, the population size in each generation remained constant with 500 potential-

dam queens and 250 drone-producing queens (Figure 2.3). To summarize, the complete pedigree 

from the base population up to the fifth generation consisted of 4300 queens i.e. 50 dam queens 

and 500 drone-producing queens in the base population and 2500 potential-dam queens and 1250 

drone-producing queens from generations 1-5. 

In most of the simulation studies, the number of progenies produced by a dam/sire is usually 

fixed, but here a more realistic situation was modelled by allowing all dam queens to have an 

equal probability to be sampled as a dam for the next offspring. For the current study only 10% 

individuals were selected. The selection percentage could be varied depending on the 

requirements of the study. 
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Figure 2.3. Selection scheme. 

The selection scheme shows that in each generation 10% of the potential-dam queens were 
selected which produced offspring for the next generation. 

2.1.2.2. Population characteristics specific to the honey bee 
To construct a population similar to that used for genetic evaluation in the honey bee (Bienefeld 

et al., 2007), a dummy sire and an average worker was constructed. Generations following the 

base population were overlapping and mating was polyandrous as in the real breeding 

population. These characteristics are described in more detail in the following section. 

Construction of a dummy sire 
As a consequence of polyandry in the honey bee, offspring have an unclear paternal descent. To 

overcome the problem of representing the paternal descent, Bienefeld et al. (2007) suggested 

using a dummy sire in the pedigree. A dummy sire represents a group of sister colonies 

(approximately 8-10 sister colonies) which are maintained at the mating stations (Nolan, 1937; 

Rothenbuhler, 1958) with the purpose of producing only drones. This way, a controlled mating is 

ensured. An example pedigree depicting a dummy sire is shown in Figure 2.4 and Table 2.3. For 

the current study, it was assumed that a dummy sire consisted of 10 drone-producing queens; 

thus, each generation consisted of 25 dummy sires formed by 250 drone-producing queens. It 

should be noted that in generations 1-5, the 10 drone-producing queens that formed a dummy 



44 

 

sire were related as sisters as they had the same dam queen and dummy sire (Figure 2.4), a 

situation similar to mating stations used in several European countries. 

 

Drone producing 
queen

Dummy Sire

Dam Queen

Dummy Sire

Drone

 

Figure 2.4. Pedigree diagram. 

In this pedigree diagram, dummy sires are represented by the larger square box in light green 
whereas dam queens are represented by the circle in blue. The expanded rectangular box shows 
a dummy sire consisting of 10 drone-producing sister queens represented by smaller circle in 
dark green. Each drone-producing sister queen contributes two drones which are represented by 
the smaller square box in light green. The pedigree shows that mating takes place between 
overlapping generations. All drone-producing sister queens comprising a dummy sire have a 
common dam queen and dummy sire, thus, they are related as sisters. 
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Table 2.3. An example pedigree. 

The example pedigree shown here consists of queens, average workers and dummy sires 
belonging to three generations. All animals have been assigned a fictitious animal ID. It also 
shows that mating takes place between overlapping generations. 

Generation Animal ID Dam Queen Dummy Sire 
Generation 1 Queen1 - - 

Queen2 - - 
Queen3 - - 
Queen4 - - 
Queen5 - - 
Queen6 - - 

Dummy Sire1 - - 
Dummy Sire2 - - 

Average Worker1 Queen1 - 
Average Worker2 Queen2 - 
Average Worker3 Queen3 - 
Average Worker4 Queen4 - 
Average Worker5 Queen5 - 
Average Worker6 Queen6 - 

Generation 2 Queen7 Queen1 - 
Queen8 Queen6 - 
Queen9 Queen2 - 
Queen10 Queen3 - 
Queen11 Queen1 - 
Queen12 Queen2 - 

Dummy Sire3 Queen3 - 
Dummy Sire4 Queen6 - 

Average Worker7 Queen7 Dummy Sire1 
Average Worker8 Queen8 Dummy Sire1 
Average Worker9 Queen9 Dummy Sire2 
Average Worker10 Queen10 Dummy Sire2 
Average Worker11 Queen11 Dummy Sire1 
Average Worker12 Queen12 Dummy Sire2 

Generation 3 Queen13 Queen9 Dummy Sire2 
Queen14 Queen11 Dummy Sire1 
Queen15 Queen7 Dummy Sire1 
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Queen16 Queen10 Dummy Sire2 
Queen17 Queen7 Dummy Sire1 
Queen18 Queen10 Dummy Sire2 

Dummy Sire5 Queen10 Dummy Sire2 
Dummy Sire6 Queen11 Dummy Sire1 

Average Worker13 Queen13 Dummy Sire4 
Average Worker14 Queen14 Dummy Sire4 
Average Worker15 Queen15 Dummy Sire3 
Average Worker16 Queen16 Dummy Sire3 
Average Worker17 Queen17 Dummy Sire4 
Average Worker18 Queen18 Dummy Sire3 

Construction of an average worker 
A colony is formed by a queen and its progeny comprising several thousand workers. Since it is 

impossible to include all workers of a colony for genetic evaluation, an average worker was 

constructed that represented all workers of a colony. It was assumed that one progeny average 

worker existed for each potential-dam queen/dam queen in the pedigree (Table 2.3). As a result 

both maternal and direct effects were taken into account. 

Modelling polyandry and overlapping generations 
In each generation, 50 dam queens and 25 dummy sires were randomly selected as mating 

partners. A dam queen mated with one specific dummy sire, whereas a dummy sire mated with 

more than one dam queen. To model polyandry, each dummy sire provided 20 drones (two from 

each sister queen) to the dam queen for mating. 

For generations to be overlapping, queens chosen to become dam queens were sampled from the 

nth generation and queens constituting a dummy sire came from n-1th generation, i.e. one 

generation preceding to the dam queen’s generation (Figure 2.5). The described mating scheme 

was consistent with the scheme followed by most bee breeders in Europe. It resulted in the 

offspring being related as ‘super-sibs’, ‘full-sibs’ or ‘maternal half-sibs’. Super-sibs or full-sibs 

have a common mother and a dummy sire. A paternal gamete comes from a single drone in case 

of super-sibs and different drones derived from the same queen in case of full-sibs. Maternal 

half-sibs also share the same mother and dummy sire, but a paternal gamete comes from different 

drones derived from two sister queens. 
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Figure 2.5. Mating scheme in the simulated population. 

The mating scheme in the simulated generations 1-5 is illustrated in this figure. Dummy sires 
connected through dashed arrow to queens are the mating partners. Q-b are the queens belong 
to the base population and Q-1 to Q-5 are queens belonging to generations 1 to 5. Each dummy 
sire is equivalent to 10 drone-producing sister colonies. Therefore, in total 25 dummy sires 
represent 250 queens. This mating scheme is similar to the mating scheme followed by several 
bee breeders in European countries. 

2.1.3. Population statistics 
Statistics for the allele frequency, Hardy-Weinberg equilibrium, minor allele frequency, LD etc. 

allow inferences to be made about an evolving population. Allele frequency data is a requisite for 

any population; Hardy-Weinberg equilibrium and minor allele frequency are the usual criteria to 
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evaluate the informativeness of marker loci. Most studies based on genome-wide marker data 

rely on the assumption that a marker and the locus affecting the trait are in LD (Slatkin, 2008). 

For this study, these statistics were also calculated and used during the simulation of the datasets. 

For example, the software program for the base population calculated statistics for the allele 

frequency, minor allele frequency, Hardy-Weinberg equilibrium and LD. In the last generation, 

the software program calculates the average LD value for selected SNP with the highest minor 

allele frequency. In addition, generation-wise LD values for all simulated marker locus pairs are 

calculated and plotted in a graph. As a measure of LD, 2r  (Hill and Robertson, 1968; Hill, 1975) 

is used in the software program: 

bBaA pppp
Dr

2
2 =

 
2.3 

where aBAbabAB ppppD −= ; ABp , abp , Abp , aBp  and Ap , ap , Bp , bp  are the observed 

frequencies of haplotypes AB, ab, Ab, aB and of alleles A, a, B, b, respectively, in the 

population. Allele frequency, minor allele frequency and Hardy-Weinberg equilibrium as well as 

the concept of LD, different LD measures and factors affecting it are explained briefly in the 

following sections. 

2.1.3.1. Allele frequency 
It is one of the most important statistics in a population genetics study. Allele frequency refers to 

the proportion of a gene variant in a population (Falconer and Mackay, 

1996; http://www.nature.com/scitable/definition/allele-frequency-298). It can be expressed in 

different forms, i.e. as a percentage or fraction. In this study, information about the allele 

frequency of marker loci in the base population was used to construct the genomic relation 

matrix. 

2.1.3.2. Minor allele frequency 
Minor allele frequency is the frequency of the less frequent allele of a SNP in the population. It 

is an important criterion for selecting informative SNP. Usually, SNP with a MAF of less than 

0.05 are discarded in the genome-wide association studies as it requires a strong statistical power 

to make a useful prediction about such rare alleles. As described previously, for this study, 

http://www.nature.com/scitable/definition/allele-frequency-298�
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43,750 loci with the highest MAF were chosen as SNP (the remaining 250 out of 44,000 were 

chosen as QTL) and were used for the genetic evaluation. 

2.1.3.3. Hardy-Weinberg equilibrium 
The Hardy-Weinberg equilibrium states that in a random mating population, the allele and 

genotype frequencies remain constant in every generation, provided that there is no selection, 

mutation and migration. (Falconer and Mackay, 1996; Hamilton, 

2009; http://www.nature.com/scitable/definition/hardy-weinberg-equilibrium-122). The Hardy-

Weinberg equilibrium is often used as a null-hypothesis to test the effect of evolutionary forces 

on the allele and genotype frequencies. The software program for simulating the base population 

also provides the χ2 statistics for Hardy-Weinberg equilibrium that can be used as a criterion to 

select informative marker loci. 

2.1.3.4. Linkage disequilibrium 
Linkage disequilibrium (also known as gametic phase disequilibrium, gametic disequilibrium or 

allelic association) is defined as the non-random association of alleles at two loci. LD has been 

exploited in marker-assisted selection, genomic selection strategies as well as for mapping QTL 

associated with the trait of interest. 

To explain LD, an example by Hayes (2008) is considered. Let’s assume that a pair of loci A and 

B occurs on a chromosome with two alleles A/a and B/b. Thus, the four haplotypes for this pair 

of loci are AB, Ab, aB and ab. If the allele frequencies of A, a, B and b in the population are 0.5, 

then the expected frequencies of each of the four haplotypes in the population is 0.25. Any 

deviation of the haplotype frequencies from 0.25 is LD (Hayes, 2008). In other words, if the 

expected value of a haplotype frequency is the product of its allele frequencies, the loci are in 

linkage equilibrium i.e. BAAB ppp = , baab ppp = , bAAb ppp =  and BaaB ppp = (Table 2.4). 

Any deviation from this equilibrium is disequilibrium. 

 

 

 

Table 2.4. Allele and genotype frequencies. 

Alleles A a Allele frequency 

B ABp  aBp  Bp  
b Abp  abp  bp  

Allele frequency Ap  ap  1 

 

http://www.nature.com/scitable/definition/hardy-weinberg-equilibrium-122�
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ABp , aBp , Abp  and abp  are the haplotype frequencies; Ap  and ap  and Bp  and bp  are the allele 

frequencies for locus A and B, respectively. 

 

 

 

 

 

 

Measures of LD 
Different measures of LD have been proposed (Devlin and Risch, 1995; Zhao et al., 2007). A 

concise description of the important and commonly used measures of LD is as follows: 

D  – This measure of LD gives the difference between the observed and expected haplotype 

frequencies (Lewontin and Kojima, 1960; Hill, 1968, 1975, 1981; Hayes, 2008). For the above 

example (Table 2.4, 2.5), when the two loci are in LD, the deviation in the expected frequencies 

can be given as: Dppp BAAB += , Dppp bAAb −= , Dppp BaaB −=  and Dppp baab += . The 

commonly used expression for D  is given as following: 

aBAbabAB ppppD −=  2.4 

This expression can be derived in the following manner: 

( )( )Dpp+ Dpppp baBAabAB +=  

2DDp pDp pppp p baBAbaBA +++=  2.5 

Linkage Disequilibrium 

r2 = 1; ‘Perfect LD’ 

 

Linkage Equilibrium 

Alleles A a Total 

B 0.25 0.25 0.5 

b 0.25 0.25 0.5 

Total 0.5 0.5 1 

 

Alleles A a Total 

B 0.1 0 0.1 

b 0 0.9 0.9 

Total 0.1 0.9 1 

 

Table 2.5. Example data for allele and genotype frequencies. 
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( )( )DppDpppp BabAaBAb −−=  

2DDppDpppppp BabAbaBA +−−=  2.6 

On subtracting equations 2.5 and 2.6, one obtains: 

( )bAbaBaB AaBAbabAB ppppppppDpppp +++=−  

Since 1=+++ bAbaBaB A pppppppp , therefore, 

Dpppp aBAbabAB =−  2.7 

The range of D  is 25.025.0 +≤≤− D . 

A major disadvantage associated with the measure D  is that it is highly influenced by the allele 

frequency. 

'D  – This measure of LD was proposed by Lewontin (1964). The value of 'D  is obtained by 

standardizing D  with its maximum value. The expression can be given as following: 

maxD
D

D' =  where 








=
0min
0min

max ) if D<p, pp(p
) if D>p, pp(p

D
baBA

BabA

 
2.8 

The range of 'D  is 10 ' ≤≤ D . 

2r  –This measure was proposed by Hill and Robertson (1968). It is the square of correlation of 

allele frequencies in the population and is expressed as follows: 

bBaA pppp
Dr

2
2 =

 
2.9 

It is the most commonly used and preferred measure of LD. The range of r2 is 0 ≤ r2 ≤ 1. 
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2'χ  measure - This is a multi-locus measure of LD (Zhao et al., 2005; Hayes, 2008) and is given 

as follows: 

∑∑
= =−

k

i

m

jl 1 1 ji

2
ij2'

pBpA
D

)1(
1=χ

 
2.10 

where jiji pBpABpAD −= , ji BpA  is the frequency of the haplotype AiBj, ipA  is the frequency 

of the thi  allele at locus A, jpB  is the frequency of the thj  allele at locus B and l  is the 

minimum of the number of alleles at locus A and locus B. 

Factors affecting LD 
Several factors, i.e. recombination, mutation, migration, population admixture, effective 

population size, genetic drift, selection and inbreeding, affect the extent of LD in a population 

(Balding et al., 2007; http://bio.classes.ucsc.edu/bio107/Class%20pdfs/W05_lecture15.pdf). 

Recombination – It is one of the most crucial factors that determine the level of LD in a 

population. The decay of LD is controlled by the rate of recombination in a species. The general 

expression for the decay of LD with time for a random mating population in the absence of other 

evolutionary forces can be given as follows: 

( )tt DD θ−= 10  

where tD  and 0D  are the levels of LD at the tht and th0 generations, respectively, and θ  is the 

recombination fraction (see Equation 2.2, Haldane mapping function). 

Thus, when two loci are located further apart, LD will tend to be smaller and will decrease over 

time as a result of recombination. LD gives a general indication of the frequency of 

recombination, hence, the physical distance between two loci. 

Mutation – Mutation rates are generally very small, thus mutation itself can only introduce small 

changes in the allele frequency. However, on an evolutionary time scale it might contribute to 

giving rise to LD. 

http://bio.classes.ucsc.edu/bio107/Class%20pdfs/W05_lecture15.pdf�
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Migration and population admixture – Migration occurring between populations that greatly 

differ in allele frequencies will lead to the establishment of a larger LD as compared to 

populations with similar allele frequencies. 

Finite population size and genetic drift – The smaller the effective population size, the larger is 

the effect of genetic drift and the greater is the value of LD. 

Selection – LD can be caused due to selection of one combination of alleles over another. 

However, the effect is localized around specific genes, thus the average LD for the whole 

genome may not be affected significantly. 

Inbreeding – Inbreeding decreases the rate of decay of LD in a population because it reduces the 

frequency of double heterozygotes. 

2.2. Simulation 
This section begins with the derivation of breeding values for a single locus and introduces the 

concept of population mean and average effect of an allele. This will help to understand the 

simulation of true breeding values and phenotypic values in the later sections. Furthermore, the 

methodology of the calculation of key parameters such as negative correlation between maternal 

and direct effects, genetic variances (including determination of weighing factors for maternal 

and direct effects), phenotypic variance, residual variance and heritability of maternal and direct 

effects is explained. 

2.2.1. Breeding value for a single locus 
In Chapter 1, the concept of breeding values has already been explained. This section further 

elaborates this concept and describes the method of obtaining breeding values for a single locus 

using information based on the allele frequency and allele substitution effects (Falconer and 

Mackay, 1996; Hamilton, 2009). This sets the background for understanding the simulation of 

true breeding values and phenotypic values. 

2.2.1.1. Population mean 
The value observed when a characteristic is measured on an individual is called its phenotypic 

value. Alternatively, ‘mean phenotypic’ value refers to the average phenotype of a population of 

individuals. The mean phenotype is a result of the effect of genes and environment. Thus, the 
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components of this mean phenotypic value are mean genotypic value and environmental 

deviation (Falconer and Mackay, 1996; Hamilton, 2009). Usually, the mean environmental 

deviation is taken to be zero, thus in that case, the mean phenotypic value would be equal to the 

mean genotypic value. The term ‘population mean’ refers to this ‘mean phenotypic’ or ‘mean 

genotypic’ value (Falconer and Mackay, 1996; Hamilton, 2009). Consider a gene with alleles A1 

and A2 occurring at a frequency of p  and q . It is assumed that A1A1, A1A2 and A2A2 are 

associated with the genotypic values +a , d  and a− , respectively, where ‘ a ’ refers to the 

additive genetic effect and ‘ d ’ is the dominance effect (Table 2.6). 

Table 2.6. Population mean. 

(Source: Falconer and Mackay, 1996) 

Genotype Frequency Value Frequency x Value 
A1A1 2p  +a  ap2  
A1A2 pq2  d  pqd2  
A2A2 2q  a−  aq 2−  

                                                                                                    Population mean = ( ) dpq + qpa 2−  
 

The population mean is equal to ( ) dpq + qpa 2− , and is obtained by multiplying genotypic 

value with its frequencies and then summing over all genotypes (Falconer and Mackay, 1996). 

2.2.1.2. Average effect of an allele and breeding values 
The term average effect is used to assign a value to an allele (Hamilton, 2009). The average 

effect of an allele is defined as the mean phenotypic deviation from the population mean of that 

group of individuals which received that allele from one parent and the other allele from a parent 

drawn at random from the population (Falconer and Mackay, 1996; Hamilton, 2009). In simpler 

terms, the average effect is a ‘deviation’ that measures the difference between the value of all 

genotypes that contain a given allele and the population mean (Hamilton, 2009). The average 

effect of an allele or an allele substitution (α ) depends on the genotypic value a  and d as well as 

the genotypic and allele frequencies in the population (Hamilton, 2009). 

For an illustration, one can consider an example from Falconer and Mackay (1996) that assumes 

two alleles A1 and A2 at a locus occurring at a frequency of p  and q  with the average effect of 
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the allele A1 as 1α . If gametes carrying only allele A1 unite with gametes from the population 

then the frequency of genotype A1A1 will be p  and that of genotype A1A2 will be q . The 

genotypic value of A1A1 is +a  and that of A1A2 is d , thus, the proportion in which they occur in 

the population is pa + qd . The average effect of the allele A1 is obtained by subtracting this 

mean value from the population mean, as given below (Falconer and Mackay, 1996): 

dpq]  q)  [a(p  pa + qd α 21 +−−=  

      p)] q [a + d(q −=  2.11 

Similarly, the average effect of the allele A2 is given as: 

 p)]p[a + d(q  α −−=2  2.12 

The average change in value due to an allelic substitution (‘the average effect due to substitution’ 

from alleles A2 to A1) is: 

21 ααα −=  p) a + d(q −=  2.13 

On comparing equations 2.11, 2.12 and 2.13, one gets: 

qαα =1  and  pα α  −=2  2.14 

The breeding value of an individual can be defined as a value associated with the genes carried 

by the individual and transmitted to its offspring. Thus, based on the explanation of the average 

allele effects, the breeding value of an individual is equal to the average effect of the genes it 

carries, i.e. the sum of effects over both alleles at each locus and over all loci (Falconer and 

Mackay, 1996). Thus, for a single locus with two alleles the breeding values of the genotypes are 

given in Table 2.7: 
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Table 2.7. Breeding values for a single locus. 

Genotype A1A1 A1A2 A2A2 
Breeding value qα2   p)α(q −  pα2−  

Adjusted breeding value α  0  α−  

 

Dekkers (1999) suggested that when selection is within a generation, breeding values can for 

simplicity be deviated from the breeding value of the heterozygote without changing the ranking 

of individuals by subtracting α)( pq − . Thus, the adjusted breeding values (Table 2.7) for each 

genotype will be equal to α+ , 0  and α− . From equation 2.13 it is clear that in case 0=d , 

then α  will be equal to ‘ a ’. 

2.2.2. Simulation of the true breeding values and phenotypic values 
The true breeding value of an individual is usually expressed as a sum of the average effect of 

allele substitutions over all QTL. In honey bees, a colony trait e.g. honey production, wax 

production, aggressiveness is comparable to maternally influenced traits in mammals such as 

birth and weaning weight. Thus, it can be partitioned into the maternal additive genetic effects of 

the queen and the direct additive genetic effects of the progeny workers. Therefore, the total true 

breeding of a queen is the sum of the maternal and direct true breeding values. A strategy to 

simulate the maternal and direct true breeding values for an individual from its QTL information 

is presented below. 

As described earlier (Sub-section 2.1.1.4), a total of 250 QTL were simulated across the genome. 

To model the maternal and direct effects, it was assumed that of the total 250 QTL, 86 loci 

controlled direct effects, 78 pleiotropic loci controlled both direct and maternal effects and the 

remaining 86 loci controlled maternal effects (Figure 2.6). This scheme for distributing QTL 

allowed simulating the maternal and direct true breeding values in a simple way. 
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QTL loci controlling direct effects

QTL loci controlling only direct effectsQTL loci controlling only maternal effects

Pleiotropic QTL loci

QTL loci controlling maternal effects
 

Figure 2.6. A scheme for distributing QTL to simulate maternal and direct effects. 

The maternal and direct true breeding value of a queen was taken as a sum of the average effect 

of allele substitution over all QTL controlling maternal and direct effects, respectively. True 

breeding values for maternal ( qTBV ) and direct effects ( wTBV ) for a queen were calculated using 

the formula ∑=
j

jij
q

i
q aqTBV  and ∑=

k

kik
w

i
w aqTBV  where i

qTBV  and i
wTBV  are the maternal and 

direct true breeding values for the thi queen. ij
qq  and ik

wq  are QTL genotypes of the thi queen at the 

thj  and thk  QTL controlling maternal and direct effects, respectively. It has a value of -1 or 1 for 

homozygous genotypes and 0 for the heterozygous genotypes. ja  and ka  are average effects of 

allele substitution at the thj  and thk  QTL, respectively. Maternal and direct true breeding values 

were simulated for all dam queens of the base population and all potential-dam queens in 

generations 1 to 5. 

The sum of maternal and direct true breeding values gave the overall true breeding value of a 

queen. The phenotype of each queen was obtained by adding its overall true breeding value to a 

residual value drawn from a normal distribution ),0( 2
eN σ . 
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2.2.3. Simulation of correlation between maternal and direct effects 
Studies in the honey bee (Bienefeld and Pirchner, 1991; Ehrhardt and Bienefeld, unpublished 

data) have shown that there is a strong negative correlation between maternal and direct effects. 

To model this negative correlation, signs of QTL effects for maternal and direct effects were 

chosen opposite to each other at the pleiotropic loci. The level of negative correlation was 

determined by the number of pleiotropic loci. No correlation between maternal and direct effects 

was obtained by randomly choosing signs for QTL effects for maternal and direct effects. The 

estimate of the simulated value of correlation ( qwr ) was obtained by calculating the correlation 

between the maternal and direct true breeding values which is the ratio of the covariance 

between maternal and direct effects to the product of the standard deviations of maternal and 

direct effects, 
wq

qw
qwr

σσ
σ 2

= . To the best of the knowledge, this is the first study that analysed the 

impact of using marker information on the accuracy of estimating breeding values for traits with 

a negative correlation between maternal and direct effects. 

2.2.4. Variance component and heritability of trait 
The variance of residual effects ( 2

eσ ) and the total genetic effects ( 2
gσ ) determine the variance of 

phenotypes ( 2
pσ ). The estimation of these variance components (Searle et al., 1992) is essential 

to the estimation of breeding values. Moreover, they are also required for estimating heritability 

of different traits and the correlation between them. The estimation of variances is based on 

algorithms such as maximum-likelihood (ML) (Harville, 1977), restricted maximum likelihood 

(REML) (Patterson and Thompson, 1971) and average information REML (AI-REML) (Gilmour 

et al., 1995; Johnson and Thompson, 1995). These algorithms are implemented using different 

software. With real datasets, the amount of information is very large and it is desirable to use 

these efficient algorithms for estimating breeding values. For this study, the variances were 

calculated directly from the simulated dataset. It was assumed that the estimates of breeding 

values did not differ significantly from the estimates obtained using these algorithms. 

Nevertheless, for estimating breeding values, software optimised for the special pedigree and 

numerator relationship matrix of the honey bee should be developed in future. 
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2.2.4.1. Simulation of genetic variances 

Variance and covariance of maternal and direct genetic effects 
For the calculation of the breeding values, estimates of the variance of maternal ( 2

qσ ) and direct (

2
wσ ) effects and the covariance ( qwσ ) between maternal and direct effects are required. Thus, the 

variance of maternal and direct effects were obtained by calculating the variance of the simulated 

maternal breeding values and direct true breeding values over all the generations (including the 

base population). Similarly, the covariance between maternal and direct effects was obtained by 

calculating the covariance between the maternal and direct true breeding values. The general 

formula is summarized as follows: 
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Total genetic variance - Weights for maternal and direct effects 
Assuming that there are ‘ n ’ correlated random variables nXXXX 321 ,,  and naaaa 321 ,,  

are ‘ n ’ constants. Let Y  represent the weighted sum of random variables, then a general 

expression for the variance of the weighted sum of correlated random variables is given as 

(Albright et al., 2011): 

( ) ( )∑ ∑
= <

+=
n

i ji
jijiii XXaaXaY

1

2 ),cov(2varvar  
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Similarly, the variance of total genetic effects with two dependent random variables can be 

written as: 

qwwqwwqqg wtwtwtwt σσσσ 222222 ++=  2.18 

where qwt  and wwt  are the weights for maternal and direct effects. 

It is important to determine the weights that can be assigned to maternal and direct effects. 

Usually a breeding value is defined as twice the expected deviation of an individual's progeny 

mean value from the population mean value, or twice the ‘transmitting ability’ of an individual 

(Falconer and Mackay, 1996; Hamilton, 2009). If one considers a complete colony as ‘offspring’ 

of a queen, then this colony comprises a daughter (the queen) and a family of granddaughters 

(the workers). These animals express one-half of the mother's maternal breeding value and one-

fourth of the grand-dam's direct breeding value. In this case, the breeding value would be defined 

as twice the one-half of the maternal breeding value of a queen plus twice the one-fourth of its 

direct breeding value (i.e. two times the expected deviation of progeny’s mean value from the 

population mean value, provided all other relatives have average breeding values of zero). Thus, 

the maternal and direct breeding values get a weight of 1 and 0.5, respectively. The total genetic 

variance ( 2
gσ ) will be qwwq σσσ ++ 22 25.0  (the latter from qwσ××× 5.012 ). However, for the sake 

of easy comparison and interpretation, the breeding value was taken as a sum of the direct and 

maternal breeding values of a queen in a manner analogous to mammals. Thus, for this study, 

equal weights (= 1) were assigned to both maternal and direct effects, and the total genetic 

variance was taken as a sum of variance of maternal effects, direct effects and twice the 

covariance between them ( qwwqg σσσσ 2222 ++= ). 

2.2.4.4. Simulation of phenotypic variance, residual variance and maternal and direct heritability 
A colony trait in honey bee is determined by the heritability of maternal ( 2

mh ) and direct effects (

2
dh ). Table 2.8 shows the values of simulated maternal heritability and achieved direct 

heritability at different correlations between maternal and direct effects. In this study, a fixed 

maternal heritability of 0.15, 0.25 and 0.35 was simulated that can be expressed as the ratio of 

the variance of maternal (queen) effects to the phenotypic variance and is given as follows: 
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After rearranging this expression, one obtains 2

2
2

m

q
p h

σ
σ = . Thus, the phenotypic variance ( 2

pσ ) 

was obtained from the ratio of the variance of maternal effects ( 2
qσ ) and a fixed value of the 

maternal heritability ( 2
mh ). 

Table 2.8. Heritability of direct effects at different values of simulated heritability of maternal 
effects and correlation between maternal and direct effects. 

Simulated 

heritability for the 

maternal effect 

Correlation 

between maternal 

and direct effects 

Achieved heritability 

for the direct effect 

(standard deviation) 

0.150 

0.150 

0.250 

0.250 

0.350 

0.350 

0 

-0.46 

0 

-0.46 

0 

-0.46 

0.162 (0.021) 

0.155 (0.022) 

0.270 (0.035) 

0.259 (0.037) 

0.377 (0.049) 

0.362 (0.051) 

 

If a linear mixed model is applied, then the variance of observations is equal to ZRZ'+I 2
eσ  with 

Z = [Z1 Z2], where Z1 and Z2 are design matrices for direct and maternal genetic effects and I is 

the identity matrix. Here, R is the Kronecker product of the relationship matrix (e.g. numerator 

relationship matrix derived from pedigree or combined relationship matrix derived from pedigree 

and genomic data) with a 2 by 2 matrix S, where 11s  is the direct genetic variance, 22s  is the 

maternal genetic variance and 12s  ( 21s= ) is the covariance. Given the above relationship, the 

variance of phenotypes ( 2
pσ ) is a sum of the variance of residual effect ( 2

eσ ) and the total genetic 

effect ( 2
gσ ) which can be expressed as 22

ge σσ + . Based on this relationship, the residual variance 
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was obtained by subtracting the total genetic variance from the phenotypic variance and can be 

written as 222  =  gpe σσσ − . 

The ratio of the variance of direct effects to the phenotypic variance provided a measure of the 

heritability of direct (worker) effects and is as given below. 
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2.3. Future Ideas: Methods for obtaining approximate genotypic information for an 
average worker 

2.3.1. Genotyping a sample of workers from a colony 
The average genotyping information for an average worker of a colony can be obtained through 

genotyping a sample of workers from each colony. An example for obtaining an average 

genotype on the basis of 10 marker loci for a sample of five workers from a colony is provided 

below: 

Table 2.9. Fictitious genotyping information for five workers at 10 loci. 

 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 
Genotype worker 1 11 12 12 21 11 22 22 22 12 11 
Genotype worker 2 22 12 22 11 11 21 22 21 21 11 

Genotype worker 3 11 22 22 22 11 21 12 12 12 21 

Genotype worker 4 22 12 22 12 21 11 22 22 11 21 

Genotype worker 5 21 12 22 22 12 11 21 12 11 21 

Average frequency of the 

first allele A1 
5/10 4/10 1/10 4/10 8/10 6/10 2/10 3/10 7/10 7/10 

Average frequency of the 

second allele A2  
5/10 6/10 9/10 6/10 2/10 4/10 8/10 7/10 3/10 3/10 

*Loci are denoted by L1-L10 

As shown in Table 2.9, the average genotype can be estimated from the frequency of alleles in a 

sample of workers that are genotyped. 
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2.3.2. Genotyping information based on the approach of Israel and Weller 
Israel and Weller (1998) derived the probabilities of the genotype when only certain individuals 

in a pedigree are genotyped. Regarding the special case of honey bees where only queens can be 

easily genotyped, this methodology could be used to derive genotype probabilities at all marker 

loci for an average worker. The methodology proposed by Israel and Weller (1998) has been 

summarized as follows. 

For individuals without genotype information available, the probability of the corresponding 

genotypes of a locus Q are 2
QP , 2

qP and qQ PP2 . For individuals that have not been genotyped but 

are progeny of genotyped individuals, the probability of the corresponding genotypes are 

( )d
Q

s
Q PP , ( )d

Q
s

q
d

q
s

Q PPPP +  and ( )d
q

s
q PP  where s

QP  and s
qP  are the probabilities of the two alleles of 

the sire and d
QP and d

qP are the probabilities of the two alleles of the dam of the individual under 

consideration. The probabilities of Q and q for the parents can be derived from QQP + QqP5.0  and 

QqP5.0 + qqP  where QQP , QqP and qqP  are the probabilities that the parent’s genotype is QQ, Qq 

or qq. The probability of the two alleles is 1 and 0 for a homozygote or 0.5 for a heterozygote in 

case parent’s genotype is available. If parents are not genotyped, then the probabilities of the two 

alleles are assumed to be equal to the allele frequencies in the population. If the parent is not 

genotyped, however some of its ancestors are genotyped, then the probability of its possible 

genotypes is computed from the genotyping information of its ancestors using the formula 

described earlier. Similar to the example pedigree from Israel and Weller (1998), a small 

example pedigree for the honey bee is shown below (Table 2.10) with the genotype probability 

for one locus. It is assumed that only dam queens in the 1st generation are genotyped and 

generations are overlapping. 
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Table 2.10. Probability of genotypes for ungenotyped animals derived from genotyped 
ancestors. 

   Genotype Probability 
Generation Animal 

ID 

Dam 

Queen 

Dummy 

Sire* 

Genotype QQ Qq qq 

Gen 1 Q1 0 0 qq 0 0 1 
Q2 0 0 Qq 0 1 0 

Q3 0 0 qq 0 0 1 

Q4 0 0 Qq 0 1 0 

Q5 0 0 Qq 0 1 0 

Q6 0 0 QQ 1 0 0 

DS1 0 0 - 0.49 0.42 0.09 

DS2 0 0 - 0.49 0.42 0.09 

AvgW1 Q1 0 - 0 0.8 0.2 

AvgW2 Q2 0 - 0.4 0.5 0.1 

AvgW3 Q3 0 - 0 0.8 0.2 

AvgW4 Q4 0 - 0.4 0.5 0.1 

AvgW5 Q5 0 - 0.4 0.5 0.1 

AvgW6 Q6 0 - 0.8 0.2 0 

Gen 2 

 

Q7 Q1 0 - 0 0.8 0.2 

Q8 Q6 0 - 0.8 0.2 0 

Q9 Q2 0 - 0.4 0.5 0.1 

Q10 Q3 0 - 0 0.8 0.2 

Q11 Q1 0 - 0 0.8 0.2 

Q12 Q2 0 - 0.4 0.5 0.1 

DS3 Q3 0 - 0 0.8 0.2 

DS4 Q6 0 - 0.8 0.2 0 

AvgW7 Q7 DS1 - 0.28 0.54 0.18 

AvgW8 Q8 DS1 - 0.63 0.34 0.03 

AvgW9 Q9 DS2 - 0.455 0.44 0.105 

AvgW10 Q10 DS2 - 0.28 0.54 0.18 

AvgW11 Q11 DS1 - 0.28 0.54 0.18 
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AvgW12 Q12 DS2 - 0.455 0.44 0.105 

Gen 3 Q13 Q9 DS2 - 0.455 0.44 0.105 

Q14 Q11 DS1 - 0.28 0.54 0.18 

Q15 Q7 DS1 - 0.28 0.54 0.18 

Q16 Q10 DS2 - 0.28 0.54 0.18 

Q17 Q7 DS1 - 0.28 0.54 0.18 

Q18 Q10 DS2 - 0.28 0.54 0.18 

DS5 Q10 DS2 - 0.28 0.54 0.18 

DS6 Q11 DS1 - 0.28 0.54 0.18 

AvgW13 Q13 DS4 - 0.6075 0.36 0.0325 

AvgW14 Q14 DS4 - 0.495 0.46 0.045 

AvgW15 Q15 DS3 - 0.22 0.51 0.27 

AvgW16 Q16 DS3 - 0.22 0.51 0.27 

AvgW17 Q17 DS4 - 0.495 0.46 0.045 

AvgW18 Q18 DS3 - 0.22 0.51 0.27 

 

 

 

 

 

2.3.3. Genotyping information based on the approach of Gengler et al. 
According to Gengler et al. (2007), the method given by Israel and Weller (1998) ignores 

information on descendents. Gengler et al. (2007) proposed a methodology to derive the 

conditional expectation of gene content of ungenotyped animals, given molecular data from 

genotyped individuals and pedigree data. The proposed methodology could also be adapted for 

honey bees, and can be especially helpful when the genomic matrix is to be constructed for 

ungenotyped animals (workers, dummy sires as well as ungenotyped queens) in the pedigree. 

The methodology proposed by Gengler et al. (2007) has been summarized as follows. 

Gen denotes the generation; Q denotes a queen; DS denotes a dummy sire; AvgW denotes an average worker. 
*A queen mates with a dummy sire that belongs to the generation that precedes the queen’s generation. Therefore, 

the allele frequency for the dummy sire mating with a queen is taken from the generation preceding the queen’s 

generation. In this example, frequencies of alleles Q and q in the population for fictitious dummy sires that mates 

with queens in generation 1 are assumed to be 0.8 and 0.2, respectively. Similarly, frequencies of alleles Q and q in 

the population to which dummy sires 1 and 2 belongs (in generation 1) are assumed to be 0.7 and 0.3, respectively. 
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Let q be the gene content at a particular locus,µ  be the population mean and d  be the deviation 

of gene content from the population mean i.e. µ−= qd . It is assumed that the gene content is a 

continuous variable, the relationship between gene contents is linear and the covariance between 

gene contents is proportional to the additive genetic relationship between individuals. Based on 

these assumptions, the conditional expectation of gene contents for all ungenotyped individuals 

(qx) given genotyping and pedigree data can be derived using the expression given below: 

( ) 




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= −

µ
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1q
AA1q

y

1
yxyx  2.21 

where qx is a vector of gene contents for ungenotyped individuals, qy is a vector of gene contents 

for genotyped individuals, Axy is the additive genetic relationship matrix between ungenotyped 

and genotyped individuals and Ay is the additive genetic relationship matrix for genotyped 

individuals. 

To provide a more accurate and practical method of computation, Gengler et al. (2007) 

incorporated the probability of errors in marker phenotypes under the incomplete penetrance 

model. This was achieved by assuming an error variance ( 2
eσ ) in the variability of q. The 

following mixed model 7
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 equations were proposed to obtain the solution for ungenotyped 

individuals: 

 2.22 

Here, µ̂ , yd̂  and xd̂  stand for the estimated values. yd  is a vector of deviations for genotyped 

individuals, xd  is a vector of deviations for ungenotyped individuals, M is the incidence matrix 

                                                           
7 Mixed model is a statistical model containing both fixed and random effects. 
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relating yq  to 



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d
d

 and can be written as ( )xy 01 , A is the numerator relationship matrix with 
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Chapter 3. A new approach of genetic 
evaluation in the honey bee 
Genetic evaluation is crucial for the genetic improvement of agriculturally important animals; as 

a result, various approaches were employed over the last several years for selecting genetically 

superior animals. In line with this fact, a chronological review of the progress of genetic 

evaluation in honey bees along with an introduction to the BLUP methodology and mixed model 

equations is provided at the beginning of this chapter. Section 3.3 explains the influence of 

maternal effects on the phenotype which forms a part of the linear model for genetic evaluation 

in honey bees. Finally, Sections 3.4 presents the implementation of the following genetic 

evaluation methods: (1) traditional approach using pedigree and phenotypic data (PED_BLUP) 

and (2) the unified approach using marker, pedigree and phenotypic data (UNI_BLUP). In 

addition, ideas on improving the numerator relationship matrix in the honey bee are discussed in 

Section 3.5. 

3.1. Review: The progress of genetic evaluation in honey bees 
Improvement for traits such as honey yield, swarming tendency, calmness and resistance to 

Varroa can be achieved by selecting animals with higher breeding values. However, as 

compared to other animals, the genetic evaluation is more complex in the honey bee. It requires 

taking into account the negative genetic correlation between maternal and direct effects 

(Bienefeld and Pirchner, 1991) and the peculiar genetic and reproductive biology of the honey 

bee. Nevertheless, genetic evaluation is crucial to the genetic improvement programs of honey 

bees. 

In 1982, Chevalet and Cornet proposed a genetical model based on selection index 8

                                                           
8 It is a method of estimating the breeding values using all available information on the individual and its relatives 
(Mrode, 2005). 

 that was 

analogous to models used for maternally influenced traits in mammals. A collective value was 

given to a colony that was assumed to be equivalent to the sum of the queen contribution and of 

an average contribution of the workers. This model took into account the peculiarities of the 
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honey bee reproduction and genetics. Based on the selection index, Cornuet and Chevalet (1987) 

illustrated a selection scheme for the improvement of honey production in the stock. 

Rinderer (1986) proposed the following expression for the selection index in the honey bee with 

respect to ‘two traits’: 

( )grZ
h
hVZI −+








= 122

2

2
1

1

 
3.1 

where 1Z  is the z-score for trait 1, 2Z  is the z-score for trait 2, V is the economic value of trait 1 

relative to trait 2, 2
1h  is the heritability of trait 1, 2

2h  is the heritability of trait 2 and gr  is the  

genetic correlation that exists between traits 1 and 2. The z-score is obtained by using the 

expression: 

s
MXZ −

=
 

3.2 

where X  is the colony’s score, M  is the apiary’s average score and s  is the standard deviation 

of the apiary’s scores. 

Under the assumption that accurate heritability and correlation estimates are unavailable, van 

Engelsdorp and Otis (2000) used an approximation of the equation given by Rinderer (1986) to 

provide a modified selection index for several traits for honey bees. A survey of commercial 

beekeepers was used to estimate the economic values (V-values) of several traits of the honey 

bee colonies. The expression is given as follows: 

∑=
n

iimodified VZI
1

where n  is the number of traits. 3.3 

Bienefeld and Pirchner (1991) also derived a selection index for several traits which 

simultaneously considered queen and worker effects. Bienefeld et al. (2007) pointed out that the 

use of selection indices is becoming less common, as environmental influences cannot be 

sufficiently corrected for. In 2007, Bienefeld et al. proposed a BLUP based methodology for 



70 

 

genetic evaluation in the honey bee, which is widely used in other agricultural species. The 

methodology was adjusted to the peculiar reproductive behaviour and genetics of the honey bee. 

A shortcoming of the selection index was that records had to be pre-adjusted for fixed effects, 

however in BLUP, both fixed effects of environment and random genetic effects are estimated 

simultaneously, and the differences due to fixed effects such as apiary or bee breeder are 

accounted for. Moreover, during genetic evaluation, the genetic merits of all relatives plus the 

animal’s own performance are used to estimate the animal’s genetic merit. Genetic evaluation 

based on BLUP can also be conveniently applied to complex multivariate models. This is 

contributed to the advancement in computational methodologies and availability of advanced 

software such as PEST (Groeneveld et al., 1990 

http://www.fli.bund.de/no_cache/de/startseite/institute/institut-fuer-

nutztiergenetik/wissenschaftler/dr-dr-eildert-groeneveld.html), BREEDPLAN for beef cattle 

(http://www.breedplan.une.edu.au/) and MiXBLUP (http://www.mixblup.eu/). 

Until now, the BLUP based genetic evaluation in the honey bee has relied on pedigree and 

phenotypic data. It has been shown in several studies (Dekkers and Hospital, 2002; de Roos et 

al., 2007; Calus et al., 2008; Legarra et al., 2008; Sonesson and Meuwissen, 2009) that the 

incorporation of molecular genetic data can significantly improve the accuracy of the estimates 

of breeding values, increase the genetic response and lower the rate of inbreeding. In this thesis, 

the impact of incorporating of SNP marker into the genetic evaluation in the honey bee was 

analysed. The integration of marker data was achieved through the ‘unified approach’ proposed 

by Legarra et al. (2009) and Christensen and Lund (2010) which combines full pedigree and 

genomic information from both genotyped and ungenotyped individuals. The unified approach 

provides a straightforward extension to the BLUP methodology for the estimation of breeding 

values. It is also advantageous for honey bees as genomic information for genotyped queens can 

be integrated with pedigree information from all animals. 

3.2. Development of BLUP and the mixed model equations by Henderson 
The BLUP methodology developed by Henderson (1950) allowed estimating fixed and random 

effects simultaneously. It is widely used for the estimation of breeding values in important 

animal and plant species. The acronym BLUP summarizes the properties of this methodology 

which are as follows (Henderson, 1975; Robinson, 1991; Mrode, 2005): (1) Best - correlation 

http://www.fli.bund.de/no_cache/de/startseite/institute/institut-fuer-nutztiergenetik/wissenschaftler/dr-dr-eildert-groeneveld.html�
http://www.fli.bund.de/no_cache/de/startseite/institute/institut-fuer-nutztiergenetik/wissenschaftler/dr-dr-eildert-groeneveld.html�
http://www.breedplan.une.edu.au/�
http://www.mixblup.eu/�
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between the true (u) and predicted breeding value ( û ) is maximized or in other word, the 

prediction error variance (PEV) is minimized, (2) Linear - estimates of the random variables u 

are linear functions of the data, y, (3) Unbiased - the average value of the estimate is equal to the 

average value of the quantity being estimated, i.e. E( û  = u) and (4) Predictor – it is predicting 

the true breeding values. Consider the following linear model (Henderson, 1975, 1984): 

eZuXby ++=  3.4 

where y is a vector of records, b is a vector of fixed effects, u is a random vector for additive 

genetic effects, i.e. breeding values, e is a random vector of residual effects and X and Z are 

known design matrices. The expected value of the variables are ( ) Xby =Ε and ( ) ( ) .0=Ε=Ε eu  

The variances are ( ) GAu == 2var uσ  where A is the numerator relationship matrix and 

( ) .var 2 RIe == eσ  It is assumed that ( ) .0,cov =eu  The variance for y is given as 

( ) ( ) RZGZeZuVy ' +=+== varvar . The covariance of y and u is ( ) ( ) ZGueZuuy =+= ,cov,cov  

and the covariance of and y and e is ( ) ( ) ReeZuey =+= ,cov,cov . 

For the selection index, it is assumed that b is known whereas in reality, certain elements of b 

may be completely unknown. Therefore, Xb must be estimated by some method, such as least 

squares, to obtain a selection index (Henderson, 1963). Thus, the accuracy of the selection index 

depends upon the choice of the estimate of b. Another big drawback of the selection index 

evaluation is that not all records are used for estimating breeding values. To overcome these 

problems, Henderson (1963) derived the BLUP methodology in which the predictions are 

unaffected by b. This requires predicting a linear function of b and u, i.e. k'b + u, using a linear 

function of y, i.e. L'y, given that k'b is estimable (Mrode, 2005). The predictor L'y is chosen so 

that it is unbiased (implying that the average value of the estimate is equal to the average value 

of the quantity being estimated) and ‘best’ in the sense that the PEV is minimal (Mrode, 2005). 

The BLUP of u and the best linear unbiased estimate (BLUE) of b is given as: 

( ) ( )bXyVGZuu 1' ˆˆBLUP −== −
 3.5 

( ) ( ) yVXXVXbb 1'1' −−−== ˆBLUE  where ( )−− XVX 1'  stands for the generalized inverse 3.6 
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( )bXyVGZbkyL 1''' ˆˆ −+= −
 3.7 

As per convention, BLUE refers to the estimates of fixed effects whereas BLUP to the estimates 

of random effects (Henderson, 1975) although BLUE and BLUP are similar in properties. 

The solutions for u and b in 3.5 and 3.6 require the inverse V−1, which cannot be computed in 

some cases. Henderson (1950) presented a method to estimate solutions for the fixed effects (b) 

and to predict solutions for random effects (u) simultaneously without having to compute V−1. 

This was realized by maximizing the joint density of y and u for variations in b and u under the 

assumption of normality (Henderson, 1984). The resulting equations are known as the mixed 

model equations (MME) and are given as follows: 
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3.8 

R−1 can be factorized from both sides of the equation to give: 
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3.9 

Henderson et al. (1959) proved that b̂  from the MME (3.9) is the same as b̂  from Equation 3.6 

i.e., a GLS solution. Similarly, Henderson (1963) proved that û  from MME (3.9) is the same as 

û  from Equation 3.5 i.e., BLUP.  

It should be noted that BLUP is equivalent to the selection index method when b̂  is substituted 

with b. Thus, the mixed model equations with b assumed known provides a convenient method 

for obtaining the selection index on the basis of all records for estimating breeding values. 

Henderson (1984) explained that the MME is easier to compute because of the following 

properties. Firstly, R-l is easier to obtain than V-l, even though both have the same dimension. 

This is because R has a simpler form such as 2
eσI  or is block diagonal. Secondly, G-l is simpler 

to compute (G = 2
uσA ) as A-l can be computed directly without constructing the A matrix 
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(Henderson, 1976). Lastly, the coefficient matrix usually exhibits diagonal or block diagonal 

dominance thereby resulting in equations that are well suited to iterative solution. 

3.3. Maternally influenced traits 
A mother’s ability to provide a suitable environment, e.g. better nutrition, contributes to the 

phenotypic expression of some traits in the offspring. This ability is partly genetic and partly 

environmental (Willham, 1963, 1972). Consequently, the resulting maternally influenced trait in 

the offspring is a sum of the direct genetic effects due to the individual, maternal genetic effects 

due to its dam and environmental effects. In livestock species, several traits are maternally 

influenced, e.g. birth and weaning weight in beef cattle. A similar situation exists in honey bees 

where ‘colony traits’, e.g. honey yield, wax production and calmness, result from the activity of 

the queen (contributing to maternal effects) and several thousand workers inhabiting the colony 

(contributing to direct effects). 

A complexity associated with the estimation of breeding values for maternally influenced traits is 

that the maternal and direct effects are usually negatively correlated (Bienefeld and Pirchner, 

1991; Larsgard and Olesen, 1998; Splan et al., 2002; Safari et al., 2005) which severely impedes 

the response to selection (Willham, 1972; Roehe and Kennedy, 1993; Mousseau and Fox, 1998; 

Räsänen and Kruuk, 2007). Since the use of marker information improves the accuracy of the 

estimation of breeding values, it can be particularly advantageous in case of maternally 

influenced traits with negative correlation between maternal and direct effects. Therefore, this 

study also assesses the impact of marker information on traits with negative correlation and no 

correlation between maternal and direct effects. 

3.4. Method of genetic evaluation 

3.4.1 Traditional pedigree based approach (PED_BLUP) 
Currently, genetic evaluation in the honey bee is performed using a BLUP approach which 

requires pedigree and phenotypic data. The following sections describe the method of genetic 

evaluation through the construction of a numerator relationship matrix and the associated linear 

mixed model equations. 
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3.4.1.1. Construction of the numerator relationship matrix 
The genetic evaluation based on BLUP makes use of the numerator relationship matrix (A) 

which indicates the ‘additive genetic relationship’ between individuals (Falconer and Mackay, 

1996). For the prediction of breeding values, the inverse A-1 is required which can be obtained 

through different algorithms proposed by Henderson (1976), Meuwissen and Luo (1992) and 

Quaas (1976, 1995). 

The A matrix was constructed for all individuals in the pedigree. The elements of the A matrix 

were calculated according to the method developed by Bienefeld et al. (2007) for honey bees 

which includes a paternal path coefficient ( pP ) of 0.367 to account for polyandry. The details for 

constructing an A matrix recursively are given below. 

Assuming that s  and d  denote the indices of the sire and dam of the ith individual, then: 

i. If both sire and dam are known 

( ) ( )115.0 −=+== itojforaPaaa jspjdijji  3.10 

( )sdii aa 5.01+=  3.11 

ii. If sire is known and assumed to be unrelated to the dam 

( ) ( )11 −=== itojforaPaa jspijji  3.12 

1=iia  3.13 

iii. If dam is known and assumed to be unrelated to the sire 

( )115.0 −=== itojforaaa jdijji  3.14 

1=iia  3.15 

iv. If both parents are unknown and assumed to be unrelated 
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( )110 −=== itojforaa ijji  3.16 

1=iia  3.17 

The A matrix can be partitioned into A11, A22, A12 and A21, where subscripts 1 and 2 denote 

genotyped and ungenotyped individuals. As described by Christensen and Lund (2010), A-1 for 

the partitioned matrix is given by the following expression: 

( ) ( )
( ) ( ) 












−−−
−−−+= −−−−−

−−−−−−−−
−

11111

11111111
1

12112122112112112122

121121221211112112112122121111

AAAAAAAAAA
AAAAAAAAAAAAAAAA

 
3.18 

3.4.1.2. Mixed model equations 
An approach to include maternal effects into the MME was initially presented by Quaas and 

Pollak (1980). In 2007, Bienefeld et al. adapted the BLUP-animal model with maternal and 

direct genetic effects for genetic evaluation in the honey bee. The model takes into account the 

influence of maternal effects on traits and is adapted to the peculiarity of honey bees. The linear 

model is given as follows: 

euZuZXby 2211 +++=  3.19 

where y is a vector of records/traits of the colonies, b is a vector of fixed effects, u1 is a vector of 

random direct genetic effects (i.e. breeding values for direct effects), u2 is a vector of random 

maternal genetic effects (i.e. breeding values for maternal effects), e is a vector of random 

residual effects, X is a known incidence matrix relating observations to the corresponding 

environmental effects, Z1 is a known incidence matrix relating observations to the corresponding 

direct effects and Z2 is a known incidence matrix relating observations to the corresponding 

maternal effects. 

The variance of y is given as follows: 

)var()var( euZuZy 2211 ++=  
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




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


=  3.20 

where 11g  is the additive genetic variance of direct effects, 22g  is the additive genetic variance 

of maternal effects, 12g  and 21g  is the additive genetic covariance between direct and maternal 

effects, 2
eσ  is the residual error variance and A  is the numerator relationship matrix. 

The mixed model equations to obtain the best linear unbiased prediction for u1 and u2, and the 

best linear unbiased estimate for b are as follows: 
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where 







==







 −

2221

1211
21

covvar_
2

32

21    
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ee σσ
αα
αα

G  

Here, 






−

2221

1211
1

covvar_  = 
gg
gg

G  and its non-inverse form is 








2221

1211
covvar_  = 

gg
gg

G . 

Thus, based on the mixed model given above, the estimates of direct (u1) and maternal (u2) 

breeding values are obtained. 

3.4.2. Unified approach - the integration of genomic, pedigree and phenotypic data (UNI_BLUP) 
In the honey bee pedigree, a dummy sire and an average worker represent group of individuals, 

thus, it is not possible to get genotyping data for all individuals. Using the unified approach can 
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be advantageous for honey bees because genomic information for genotyped queens can be 

integrated together with pedigree information resulting in a combined relationship matrix H. 

3.4.2.1. Construction of the combined relationship matrix 
The method of construction of the A matrix has been described previously in the Sub-section 

3.4.1.1. A genomic matrix (G) was constructed for genotyped queens consisting of dam queens 

in the base population and potential-dam queens in the following generations. Based on the 

approach, the source of information about the allele frequency and/or the use of various scaling 

parameter, different methods have been proposed for constructing the G matrix (VanRaden, 

2008; Aguilar et al., 2010; Meuwissen et al., 2011). A methodology proposed by VanRaden 

(2008) was employed that has been used in several other studies (Legarra et al., 2009; Misztal et 

al., 2009; Aguilar et al., 2010; Christensen and Lund, 2010). The G matrix was obtained from 

the formula ( )[ ]ii pp −∑ 12'ZZ , where Z is equal to PM − . M is the matrix specifying marker 

alleles inherited by each individual and is equal -1, or 1 for the homozygous genotypes and 0 for 

the heterozygous genotype. P is equal to ( )5.02 −ip  with ip  being the frequency of second 

allele at locus i  in the ‘base population’. 

The following example illustrates the construction of the G matrix: 

 
Marker 1 Marker 2 Marker 3 Marker 4 

Animal 1 11 12 22 11 

Animal 2 11 22 11 12 

Animal 3 11 12 22 22 

pi 1/10 1/4 3/4 1/2 

 

For this simple example, the M and P matrices can be constructed as follows: 
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

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Since PMZ −=  and ( )ii pp −∑
=

12
'ZZG , the Z and G matrices for this example are given as 

follows: 
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The G matrix could be singular (VanRaden, 2008; Legarra et al., 2009; Aguilar et al., 2010); 

therefore, it was modified with a weighing factor w  to wG , given as ( ) 11w AGG ww −+= 1 . 

Christensen and Lund (2010) suggested that ( )w−1  could be interpreted as the relative weight on 

polygenic effect. For this study, the value of w  was taken as 0.99 (Christensen and Lund, 2010). 

For computing the H matrix, the methodology described by Christensen and Lund (2010) and 

Legarra et al. (2009) was followed and is given as 






 −
+=

00
0AG

AH 11w . 

The inverse of the combined relationship matrix (H-1) with integrated pedigree and genomic 

information was obtained using the following formula: 
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3.22 

The above equation can also be written as:  
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3.23 
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3.4.2.2. Mixed model equations 
In order to estimate the breeding values for all individuals in the pedigree, the unified approach 

was implemented using the following modified mixed model equations that include the H-1 

matrix. 
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3.24 

The symbols y, X, Z1, Z2, u1, u2, b, 1α , 2α  and 3α  have already been defined in Sub-section 

3.4.1.2. 

3.4.3. Estimation of breeding values and solving the mixed model equations 
For the estimation of breeding values it was assumed that pedigree records were available for all 

generations. A phenotypic value in the honey bee represents an observation for the whole colony 

and thus, cannot be decomposed into individual phenotypic values of a queen and an average 

worker; therefore, both the queen and an average worker of a colony were assigned the same 

colony phenotypic value. Phenotypes were available for all dam queens (and the corresponding 

average worker) in the base generation and for all potential-dam queens (and the corresponding 

average worker) in every but the last generation. Genotyping information was available for all 

dam queens in the base generation and all potential-dam queens. 

The simulated values of genetic and residual variance were used for estimating breeding values. 

The direct and maternal breeding values were estimated for all individuals in the pedigree using 

the UNI_BLUP and PED_BLUP approaches. The overall breeding value for each individual was 

obtained from the sum of its direct and maternal breeding values. For both the PED_BLUP and 

the UNI_BLUP approach, accuracies were calculated for the following: (1) the overall estimated 

breeding values, (2) the maternal estimated breeding values and (3) the direct estimated breeding 

values. The accuracy of estimated breeding values were calculated for ‘juvenile queens’ 

constituted by potential-dam queens in the last generation and for ‘all queens’ constituted by dam 

queens in the base population and potential-dam queens in all generations. The accuracy was 

reported as the correlation between the estimated and the true breeding values (Mrode, 2005). All 
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calculations were performed in MATLAB. The summary statistics is based on 20 replicated 

simulations. 

3.5. Future Ideas: Modification of the numerator relationship matrix to account for 
the composite structure of the dummy sire and average worker 
Both a dummy sire and an average worker represent groups of individuals. Therefore, the 

diagonal elements of the numerator relationship matrix for dummy sires and average workers can 

be modified to account for this structure. This modification will help to improve the relationship 

matrix in the future studies. A basic concept is suggested below that shows how modifications 

can be included. 

3.5.1. Relationship of a dummy sire with itself 
The relationship of a dummy sire with itself ( DDa ) can be calculated from the methodology used 

for calculating coancestry ( DDS ). Assuming that a dummy sire is composed of three sister queens 

(I, II and III) as shown in Figure 3.1, DDS  can be written as follows: 
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Sister queens are denoted by I, II, III. A1/A2, A3/A4 and A5/A6 correspond to the 
alleles at a locus in the queens I, II and III, respectively. 

Figure 3.1. Sister queens constituting a dummy sire. 
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where A1/A2, A3/A4 and A5/A6 are alleles at a locus in individuals I, II and III, respectively. 

p(Ax = Ay) is the probability that the two alleles are identical by descent. FI, FII and FIII 

(assuming that FI, FII and FIII = F) are the inbreeding coefficients of individuals I, II and III, 

respectively. ijS is the coancestry of the thi  queen with the thj  queen and sda  is the relationship 

between sire and dam of the thi  queen. 

Let a dummy sire be composed of ‘ n ’ queens, the ‘general formula’ for DDS  can be given as 

follows: 

( ) ijsdDD S
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3.25 

Since relationship is twice of coancestry, therefore, 

( ) 215.0112 ×
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3.26 

From this general equation, DDa  can be obtained for the base population and normal population 

generated from the base population as shown below: 

- For the base population, it can be assumed that all queens were unrelated and non-inbred; 

therefore, 0=ijS , hence )5.01(
2
1

sdDD a
n

S += . As sda  is also zero in the base generation, 

n
SDD 2

1
=  and 

n
Sa DDDD

12 == . 

- In the normal population generated from the base population DDa  is given as:  

( ) ( )215.0112 ×





++== ijsdDDDD S

n
n-a

n
Sa  

The above equation includes the relationship between sister queens/colonies ( ijS ) that 

constitute a dummy sire; thus, it is important to estimate the average 
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relationship/coancestry between two sister queens. Since sister queens are usually related 

as super-sibs, full-sibs or half-sibs, the average relationship between sister queens can be 

assumed to be equal to 5.0
3

25.05.075.0
=

++ ; therefore, 25.0
2
5.0
==ijS . A weighted 

probability can also be used instead of the simple usage of 1/3. Thus, after including the 

average relationship between sister queens, the value of relationship in diagonal elements 

for the dummy sire can be written as: 

== DDDD Sa 2 ( ) ( ) ( ) 5.015.011225.015.011
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nn
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3.5.2. Relationship of between workers of a colony 

Table 3.1. An example relationship matrix between workers of a single colony assuming that 
all drones are from a single queen. 
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Table 3.1 shows an example for a relationship matrix ( workerA ) between workers of a single 

colony. The colony size ( CS ) is defined as the number of workers in a colony and d  is the 
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number of drones mating with the dam of the workers. For now, all drones are assumed to come 

from a single queen. Furthermore, if it is assumed that the number of worker offspring from each 

drone is 
d

CS , then the size of each diagonal block (shown in gray) is equal to
2









d
CS . It is 

supposed that all workers in a colony come from a single non-inbred queen, unrelated to the 

dummy sire. The values in Table 3.1 denote the following: 

1 – relationship of a worker with itself 

0.75 – relationship between super sisters 

0.5 – relationship between full sisters 

The relationship between workers of a colony, kerworker,wora , is given as: 
































−+




























−






+






=

2
2

2

2 2
1

4
31

d
CSdCSd

d
CS

d
CS

d
CS

CS
a kerworker,wor  

On solving further, it reduces to 
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As CS ~ 50,000, 
CS4
1  can be neglected. Thus, the relationship can be given as: 

d
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1
+≈

 
3.27 

Considering that drones may come from more than one queen, the above relationship can be 

extended by including ‘ q ’ queens in the dummy sire (i.e. all drones come from ‘ q ’ queens). 

Table 3.2 shows the relationship between workers after including this modification. 
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Table 3.2. An example relationship matrix between workers of a single colony assuming that 
drones come from different queens. 
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The values in Table 3.2 denote the following:  

id4
1

2
1
+  – the relationship between workers having the same drone-producing queen as sire. 

4
1  – the relationship between workers having different drone-producing queens as sire (maternal 

half-sibs). 

Here, each diagonal block refers to a group of workers which are offspring of different unrelated 

queens constituting the dummy sire. Assuming that ndddd ,,, 321  are the number of drones 

contributed by each queen ( ddi =  is assumed). If q  is the number of queens representing the 

dummy sire, then 
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On solving further, the above equation reduces to: 
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3.28 

Further calculations can be performed in a similar manner for other cases of relationship in the 

honey bee population. 
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Chapter 4. Towards analysis of real data: 
Development of a 44k SNP assay 
The definitive version is available at www.blackwell-synergy.com  

This chapter outlines the procedure for the development of a 44k SNP assay for the honey bee. 

One of the essential applications of a SNP assay is to genotype several thousand SNP loci across 

the genome simultaneously and to identify any DNA variant associated with the disease in 

genome-wide association studies. Genotyping information is also crucial to the application of 

genomic selection and other molecular marker based methods for the estimation of breeding 

values. Since a high density of markers spanning the entire genome is required in future 

association studies and genetic evaluation, the developed 44k SNP assay will serve as an 

indispensible tool. The SNP assay was designed with a focus on the ‘hygienic behaviour’ (see 

Chapter 1), however, the density of SNP markers in the assay is high enough, making it suitable 

for association studies for other traits as well. As shown in the pipeline (Figure 4.1), different 

experimental and data analyses steps were performed in this study. A summary of these steps is 

provided in this chapter. For more information please refer to Spötter et al. (2012). 

4.1. Experimental work 

4.1.1. SNP selection and capture microarray design 
A total of 70,000 SNP were analysed for their suitability as genetic marker in future association 

studies for hygienic behaviour in the honey bee. For the construction of microarray and the 

selection of SNP positions, SNP regions identified and published by the Honey Bee Genome 

Project were chosen (www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/snp/). For further 

consideration, only those SNP that were assigned to a linkage group in the honey bee were 

selected. A repeat masking filter was applied to prevent designing oligos with uncertain genomic 

localization further downstream. A total of 77,565 regions were selected with an even 

distribution across the genome. The average distance between SNP loci was about 4 kb, covering 

approximately 75% of the genome. Based on a previous study of 245 microsatellite loci (M. 

Brink, M. Solignac, K. Bienefeld, unpublished data), which identified QTL for the trait ‘removal 

http://www.blackwell-synergy.com/�
http://www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/snp/�


87 

 

of Varroa-infested brood’, the remaining 25% of the genome had a denser spacing with an 

average distance of 2 kb between adjacent SNP positions in the region of identified QTL. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1.2. Bioassay for the defence behaviour and phenotyping 
In honey bees, hygienic behaviour involves inspection, uncapping (i.e. opening of the brood cell) 

and removal of diseased and dead brood from the colony. As described earlier, the SNP assay 

was developed with a special focus on the hygienic behaviour. Worker bees were screened for 

this phenotype during a bioassay and later selected to form a part of a DNA pool. Only freshly 

hatched worker bees (0–12 hours old) were marked and used for the defence behaviour bioassays 

at the age of 4 days. The defence behaviour bioassay consisted of the following steps: 

Figure 4.1. A pipeline showing the procedure of development of the 44k SNP assay. 

Experimental work 

Sequencing library preparation 
& sequence capture 

Illumina sequencing 

Pool design 

DNA extraction & pool 
assembly 

Bioassay for the defence 
behaviour & phenotyping 

SNP selection and capture 
microarray design 
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1. 2000 freshly hatched worker bees were marked and transferred into one caged experimental 

comb (Thakur et al., 1997). These combs were derived from unrelated and Varroa-free 

colonies. The observation area for each comb consisted of 169 brood cells. 

2. Out of 169 brood cells, 45 were artificially infested with a Varroa mite. Seven cells were 

kept empty, 75 brood cells were untreated (as normal control) and 43 cells were opened and 

resealed without inserting a mite (as a control for the cap-manipulation). 

3. The caged experimental combs were integrated into the hive of a helper colony that provided 

an environment that was close to natural conditions. 

4. An infra-red camera was installed in front of the comb which allowed the recording of 

hygienic behaviour in the absence of light without disturbing the bees. Recording was carried 

out for seven days. 

5. Recordings from the infra-red camera were analysed to observe for the hygienic behaviour. 

Bees that started to open a cell were called ‘beginner’ whereas those that expanded the 

existing holes were called ‘helper’. 

The defence behaviour bioassay was run 14 times, five runs in the year 2005, seven runs in the 

year 2007 and two runs in the year 2008. About 80% of the colonies used as sources for 

experimental animals belonged to a line selected for Varroa tolerance since 1997 in the Institute 

for Bee Research, Hohen Neuendorf, Germany. The remaining 20% of the colonies were 

obtained from breeders distributed all over Germany. These colonies were also bred for Varroa 

tolerance based on the estimated breeding values (http://www2.hu-berlin.de/bienenkunde/ZWS/). 

4.1.3. Pool design 
Three DNA pools, the trait exhibiting pool (A) and two control pools (B and C) were 

constructed. The pool A consisted of DNA from 50 top performing individuals for the hygienic 

behaviour, selected from about 28,000 tested bees. The selection criterion for the top performing 

bee was based on the number of uncapping action directed against Varroa-infested cells. These 

bees were involved directly in at least one uncapping action and acted as a helper in at least one 

uncapping event. The number of their uncapping and helping action against Varroa-infested cells 

http://www2.hu-berlin.de/bienenkunde/ZWS/�
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was at least two times higher than their action against the control cells. The pool B consisted of 

DNA from 50 workers belonging to the same colony as the bees chosen for pool A, but did not 

show any hygienic behaviour. The pool C consisted of DNA from 50 workers belonging to 

colonies where not a single bee showed the hygienic behaviour. 

A comparison between pool A and B helped to identify the difference existing due to the 

hygienic behaviour. It also helped to account for any difference due to population stratification. 

On the other hand, comparison between pool A and C helped to identify any causative genes that 

have a low degree of penetrance, because in such a case no significant difference between pool A 

and pool B could be identified. The individuals used to construct pool C were derived from all 

over Germany. This allowed obtaining information about the allele distribution and the degree of 

polymorphism in Apis mellifera carnica population. 

4.1.4. DNA extraction and pool assembly 
In order to re-sequence target regions for validating SNP for the hygienic behaviour, DNA was 

extracted from selected worker bees for each pool. Overall, the DNA extraction and pool 

assembly process consisted of the following steps: 

1. Extraction of DNA: DNA was extracted using the NucleoSpin Tissue kit (Macherey-Nagel, 

Düren, Germany) from the heads and thoraces of the worker bee stored in 96% ethanol. 

2. DNA quality and concentration check: The quality and concentration of the DNA samples 

were examined on 0.8% agarose gels and measured photometrically at an optical density 

(OD) of 260⁄280 using a NanoDrop 2000 (NanoDrop products, Wilmington, DE, USA). 

DNA samples were used only if the OD260/280 was between 1.7 and 2.1 and the degree of 

DNA degradation was small. 

3. Preparation of the working solution: For all DNA samples, working solutions of a 

concentration of 20 ng/μL were prepared. Sample concentrations were checked using a 

NanoDrop 2000 and adjusted if necessary. 

4. DNA pool assembly: From the working solutions of DNA samples, 400 ng of DNA was used 

to assemble all pools. This was done by taking 20 μL of the working solution by volume. 
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Since each of the three pools consisted of DNA from 50 workers, the resulting pool 

contained 20 μg DNA in a volume of 1000 μL. 

4.1.5. Sequencing library preparation and sequence capture 
The standard illumina sequencing library preparation methodology was employed for the library 

preparation (Meyer and Kircher, 2010) for each of the DNA pool. Sequencing library preparation 

and sequence capture consisted of the following steps: 

1. Adaptor ligation and barcoding: A different self-assembled single read adaptor was used for 

each library. The adaptor contained a 4 base-pairs barcode tag at the end which was ligated to 

the genomic DNA fragment. This enabled the multiplexing of a sample in the same flow cell 

channels during sequencing and backtracking of the reads to the respective DNA pools with 

the help of barcodes. 

2. DNA fractionation: Fragments of DNA were fractionated according to size ranging between 

150-250 bp. 

3. Amplification: After adaptor ligation and fractionation, the fragments of DNA were 

amplified to yield about 5 μg of DNA. In order to avoid the risk of bias in fragment 

representation, amplification was carried out with limited cycle numbers and in multiple 

reactions. 

4. Sequence capture: Sequence capture allows parallel enrichment of target regions in a single 

experiment and helps to eliminate setting up thousands of PCR reactions (Meyer and Kircher, 

2010). For this step, the material was hybridised individually for each sample to the 

customized 1 million feature Agilent array representing honey bee SNP positions (Hodges et 

al., 2009). The captured DNA was washed, eluted and amplified again in order to obtain 

adequate material for subsequent illumina sequencing. 

5. Template for illumina sequencing: In order to establish templates for illumina sequencing, 

after quantitation the DNA sample was mixed in equimolar concentrations from all three 

capture libraries. 
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4.1.6. Illumina sequencing 
The pooled, barcoded sequencing libraries were loaded onto a full illumina ‘Flow cell channel’, 

and then single-end-sequenced with 72-bp reads on a Genome Analyzer GA-IIx, using Chrysalis 

36 cycles v4.0 chemistry and the RTA SCS.2.6 ⁄CASAVA 1.6 data analysis pipeline. 

4.2. Data analysis 
Pearson’s chi-square and pFDR tests were employed to identify SNP associated with the trait 

‘uncapping of Varroa-infested brood’. These statistical tests were performed for the SNP which 

met the following two criteria: The first criterion was that only bi-allelic SNP were chosen. For 

SNP having three or four alleles, the two alleles with the highest minor allele frequencies were 

taken as real alleles as long as they were consistent with the reference alleles from the SNP list 

(www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/snp/). Consequently, the other third and/or forth 

allele with low minor allele frequencies were discarded. The second criterion for selecting SNP 

was that the coverage depth, which refers to the number of sequences analysed per SNP, was 15-

fold or greater. A coverage depth of 15-fold allowed to select the highest possible number of 

validated SNP for the assay to be developed without compromising quality. 

The allele frequencies of SNP between pools A and B and pools A and C were tested SNP by 

SNP for significant differences of allele frequencies between pools by employing Pearson’s chi-

square test. For each SNP, the null hypothesis of equal allele frequencies in two compared pools 

was H0: p1 - p2 = 0, where p1 and p2 are the allele frequencies in both pools. It was tested against 

the two-sided alternative of a non-zero difference. A chi-squared test statistics with a single 

degree of freedom was calculated together with the associated p-values. Multiple testing was 

accounted for by calculating the expected proportion of falsely rejecting the null hypothesis 

pFDR (Storey, 2002) for all comparisons between pools A and B as well as pools A and C. Up to 

a pFDR of 0.05 SNP were reported as differing significantly in their frequency between pools. 

The calculations were performed using the MULTTEST procedure of the SAS statistical 

software package (SAS 2003, 9.1; Inst., Inc., Cary, NC, USA). 

4.3. Selection of SNP for the 44k SNP assay 
Based on these experiments and data analysis, 36,000 SNP were chosen for constructing the SNP 

assay. Furthermore, to obtain an even distribution of SNP across the genome, additional SNP 

http://www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/snp/�
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which were not validated for their suitability as markers for hygienic behaviour were included 

for the design of the 44k SNP assay. For position selection and array design, information about 

these additional SNP was obtained from the list published by the Honey Bee Genome Project 

(www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/snp/). The SNP assay has been made publicly 

available through AROS Applied Biotechnology AS, Aarhus, Denmark.  

http://www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/snp/�
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Chapter 5. Results and Discussion 
The main aim of this study was to incorporate marker data into the genetic evaluation of the 

honey bee. Thus, to provide an insight into the benefits of including marker data in the genetic 

evaluation, comparative evaluation was performed using (1) the traditional approach based on 

pedigree data and (2) the unified approach based on both pedigree and marker data through 

simulation. In order to perform this comparative study, a population with genotyping, pedigree 

and phenotypic data had to be simulated. Thus, a completely new framework was developed for 

simulating a population based on the special genetic and reproductive characteristics of the 

honey bee. Most importantly, the influence of maternal effects on the trait, negative correlation 

between maternal and direct effects and uncertain paternity were also addressed in this study, 

thus making it relevant for other species as well. Results from this comparative study between 

the unified and pedigree based approach reports the accuracy of the estimates of overall, direct 

and maternal breeding values. Furthermore, the influence of the heritability of the trait as well as 

the genetic correlation between maternal and direct effects on the accuracy of the estimated 

breeding values were investigated. The results show that the unified approach performed better 

than the pedigree based approach. Additionally, a 44k SNP assay was developed that can be used 

to incorporate high-density marker information into the genetic evaluation of the honey bee in 

future studies. 

5.1. Results 
This section describes the validation results for the simulation of a base population and the 

results for the accuracy of the unified and pedigree based genetic evaluation approaches. 

5.1.1. Validation of the software program for simulating a base population 
To perform a validation of the developed software program, the achieved LD was compared with 

theoretical LD. For this, two simulations were performed, the first one consisted of 500 sire and 

50 dam queens and the second one of 200 sire and 20 dam queens. A total of 100,000 marker 

loci were simulated for 2000 generations. The forward and backward mutation rates were set to 

0.0025, a value similar to that used by Meuwissen et al. (2001), allowing a high probability of 

polymorphic marker loci. Information on the level of recombination and on the effective 
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population size ( eN ) in the honey bee was obtained from Beye et al. (2006) and Estoup et al. 

(1995), respectively. The expected average LD was compared to the achieved average LD for 

44,000 loci with the highest minor allele frequencies. The expected average LD in a population 

was calculated as follows (Hill, 1975): 

22
2

82611
25

cNcN
cN

r
ee

e

++
+

=
 

5.1 

where c is the recombination fraction between adjacent loci and eN  is the effective population 

size. Since the total size of the simulated genome was 219,629,612 base-pairs (Table 2.1) and the 

approximate recombination rate was taken as 19 cM/Mb (Beye et al., 2006; The Honeybee 

Genome Sequencing Consortium, 2006), the size of the simulated genome was 41.73 M. Thus, 

for a genome of 41.43 M, c was approximately 0.001 for 44,000 SNP. The honey bee population 

has a wide range of effective population sizes (Estoup et al., 1995); therefore, two scenarios were 

simulated, one with 220 queens and the other with 550 queens. The effective population size in 

the honey bee was calculated using the following expression for a haplo-diploid population 

(Wright, 1933; Kerr, 1967): 
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where fN  is the number of queens (which is equal to the number of colonies since each colony 

is headed by a single queen) and mN  is the number of males. In the simulation, it is assumed that 

each queen is inseminated by 11 drones, therefore mN  = 11 fN . 

For 220 and 550 colonies, eN  was approximately 473 and 1184, respectively. With eN  = 473, 

the expected LD was 0.24 and the achieved LD was 0.23. Similarly, with eN  = 1184, the 

expected and achieved LD were equal to 0.14 and 0.11, respectively. These values show that the 

software program is able to model the honey bee population with good accuracy. 
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Figures 5.1 and 5.2 show the establishment of LD for the simulated datasets consisting of 220 

and 550 queens. The average LD (averaged over all simulated pairs of marker loci across the 

genome, not preselected on the basis of minor allele frequency, in each generation) was plotted 

against the number of generations. These graphs show that the software program simulates a 

random mating honey bee population till the mutation-drift equilibrium is reached and a stable 

value of LD is established. 

 

Figure 5.1. The average value of r2 plotted against the number of generations for a population 
consisting of 220 queens. 

Simulation was performed for 2000 generations with a forward and backward mutation rate of 
0.0025 for 100,000 marker loci and 220 colonies (20 dam queens and 200 sire queens); with 
the parameter values chosen here, a stable LD was reached after random mating. 
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Figure 5.2. The average value of r2 plotted against the number of generations for a population 
consisting of 550 queens. 

Simulation was performed for 2000 generations with a forward and backward mutation rate of 
0.0025 for 100,000 marker loci and 550 colonies (50 dam queens and 500 sire queens); with 
the parameter values chosen here, a stable LD was reached after random mating. 

5.1.2. Results from the implementation of the unified approach 

5.1.2.1. Accuracy of the overall estimated breeding values 
In the honey bee breeding programs, the overall breeding values, a sum of the maternal and 

direct estimated breeding values, is used for selecting queens. Table 5.1 shows the accuracy 

achieved for the overall estimated breeding values with the UNI_BLUP and PED_BLUP 

approaches.  
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Table 5.1. Accuracy of the overall estimated breeding values. 

Maternal 

heritability 
Method Cor(M, D) 

Accuracy of 

overall EBV 

for JQ 

Accuracy of 

overall EBV 

for AQ 

0.15 

UNI_BLUP 

PED_BLUP 

UNI_BLUP 

PED_BLUP 

 

0 

0 

-0.46 

-0.46 

 

0.468 a,b,c,d 

0.363 

0.381 a,b,c,d 

0.295 

 

0.661 a,b,c,d 

0.603 

0.555 a,b,c,d 

0.489 

 

0.25 

UNI_BLUP 

PED_BLUP 

UNI_BLUP 

PED_BLUP 

 

0 

0 

-0.46 

-0.46 

 

0.542 a,b,c,e 

0.420 

0.449 a,b,c 

0.348 

 

0.756 a,b,c,e 

0.710 

0.640 a,b,c,e 

0.577 

 

0.35 

UNI_BLUP 

PED_BLUP 

UNI_BLUP 

PED_BLUP 

0 

0 

-0.46 

-0.46 

0.604 a,b,d,e 

0.467 

0.498 a,b,d 

0.388 

0.832 a,b,d,e 

0.800 

0.700 a,b,d,e 

0.642 

Cor(M, D) stands for the correlation between maternal and direct effects; JQ denotes juvenile queens; AQ denotes 

all queens; EBV denotes the estimated breeding values. 

Significant difference in accuracy with p-values < 0.05 between: aUNI_BLUP and PED_BLUP; bno correlation and 

negative correlation for UNI_BLUP; cheritabilities 0.15 and 0.25 for UNI_BLUP; dheritabilities 0.15 and 0.35 for 

UNI_BLUP; eheritabilities 0.25 and 0.35 for UNI_BLUP. 

  



98 

 

For the juvenile queens (constituted by potential-dam queens of the last generation), the accuracy 

of the overall estimated breeding values was significantly higher with the UNI_BLUP approach 

(p-value < 0.05) as compared to the PED_BLUP approach for all values of heritability and 

correlation between maternal and direct effects. For almost all cases, the increase in accuracy 

was approximately 0.1 (i.e. 29%). 

Similar to juvenile queens, the accuracy of the overall estimated breeding values for all queens 

(constituted by dam queens in the base population and potential-dam queens in all generations) 

was higher with the UNI_BLUP approach (p-value < 0.05) at all heritabilities and correlation 

between maternal and direct effects. For the case of no correlation between maternal and direct 

effects, the percentage increase in accuracy was approximately 9.62%, 6.48% and 4.00% at 

maternal heritabilities of 0.15, 0.25 and 0.35, respectively. In case of negative correlation, the 

percentage increase in accuracy was approximately 13.50%, 10.92% and 9.03% at maternal 

heritabilities of 0.15, 0.25 and 0.35, respectively. 

5.1.2.2. Accuracy of the maternal and direct estimated breeding values 
The accuracy of the maternal and direct estimated breeding values for juvenile queens and all 

queens is presented in Table 5.2. The average values of accuracy of the maternal as well as direct 

estimated breeding values were higher for the UNI_BLUP approach as compared to the 

PED_BLUP approach. However, the difference between UNI_BLUP and PED_BLUP 

approaches were not significant for some cases as compared to the accuracy of the overall 

estimated breeding values. In general, the accuracy of the maternal and direct estimated breeding 

values showed a trend in favour of the UNI_BLUP approach. 
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Table 5.2. Accuracy of the direct and maternal estimated breeding values. 

Maternal 

heritability 
Method Cor(M, D) 

Accuracy of 

direct EBV 

for JQ 

Accuracy 

of maternal 

EBV for 

JQ 

Accuracy 

of direct 

EBV for 

AQ 

Accuracy 

of maternal 

EBV for 

AQ 

0.15 

UNI_BLUP 

PED_BLUP 

UNI_BLUP 

PED_BLUP 

 

0 

0 

-0.46 

-0.46 

 

0.323 a,b,c,d 

0.227 

0.115 b,d 

0.059 

 

0.279 a,b,c,d 

0.225 

0.127 b 

0.103 

 

0.446 a,b,c,d 

0.406 

0.225 b,d 

0.186 

 

0.420 a,b,c,d 

0.381 

0.223 b,d 

0.208 

 

0.25 

UNI_BLUP 

PED_BLUP 

UNI_BLUP 

PED_BLUP 

 

0 

0 

-0.46 

-0.46 

 

0.373 a,b,c 

0.268 

0.154 b 

0.085 

 

0.330 a,b,c,e 

0.260 

0.154 b 

0.125 

 

0.510 b,c,e 

0.474 

0.272 b 

0.231 

 

0.482 a,b,c,e 

0.447 

0.257 b 

0.240 

 

0.35 

UNI_BLUP 

PED_BLUP 

UNI_BLUP 

PED_BLUP 

0 

0 

-0.46 

-0.46 

0.418 a,b,d 

0.307 

0.186 a,b,d 

0.110 

0.371 a,b,d,e 

0.287 

0.173 b 

0.138 

0.566 b,d,e 

0.538 

0.308 b,d 

0.268 

0.527 b,d,e 

0.496 

0.280 b,d 

0.258 

Cor(M, D) stands for the correlation between maternal and direct effects; JQ denotes juvenile queens; AQ denotes 

all queens; EBV denotes the estimated breeding values. 

Significant difference in accuracy with p-values < 0.05 between: aUNI_BLUP and PED_BLUP; bno correlation and 

negative correlation for UNI_BLUP; cheritabilities 0.15 and 0.25 for UNI_BLUP; dheritabilities 0.15 and 0.35 for 

UNI_BLUP; eheritabilities 0.25 and 0.35 for UNI_BLUP. 

5.1.2.3. Effect of correlation and heritability 
Both low heritability and a high negative correlation lead to a lower genetic variance, thus it is 

expected that the accuracy will decrease with a decrease in heritability and with an increase in 

negative correlation. The accuracy of the overall estimated breeding values was lower for the 

case where maternal and genetic effects were negatively correlated in comparison to the case 

with no correlation (Table 5.1 and Figure 5.3, 5.4; p-value < 0.05). Similarly, the accuracy of the 

overall estimated breeding values increased as the heritability increased for both no correlation 
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and negative correlation between maternal and direct effects (Table 5.1 and Figure 5.3, 5.4; p-

value < 0.05). The only exception was a single case where no significant difference was 

observed. Difference in the accuracy of the overall estimated breeding values between maternal 

heritability of 0.25 and 0.35 at negative correlation of -0.46 for juvenile queens was not 

significant, although the accuracy was higher for high heritability. This can possibly be 

explained by the fact that there will be less gain in accuracy at higher heritability. For the 

accuracy of the maternal and direct estimated breeding values (Table 5.2), the difference was 

significant for most cases between all heritability at no correlation and between heritability of 

0.15 and 0.35 at negative correlation. In general, the accuracies of the maternal and direct 

estimated breeding values were higher for high values of heritability and no correlation between 

maternal and direct effects showing a trend similar to the overall estimated breeding values.  

 

Figure 5.3. The effect of correlation between maternal and direct effects and heritability on the 
accuracy of the overall estimated breeding values (EBV) for juvenile queens. 
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Figure 5.4. The effect of correlation between maternal and direct effects and heritability on the 
accuracy of the overall estimated breeding values (EBV) for all queens. 

5.2. Discussion 
Integration of marker data for genetic evaluation was achieved through the unified approach. A 

complex scenario was modelled that took into account several unique characteristics of the 

honey bee population. The study also takes into account the effect of negative correlation 

between maternal and direct effects and uncertain paternity, which are important factors in 

determining the degree of selection response in a population. The results showed that marker 

information improves the accuracy of the estimation of breeding values. The following section 

addresses different aspects related to the simulation strategy and the genetic evaluation based on 

the unified approach in more detail. 

5.2.1. Base population simulating software program 
The comparison of the estimated LD to the achieved LD shows that the software program is able 

to model the honey bee population with good accuracy. Creating a dataset for a base population 

is a prerequisite for any simulation study, but it can be time consuming and requires testing of 

optimal parameters. For this study, a software program was developed that simulates a base 

population for the honey bee. In most of the available software used to simulate populations 

(Peng et al., 2005), base population simulation is the preliminary stage, and is realized by 
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allowing the population to evolve through a ‘burn-in’ period until the population reaches an 

equilibrium from a random or uniform initial state. In the software program used for this study, 

all individuals in the starting generation are assumed to be unrelated. To establish LD, random 

mating is performed for the required number of generations and the last generation, which is in 

mutation-drift equilibrium, is taken as the base population. In genomic selection studies, a base 

population is the common starting point from which a population evolves further according to 

specific study requirements. To the best of the knowledge, this is the first software program that 

deals with evolutionary aspects in honey bees. It aims at providing an impetus to simulation 

studies in honey bees. It is an important initiative that could be used to implement and validate 

the genomic selection strategy through simulation in the honey bee. The code is written in 

MATLAB, but can easily be adapted to the open source alternative Octave. 

5.2.2. Implementation of the unified approach 
In a study for the pig by Forni et al. (2011), the accuracy of the estimated breeding values for 

genotyped females was reported to be 0.22 with the pedigree based approach whereas it ranged 

from 0.28 to 0.49 with the unified approach depending on the G matrix. Similarly, Christensen 

and Lund (2010) reported an accuracy of 0.66 with the one-step unified approach and 0.35 with 

the pedigree based approach on a simulated dataset for the pig. Genetic evaluation based on the 

unified approach of US Holstein was performed by Aguilar et al. (2010). The study reported the 

coefficient of determination (square of the correlation coefficient) with the pedigree based 

approach (parent average) and the unified approach (single-step GB) to be 0.24 (accuracy ~ 0.49) 

and 0.38 (accuracy ~ 0.62), respectively. In this study for the honey bee which additionally takes 

into account the effect of maternal effects unlike any previous study, comparable results were 

observed (Table 5.1) for the accuracy of the overall estimated breeding values. The accuracy of 

the overall estimated breeding values increased considerably with the unified approach for all 

scenarios of heritability and correlations (p-values < 0.05). For juvenile animals, a higher gain in 

the accuracy of the overall estimated breeding values was observed. It is favourable if the gain in 

accuracy is higher for juvenile animals as they are the subsequent candidates for selection. This 

may consequently help to speed up the selection procedure as a result of the reduction of the 

generation interval. 
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It has been reported in honey bees that most economically important traits have medium 

heritability (Bienefeld and Pirchner 1990; Boecking et al., 2000; Costa-Maia et al., 2011). For 

example, Bienefeld and Pirchner (1990) reported heritabilities for worker and queen effects to be 

0.26 and 0.15 for honey production and 0.39 and 0.45 for wax production, respectively. 

Therefore, for this study, heritabilities were also simulated within the same range. The extremely 

negative estimates of genetic correlation between maternal and direct effects have often been a 

matter of discussion (Bijma, 2006; Ehrhardt and Bienefeld, unpublished results), therefore, a 

general value of correlation of -0.46 was simulated, which exists in other species as well 

(Larsgard and Olesen, 1998; Splan et al., 2002; Safari et al., 2005), and compared it to a case 

with no correlation between maternal and direct effects. 

Roehe and Kennedy (1993) reported the accuracy of the maternal and direct estimated breeding 

values to be 0.21 (0.21) and 0.38 (0.28) for the case of no correlation and 0.19 (0.18) and 0.31 

(0.23) for a negative correlation of -0.5 in female (male) pigs for maternal and direct heritability 

of 0.05 and 0.1, respectively. For the estimation of breeding values, a pedigree based complete 

animal model with maternal effects was used. In this study for the honey bee, the accuracies of 

the maternal and direct estimated breeding values for the pedigree based approach (PED_BLUP) 

at maternal and direct heritability of 0.15 were 0.38 and 0.41 for no correlation and 0.21 and 0.19 

for a correlation of -0.46, respectively. The difference in the accuracies to that reported by Roehe 

and Kennedy (1993) can be a result of dissimilarities between the two studies, such as the 

random selection of individuals, construction of the numerator relationship matrix, value of 

simulated maternal and direct heritability, number of simulated generations, population structure 

and size. Nevertheless, the comparison of results of the PED_BLUP approach with the study 

from Roehe and Kennedy (1993) helps to validate the values of accuracy of the maternal and 

direct estimated breeding values obtained in this study for the honey bee. The accuracies of the 

maternal and direct estimated breeding values were higher for the UNI_BLUP approach as 

compared to the PED_BLUP approach, but the difference was insignificant for some cases 

(Table 5.2). Thus, in order to achieve maximum gain from implementing the unified approach, a 

proper investigation of the cost benefits and the relative improvement in genetic gain is required 

for traits selected solely on the basis of the maternal or direct breeding values. Nevertheless, the 
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sum of the maternal and direct breeding values is still the most important criterion for selection 

and the use of only direct or maternal breeding values is not helpful for the honey bee. 

The complexity associated with the estimation of breeding values for maternally influenced traits 

is that the maternal and direct effects are negatively correlated in most cases. This severely 

impedes the response to selection (Willham, 1972; Roehe and Kennedy, 1993; Mousseau and 

Fox, 1998; Räsänen and Kruuk, 2007). Additionally, a negative correlation between maternal 

and direct effects leads to a decrease in the total genetic variance resulting in lowered accuracies. 

As reported earlier in the results section, the accuracy of the estimated breeding values improved 

significantly in the case of negative correlation with the unified approach as compared to the 

pedigree based approach. Thus, the use of unified approach will especially help to improve the 

genetic response in case of maternally influenced traits with negative correlation between 

maternal and direct effects. The increase in accuracies can be attributed to the genomic matrix 

which provides a more precise measure of genetic relatedness. The numerator relationship matrix 

uses pedigree information to derive the probability of genes to be identical by descent that gives 

an estimate of the relatedness of individuals. The genomic matrix, in contrast, uses high-density 

marker information, thus, it can identify genes that are identical by state9

5.3. The 44k SNP assay (The definitive version is available at www.blackwell-synergy.com) 

 or genes that may be 

shared through common ancestor not recorded in the pedigree (Forni et al., 2011). Hence, it 

provides a more accurate measure for the relationship between individuals. It also enables better 

differentiation among closely related individuals since it captures Mendelian sampling with 

greater precision. Thus, the use of the marker based relationship matrix in the unified approach 

will greatly improve the accuracy of the estimated breeding values for low heritability traits 

and/or negatively correlated traits, e.g. traits with negatively correlated maternal and direct 

effects. 

A total of 44,000 SNP were taken to construct the SNP assay out of which 36,000 are validated 

for the association to the trait of interest. Out of these 36,000 SNP, 813 SNP were significant 

between pools A and B as well as between pools A and C, 1116 SNP were significant only 

                                                           
9 Two alleles may be called identical by state if the alleles are identical but they do not originate from 
same ancestral allele. 
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between pools A and B and 6,965 SNP were significant only between pools A and C (pFDR < 

0.05). The number of significant SNP between pool A and C was higher as compared to pool A 

and B. This is probably due to the fact that the causative genes are not segregating in pool C 

which never showed the hygienic behaviour. The criteria for SNP selection for the assay, 

particularly the pFDR of <0.05, were chosen in a way that favours a certain amount of false-

positive SNP. To provide an even distribution of SNP across the genome, additional 8,000 SNP 

were selected from the SNP list (www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/snp/) published 

by the Honey Bee Genome Project without prior validation. The statistical test provided a 

preliminary estimate of the number of genomic regions involved in the regulation of the 

investigated trait (Spötter et al., 2012). Seven SNP are significant at a pFDR < 10-9 between 

pools A and B. 120 SNP are significant at a pFDR < 10-9 between pools A and C. One SNP is 

significant at a pFDR < 10-9 for pool between pools A and B as well as pools A and C. Next-

generation sequencing was performed using the Illumina Genome Analyzer GA-IIx to validate 

the large subset of SNP that was used to design the 44k custom genotyping SNP assay. To the 

best of the knowledge, it is the first time that next generation sequencing has been used in the 

honey bee. In subsequent studies, these SNP will be evaluated for association with the defence 

behaviour. 

http://www.hgsc.bcm.tmc.edu/ftp-archive/Amellifera/snp/�
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Chapter 6. Conclusion and Future work 
6.1. Conclusion 
This study describes the use of a high-density molecular marker data for genetic evaluation in 

honey bees using the unified approach. To provide a comparative evaluation between the genetic 

evaluation methods based on the unified approach and the pedigree based approach, a complex 

scenario was modelled by taking into account characteristics such as varying heritability, 

correlation between maternal and direct genetic effects, uncertain paternity and the honey bee 

specific genetic and reproductive biology. To the best of the knowledge, this is the first study 

which gives background knowledge about the simulation of genomic and pedigree datasets in the 

honey bee for genetic evaluation, thus, providing an important framework for future studies. The 

results showed improvement in the accuracy of the overall estimated breeding values with the 

unified approach for both no correlation and negative correlation between maternal and direct 

effects at all simulated heritabilities. The unified approach can be further used to improve the 

response to selection, increase genetic gain, lower the rate of inbreeding and speed up the 

selection procedure as a result of reduction in the generation interval. Thus, the unified approach 

will be a progressive step for the genetic evaluation in the honey bee. 

Furthermore, the software program developed in this study is relevant for research requiring a 

simulated molecular genetic dataset in the honey bee such as studies aiming at optimizing the 

honey bee breeding programs. It can construct a base population in LD by simulating a random 

mating honey bee population given some input population parameters. It provides the statistics 

relevant to a population such as allele frequency, r2 value for LD and data for marker sorting 

according to minor allele frequency and Hardy-Weinberg equilibrium. 

The developed 44k SNP assay will be employed to perform genome-wide association studies to 

identify QTL associated with the hygienic behaviour in the honey bee. Previous studies 

(Rothenbuhler, 1964; Moritz, 1988; Lapidge et al., 2002; Oxley et al., 2010) have suggested the 

existence of regions in the genome controlling hygienic behaviour. However, to date, no study 

employing a large-scale SNP assay has been accomplished. Although, the SNP assay has been 

developed to identify the SNP associated with the uncapping of Varroa-infested brood, its usage 
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is not restricted to the analysis of the defence behaviour against Varroa. It can also be used for 

other traits such as swarming tendency, calmness or honey and wax production. This is due to 

the fact that the SNP selected for the assay are evenly distributed across the whole genome which 

will help in the identification and detection of QTL affecting other traits as well. Additionally, 

the 44k SNP assay will facilitate the implementation of marker-assisted and genomic selection 

methodologies that rely on high-density marker information to obtain accurate breeding value 

estimates. 

To summarize, this study provides a comprehensive overview of a marker based genetic 

evaluation methodology in the honey bee through simulation and modelling. The use of SNP 

data in the honey bee for association studies and genetic evaluation will provide a great impetus 

to the genetic improvement of economically important traits in the honey bee. This study 

provides important background knowledge about genetic evaluation based on molecular genetic 

data that will significantly help future studies in the honey bee. 

6.2. Future work 
In this study only potential-dam queens were genotyped. With the fast advancement in 

genotyping technology, it is likely that the cost of genotyping is reduced further in future, thus 

making it possible for the sister queens in a multiple mating station or queens contributing 

drones in artificial insemination to be genotyped. This can help to improve the accuracy of the 

breeding values in two ways. Firstly, genotyping can help to predict the actual sires for queens 

instead of using a dummy sire, thus the numerator relationship matrix can be constructed 

precisely, and secondly, the genotyping information for the sires can be directly included in the 

genomic relationship matrix.  

Another aspect that needs to be studied in the honey bee population is the genome-wide LD, an 

important parameter in all genome-wide association studies. As compared to other species, the 

extent of LD in the breeding population of honey bee is uncertain. The level of LD in species 

such as cattle, pig and sheep is reported in literature (Du et al., 2001; McRae et al., 2002; McKay 

et al., 2007). However, to the best of the knowledge, no study has been published which reports 

the extent of LD in the honey bee population. Factors which contribute to uncertainty in the level 

of LD in the honey bee are as follows: 
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(1) The extent of LD will vary according the effective population size of the honey bee 

population in a region (Estoup et al., 1995). 

(2) The level of LD is inversely related to the genetic distance. Although the physical size of the 

honey bee genome is approximately 236 Mb (The Honeybee Genome Sequencing Consortium, 

2006), the genetic length is much higher than in other species due to a very high recombination 

rate. Thus, this high genetic length can have a great influence on the extent of LD in the honey 

bee population. 

(3) Population admixture plays an important role in creating LD. Given that honey bee 

population is not closed, population admixture may result from uncontrolled mating and 

introduction of new bees from different regions. 

(4) The extent of LD may vary in different sub-species of the honey bee such as Apis mellifera 

carnica in Middle Europe, Apis mellifera linguistica in Italy or Apis mellifera mellifera in 

Northern Europe. 

Studies in other species (Aguilar et al., 2010; Forni et al., 2011) have already optimised the 

approach with respect to the construction of the genomic relationship matrix and computational 

solving procedures. Thus, for genetic evaluation based on the unified approach and/or different 

genomic selection strategies, there is a scope to develop software that precisely takes into 

account the population structure of the honey bee. 

Furthermore, the developed 44k SNP assay will be used in the future genome-wide association 

studies to detect QTL/genes associated with various economically important traits in the honey 

bee. 
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Appendix 

Instructions to use the software program for simulating a base population 
The code has been written keeping in mind the biology of the honey bee. As per our knowledge, 

it is the first study which specifically deals with the genetic and reproductive aspects of the 

honey bee. The software uses a straight-forward approach for simulating a base population 

required for population genetics related studies in the honey bee. The code is in MATLAB but 

can easily be adapted to the open source version Octave. We hope that the users are familiar with 

MATLAB. 

Usage and Input: 
The following syntax can be entered at the command window of MATLAB to execute the 

function: 

  population_simulation 

  (This would produce results according the default value for input arguments.) 

The user can change the value for desired input arguments using the one of the following 

commands: 

  population_simulation(NoGen)  

(This would allow the user to provide an input for the number of generations. For example, if      

population_simulation(50) is executed then the simulation will run for 50 generations and all 

other input arguments will use the default value.) 

Similarly, values for other input arguments can be changed as follows: 

  population_simulation(NoGen,NoSire) 

  population_simulation(NoGen,NoSire,NoDam) 

  population_simulation(NoGen,NoSire,NoDam,NoMarker) 

  population_simulation(NoGen,NoSire,NoDam,NoMarker,FMrate) 

  population_simulation(NoGen,NoSire,NoDam,NoMarker,FMrate,BMrate) 

  population_simulation(NoGen,NoSire,NoDam,NoMarker,FMrate,BMrate,MAF) 

  population_simulation(NoGen,NoSire,NoDam,NoMarker,FMrate,BMrate,MAF,NoSelSNP) 
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Input includes:  

1. NoGen: Number of generations to be simulated (default: 1000) 

2. NoSire: Number of sire queens* (default: 200) 

3. NoDam: Number of dam queens* (default: 20) 

4. NoMarker: Total number of marker loci to be distributed on the genome (default: 50000) 

5. FMrate: Forward mutation rate (default: 0.0025) 

6. BMrate: Backward mutation rate (default: 0.0025) 

7. MAF: Minor allele frequency (default: 0.05) 

8. NoSelSNP: Number of marker loci with the highest minor allele frequency to be chosen as 

SNPs (default: 10000) 

Output 
1. File 'Graph_LD_r_square.fig' gives the plot of average LD for all simulated marker loci pair 

against the number of generations. 

2. File ' LD_SNP_with_highest_MAF.dat' gives average LD for selected SNPs with the highest 

minor allele frequency in the last generation. It is a scalar value. 

3. File 'Genome_m_LD.dat' contains genome of all the sire queens in the last generation. The 

size is: (Number of sire queens times 2) x (Number of SNP loci). 

4. File 'Genome_f_LD.dat' contains genome of all the dam queens in the last generation. The 

size is: (Number of dam queens times 2) x (Number of SNP loci). 

5. File 'Allele_frequency_LD.dat' contains allele frequency in the last generation. The size is: 

(Number of SNP loci) x (2). 

6. File 'Avg_ld_all_gen.dat' contains the value of average LD for all simulated marker loci pair 

in all generations. The size is: (1) x (Number of generations). 

7. File 'Chi_squ.dat' contains the value of Chi-Square statistics for all the SNP loci in the last 

generation. The size is: (1) x (Number of SNP loci). 

8. File 'MAF_SNP.dat' contains the ID of SNP loci with minor allele frequency less than the 

input minor allele frequency. The size is: (1) x (Number of SNP loci with minor allele 

frequency less than the input value). These markers can be eliminated from the original set of 

markers simulated. 
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9. File 'Complete_snp_list.dat' contains the SNP position in base-pairs on each chromosome. 

SNP positions for each chromosome are concatenated one after the other. The size is: (1) x 

(Number of SNPs to be distributed). 

10. File 'SNP_Position.dat' contains the information about a) Total number of SNPs on each 

chromosome and b) Position of SNP on each chromosome in base-pairs. The output file 

format is: Chromosome number (Number of SNPs on that chromosome) Positions of SNPs. 

Remark 
- The ratio between dam queen and sire queen has been assumed to be 1:10 therefore the values 

for number of sire queen and dam queen need to be assigned in the same ratio. 

- The reported recombination rate of 19 cM/Mb is used in the code. 

- Since the source code is provided, the values of input can be changed in the code itself using an 

editor. 

- In the source code, random seed can be changed according to the requirement. 

- Please provide a valid number of marker loci to be simulated. The genome consists of 16 

chromosomes; therefore simulate a legitimate number of marker loci from which required 

number of SNPs can be chosen. The default value of ‘NoMarker’ is 10,000. 
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Zusammenfassung 

Über die vergangenen Jahre hinweg ist der Bestand der am häufigsten domestizierte Honigbiene 

(Apis mellifera) drastisch zurückgegangen. Dies ist hauptsächlich auf den Befall mit der 

ectoparasitären Milbe Varroa destructor zurückzuführen. Selektives Züchten von genetisch 

überlegenen Bienen kann dabei helfen, resistente Abstammungslinien zu erzeugen und somit den 

Verlusten aufgrund des Parasiten vorzubeugen. Desweiteren können auch andere ökonomisch 

wichtige Merkmale verbessert werden, z.B. Honigleistung, Schwarmtrieb und Angriffsverhalten. 

Ein solcher Ansatz setzt jedoch ein robustes Zuchtprogramm und die präzise Schätzung 

genetischer Zuchtwerte voraus, mit denen genetisch überlegene Individuen identifiziert und 

selektiert werden können. Diese Bewertung kann anhand verschiedener Informationsquellen 

erfolgen, z.B. Phänotypen, Genotypen und Abstammung der Individuen.  

Diese Arbeit befasste sich mit der Eingliederung von Informationen über dichtverteilte 

Einzelnukleotid-Polymorphismen ('single nucleotide polymorphism', SNP) in den 'unified 

approach' zur Zuchtwertschätzung bei Honigbienen. Mit Hilfe von Simulationen wurden das 

Potential und die Anwendbarkeit dieses Ansatzes auf Honigbienen untersucht. Es musste eine 

Grundstruktur zur Simulation einer Honigbienenpopulation entwickelt werden, welche die 

honigbienenspezifischen Reproduktions- und Genomeigenschaften mit einbezog. Das beinhaltete 

eine hohe genetische Rekombinationsrate, haplo-diploide Geschlechtsbestimmung, Polyandrie, 

ungewisse Paternität und negative genetische Korrelation zwischen maternalen und direkten 

Effekten. Dadurch konnten Datensätze für die Abstammung, die Genotypen und die Phänotypen 

aller Individuen einer Honigbienenpopulation generiert werden, welche für die Implementierung 

des 'unified approach' erforderlich waren. Die linearen 'mixed model' Gleichungen wurden mit 

einem weit verbreiteten Zuchtwertschätzverfahren ('best linear unbiased prediction', BLUP) auf 

Grundlage des 'unified approach' gelöst. Ein besonderes Augenmerk lag auf den Auswirkungen 

der maternalen Effekte, negativer Korrelation zwischen maternalen und direkten Effekten, 

ungewisser Paternität und unterschiedlicher Heritabilität von maternalen und direkten Effekten. 

Dadurch sind die Ergebnisse dieser Studie auch wertvoll für die Untersuchung anderer Zuchttiere 

mit ähnlichen Eigenschaften. Zusätzlich wurde ein Testverfahren auf der Basis eines 44.000 SNP 
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Arrays entworfen, welches für genomweite Assoziationsstudien und markergestützte 

Selektionsstrategien verwendet werden kann. 

Diese ist die erste Studie, die die Details zur Modellierung und Simulation von Genom- und 

Abstammungsdatensätzen für die Zuchtwertschätzung von Honigbienen untersucht. Die dadurch 

erworbenen Kenntnisse bieten eine solide und wertvolle Grundlage für zukünftige 

Untersuchungen auf diesem Gebiet. Die Umsetzung des 'unified approach' bietet eine 

fortschrittliche Verbesserung der genetischen Bewertung von Honigbienen. Daher ist diese 

Studie wegweisend für die aktuelle Forschung auf dem Gebiet der markergestützten 

Zuchtwertschätzung von Honigbienen und anderen Zuchttieren. 
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