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Abstract

Plants are attacked by diverse herbivores and respond with manifold defence

responses. To study transcriptional and other early regulation events of these plant

responses, herbivory is often simulated to standardize the temporal and spatial

dynamics that vary tremendously for natural herbivory. Yet, to what extent such

simulations of herbivory are able to elicit the same plant response as real herbivory

remains largely undetermined. We examined the transcriptional response of a wild

model plant to herbivory by lepidopteran larvae and to a commonly used herbivory

simulation by applying the larvae’s oral secretions to standardized wounds. We

designed a microarray for Solanum dulcamara and showed that the transcriptional

responses to real and to simulated herbivory by Spodoptera exigua overlapped mod-

erately by about 40%. Interestingly, certain responses were mimicked better than

others; 60% of the genes upregulated but not even a quarter of the genes downreg-

ulated by herbivory were similarly affected by application of oral secretions to

wounds. While the regulation of genes involved in signalling, defence and water

stress was mimicked well by the simulated herbivory, most of the genes related to

photosynthesis, carbohydrate- and lipid metabolism were exclusively regulated by

real herbivory. Thus, wounding and application of oral secretions decently mimics

herbivory-induced defence responses but likely not the reallocation of primary

metabolites induced by real herbivory.
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1 | INTRODUCTION

Plants defend themselves against a great variety of herbivorous

insects with a range of traits that are constitutively expressed and/

or inducible upon herbivore attack (Schaller, 2008). Lima bean for

example increases its production of extrafloral nectar to attract ants

which defend it from herbivores (Kost & Heil, 2008). Besides such

indirect defences, plants produce repellents, antidigestives or toxins

that directly deter, slowdown or kill herbivores. For example, tomato

and many other plants respond to herbivory with the production of

protease inhibitors that block proteolytic enzymes in the gut of her-

bivorous insects (Green & Ryan, 1972; Jongsma & Bolter, 1997). In

addition to such physiological responses, plants can alter morpholog-

ical parameters like thickness of the cuticle, the density of defensive
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trichomes or toughness of their leaves and stems (Clauss, Dietel,

Schubert, & Mitchell-Olds, 2006; War et al., 2012). To respond in

such a way, plants have to perceive cues associated with the herbi-

vore or with the damage it provoked (Bonaventure, VanDoorn, &

Baldwin, 2011; Heil & Land, 2014) and they need to transduce this

signal into a phenotypic response.

The key phytohormone mediating the induction of many plant

defence traits against herbivores, such as protease inhibitors and

extrafloral nectar, is jasmonic acid (JA; Wasternack, 2015). Biosyn-

thesis of the so-called wound hormone JA is elicited upon tissue

damage. The signalling function of JA depends on its conjugation to

isoleucine (Ile). JA-Ile binds to the COI1 domain of a SFC ubiquitin

ligase complex that tags repressor proteins of certain transcription

factors for their proteolytic removal. As a consequence, it activates

the transcription of JA-responsive genes regulated by these tran-

scription factors.

Yet, plant defence signalling is not solely governed by JA. Herbi-

vore attack commonly elicits various signalling cascades including

some that are just beginning to be explored such as signalling via

brassinosteroids or strigolactones (De Bruyne, H€ofte, & De Vleess-

chauwer, 2014; Oh et al., 2010; Pandey, Sharma, & Pandey, 2016;

Torres-Vera, Garc�ıa, Pozo, & L�opez-R�aez, 2014; Yang, Baldwin, &

Wu, 2013). The different phytohormone pathways interact with each

other in a complex signalling network, and the activation strength of

different hormonal pathways depends on the herbivore species

(Lortzing & Steppuhn, 2016; Pieterse et al., 2012). This is because

insects of different feeding guilds with distinct damage patterns trig-

ger the plant signalling network in quite diverging ways. For exam-

ple, phloem-sucking aphids predominantly induce salicylic acid (SA)

signalling while leaf-chewing caterpillars mainly induce JA-mediated

defences (Appel et al., 2014). But plants can also respond differently

to herbivores of the same feeding guild as they perceive not only

damage cues but also insect-derived elicitors (Schmelz, 2015). Such

elicitors have been found in the regurgitates of several caterpillar

species, in beetles and locusts and even in oviduct secretions that

insects use to attach their eggs on host plants (Hilker, Kobs, Varama,

& Schrank, 2002; Schmelz, 2015).

In addition to these specificities, plants in different environments

react divergently to herbivory. The plant response depends on a

multitude of abiotic factors like light conditions, water availability

and temperature as well as on temporal and spatial factors like the

time of the day and the type of tissue that is attacked (Arimura

et al., 2008; Heidel-Fischer, Musser, & Vogel, 2014). On the one

hand, this is due to the fact that plants regulate their phenotypic

appearance in response to diverse environmental factors over the

same regulatory network. On the other hand, herbivory imposes

physiological stress, such as desiccation, that it shares with other

environmental threats. This may explain, the overlapping transcrip-

tomic and metabolomic responses of a plant to chewing herbivores

and for example drought (Nguyen et al., 2016). Additionally, the risks

of plant fitness losses imposed by herbivory as well as the availabil-

ity of resources required for defence production depend on the

physiological state of the plant that is shaped by diverse factors.

These functional relationships have likely shaped the evolution

of the signalling network in plants. After decades of research on

plant–herbivore interactions, some very general aspects of plant

responses to herbivory, such as the JA signalling pathway, are well-

resolved. Yet, we have barely started to untangle the complexity of

functional and physiological interactions between the different plant

signalling pathways involved in a plant’s response to herbivory.

In the light of this complexity, it is obvious that investigating the

physiological mechanisms of these interactions requires a high

degree of standardization. Whereas it is comparatively simple to

control for abiotic and developmental factors, the herbivory itself is

more difficult to standardize. In particular, analysis of the early sig-

nalling response, which occurs within minutes to a few hours,

requires a high degree of control over the spatial and temporal feed-

ing pattern of an herbivore. However, feeding pattern and feeding

motivation are not constant and consequently the timing and

amount of feeding damage vary tremendously between individuals

for many herbivore species. And because experiments with feeding

herbivores are demanding in terms of space, time and experimental

effort, the feasibility of a biological replication that can account for

this variation is limited.

To cope with this dilemma, plant responses to herbivory are

often investigated by using treatments that mimic herbivory. Many

ecological studies on plant–insect interactions have used application

of JA or its methyl ester (MeJA) to induce plant responses normally

induced by herbivores (e.g., Thaler, Stout, Karban, & Duffey, 1996;

Wu, Wang, & Baldwin, 2008). However, how well exogenous

hormone applications match with the endogenous signal strength

upon herbivory is usually not determined. Moreover, such treat-

ments ignore the various other hormones that are elicited in concert

with JA and modulate the plants response during attack by a real

herbivore.

Another frequently used standardized simulation of herbivory is

to damage plants mechanically, which elicits endogenous JA sig-

nalling and other phytohormonal pathways. Such treatments have

been successfully used to study plant defence responses to her-

bivory, but the degree to which it mimics true herbivory depends on

the type and the spatio-temporal pattern of the applied damage

(Bricchi et al., 2010; Mith€ofer, Wanner, & Boland, 2005). In many

cases, the response to mechanical damage was found to be different

from that to real herbivory and a range of herbivore-derived elicitors

of plant defence responses were identified and characterized during

the last decades (Bonaventure et al., 2011).

Two intensively studied elicitors are fatty acid–amino acid conju-

gates and glucose oxidase activity in the oral secretions (OS) of

caterpillars. The application of these elicitors to mechanical wounds

can elicit plant responses that are more similar to that of natural her-

bivory than mechanical wounding alone. This has for example been

shown for the production of volatiles that function as indirect

defence and for metabolites or proteins involved in direct defence

(Alborn et al., 1997; Bonaventure et al., 2011; Giri et al., 2006; Hal-

itschke, Gase, Hui, Schmidt, & Baldwin, 2003; Musser et al., 2002,

2005; Tian et al., 2012; VanDoorn, Kallenbach, Borquez, Baldwin, &
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Bonaventure, 2010). Because this form of simulated herbivory allows

to control the timing and amount of damage and elicitors, it is com-

monly used to study the early signalling responses of plants to her-

bivory (Bricchi et al., 2010; Consales et al., 2011; Ferrieri et al.,

2015; Gilardoni et al., 2010; Mattiacci, Dicke, & Posthumus, 1995;

Qi et al., 2016; Sch€afer, Fischer, Baldwin, & Meldau, 2011). Studies

on insect-derived elicitors have mainly focused on their role in mod-

ulating the wound response. Therefore, transcriptomes have been

usually compared between plants that were either mechanically

wounded and plants that were additionally treated with herbivore-

derived elicitors, oral secretions (OS) or regurgitate (Consales et al.,

2011; Halitschke et al., 2003; Lawrence, Novak, Ju, & Cooke, 2008).

Alternatively, transcriptomes were compared between plants fed by

herbivores with and without ablated salivary glands (Musser et al.,

2012). Most of these studies were conducted on a handful of model

species and none of them evaluated how well the simulation of her-

bivory by adding elicitors to mechanical damage resembles the

plants’ response to real herbivore attack.

Here, we examined the transcriptional response of the wild plant

Solanum dulcamara to herbivory by lepidopteran larvae and tested

how well the simulation of herbivory by OS application to wounds

mimics this transcriptional response.

The bittersweet nightshade S. dulcamara is a wild perennial wine,

native and widely distributed in Europe, North Africa and Asia but

also present in the USA and Canada. As a close relative to tomato

and potato, it is increasingly investigated as a model system for its

phenotypic plasticity in response to various environmental factors

(Visser, Zhang, De Gruyter, Martens, & Huber, 2016). It mostly

occurs in wet habitats where it forms adventitious roots in response

flooding (Dawood et al., 2014, 2016). It hosts the economically rele-

vant pathogen Phytophtora infestans (Golas et al., 2009, 2012), a

variety of different generalist and specialist herbivores (Calf & Van

Dam, 2012; Viswanathan, Narwani, & Thaler, 2005), expresses indu-

cible defence responses to herbivory such as the production of pro-

tease inhibitors (PIs; Nguyen et al., 2016; Viswanathan, Lifchits, &

Thaler, 2007) and releases extrafloral nectar from herbivore-inflicted

wounds (Lortzing et al., 2016). Studying wild model plants and their

natural interactions with herbivores potentially allows to identify and

to functionally explore successful traits that plants evolved to cope

with herbivores. As S. dulcamara is predominantly attacked by spe-

cialists (Lortzing et al., 2016), it likely evolved effective defences

against generalist herbivores and therefore we aimed to investigate

the plant’s response to a generalist. Native to Asia and now spread

worldwide, the geographic range of the noctuid generalist S. exigua

is overlapping with the native and invasive distribution of S. dulca-

mara. Its host plants include solanaceous plants and the elicitors in S.

exigua OS are well characterized (Diezel, von Dahl, Gaquerel, & Bald-

win, 2009; Tian et al., 2012).

In order to analyse the transcriptomic responses of S. dulcamara,

we designed and validated a 60K custom microarray based on a

recent transcriptome assembly with about 32,000 contigs represent-

ing about 24,000 unigenes (D’Agostino et al., 2013). In a greenhouse

experiment, we exposed S. dulcamara plants originating from four

different natural populations to herbivory by Spodoptera exigua cater-

pillars and compared their transcriptome profile with that of plants

that were left undamaged or that were mechanically wounded and

supplied with S. exigua OS (W + OS). Although the early transcrip-

tional response to the W + OS treatment largely overlapped with the

response of S. dulcamara to actual herbivory, the downregulation of

genes was mainly specific for the response to feeding S. exigua larvae.

2 | MATERIALS AND METHODS

2.1 | Plants and insects

We grew Solanum dulcamara L. (Solanaceae) plants from stem cut-

tings of plants that we initially collected from four different popula-

tions on lakeshores in the vicinity of Berlin (Erkner: 52°41088.77″N;

13°77034.09″E, Grunewald: 52°27044.37″N; 13°11024.63″E, Mehrow:

52°34006.38″N; 13°38003.97″E and Siethen 52°16053.65″N;

13°11018.65″O). Stem segments with two nodes were planted in

0.75-L pots with one node above and one below the soil (Einheits

Erde�, type: Profi Substrat Classic, Sinntal-Jossa Germany). About

1 cm of sand (2–3 mm grain size) on top of the soil prohibited prop-

agation of fungus gnats. Plants were grown in the greenhouse under

a 16/8 hr light/dark cycle, a photon irradiance between 190 and

250 lmol m�2s�1 and ample water supply.

Larvae of Spodoptera exigua H€UBNER (Noctuidae) cultured in

vented plastic boxes in a climate chamber (24°C, 70% r.h., 16/8 hr

light/dark cycle with 50% dimming for 1 h) were fed on a bean

flour-based artificial diet (35 g agar-agar, 4 g 4-hydroxybenzoic acid

methyl ester, 1 g Wesson salt mix, 1 g, L-(+)-ascorbic acid, 6 g sorbic

acid, 1 g L-leucine, 64 g brewer’s yeast, 23 g Alfalfa flour pellet,

213 g bean flour, 1 ml maize germ oil, 4 ml of 37% formaldehyde,

20 mg nicotine acid, 10 mg riboflavin, 4.7 mg thiamine, 4.7 mg

pyroxidine, 4.7 mg folic acid, 0.4 mg biotin in 1.5 L water). The

moths were kept in flight cages and were provided with 20% honey

solution and paper tissue as substrate for oviposition.

2.2 | Experimental setup

To determine the transcriptional response of S. dulcamara to real

and simulated herbivory by S. exigua, we used three-week-old plants

of four genotypes (Erkner: e_09, Grunewald: x_11, Mehrow: m_04,

Siethen s_10). We assigned most similar individuals of each genotype

according to size and habitus to six replicate blocks of four plants

that were randomly assigned to the treatment groups. The third leaf

from the top was selected for the treatments. Treatments and har-

vest were performed blockwise. While plants of the first treatment

group were left untreated, plants of the second received 2 S. exigua

third-instar larvae that were confined on the leaf in a clip cage.

Plants of the third and the fourth treatment group received two

rows of puncture wounds on each site of the midvein using a tracing

wheel. Immediately, 20 ll of OS was dispersed on these wounds

with a pipette (W + OS). The OS was previously collected from

third-instar S. exigua larvae that had fed on S. dulcamara leaf material
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with a Teflon tube connected to 2-ml glass vials and a vacuum

pump. The collected OS was centrifuged to remove solid particles,

diluted twofold with water and was stored until usage at �20°C for

a few days. Plants of one W + OS treatment group and half of the

untreated control plants were harvested 1 h after treatment applica-

tion whereas all other plants were harvested 24 hr after treatment

application. The treated leaf or a corresponding leaf of control plants

was harvested into 2-ml tubes and frozen in liquid N2. The leaf

material was stored at �80°C until extraction.

2.3 | RNA extraction

For the microarray analysis, we ground the leaves under liquid N2 and

pooled 25 mg leaf powder from each of the six treatment replicates

per genotype (occasionally, a replicate was lost, e.g., if the larvae fed

at the midvein at the leaf base and the leaf dried out, then we pooled

30 mg of five plans). From these pools, we extracted the total RNA

with the NucleoSpin� RNA Plant kit (Macherey-Nagel GmbH & Co.

KG) according to the manufacturer’s instructions using double the

amount of RAP lysis buffer. RNA was DNase-digested using TURBO

DNA-free™ (AmbionTM) according to the manufacturer’s instructions.

For quantitative real-time RT–PCR for a set of selected genes, we

used leaf material of the individual plants from a subset of plants

including all genotypes. RNA was extracted as described earlier

(O~nate-S�anchez & Vicente-Carbajosa, 2008) with minor modifications.

About 40 mg of ground leaf material was transferred to 2-ml screw-

cap tubes containing 0.5 g Zirconox, 2.8- to 3.3-mm beads (M€uhlmeier

Mahltechnik, B€arnau, Germany) and homogenized in 600 ll of cell

lysis buffer (2% SDS, 68 mM sodium citrate, 132 mM citric acid,

1 mM EDTA) on a FastPrep�-24 instrument (MP Biomedicals, Solon,

USA) at 5 m/s for 20 seconds. After centrifugation, we added 200 ll

of the protein–DNA precipitation solution (4 M NaCl, 16 mM sodium

citrate, 32 mM citric acid) to the supernatant, in order to account for

the high protein content of S. dulcamara leaves. After centrifugation,

the RNA was precipitated by adding 600 ll of isopropanol. The pellet

was washed in 70% ethanol, air-dried and resolved in 25 ll of water.

RNA integrity was verified by gel electrophoresis, and samples were

adjusted to 200 ng/ll according to spectrophotometric measurements

(Multiskan™ GO Microwell plate reader).

2.4 | 2.4 cDNA labelling and microarray
hybridization

The RNA samples were inspected for concentration, integrity and

purity by electrophoretic analysis using the RNA 6000 Pico Kit with

the 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA,

http://www.agilent.com), and all samples had an RNA integrity num-

ber between 6.8 and 7.8. Fluorescent cRNA was generated using

the Low-Input QuickAmp Labelling Kit (Agilent Technologies) with

oligo-dT primers following the manufacturer’s protocol. Of the cy3-

labelled cRNA, 600 ng were hybridized using the Agilent Gene

Expression Hybridization Kit (Agilent Technologies) following the

manufacturer’s protocol at 65°C for 17 hr on the custom 8 9 60K

microarray described below. After the microarray was washed twice,

the fluorescence signals on microarrays were detected by the SureS-

can Microarray Scanner (Agilent Technologies) at a resolution of

3 lm per pixel.

2.5 | Microarray design and validation

In order to design the 60mer oligonucleotides (probes) that represent

S. dulcamara’s transcriptome on a custom microarray, we first catego-

rized all 32,157 contigs in the S. dulcamara transcriptome assembly

(D’Agostino et al., 2013) according to their sequence variation into A)

unique contigs (less than 90% identity with other sequences), B) con-

tigs with large sequence identity (overlapping sequences of minimal

500 bp and maximal 1.5% mismatches) and C) contigs with moderate

sequence identity (overlapping sequences cover less than 70% of the

contigs). We generated probe sequences based on DNA nearest-

neighbour thermodynamics (SantaLucia, 1998). In a second step, we

selected 10–15 probes with homogeneous melting temperatures.

These probes were specific for unique contigs (A) and contigs with

moderate sequence identity (C) or they were targeting the consensus

sequences of contigs with large sequence identity (B). This resulted in

483,851 probes targeting 32,157 target sequences of which 90%

were displayed in both orientations on a 1M Agilent array.

The 1M microarray was hybridized with fluorescently labelled

samples from total RNA, mRNA and gDNA. For RNA extraction, a

pooled sample of various tissues (seedlings, roots, young and senesc-

ing leaves, flowers, buds) of 21 S. dulcamara accessions (15 Dutch, 6

German) and from differently treated plants (standard conditions,

treatments with MeJA, salicylic acid, ethephon and W + OS) was gen-

erated. The total RNA was extracted from approximately 100 mg of

the different sample tissues as described above for the microarray

analysis and then pooled. From 75 lg of the total RNA, mRNA was

purified using the Dynabeads™ mRNA Purification Kit (Invitrogen,

Thermo Fisher Scientific Inc.) according to the manufacturer’s instruc-

tion. DNA was extracted from 100 mg ground leaf material (of differ-

ent S. dulcamara accessions) with 800 ll extraction buffer (100 mM

Tris/HCL [pH 8.5], 100 mM NaCl, 10 mM EDTA [pH 8.0]) and 800 ll

PCI (phenol/chloroform/isoamylalcohol 25:24:1), and after centrifuga-

tion, the aqueous phase was treated twice with 800 ll chloroform/

isoamylalcohol (24:1) before it was RNase-digested. The DNA was

precipitated with 1/10 volume sodium acetate (3M, pH 5.2) and 1

volume isopropanol, washed with 1 ml 70% ethanol and resolved in

50 ll TE buffer.

The hybridizations of the 1M Agilent array with samples from

both, total RNA and mRNA, similarly showed higher signals for

probes binding towards the 30 prime end of the mRNA. The sample

from mRNA resulted in about 20% less targets with significant sig-

nals, and thus, we continued to use total RNA in the experiments.

For each target, we selected one to two probes (preferentially in the

1.5 kb 30 prime end) that provided the strongest signals in the

hybridization with the sample from total RNA, or for targets without

significant detection in the total RNA sample, in the hybridization

with DNA. These probes were represented in the final microarray
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design in one orientation if the signals in the RNA hybridization

matched the strand prediction for the contigs in the transcriptome

assembly (D’Agostino et al., 2013). Nonexpressed targets were rep-

resented in both orientations, as were targets that had a lower than

twofold difference in the mean signals of probes in both orienta-

tions, indicating contradiction in determined and predicted expres-

sion. The final custom 8 9 60K Agilent microarray (design ID

048820) consisted of 1319 structural control probes mainly for qual-

ity assurance and 60,432 probes targeting 27,504 target sequences

of which 5344 target sequences were represented in both orienta-

tions resulting in 32,848 targets on the microarray.

2.6 | Microarray data analysis

Data were analysed using the “limma” software packages from Bio-

conductor in “R” (R Core Team, 2015; Ritchie et al., 2015). For each

microarray, twice the fluorescence value of the 90% percentile of

nonlabelled hairpin DNA probes (dark-corner spots) was set as limit

of detection. About 40% of the probes showed fluorescence values

below this threshold in at least one microarray within each treatment

group. These probes were considered nonexpressed and removed

from further analysis. The remaining data were background-corrected

using the “normexp” method and normalized between microarrays

using the “quantile” method. Multiple probes matching the same tar-

get sequence were averaged. In cases where a probe matched several

target sequences with large sequence similarity (B and C categories),

the probes were assigned to the longest target sequence. Probes that

were spotted and expressed in both orientations (for/rev) were trea-

ted as individual targets and not averaged for gene expression analy-

sis, but they were assigned the same GO annotation. Average

fluorescence values of the final 18,608 targets were log2 transformed

and fit to a linear model using the “lmFit” function with dual contrasts

(control versus each of the three treatments: S. exigua herbivory,

W + OS 1 h, W + OS 24 hr, and S. exigua herbivory versus W + OS

after 1 h and after 24 hr). Targets are from here on referred to as

genes which were considered significantly differentially expressed if

they showed a log2-fold change of at least 1 (twofold expression

change) and p-value <.05 after correction for false discovery rate

according to the Benjamini–Hochberg method (Appendix S1).

Gene ontology enrichment in biological processes was performed

using a previously described annotation (Nguyen et al., 2016) and

the package “TOPGO” (Alexa & Rahnenfuhrer, 2010). The GO distribu-

tion in the set of targets that were differentially expressed after

S. exigua herbivory was compared to the GO distribution of all

targets included in the data analysis using the “elim” algorithm at a

minimum node size of 20. p-values for the enrichment of each GO

term are based on Fisher’s exact tests.

2.7 | Confirmation of microarray results via
real-time qRT–PCR

The Reverse Transcriptase Core kit (Eurogentec, Seraing, Belgium)

was used to synthesize first-strand cDNA from 200 ng RNA in 10 ll

reactions according to manufacturer’s instructions. Real-time quanti-

tative PCR was performed on a Strategene™ Mx3005P instrument

(Agilent Technologies) in three technical replicates per sample using

1 ll of the cDNA in 10 ll reactions with a SYBR�Green I-based

q-PCR kit (Eurogentec, Seraing, Belgium). Melting curves and gel

electrophoresis of the PCR product confirmed specificity of the used

primers. Measured CT values were normalized to two reference

genes (comp28_c0_seq4/EF1a and comp141_c0_seq1/GAPDH see

(Nguyen et al., 2016) supplemental material) and to the untreated

control. Data were log2-transformed for statistical analysis.

3 | RESULTS

3.1 | Magnitude of the transcriptional regulation by
real and simulated S. exigua herbivory

Overall, about 19% of the expressed S. dulcamara transcripts were reg-

ulated in response to S. exigua herbivory (24 hr after onset) or applica-

tion of its oral secretion to puncture wounds (W + OS, either 1 or

24 hr after the treatment) compared to untreated control plants. Of

the 3,512 genes that were differentially expressed in plants exposed

to S. exigua herbivory compared to untreated controls (full herbivory

response), 40% (1,410) also responded in the same direction when

comparing the W + OS treatment to the untreated controls, at least at

one of the time points (“common response,” Figure 1a, Appendix S2).

The vast majority of these genes (94%) responded to the W + OS

treatment after 1 hr and therefore constituted an early response. But

another 29% of the genes (1,005) that responded to S. exigua her-

bivory compared to the untreated control differed also significantly in

their expression when comparing S. exigua-fed and W + OS-treated

plants at both time points (Figure 1a, Appendix S2). The expression of

genes in this “S. exigua-specific response” did not differ between con-

trol and W + OS-treated plants. The expression of almost a third of

the genes regulated in response to S. exigua herbivory (1,097) differed

neither significantly between W + OS-treated plants and S. exigua-fed

plants nor between W + OS-treated plants and untreated control

plants, and thus, it was not clear whether they are specifically regu-

lated by S. exigua herbivory or were just not elicited strong enough by

the W + OS treatment (“unclear response”). In addition, the W + OS

treatment significantly altered the expression of 592 genes compared

to untreated control plants that were also different from the expres-

sion in plants with S. exigua herbivory (“W + OS specific response”).

Taken together, the W + OS treatment reproduced at least 40%

of the plants’ transcriptomic response to S. exigua herbivory but

clearly failed to induce 29% of the response.

Whereas S. exigua herbivory on S. dulcamara in general regulated

slightly more genes down than up, two-thirds of the genes within

the common response were upregulated in comparison with the

untreated control (Figure 1b). On the other side, only a third of the

genes responding exclusively to S. exigua herbivory were upregulated

and thus two-thirds downregulated. Consequently, W + OS treat-

ment was able to elicit 63% of the herbivory-induced but only 23%

of the herbivory-repressed gene expression, while only 20% of the
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upregulated but 37% of the downregulated genes of the response to

S. exigua herbivory were specific for real larval feeding (Figure 1b).

3.2 | Functional annotation of the transcriptional
response to S. exigua herbivory

Gene Ontology (GO) term enrichment analysis revealed 90 highly

enriched GO terms (p < .0001) for the set of genes that responded

to real S. exigua herbivory. These 90 terms cover 60% of all the

genes that responded to S. exigua herbivory. We could classify 81 of

these terms into major functional groups (Table 1), and most (25%)

belonged to a variety of defence responses, like defence to bacteria,

fungi and insects while ~14% are involved in more general stress

responses like those to wounding and water and oxidative stress.

Moreover, a large part of the terms (15%) was related to the activa-

tion of phytohormone pathways, mostly to JA but also to SA,

S. exigua
(24 hrs of feeding)

W+OS 
(either 1 hr or 24 hrs)

373

411
592

999 518

1,097

724

(a)

(b)
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specific
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20%

37%

Significant difference 
at only one time point

F IGURE 1 Number of differentially regulated genes in response to real and simulated herbivory. (a) Numbers of genes expressed differentially
(FC > 2 and padjust < .05, n = 4) between untreated control plants of Solanum dulcamara and either plants exposed to Spodoptera exigua feeding
for 24 hr (full herbivory response) or plants that had been treated with S. exigua oral secretion added to puncture wounds (W + OS) 1 or 24 hr
before. Genes that were differentially regulated when comparing S. exigua feeding to untreated controls (full herbivory response) were further
compared to the W + OS treatments and classified into i) genes that also showed an altered expression after the W + OS treatment at least at
one of the time points in the same direction as found after S. exigua feeding (common), ii) genes that were expressed significantly different in S.
exigua-fed and W + OS-treated plants at both time points (S. exigua specific). The W + OS treatment also regulated genes that significantly
differed from the real herbivory response (W + OS specific). The specificity of genes that did respond to either of the treatments but did not
significantly differ in their expression between W + OS-treated and S. exigua-fed plants is uncertain (unclear). For the Venn diagram displaying all
of the summarized comparisons and more details on the classification, see Appendix S2. (b) Numbers of up- and downregulated genes in these
response categories and the percentage of the coverage by the common and S. exigua-specific responses of the full herbivory response
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TABLE 1 GO enrichment in response to Spodoptera exigua herbivory

# GO.ID GO term description
Genes in
the term

Enrichment
p-value

Number of genes regulated

By S. exigua
herbivory

In
common

S. exigua
specific

W + OS
specific

Phytohormonal responses

1 GO:0009737 Response to ABA 1,720 4.50E�05 437 258 87 81

2 GO:0009753 Response to JA 1,079 4.50E�19 354 215 66 56

3 GO:0009751 Response to SA 1,045 6.30E�10 317 191 68 53

4 GO:0009723 Response to ethylene 880 5.80E�06 239 150 39 40

5 GO:0009863 SA-mediated signalling pathway 787 7.30E�05 227 136 46 36

6 GO:0009738 ABA-activated signalling pathway 698 2.70E�08 194 130 29 32

7 GO:0009867 JA-mediated signalling pathway 622 6.10E�10 188 120 33 32

8 GO:0080167 Response to karrikin 498 3.00E�18 178 97 51 21

9 GO:0009694 JA metabolic process 406 5.20E�12 184 114 34 17

10 GO:0009697 SA biosynthetic process 380 7.00E�07 113 54 38 18

11 GO:0009695 JA biosynthetic process 316 2.30E�23 138 82 29 12

12 GO:0010583 Response to cyclopentenone 225 1.10E�06 74 46 16 12

Defence responses

13 GO:0019748 Secondary metabolic process 1,367 2.60E�05 413 201 102 50

14 GO:0009620 Response to fungus 1,344 3.20E�10 396 213 90 70

15 GO:0042742 Defence response to bacterium 1,225 3.10E�10 329 158 96 52

16 GO:0009611 Response to wounding 1,165 1.00E�30 386 239 69 48

17 GO:0050832 Defence response to fungus 949 1.40E�12 271 138 64 53

18 GO:0009627 Systemic acquired resistance 914 9.50E�09 277 137 78 35

19 GO:0010200 Response to chitin 846 1.70E�14 254 168 40 50

20 GO:0010363 Regulation of plant hypersensitive response 794 1.40E�09 222 131 46 37

21 GO:0031348 Negative regulation of defence response 528 8.60E�06 143 87 29 28

22 GO:0009862 Systemic acquired resistance, SA-mediated 459 6.60E�08 136 79 33 21

23 GO:0002831 Regulation of response to biotic stimulus 282 3.50E�06 91 54 19 11

24 GO:0002679 Respiratory burst involved in defence response 229 2.40E�07 77 51 12 15

25 GO:0009595 Detection of biotic stimulus 227 1.10E�07 84 50 20 13

26 GO:0009612 Response to mechanical stimulus 196 3.00E�05 62 36 16 11

27 GO:0002237 Response to molecule of bacterial origin 148 5.50E�05 49 33 5 14

28 GO:0046482 para-aminobenzoic acid metabolic process 101 1.60E�05 38 27 5 6

29 GO:0002213 Defence response to insect 91 2.30E�08 41 27 7 1

30 GO:0018874 Benzoate metabolic process 81 2.50E�07 36 22 5 6

31 GO:0009821 Alkaloid biosynthetic process 61 8.40E�06 27 13 9 2

32 GO:0080027 Response to herbivore 41 3.70E�08 24 9 7 2

33 GO:0002215 Defence response to nematode 22 8.80E�07 15 6 6 5

Response to oxidative stress

34 GO:0055114 Oxidation–reduction process 1,890 4.90E�05 441 167 128 53

35 GO:0010310 Regulation of hydrogen peroxide metabolism 316 9.10E�07 97 52 26 14

36 GO:0042744 Hydrogen peroxide catabolic process 228 1.80E�06 74 20 31 7

37 GO:0071456 Cellular response to hypoxia 97 5.10E�06 38 22 9 6

Response to abiotic stimuli

38 GO:0009409 Response to cold 1,561 1.90E�05 375 176 115 72

39 GO:0010167 Response to nitrate 347 2.00E�07 107 52 19 20

40 GO:0010114 Response to red light 318 3.40E�07 99 36 35 16

(Continues)
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TABLE 1 (Continued)

# GO.ID GO term description
Genes in
the term

Enrichment
p-value

Number of genes regulated

By S. exigua
herbivory

In
common

S. exigua
specific

W + OS
specific

41 GO:0071497 Cellular response to freezing 31 1.20E�05 17 12 2 2

Response to water stress

42 GO:0009414 Response to water deprivation 1,283 2.20E�12 370 206 79 66

43 GO:0042538 Hyperosmotic salinity response 474 2.10E�11 152 94 33 33

44 GO:0009269 Response to desiccation 127 1.60E�05 45 26 9 6

Photosynthesis

45 GO:0015979 Photosynthesis 737 1.80E�09 257 34 130 4

46 GO:0046148 Pigment biosynthetic process 661 6.10E�05 263 83 106 21

47 GO:0009658 Chloroplast organization 545 7.50E�08 186 44 94 11

48 GO:0019684 Photosynthesis, light reaction 539 3.70E�07 184 28 94 3

49 GO:0019288 Isopentenyl diphosph. biosynth. process 395 1.20E�24 164 21 99 6

50 GO:0010027 Thylakoid membrane organization 344 2.80E�26 152 18 88 4

51 GO:0015995 Chlorophyll biosynthetic process 311 1.50E�20 131 33 60 10

52 GO:0010103 Stomatal complex morphogenesis 257 6.60E�13 99 24 49 9

53 GO:0016117 Carotenoid biosynthetic process 240 3.60E�14 97 12 49 3

54 GO:0010207 Photosystem II assembly 239 1.20E�09 86 12 43 1

55 GO:0009902 Chloroplast relocation 211 3.70E�11 82 14 44 4

56 GO:0016226 Iron–sulphur cluster assembly 150 1.40E�06 54 5 37 2

57 GO:0042793 Transcription from plastid promoter 96 3.70E�09 44 4 29 1

Amino acid metabolism

58 GO:0019344 Cysteine biosynthetic process 449 5.30E�07 130 39 48 10

59 GO:0009073 Aromatic amino acid biosynthetic process 208 8.60E�09 83 29 30 9

60 GO:0015824 Proline transport 134 6.20E�06 48 33 5 4

61 GO:0000162 Tryptophan biosynthetic process 104 3.30E�05 38 21 8 7

Carbohydrate metabolism

62 GO:0009744 Response to sucrose 525 6.20E�06 143 62 42 18

63 GO:0006098 Pentose phosphate shunt 347 1.90E�18 137 19 68 2

64 GO:0019252 Starch biosynthetic process 298 3.60E�13 111 20 43 6

65 GO:0000023 Maltose metabolic process 273 6.70E�12 101 22 40 6

66 GO:0015976 Carbon utilization 94 1.60E�05 36 9 12 3

67 GO:0016998 Cell wall macromolecule catabolic process 36 3.70E�05 18 5 8 1

68 GO:0010143 Cutin biosynthetic process 26 9.60E�05 14 5 3 1

Lipid metabolism

69 GO:0006636 Unsaturated fatty acid biosynthetic process 185 3.90E�06 62 17 27 6

70 GO:0000038 Very long-chain fatty acid metabolic process 117 2.20E�05 42 13 19 4

71 GO:0009106 Lipoate metabolic process 116 1.70E�05 42 15 17 6

72 GO:0006655 Phosphatidylglycerol biosynthetic process 108 3.60E�05 39 2 26 1

Phenylpropanoid metabolism

73 GO:0009813 Flavonoid biosynthetic process 543 6.50E�06 180 105 36 27

74 GO:0009805 Coumarin biosynthetic process 265 5.00E�10 94 48 20 8

75 GO:0009963 Positive regulation of flavonoid biosynthesis 237 5.20E�08 81 53 12 9

76 GO:0009809 Lignin biosynthetic process 200 6.30E�08 71 32 19 6

77 GO:0009718 Anthocyanin-containing compound biosynth. 132 2.20E�07 51 30 11 9

78 GO:0010023 Proanthocyanidin biosynthetic process 38 9.10E�05 18 12 2 1

(Continues)
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abscisic acid, ethylene and strigolactones (karrikin). Another large

proportion of the terms (17%) referred to processes involved in pho-

tosynthesis and to other primary metabolic pathways such as carbo-

hydrate (9%), amino acid (5%), lipid (5%) and phenylpropanoid (8%)

metabolism.

3.3 | Contribution of the W + OS-simulated and
the herbivory-specific response to the regulated
biological processes

To investigate whether the W + OS treatment is able to elicit cer-

tain herbivory-induced biological processes better than others, we

calculated for each of the GO terms regulated in response to

S. exigua herbivory the fraction of the genes that fell either into

the common or into the S. exigua-specific response (Figure 2).

Although, over the whole transcriptome, only 40% of the S. exi-

gua-regulated genes were similarly regulated by the W + OS treat-

ment, this proportion of commonly regulated genes was much

higher (mostly 50%–70%) within the majority of enriched GO

terms related to phytohormonal pathways and defence responses

(Figure 2a). Within the enriched GO terms related to photosynthe-

sis, the majority (~40%–70%) of the S. exigua-regulated genes

responded exclusively to real S. exigua feeding, although only 27%

of the whole transcriptomic response was S. exigua specific. The

enrichment in GO terms linked to water stress was also mainly

explained by “common response” genes that responded to real

herbivory and W + OS treatment alike, while GO terms related to

other abiotic stimuli and to oxidative stress did not show such a

clear pattern (Figure 2b). GO terms involved in amino acid meta-

bolism could also not generally be assigned to common or S. exi-

gua-specific responding genes. However, carbohydrate and lipid

metabolism seemed to be affected mainly in a S. exigua-specific

manner, while the regulation of herbivory-responsive genes associ-

ated with phenylpropanoid metabolism was largely explained by

genes that were commonly affected by S. exigua feeding and by

W + OS treatment (Figure 2C).

When considering the direction of the regulation of the herbivory-

responsive genes of different functional groups, our data show that

genes within the GO terms related to phytohormonal and defence

responses were largely upregulated after S. exigua herbivory (Fig-

ure 3). This upregulation was mirrored quite well by elicitation with

W + OS the only exception being GO term 33 “defence response to

nematodes,” in which a group of four highly homologous peroxidases

was downregulated specifically after the W + OS treatment. Genes in

GO terms related to photosynthesis, on the other hand, were mostly

downregulated, and this downregulation occurred almost exclusively

after real S. exigua feeding. Genes involved in responses to water

stress were mostly upregulated, but genes in GO terms related to

other abiotic or oxidative stress showed no uniform regulatory direc-

tion (Figure 3). Within the GO terms related to metabolism, the genes

involved in phenylpropanoid metabolism were mostly upregulated,

but within the amino acid, carbohydrate and lipid metabolism, the

direction of the regulation varied between the GO terms. With only

few exceptions, gene regulation within predominantly upregulated

GO terms could be mimicked by the W + OS treatment but that of

downregulated GO terms was rather S. exigua specific.

TABLE 1 (Continued)

# GO.ID GO term description
Genes in
the term

Enrichment
p-value

Number of genes regulated

By S. exigua
herbivory

In
common

S. exigua
specific

W + OS
specific

RNA/DNA modification

79 GO:0045893 Positive regulation of transcription 1,116 3.50E�06 276 120 91 35

80 GO:0016556 mRNA modification 180 1.10E�19 93 26 43 1

81 GO:0006598 Polyamine catabolic process 116 4.10E�05 41 21 8 5

Not classified

82 GO:0019761 Glucosinolate biosynthetic process 386 3.90E�06 119 49 32 14

83 GO:0015706 Nitrate transport 317 2.20E�07 105 51 19 19

84 GO:0045036 Protein targeting to chloroplast 121 9.60E�06 44 10 28 0

85 GO:0042343 Indole glucosinolate metabolic process 68 5.20E�05 35 24 4 2

86 GO:0042939 Tripeptide transport 44 7.80E�05 20 13 3 3

87 GO:0042938 Dipeptide transport 42 3.40E�05 20 12 3 3

88 GO:0009901 Anther dehiscence 38 2.20E�05 19 9 4 1

89 GO:0009759 Indole glucosinolate biosynthetic process 26 9.60E�05 14 10 0 1

90 GO:0006032 Chitin catabolic process 22 7.00E�06 14 2 8 0

Significantly enriched GO terms (p < .0001, # refers to the numbers on top of Figure 3) in the set of differentially regulated genes after Spodoptera exi-

gua herbivory were classified into major functional groups. The number of genes annotated to each term as well as the number of genes that responded

to real S. exigua herbivory are given and can be compared to the number of genes that responded to real herbivory and to wounding and the application

of S. exigua oral secretions (W + OS) in common as well as the ones that responded specifically to S. exigua feeding and specifically to W + OS treat-

ment.
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3.4 | Protease inhibitor gene regulation after real
and simulated S. exigua herbivory

We directly compared our microarray data with a recent RNA-seq

analysis on S. dulcamara plants from an independent experiment with

S. dulcamara genotypes from Dutch populations performed in a dif-

ferent laboratory and harvested after 48 hr instead of 24 hr of

herbivory (Nguyen et al., 2016). Our microarray analysis reproduced

the enrichment of 57% of the GO terms that were found enriched

after S. exigua herbivory in the previous study under normal watering

conditions despite all differences in the experimental approach and

data analysis methodology. However, our analysis found about three

times more genes to be significantly induced by S. exigua herbivory.

Focusing on genes encoding for protease inhibitors that are

involved in antiherbivore defence, a large set of them were found to

be inducible by S. exigua feeding in the RNA-seq study. In direct com-

parison of these genes, our microarray data confirmed the inducibility

through S. exigua herbivory of 10 of 13 of these genes (Table 2). Half

of them were affected by the W + OS treatment as well.

4 | DISCUSSION

This study thoroughly examines to what extent a plant’s transcrip-

tomic response to herbivory can be mimicked by a common herbivory

simulation. Our data show that S. dulcamara’s transcriptional

responses to S. exigua feeding and to a W + OS treatment have a

rather large overlap in comparison with studies that contrasted her-

bivory to wounding (Appel et al., 2014; Ralph, Yueh et al., 2006), but

at the same time, it shows that there are still limitations in simulating

herbivory by W + OS treatment. Whereas the W + OS treatment mir-

rored the upregulation of early responsive genes involved in phytohor-

mone signalling, defence, phenylpropanoid metabolism and water

stress reasonably well, it clearly failed to elicit the downregulation of

genes related to photosynthesis and lipid metabolism as well as the

changes in expression of genes related to carbohydrate metabolism.

In general, the transcriptomic response of S. dulcamara to leaf-

chewing herbivory determined in our microarray analysis is in line

with that of other plant species (Heidel-Fischer et al., 2014; Ralph,

Oddy et al., 2006; Rodriguez-Saona, Musser, Vogel, Hum-Musser, &

Thaler, 2010; Zhou, Lou, Tzin, & Jander, 2015). Considering that the

reproducibility of transcriptomics studies even under very controlled

conditions and using the same methodology can be rather low
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F IGURE 2 Proportion of genes regulated by real and simulated
herbivory within herbivory-enriched GO terms. GO terms that are
significantly enriched (p < .0001) in Solanum dulcamara plants fed by
Spodoptera exigua larvae for 24 hr are depicted as circles of different
sizes representing the number of genes regulated by S. exigua in
each GO term. The GO terms assigned to major functional groups
(circle colour) are displayed in three separate sets (a–c) and their
positions in the coordinate system indicate the proportion of
commonly regulated genes (y-axis, responding similar to S. exigua
feeding as to wounding and application of S. exigua oral secretions)
and the proportion of S. exigua-specific genes (x-axis, exclusively
regulated by S. exigua herbivory) of the herbivory-regulated genes in
each GO term (see Figure 1 for the response classification of genes).
Orange lines represent these proportions for all herbivory-regulated
genes over the whole transcriptome, and GO terms are expected
around their intersection if the response specificity is independent
from the gene function. Diagonal lines indicate the total amount of
the GO enrichment that is explained by the two responses
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(Sanchez, Szymanski, Erban, Udvardi, & Kopka, 2010), our microarray

data match well with results from Nguyen et al. (2016), a recent

RNA-seq analysis that investigated the transcriptional response of

Dutch S. dulcamara plants to 48 hr of S. exigua herbivory using a

very different methodology. Together with the analysis of the

expression levels of candidate genes by real-time PCR that con-

firmed their regulation (Appendices S3 and S4), this provides good

validation of the microarray design we developed.
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F IGURE 3 Simulated herbivory leads to an up- but not downregulation of herbivory-responsive genes within herbivory-enriched GO terms.
Black bars represent the percentage of all Solanum dulcamara genes that were significantly up- and downregulated in response to 24 hr of
Spodoptera exigua feeding in each of 81 GO terms, which were enriched strongest in response to S. exigua herbivory (the numbers on top code
for the GO-term identity and description given in Table 1). Blue/red staked bars represent the same percentage for either commonly regulated
genes (blue) responding similar to S. exigua feeding as to wounding and application of S. exigua oral secretions (W + OS) or S. exigua-specific
genes (red), exclusively regulated by S. exigua herbivory (see Figure 1 for the response classification of genes). Within each GO term, herbivory
regulated only few genes that could not be confidently categorized into either of these two responses (compare black and blue/red bars).
Violet bars show fraction of genes in each GO term that is specifically regulated in response to W + OS

TABLE 2 Response of protease inhibitor genes to real and simulated herbivory

Gene ID FC S. exigua 24 hr FC W + OS 1 hr FC W + OS 24 hr ITAG 2.3 ID

comp10_c0_seq1 40.2 2.9 9.4 Solyc11 g020990.1.1

comp11494_c0_seq1 81.3 7.2 14.2 Solyc03 g098760.1.1

comp4199_c0_seq1 10.1 1.5 1.4 Solyc03 g098700.1.1

comp673_c0_seq1 104.8 11.3 7.2 Solyc11 g022590.1.1

comp1295_c0_seq1 9.6 0.1 0.1 Solyc07 g007240.2.1

comp255_c0_seq1 10.0 0.0 1.1 Solyc03 g098720.2.1

comp1119_c0_seq1 19.5 0.0 5.7 Solyc11 g022590.1.1

comp458_c0_seq1 n.e. n.e n.e Solyc03 g098710.1.1

comp460_c0_seq1 69.1 8.9 21.3 Solyc09 g089510.2.1

comp251_c0_seq1 0.2 0.0 0.4 Solyc07 g007760.2.1

comp978_c0_seq1 4.4 0.1 0.2 Solyc06 g072230.1.1

comp14010_c0_seq1 1.5 1.3 0.0 Solyc02 g069470.2.1

comp1799_c0_seq1 0.1 0.0 0.2 Solyc09 g097850.1.1

All genes listed were inducible in Solanum dulcamara in response to Spodoptera exigua herbivory in an earlier study (Nguyen et al., 2016). Values repre-

sent fold changes (FC) compared to undamaged control plants in plants fed by S. exigua for 24 hr or plants 1 and 24 hr after mechanical wounding com-

bined with application of S. exigua oral secretions (W + OS). Statistically significant FC values >2 (padjust < .05, n = 4) are signified in bold, and Gene IDs

and ITAG IDs of genes that were significantly induced by S. exigua herbivory and W + OS treatment are highlighted.
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4.1 | Herbivory-induced signalling pathways in
S. dulcamara

Many of the genes that are mirrored well by the W + OS treatment are

involved in signalling (Figures 2, 3). As expected, many genes related to

JA signalling and the plant wound response but also those involved in

responses to SA, ABA and ethylene were elicited in common by real and

simulated S. exigua herbivory (Table 1, #1-11). This is largely in line with

recent phytohormone measurements in S. dulcamara in response to

S. exigua herbivory, which show an induction of ethylene emission imme-

diately after the onset of feeding as well as elevated levels of JA and

ABA two days after continuous S. exigua herbivory, although at that time

point SA levels were reduced (Nguyen et al., 2016). The OS of S. exigua

contains at least two classes of elicitors, fatty acid–amino acid conjugates

and glucose oxidase (GOX), and GOX activity mediates the induction of

SA in the wild tobacco Nicotiana attenuata (Diezel et al., 2009). Overall,

the responses of S. dulcamara and N. attenuata to S. exigua herbivory

seem to parallel each other, as the latter also involves the activation of

JA, ethylene and SA signalling.

In addition to phytohormone pathways, we found GO terms

related to the respiratory burst that results in the release of reactive

oxygen species (ROS) as well as responses to oxidative stress to be

enriched in S. dulcamara plants fed on by S. exigua larvae (#20, #24,

#34-37). ROS are involved in many stress responses and are known

to act as signalling molecules (Scheler, Durner, & Astier, 2013;

Sharma, Jha, Dubey, & Pessarakli, 2012). They are likely also involved

in the regulation of plant responses to larval feeding (Kerchev, Fen-

ton, Foyer, & Hancock, 2012; Maffei et al., 2006). The mentioned

GOX activity in the OS of S. exigua produces hydrogen peroxide,

which likely is the active signal of the GOX-mediated effects on

defence induction, which can involve the suppression but also the

increase of defence responses in tobacco and tomato, respectively

(Bede, Musser, Felton, & Korth, 2006; Diezel et al., 2009; Tian et al.,

2012). Accordingly, the differential expression of the many genes

involved in ROS metabolism may result from both, ROS produced by

an endogenous oxidative burst and by the hydrogen peroxide intro-

duced by the caterpillar OS. However, S. dulcamara’s regulation of

genes related to oxidative stress in response to S. exigua feeding was

only partially mimicked by the W + OS treatment (Figures 2, 3).

4.2 | Defence-related responses to real and
simulated S. exigua herbivory

Besides genes involved in signalling, W + OS treatment resembled

well the upregulation of many genes related to defence responses

after S. exigua herbivory. Many genes in the enriched GO terms

related to responses to wounding and herbivores may be directly

linked to the regulation of the wound-related phytohormone path-

ways JA and ABA, whereas other GO terms related to responses to

other biotic stresses such as defence against fungi, bacteria and

nematodes are also enriched in response to S. exigua herbivory as

well as GO terms related to general or abiotic stress responses (#14-

33). This is likely due to the multifunctionality of the phytohormone

pathways that are elicited in concert by S. exigua herbivory but also

of the secondary metabolite pathways they govern. The genes within

the enriched GO terms secondary metabolism, alkaloid and phenyl-

propanoid metabolism (#13, #31, #73-78) are also largely upregulated

by herbivory and the W + OS treatment and likely encompass genes

that are involved in the production of antiherbivore defence in S. dul-

camara plants. The defensive functions of alkaloids, phenylpropanoids

and other secondary metabolites against insect herbivores are well

established in other plants (Mith€ofer & Boland, 2012) including other

solanaceous plants defending against S. exigua larvae (Bandoly, Hilker,

& Steppuhn, 2015; Hartl, Giri, Kaur, & Baldwin, 2010; Jassbi, Zaman-

izadehnajari, & Baldwin, 2010; Steppuhn & Baldwin, 2007). In S. dul-

camara, 27 genes annotated to alkaloid biosynthesis were regulated

by S. exigua herbivory and 20 of these were upregulated, suggesting

that S. exigua in general induces alkaloid production. Also in response

to the W + OS treatment, 13 of these 20 genes were upregulated.

Saponins and steroid alkaloids are considered as the main chemical

defence compounds in the genus Solanum (Eich, 2008).

Genes involved in biosynthesis of terpenes were induced by her-

bivory (p < .01, Appendix S5) as well, which is in line with the RNA-

seq data of a previous study (Nguyen et al., 2016). Like for alkaloid

biosynthesis genes, from 203 terpene biosynthesis genes regulated

after S. exigua herbivory, a third was part of the common response

while another third responded S. exigua specific. Here again, 75% of

the genes within the common response were upregulated while 75%

of genes that responded exclusively to herbivory were downregu-

lated (Appendix S5).

Our data further confirmed the induction of a set of S. dulcamara

PI genes after S. exigua feeding that was reported before (Nguyen

et al., 2016). Several of these genes were also induced by W + OS

treatment (Table 2). Herbivory-induced PI activity is also well estab-

lished as a direct defence mechanism (Hartl et al., 2010; Zavala, Giri,

Jongsma, & Baldwin, 2008; Zhu-Salzman, Luthe, & Felton, 2008),

which is regularly induced by mechanical wounding and by application

of OS from various herbivores to plant wounds (Bode, Halitschke, &

Kessler, 2013; Green & Ryan, 1972; Orians, Pomerleau, & Ricco,

2000; Yang, Hettenhausen, Baldwin, & Wu, 2011). The W + OS

treatment did not fully mimic the induction of all S. dulcamara PI

genes elicited by real S. exigua feeding; however, the contribution to

plant defence of the different PI genes remains to be determined as

PIs may serve other functions such as the regulation of the plant’s

own proteases (Hartl, Giri, Kaur, & Baldwin, 2011; Schaller, 2004;

Solomon, Belenghi, Delledonne, Menachem, & Levine, 1999).

4.3 | Photosynthesis-related genes responded to
real S. exigua herbivory

The most striking difference between the W + OS treatment and real

S. exigua herbivory is the large number of genes that are downregu-

lated after S. exigua herbivory but not regulated through the W + OS

treatment, neither after 1 hr nor after 24 hr. Most of these genes are

related to photosynthesis (#45-57) and one of the largest groups of

those genes downregulated exclusively after herbivory belonged to

LORTZING ET AL. | e207



the nonmevalonate (MEP) pathway (#49). Together with the meval-

onate pathway, it is the major source for isopentenyl diphosphate

(IPP) which is essential for the biosynthesis of organic pigments such

as chlorophyll A (Kim et al., 2013) and carotenoids (Rodr�ıguez-Con-

cepci�on, 2010) but also serves as the main building block for various

compounds involved in plant defence such as sterols and alkaloids.

Whereas the secondary metabolite pathways connected to the MEP

pathway were for the majority of the genes upregulated, genes in car-

otenoid and chlorophyll biosynthesis were principally downregulated.

Matching the regulation pattern of genes in the MEP pathway, this

downregulation occurred only in response to real herbivory but not in

response to W + OS treatment (Table 1, #46, #51, #53). These

biosynthetic processes take place in the chloroplasts as these pig-

ments are essential for photosynthesis. In fact, multiple genes involved

in chloroplast and thylakoid membrane organization and other photo-

synthesis-related genes were downregulated exclusively after S. exigua

feeding (Figure 3). A reduced photosynthesis in response to herbivory

is consistent with an array of previous studies on the effects of her-

bivory, but it was also found after mechanical wounding and other bio-

tic stresses on different plants (Bilgin et al., 2010; Heidel-Fischer

et al., 2014; Ralph, Yueh et al., 2006; Rodriguez-Saona et al., 2010;

Tang et al., 2006). In a previous study on S. dulcamara, drought stress

dominated the downregulation of photosynthesis genes, but it was

also observed after S. exigua herbivory (Nguyen et al., 2016). The par-

ticularly strong effect of drought stress on photosynthesis is likely

related to the accompanying stomatal closure which reduces availabil-

ity of CO2. The repression of photosynthesis by herbivory has been

suggested to partially result from a water stress response of the plant

due to local desiccations at the wound sites (Tang et al., 2006). Also in

S. dulcamara, we found responses to water stress enriched after her-

bivory. Opposite to the downregulation of photosynthesis genes, this

was well mirrored by the W + OS treatment which contradicts the

idea that a reduction in photosynthesis is just a secondary effect of

desiccation of the wounded tissue.

In concert with the downregulation of the MEP pathway, expres-

sion of genes in the pentose phosphate pathway (#63) was reduced in

S. dulcamara exclusively after S. exigua feeding. This pathway metabo-

lizes assimilates and is as such connected to the MEP pathway, as it

provides the building blocks for the IPP biosynthesis. But it is also con-

nected to other pathways like starch biosynthesis and maltose meta-

bolism (#64, #65) that are downregulated specifically by S. exigua

herbivory. A matching downregulation of many genes involved fatty

acid and lipid metabolism (#69-72) suggests that the downregulation

of genes related to photosynthesis is likely part of a global reprogram-

ming of the plants’ primary metabolism in the attacked leaf.

It is frequently assumed that the energy and resources that are

invested in the production of plant defence are reallocated at the

expense of the photosynthetic machinery and other primary plant

metabolism, which are therefore downregulated (Zhou et al., 2015).

However, as W + OS treatment reasonably mimicked the herbivory-

induced defence response but barely the herbivory-induced down-

regulation of photosynthesis, a reduction of photosynthesis may not

be a prerequisite to produce defence. Instead, it could be a

supplementary strategy of the plant to optimize its response to the

herbivore. For example, plants might shift their resource investment

in the photosynthetic machinery towards noninfested plant parts

and thus optimize their overall photosynthetic capacity (Heidel-

Fischer et al., 2014; Schwachtje & Baldwin, 2008; Zhou et al., 2015).

In addition, plants may benefit from the reduced nutritional value of

the attacked leaf when less photosynthetic proteins are available

(Mitra & Baldwin, 2008), which could even act synergistic with the

production of toxic and antidigestive metabolites.

4.4 | What differentiates W + OS treatments from
real herbivory?

Similar to our data that clearly suggest that the downregulation of

photosynthesis in S. dulcamara is specific for real S. exigua herbivory

and cannot be mimicked by W + OS, a proteome analysis in potato

revealed a lower expression of photosystem proteins, which was

specific for the response to herbivory by the colorado potato beetle

and could not be mimicked by wounding (Duceppe, Cloutier, &

Michaud, 2012). However, application of these beetles regurgitate to

wounded leaves of potato facilitated the repression of several pho-

tosynthesis-related genes (Lawrence et al., 2008). Yet, how this reg-

ulation compares to real herbivory was not assessed and also in S.

dulcamara, a small set of the genes in photosynthesis-related GO

terms were downregulated by W + OS though this accounted only

for a minority of herbivory-repressed genes. In tomato, feeding by

Helicoverpa zea caterpillars with functioning salivary glands resulted

in stronger downregulation of photosynthesis-related genes than

feeding of caterpillars with ablated salivary glands suggesting elici-

tors of this response in the saliva (Musser et al., 2012). Yet, fewer

genes related to photosynthesis were downregulated by wounding

and this was not clearly changed by the application of salivary gland

extract suggesting that this mimic treatment was also not sufficient

to elicit the photosynthesis-related response of tomato to herbivory.

Altogether, it seems like the downregulation of photosynthesis may

be a response to herbivore-derived cues that is not fully mimicked

by application of elicitor containing secretions to artificial wounds.

The reasons why such simulations of herbivory fail to elicit most of

the downregulation of genes after herbivory may be based in different

temporal and spatial patterns in which the plants are exposed to the

damage and elicitors. Whereas we elicited the plant with a one-time

wounding using a pattern wheel leaving small puncture wounds spread

over the leaf blade, S. exigua larvae repeatedly take small bites of the

leaf before pausing for a while, resulting in a series of small holes fed

into the leaf blade. This inevitably leads to increasing amounts of leaf

tissue loss over time and repeated induction of plant responses due to

the release of damage and herbivore-associated molecular patterns

with every caterpillar bite. While the amount of lost leaf tissue after

24 hr of feeding by two S. exigua larvae was still rather small and quite

comparable to the leaf damage inflicted by our puncture wheel, it is

well known that the spatial and temporal pattern of inflicted damage

influences a plant’s response (Mith€ofer et al., 2005). In addition, the

amount and composition of the applied OS may not reflect the
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combination of elicitors a plant is exposed to during feeding. Plants

can perceive more elicitors from insects than the above-mentioned

fatty acid–amino acid conjugates and GOX that are well known for S.

exigua. Wild tobacco, for example, perceives the product of its own

herbivory-induced enzyme aDOX-1 from the OS of a caterpillar feed-

ing on the plant (Gaquerel, Steppuhn, & Baldwin, 2012). As this oxyli-

pin-forming enzyme is not active in the leaf tissue but instead in the

insect’s gut, its product is only formed during feeding and it elicits a

modulation of the plant’s defence response. Considering the multitude

of not completely resembled influential factors, it is astonishing that

the W + OS treatment successfully mimicked between 50% and 70%

of the enriched GO terms related to phytohormones and defence.

5 | CONCLUSION

Taken together, our results suggest that a one-time W + OS treatment

is a suitable method to induce plant defence responses in a standard-

ized manner. But since this treatment failed to elicit the downregulation

of photosynthesis and other related pathways in primary metabolism

that are associated with real herbivory, it is likely not adequate to eluci-

date ecological consequences of herbivore attack in a natural setting.

On the one hand, this stresses the need for more comprehensive inves-

tigations of methodologies we use to standardize our experiments as

well as for other tools that allow us to standardize the induction of

plant responses by herbivory. On the other hand, the characteristics of

the W + OS treatment could provide the opportunity to study the con-

sequences of plant defence responses uncoupled from the large-scale

reprogramming of the plants primary metabolism that is associated with

a real herbivore attack, which may be especially useful for example

when elucidating costs and benefits of induced defence responses.
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