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A cornerstone of the theory of phase transitions is the observation that many-body
systems exhibiting a spontaneous symmetry breaking in the thermodynamic limit gen-
erally show extensive fluctuations of an order parameter in large but finite systems.
In this work, we introduce the dynamical analog of such a theory. Specifically, we
consider local dissipative dynamics preparing an equilibrium steady-state of quantum
spins on a lattice exhibiting a discrete or continuous symmetry but with extensive
fluctuations in a local order parameter. We show that for all such processes, there exist
asymptotically stationary symmetry-breaking states, i.e., states that become stationary
in the thermodynamic limit and give a finite value to the order parameter. We give
results both for discrete and continuous symmetries and explicitly show how to con-
struct the symmetry-breaking states. Our results show in a simple way that, in large
systems, local dissipative dynamics satisfying detailed balance cannot uniquely and
efficiently prepare states with extensive fluctuations with respect to local operators.
We discuss the implications of our results for quantum simulators and dissipative state
preparation. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4978328]

I. INTRODUCTION

One of the backbones of modern physics is the theory of phase transitions, whereby a phase
transition is accompanied by a change of an order parameter reflecting the spontaneous breakdown
of a symmetry.1 Although this paradigm has been enriched by the existence of topological phases of
matter, there still remains a lot to be learned about these more conventional types of phase transitions.

Usually, thermal phase transitions are studied from a kinematic point of view: While at high
temperatures the Gibbs state is unique,2 below a critical temperature several thermal states, corre-
sponding to the different symmetry-broken phases, might exist in the thermodynamic limit. In systems
of finite volume, the thermal state at any finite temperature is always unique and order parameters
associated with a symmetry of the Hamiltonian vanish due to the corresponding symmetry of the
Gibbs state. Nevertheless, phase transitions can be associated with extensive fluctuations of the order
parameter and can therefore already be witnessed in finite systems. More concretely, the value of
order parameters in symmetry-breaking thermal states in the thermodynamic limit, which arise due
to infinitesimal symmetry-breaking fields, can be lower bounded by the magnitude of fluctuations in
systems of large but finite volumes without symmetry-breaking fields.3–5

Such kinematic results do not say anything about how the different phases of matter are
prepared by a physical mechanism and whether they are stable against dissipation. In this work,
we provide such a dynamical picture: we consider the preparation of equilibrium states with exten-
sive fluctuations of a local order parameter in large volumes by dissipative open-system dynamics,
generated by local Liouvillians. We then show that there are always symmetry-breaking sequences
of asymptotically stationary states, which converge to steady states in the thermodynamic limit. Fur-
thermore, we demonstrate, in the case of continuous symmetries, that if the Liouvillian commutes
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with the charge operator generating the symmetry, there exist dissipative Goldstone-modes on top of
symmetry-broken steady-states.

Similar results have been shown in the case of ground-states of local Hamiltonians by Koma
and Tasaki,5 i.e., closed quantum many-body systems: Extensive fluctuations in order parameters in
ground-states of local Hamiltonians lead to symmetry-breaking ground-states in the thermodynamic
limit.

Our results show that natural dissipative processes cannot uniquely prepare a state with density
fluctuations on reasonable time scales. In particular, if the target steady-state is a Gibbs state with
a temperature below a symmetry-breaking phase transition, symmetry-breaking phases will become
steady-states in the thermodynamic limit.

Recently, time scales of equilibration and decoherence on the one hand and the closing of the
dissipative gap of open many-body systems out of equilibrium on the other have received a lot of atten-
tion.6–11 Our results significantly contribute to these discussions by connecting such a critical slowing
down in open many-body systems to a fundamental physical phenomenon, namely, symmetry-
breaking phase transitions. We do so by explicitly constructing the corresponding symmetry-breaking
asymptotically stationary states and rigorously estimating their equilibration time scales.

Apart from the interpretation of our results in terms of the theory of phases in many-body sys-
tems and dissipative phase transitions,6,12 the findings may also have implications on the feasibility of
Gibbs state preparation at low temperatures. A key aim of quantum simulations is to explore unknown
zero temperature phase diagrams of local Hamiltonians that are beyond the reach of classical com-
puters.13,14 At best, such a quantum simulation can hope to prepare Gibbs states at low temperatures,
effectively through some dissipative process, to infer the zero temperature behaviour. However, the
present results constitute an obstacle against such a procedure—a fact that has thus far largely been
overlooked.

A. Structure of the document

First, we introduce our basic setup in Section II, where we also briefly discuss the notion of
detailed balance. Section III collects our results: We first treat the case of discrete symmetries in
the simplest setting in Section III A, sketching the essential ingredients of the proof and stating our
main theorem. Before going over to continuous symmetries in Section III C and the discussion of
Goldstone modes (Sec. III D), we present rigorous bounds on equilibration time scales in our setup
(Sec. III B). The proofs of the general statements are contained in Section IV. Finally, we summarize
and discuss our findings and point to open problems in Section V.

II. SETUP

For simplicity, we consider sequences of systems defined on finite cubic lattices Λ ⊂ Zd of
increasing volume Ld , where we associate with every point in Λ a finite-dimensional quantum-
system with Hilbert spaceHx. Our results can, however, also be transferred to other regular lattices
and our findings equally well apply to fermionic open systems6,9,12 as the required notions of locality
carry over immediately. The total system is then described by the Hilbert space HΛ = ⊗x∈ΛH x. In
the following, we will often be concerned with the total magnetisation in the z-direction on a region
X ⊆Λ as measured by the observable

Sz
X :=

∑
x∈X

Sz
{x } (1)

as well as its (global) density Sz
Λ
/|Λ|. If we consider a lattice system of spin-1/2 particles, we therefore

have Sz
{x } =σ

z
{x }/2. More generally we refer to operators that are sums over local operators supported

around individual lattice sites as extensive quantities.
The dissipative time-evolution in the Heisenberg picture is generated by a local Liouvillian

super-operator LΛ,

A(t)= etLΛ [A] , LΛ =
∑
x∈Λ

LΛx , (2)
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where square brackets indicate the action of a super-operator and each LΛx acts on an observable A
as15

LΛx [A]= i[Hx, A] +
∑

i

2
(
(Li

x)†ALi
x −

{
(Li

x)†Li
x, A

})
, (3)

with {Li
x } being the Lindblad operators. Throughout this work, we will assume that the terms LΛx

modelling the dissipative process are strictly local, i.e., all operators Hx and Li
x are supported exclu-

sively on a ball Br(x) of radius r centered around x (with respect to the standard metric of the lattice).
However, our results also carry over to the setting of approximately local Liouvillians. We will always
assume periodic boundary conditions and uniformly bounded dynamics, i.e., L

Λ
x [A] ≤ b ‖A‖ for

some constant b> 0 independent of x and Λ.
A steady-state of the dynamics is any state of the system ω whose expectation values are time-

independent, i.e., satisfy
ω

(
LΛ [A]

)
= 0, (4)

for any observable A supported in Λ. Here, we use the notation ω(A)=Tr(ρωA) if ω is represented
by the density matrix ρω . Steady-states play a similar role in open systems as ground-states do in
closed systems. If the steady-state is unique, any initial state will eventually converge to it in the
infinite-time limit and any observable A will approach ω(A)1.

The locality of the dynamics ensures that the time evolution of (quasi-)local observables is well
defined in the thermodynamic limit via

A(t) := lim
Λ↗Zd

eL
Λt [A] , (5)

for any observable A in the algebra of (quasi-)local observables. This can be seen using Lieb-Robinson
bounds, which can also be proven for local Liouvillian dynamics.16–20

Since we are ultimately interested in the thermodynamic limit, we will restrict our attention to
local observables, such as order parameters. We will mostly be interested in sequences of states, for
which the expectation value of any fixed local observable becomes constant over time as we go to the
thermodynamic limit. In other words, the time it takes to reach stationarity from such states diverges
with the system size.

Definition 1 (Asymptotically stationary states). We call a sequence of states ωΛ (one for each
volume Λ) asymptotically stationary if it satisfies

lim
Λ↗Zd

ωΛ(LΛ [A])= 0 (6)

for all local operators A.

Importantly, note that we only require local expectation values to be time-independent. However,
in the thermodynamic limit, these are also the only ones which we can measure and meaningfully
talk about.

A. Detailed balance

We are interested in lattice systems that are in equilibrium with their environment and therefore
consider statesω for which the Liouvillian is in detailed balance (or reversible), in the standard sense
of this term. Furthermore, we will focus on the purely dissipative part of the Liouvillian and therefore
neglect any unitary contribution in the Liouvillian. This is because we are interested in the preparation
of the state and not so much in their free evolution. In the quantum setting, detailed-balance for such a
purely dissipative Liouvillian on a finite system is then usually formulated in the Heisenberg picture
by requiring21–27

ωΛ(ALΛ [B])=ωΛ(LΛ [A] B), (7)

for any two observables A and B. Since trace preservation requires L [1]= 0 for any Liouvillian, the
assumption of detailed balance already implies thatω is a steady-state.28 Indeed, this is a most natural
property, and many of the most important classes of Liouvillians satisfy detailed balance.21,23,27 This
is in particular true for dynamics describing a weak coupling to a thermal bath. In particular, for Gibbs
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states of local commuting Hamiltonians at arbitrary temperature, such Liouvillians can be constructed
explicitly.27 For non-commuting local Hamiltonians, such explicit constructions constitute an open
problem. For the convenience of the reader, we also show in the Appendix how the above notion of
detailed balance generalises the classical notion for Markov chains.

Our key result demonstrates that the symmetry-breaking states that we construct satisfy detailed
balance in a weaker sense, namely, only for local observables and with an error that vanishes with
the system-size. We call this the weaker condition of detailed balance asymptotic reversibility.

Definition 2 (Asymptotically reversible states). Let LΛ be a sequence of Liouvillians and ωΛ a
sequence of states. We call ωΛ asymptotically reversible if

lim
Λ↗Zd

(
ωΛ(LΛ [A] B) − ωΛ(ALΛ [B])

)
= 0 (8)

for any two local operators A, B.

In particular, asymptotically reversible states are automatically asymptotically stationary. Hence,
we will assume the standard definition of detailed balance for the steady state and prove the asymptotic
reversibility of the constructed symmetry breaking states.29

III. RESULTS

A. Discrete symmetries

It is well known that thermal states on large but finite lattice systems exhibit extensive fluctuations
in order parameters, e.g., the magnetisation density, below the critical temperature. Associated with
such fluctuations are long-range correlations and the existence of several distinct symmetry-breaking
phases in the thermodynamic limit.4 We will now consider the case of a steady-state with a Z2-
symmetry, such as spin-flip along the z-direction. Our main result shows that finite density fluctuations
of the order parameters at arbitrary large volumes in the steady-state of a reversible Liouvillian imply
the existence of at least two additional asymptotically stationary states, which explicitly break the
symmetry.

We will illustrate the proof of these results in a simple example: the spin-1/2 Ising model. We
will assume that we have a reversible strictly local Liouvillian preparing the Ising model at zero
temperature, whose state we write as ω = (ω+ + ω−)/2, where ω+ and ω− are the states with all
spins pointing up or down, respectively. We do not need to assume that ω is the unique steady-
state of the dynamics. We will now first write the states ω± in a different way, making use of the
fact that ω has fluctuations in the magnetisation density. Then we show that ω± both have to be
asymptotically stationary. It will be clear from the arguments given that also at non-zero temperature
below the phase-transition, there are symmetry-breaking asymptotically stationary states (of course
a lattice-dimension larger than one is needed for this to happen). It is however not clear, whether
these symmetry-breaking states correspond exactly to the pure thermodynamic phases described by
extremal Kubo-Martin-Schwinger (KMS)-states in the thermodynamic limit.

In the following, by some abuse of notation, we identify A with its support and call |X | the
cardinality of the set X. Therefore |A| denotes the volume of the support of A. For convenience,
we also set |Λ| =N in the following and omit Λ-subscripts on states and operators. Due to the
fact that the all-up and all-down states are product-eigenstates of the total magnetisation, we have
ω±(SzA)=ω±(ASz)=±Nω±(A)/2 and ω±(SzASz)=N2ω±(A)/4. Defining

Õ± :=
1
√

2

(
1 ±

Sz

ω((Sz)2)1/2

)
, (9)

one finds

ω±(A)=ω
(
Õ±AÕ±

)
. (10)

More generally, the symmetry of ω under spin-flips together with its fluctuations in Sz alone is
sufficient to show that we can use Eq. (10) as the definition of candidate symmetry-breaking states,



033302-5 Wilming et al. J. Math. Phys. 58, 033302 (2017)

with non-vanishing magnetisation density: If

ω((Sz)2) ≥ (
1
2
µN)2 (11)

is satisfied for some µ > 0, it follows that

|ω±(Sz)| =
�����
1
2

(
ω(Sz)

2
+
ω((Sz)3)

ω((Sz)2)

)
±

ω((Sz)2)

ω((Sz)2)1/2

�����
≥

1
2
µN , (12)

since the terms with odd-parity under spin-flips vanish.
For ω± to be asymptotically stationary, we see from (10) that ω(SzL [A] Sz) has to grow slower

than N2 and that ω(SzL [A]) has to grow slower than N as we increase the volume. We will only
prove the former as the latter follows by a fully analogous argument.

First we point out that ω(SzASz)=ω(Sz[A, Sz]) + ω((Sz)2A). The first term is clearly of order
N, since [A, Sz] is at most of order |A| due to the locality of Sz and A. We can therefore neglect this
term. We will now assume that the Liouvillian satisfies a certain approximate Leibniz-rule and that
it implies the asymptotic stationarity of ω±. In the second step, we will prove this property. Hence,
assume for a moment that

L
[
(Sz)2A

]
=L

[
(Sz)2

]
A + (Sz)2

L [A] + O(N) . (13)

Combining this with the reversibility and stationarity of ω, we obtain

ω(L
[
(Sz)2

]
A)=ω((Sz)2

L [A]) (14)

=ω(L
[
(Sz)2A

]
) − ω(L

[
(Sz)2

]
A) + O(N) (15)

=−ω(L
[
(Sz)2

]
A) + O(N) .

Thus ω((Sz)2L [A])= 0 up to order N, which finishes the proof. What is left to show is Eq. (13). To
do that, we define Ã as the smallest region such that L [A]=LÃ [A], where LÃ contains only those
terms of L that are supported within Ã. We obtain

L
[
(Sz)2A

]
=

(
L −LÃ

) [
(Sz)2

]
A+LÃ

[
(Sz)2A

]

=L
[
(Sz)2

]
A + (Sz)2L [A]

+LÃ

[
(Sz)2A

]
−LÃ

[
(Sz)2

]
A− (Sz)2LÃ [A] , (16)

where we have used
(
L −LÃ

)
[XA]=

(
L −LÃ

)
[X] A for any operator X. Writing Sz = Q + R, where

Q is supported on the complement of Ã and R is supported on Ã, we see that the term with Q2 cancels
out, as LÃ

[
Q2X

]
=Q2LÃ [X] for arbitrary X. The operator norm of the remaining terms are either

zero due to L [1]= 0 or of order N, since LÃ is of order |Ã|, which only differs from |A| by some
constant factor due to the locality of the Liouvillian. This finishes the proof.

Note that the argument works for any local order parameter instead of Sz and does not depend
on the local dimension of the lattice-model or on any specific detail of the Liouvillian. In fact it turns
out that the states ω± are not only asymptotically stationary but asymptotically reversible. We will
state this result as a general theorem.

Theorem 3 (Reversibility from fluctuations). Let LΛ be a sequence of local Liouvillians that
are reversible with respect to a sequence of statesωΛ, fulfilling Eq. (11) with respect to some extensive
quantity and having a vanishing expectation value on the extensive quantity. Then the corresponding
statesω±

Λ
, defined through Eq. (10), are asymptotically reversible and thus asymptotically stationary.

We stress that the theorem holds without any requirement on how the order parameter transforms
under some symmetry and applies also to non-translationally invariant order parameters. The transfor-
mation properties are only necessary to show that the statesω± are symmetry-breaking. Furthermore
the theorem also applies to Liouvillians whose interactions decay as a power-law with exponent β
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provided that β > 2d. The proof of this general case is completely analogous to the one given above;
however, some technicalities arise due to the approximate locality and the stronger statement about
reversibility.

B. Time scales

In general, asymptotically stationary states will relax to a steady-state after a sufficiently long
time if the system is finite. We can estimate the scaling of this survival time teq of the symmetry-
breaking states ω±

Λ
in terms of the system size. From the fact that the states are symmetry-breaking,

we can lower-bound the equilibration time by the time it takes for the order parameter to relax to the
steady state value. Using Lieb-Robinson bounds, we find in the case of finite-range interactions that
the equilibration time teq scales at least as

teq ≥ cLd/d+1, (17)

for some constant c > 0. Thus, the survival time diverges with the system-size, which implies that
for large systems and reasonable time scales, the symmetry-breaking states will not relax into the
steady-state.

C. Continuous symmetries

Let us now turn to continuous symmetries, where our results can be further strengthened. We
now assume the existence of an extensive self-adjoint quantity C, which we call charge and generates
the symmetry. Furthermore we assume the existence of extensive order parameters O(1,2)

Λ
, satisfying

the commutation relations

[CΛ, O(1)
Λ

]= iO(2)
Λ

, [CΛ, O(1)
Λ

]=−iO(2)
Λ

. (18)

The simplest example to keep in mind is again given by ferromagnetism, choosing C{x } = Sz
{x } and

O(1)
{x } = S(x)

{x }, O(2)
{x } = S(y)

{x }, but we could also deal, for example, with staggered magnetic fields. We will
from now on consider steady-states ωΛ represented by density matrices ρΛ commuting with the
charge, i.e.,

[ρΛ, CΛ]= 0. (19)

This implies that the state is not symmetry-breaking:ωΛ(O(i)
Λ

)= 0 for i = 1, 2. As previously, we now
assume that ωΛ exhibits extensive fluctuations in the order parameters,

ωΛ
(
(O(1)
Λ

)2
)
=ωΛ

(
(O(2)
Λ

)2
)
≥ (µo|Λ|)2, (20)

for some µ > 0 and all system sizes.
With a construction similar to (10) in terms of the order parameters O(i)

Λ
, Koma and Tasaki5

constructed a family of states {ω(M)
Λ

; M ≤ |Λ|}, which under the above assumptions are asymptotically
symmetry breaking in the sense that

ω(M)
Λ

(
O(2)
Λ

)
= 0, (21)

lim
M→∞

lim
Λ↗Zd

1
|Λ|

ω(M)
Λ

(
O(1)
Λ

)
≥
√

2µo. (22)

For details of the construction, see Theorem 4 in the section containing the proofs. As in the case
of discrete symmetries, we can hence explicitly construct a family of symmetry breaking states.
Furthermore it is clear that we can “rotate them around” using the charge CΛ as a generator of
rotations. We thus obtain a whole U(1)-manifold of symmetry-breaking states in the thermodynamic
limit.

Theorem 4 (Asymptotic stationarity of symmetry breaking states). Under the assumption
of Eqs. (19) and (20), let LΛ be a sequence of local Liouvillians that are in detailed balance with
respect to ωΛ. Then for any M, the states ω(M)

Λ
are asymptotically reversible and asymptotically

stationary.
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Note, that we require the steady state ωΛ and not the dynamics, i.e., LΛ, to be symmetric with
respect to the charge. Symmetry of the dynamics would imply instead30

LΛ [[CΛ, A]]=
[
CΛ,LΛ [A]

]
(23)

for any observable A. If LΛ is symmetric, however, there exists at least one steady-state that is
symmetric in the sense of Eq. (19). In particular if the steady-state of LΛ is unique, the symmetry of
the Liouvillian ensures that the steady-state is also symmetric and our theorem applies.

The proof of Theorem 4 uses the same strategy as the one of Theorem 3 and also generalises
to Liouvillians whose interactions decay faster than any polynomial: First we prove an approximate
Leibniz-rule similar to Eq. (13), which, together with reversibility, implies the result.

D. Goldstone-modes

In closed systems, Goldstone’s theorem shows the existence of spin-waves of arbitrarily small
energy above symmetry-broken states if the Hamiltonian locally commutes with the charge.31 The
physical intuition is that a global rotation of all spins does not cost any energy and a spin-wave
with very long wavelengths has a locally almost constant magnetisation. Since the Hamiltonian is
local, the energetic cost of such a spin-wave is very low and goes to zero as the wave-length goes
to infinity. The analogous intuition holds also true in the case of open systems if the Liouvillian is
local and symmetric in the sense of Eq. (23). We give an explicit construction of such dissipative
Goldstone-modes in the section containing the proofs.

IV. PROOFS

A. General proof for discrete symmetry breaking

In this section, we prove Theorem 3 for the general case of approximately local Liouvillians.
The essential ideas are the same as in the proof for compactly supported Liouvillians presented in the
example of the Ising model, but we have to estimate the corrections due to the fact that the Liouvillians
are not compactly supported. Again we always assume periodic boundary conditions for simplicity.
Let us first properly define Liouvillians with non-compact support. Then we will precisely formulate
the theorem and prove it. Informally, we say that a Liouvillian is approximately local if each term
LΛx may be well approximated by a compactly supported term L̃Λx with support in a ball Bl(x) of
radius l around x. The error is quantified by a function f.

Definition 5 (f-local Liouvillian). Let f :Zd→R with f (0) = 1 be given. A sequence of Liou-
villians LΛ =

∑
x∈ΛL

Λ
x is f -local if there exists a sequence of compactly supported Liouvillians

L̃Λ =
∑

xL̃
Λ
x such that

L
Λ
x [A] − L̃Λx [A] ≤ c ‖A‖ f (l), (24)

where L̃Λx is supported within Bl(x) and b> 0 is a constant.

Definition 6 (Approximately local Liouvillian). We will say that LΛ is approximately local if it
is f -local and f decays at least as fast as

f (l)=
1

1 + lβ
, β > 2d. (25)

Instead of considering the order parameter Sz, we will from now on consider an arbitrary order-
parameter OΛ =

∑
x∈Λ O{x }, where Ox is compactly supported around lattice site x and O{x } ≤ o for

all x ∈ Zd . This defines the constant o> 0. Given a state ωΛ, we define the states

ω±
Λ

(A) :=ω(Õ±
Λ

AÕ±
Λ

) with Õ±
Λ

:=
1
√

2

(
1 ±

OΛ
ω((OΛ)2)1/2

)
. (26)

The precise theorem that we want to prove now is the following.
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Theorem 7 (Reversibility from fluctuations). Let LΛ be an approximately local Liouvillian
that is in detailed balance with respect to the sequence of states ωΛ. Assume the existence of a
Z2-symmetry UΛ such that

ωΛ(A)=ωΛ(UΛAU−1
Λ

), Ox =−UΛOxU−1
Λ

(27)

and that there exists a constant 0 < µ< 1 such that

ωΛ(O2
Λ

) ≥ (µo|Λ|)2. (28)

Then the states ω±
Λ

are asymptotically reversible and hence asymptotically stationary.

Proof: For simplicity, we will drop the Λ labels on all operators and states; in particular we will
write O instead of OΛ and ω instead of ωΛ. We will also set N := |Λ|. It will be useful to introduce
the following quantity, which measures how far the action of a Liouvillian deviates from a derivation,
i.e., fulfils the Leibniz-rule,

ΓL(X , Y ) :=L [XY ] − L [X] Y − XL [Y ] . (29)

We have to prove that the states ω± are asymptotically reversible, i.e.,

∆(A, B) :=ω±(AL [B]) − ω±(L [A] B)→ 0 (30)

as the system size increases. To do that, we will show separately that

lim
Λ↗Zd

ω
(
O†O(AL [B] − L [A] B)

)
|Λ|2

= 0, lim
Λ↗Zd

ω (O(AL [B] − L [A] B))
|Λ|

= 0.

Let us first show that, due to reversibility, it suffices to show that for any local operators A, B we have

lim
Λ↗Zd

ω
(
ΓL(O†O, A)B

)
|Λ|2

= 0, lim
Λ↗Zd

ω (ΓL(O, A)B)
|Λ|

= 0. (31)

Indeed, suppose the two properties are true. Then we can use reversibility to write

ω
(
O†O(AL [B] − L [A] B)

)
|Λ|2

=
ω

(
(L

[
O†OA

]
− L [A])B

)
|Λ|2

=
ω(ΓL(O†O, A)B)

|Λ|2
+
ω(L

[
O†O

]
AB)

|Λ|2
. (32)

By our assumption (31), the first term on the right hand side vanishes in the thermodynamic limit
and we obtain

lim
Λ↗Zd

ω
(
O†O(AL [B] − L [A] B)

)
|Λ|2

= lim
Λ↗Zd

ω(L
[
O†O

]
AB)

|Λ|2
. (33)

We will now use two different ways to evaluate this equation. On the one hand, we can use reversibility
to obtain

lim
Λ↗Zd

ω
(
O†O(AL [B] − L [A] B)

)
|Λ|2

= lim
Λ↗Zd

ω(O†OL [AB])

|Λ|2
. (34)

On the other hand, we can write

ω(L
[
O†O

]
AB)=−ω(ΓL(O†O, AB)) + ω(L(O†OAB)) − ω(O†OL [AB])

=−ω(ΓL(O†O, AB)) − ω(O†OL [AB]). (35)

But since AB is also a local operator, we obtain from assumption (31) that

lim
Λ↗Zd

ω
(
O†O(AL [B] − L [A] B)

)
|Λ|2

=− lim
Λ↗Zd

ω(ΓL(O†O, AB))

|Λ|2
− lim
Λ↗Zd

ω(O†OL [AB])

|Λ|2

=− lim
Λ↗Zd

ω(O†OL [AB])

|Λ|2
.
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In other words, we have

− lim
Λ↗Zd

ω(O†OL [AB])

|Λ|2
= lim
Λ↗Zd

ω
(
O†O(AL [B] − L [A] B)

)
|Λ|2

= lim
Λ↗Zd

ω(O†OL [AB])

|Λ|2
,

which just means

lim
Λ↗Zd

ω
(
O†O(AL [B] − L [A] B)

)
|Λ|2

= 0. (36)

Essentially the same argument also works to show

lim
Λ↗Zd

ω (O(AL [B] − L [A] B))
|Λ|

= 0 (37)

and therefore lim
Λ↗Zd ∆(A, B)= 0.

What is left is to prove the properties given in Eq. (31). To do that, first we approximate each
term Lx in the Liouvillian by a truncated Liouvillian L̃x that is supported on a ball of radius Lα

around x, where 0 < α < 1 is to be chosen later. By assumption, for each term this introduces an error
given by

Lx [X] − L̃x [X] ≤ ‖X ‖ cf (Lα) ≤ ‖X ‖ c
1

1 + Lαβ
. (38)

We will collect the error terms in a Liouvillian R, so that L = L̃ +R. For any local operator, we will
denote by L̃Ã the Liouvillian containing all terms of L̃ whose support has overlap with A. Denote
the support of this Liouvillian by Ã. We can then make use of the following useful lemma.

Lemma 8 (Approximate derivation). For any operator X, any local operator A, and any strictly
local Liouvillian L̃, we have

ΓL̃(X, A)= ΓL̃Ã
(X, A). (39)

Proof. This follows immediately from (L̃ − L̃Ã) [XA]= (L̃ − L̃Ã) [X] A. �

Since Γ is linear in the Liouvillian, we can write

ΓL(O†O, A)= ΓR(O†O, A) + ΓL̃Ã
(O†O, A). (40)

By assumption, ω(O†O) is of the order |Λ|2 and therefore we are done once we can show

| |ΓR(O†O, A)B| |

L2d
→ 0,

| |ΓL̃Ã
(O†O, A)B| |

L2d
→ 0 (41)

in the limit L→∞. For the first term, using sub-multiplicativity of the norm and the triangle-inequality,
we get

ΓR(O†O, A)B
L2d

=

L̃R
[
O†OA

]
B−L̃R

[
O†O

]
AB − O†OL̃R [A] B

L2d

≤
3|Λ| O†O ‖A‖ ‖B‖

L2d
cf (Lα)

≤
3o2 |Λ|3 ‖A‖ ‖B‖

L2d
cf (Lα), (42)

making use of O=
∑

x∈Λ Ox. Therefore,
ΓR(O†O, A)B

L2d
≤ 3o2 ‖A‖ ‖B‖ c

Ld

1 + Lαβ
. (43)

Thus, we see that the term vanishes in the thermodynamic limit as long as β > d/α. For the
second term, we first decompose O as O = Q + R, where Q is supported on the complement of
Ã and R is supported on Ã. Then we have ΓL̃Ã

(Q, X)=QΓL̃Ã
(1, X)= 0, since ΓL(1, X)= 0 for any

Liouvillian L and operator X. This implies

ΓL̃Ã
(O†O, A)B= 2QΓL̃Ã

(R, A)B + ΓL̃Ã
(R2, A)B. (44)

Therefore, a norm-estimate gives
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ΓL̃Ã
(O†O, A)B

L2d
≤Ko2 ‖A‖ ‖B‖

|Ã|2

Ld
=Ko2 |A|L(2α−1)d , (45)

where K is some positive constant. The term thus converges to zero for α < 1/2. By essentially
the same arguments, we can bound the quantities ΓR(O, A) and ΓL̃Ã

(O, A), which yield the same
constraints on α and β. Concluding, we see the theorem holds true for any β > 2d.

1. Survival time scale

In this section, we prove the lower bound on the survival time of the symmetry-breaking states.
For simplicity, we will consider finite-range Liouvillians of range r with the steady-stateω. It should
be clear, however, that the same argument can also be applied to approximately local Liouvillians
with exponentially decaying tails. The proof will combine our techniques for the proof of asymptotic
stationarity with Lieb-Robinson bounds. From the proof of asymptotic stationarity in the main text,
it is clear that

���ω
±
Λ

(LΛ [A])��� ≤ k1
‖A‖ |Ã|
|Λ|

, (46)

for some constant k1 > 0 and any local operator A. Dissipative Lieb-Robinson bounds20 tell us that
we can approximate time-evolved local observables by observables which are supported in the finite
Lieb-Robinson cone. Let A be a local observable, then we denote the time-evolved observable on the
volume Λ by

exp(tLΛ) [A]=: AΛ(t). (47)

Lieb-Robinson bounds are valid for local dissipative systems in a very similar way as they hold for
local Hamiltonian systems.20 They give rise to a Lieb-Robinson velocity v > 0 that depends only on
the dimension d of the lattice (here chosen to be a cubic lattice) as well as the range r and the strength
of the Liouvillian. They can be used to show that AΛ(t) can be approximated by an observable A∨(t)
that is supported within a set that only contains lattice sites at most ṽt ≤ L away from A, as long as
ṽ > v , up to an error of approximation that is exponentially small in ṽ . More specifically,

AΛ(t) − A∨(t) ≤ k2 ‖A‖ (ṽt)d−1 exp(−(ṽ − v)t), (48)

again for a constant k2 > 0 depending on d, r, and the norm of the Liouvillian. Combining this with
the previous estimate, we get

���ω
±
Λ

(L
[
AΛ(t) − A∨(t)

]
)��� ≤ k1k2 ‖A‖ (ṽt)d−1 exp(−(ṽ − v)t). (49)

Notice that the bound is independent of the system size and the right hand side can be made arbitrarily
small, uniformly in t, by suitably increasing ṽ . The dependence on the dimension d in this bound is
made more explicit in Refs. 9 and 20.

With these ingredients, we now bound the minimal time teq > 0 that it takes to change the
expectation value of an on-site observable A, such as the order-parameter, by a fixed value ∆A. In
order to arrive at a bound for this minimal time, we write

∆A< ���ω
±
Λ

(A(t eq) − A(0))��� ≤
∫ teq

0

�����
ω±
Λ

(
dA(s)

ds

) �����
ds=

∫ teq

0

���ω
±
Λ

(
LΛ

[
AΛ(s)

] ) ��� ds

≤

∫ teq

0

���ω
±
Λ

(
LΛ

[
A∨(s)

] ) ��� ds

+

∫ teq

0

���ω
±
Λ

(
LΛ

[
AΛ(s) − A∨(s)

] ) ��� ds

≤ k1

∫ teq

0

‖A‖ ((2l + 1) + 2ṽs))d

|Λ|
ds

+ k1k2 ‖A‖

∫ teq

0
(ṽs)d−1 exp(−(ṽ − v)s)ds

≤ ‖A‖ *
,
k ′1

(ṽteq)d+1

|Λ|
+ k1k2δ(ṽ , v , d)+

-
, (50)
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for a suitable constant k ′1 > 0 independent of the system size. Here,

δ(ṽ , v , d) :=
∫ ∞

0
(ṽs)d−1 exp(−(ṽ − v)s)ds=

(d − 1)!

(1 − v/ṽ)d

1
ṽ
> 0 (51)

converges to zero with increasing ṽ , and otherwise is dependent on the dimension d and the Lieb-
Robinson velocity v > 0 but again independent of the system size. For any dimension d and any given
local Liouvillian with Lieb-Robinson velocity v > 0, one can always choose a ṽ > 0 such that

δ(ṽ , v , d)<
∆A
‖A‖

1
k1k2

. (52)

Using that |Λ| =Ld , it then follows that

teq >
1
ṽ

(
∆A/ ‖A‖ − k1k2δ(ṽ , v , d)

k ′1

)1/(d+1)

Ld/d+1 > cLd/d+1 (53)

for a suitable c > 0, which finishes the proof. The restriction to an on-site operator A was made for
reasons of the simplicity of the argument only, and an analogous analysis holds for any strictly local
operator A as well.

B. Continuous symmetry breaking

In this section, we consider the case of continuous symmetry breaking and prove a theorem
which yields as corollary Theorem 4 of the main text. Compared to the case of discrete symmetry
breaking, we will have to assume slightly stronger locality properties for the Liouvillian.

Definition 9 (Short-ranged Liouvillian). An f -local Liouvillian is short-ranged if f decays at
least as fast as exp(−lα/ξ) for some strictly positive constants α > 0 and ξ > 0.

As in the case of discrete symmetry breaking, we will consider explicit families of states which are
symmetry-breaking in the thermodynamic limit. These families have been introduced by Koma and
Tasaki. To simplify their notation, let us first introduce a family of functionals on local observables.
Let m, m′ be integers such that |m|, |m′ | ≤M. Using the notation from the main text, we define the
functionals

χ(m,m′)
Λ

(A) :=
ωΛ

(
(O−
Λ

)m′A(O+
Λ

)m
)

Z(m)Z(m′)
, (54)

with Z(m)=ωΛ
(
(O−
Λ

)m(O+
Λ

)m
)1/2

. Here we use the shorthand (O+
Λ

)m = (O−
Λ

)−m if m < 0 and note that

χ(m,m′)
Λ

(1)= δm,m′ for states whose representative density matrix ρΛ commutes with the charge.

Theorem 10 (Symmetry breaking states5). For any M < |Λ|, we define the states

ω(M)
Λ

(A) :=
1

2M + 1

M∑
m=−M

M∑
m′=−M

χ(m,m′)
Λ

(A). (55)

Assume that ωΛ are represented by density matrices commuting with the charge: [ρΛ, CΛ]= 0. If the
condition

ωΛ
(
(O(1)
Λ

)2
)
=ωΛ

(
(O(2)
Λ

)2
)
≥ (µo|Λ|)2 (56)

is fulfilled, the states ω(M)
Λ

are asymptotically symmetry breaking in the sense that

ω(M)
Λ

(
O(2)
Λ

)
= 0, (57)

lim
M→∞

lim
Λ↗Zd

1
|Λ|

ω(M)
Λ

(
O(1)
Λ

)
≥
√

2µo. (58)

In the following, we will drop again Λ from all the operators and again set N = |Λ| for the
simplicity of notation. To state our main result about continuous symmetry breaking, we define the
quantities

∆
(m,m′)(A, B) := χ(m,m′) (BL [A]) − χ(m,m′) (L [B] A) , (59)
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which measure how far the functionals χ(m,m′) are reversible with respect to L.

Theorem 11 (Continuous symmetry breaking). Suppose L is a short-ranged Liouvillian that
satisfies detailed balance with respect to ω. Furthermore suppose that ω fulfils the assumptions (17)
and (18) of the main text. Then

lim
Λ↗Zd

|∆(m,m′)(A, B)| = 0, (60)

for any two local operators A, B.

Corollary 12 (Convergence to a reversible steady state). Any state obtained from linear com-
binations of χ(m,m′) is asymptotically reversible. In particular, the states ω(M) in the main text are
asymptotically reversible and hence asymptotically stationary.

We will split the proof into several lemmas. The first lemma was proven by Koma and Tasaki
and will turn out to be essential. The second lemma makes use of it and lets us rewrite the problem
in a way which will enable us to make use of detailed balance.

Lemma 13 (Koma, Tasaki5). Let (17) and (18) of the main text be fulfilled for a stateω represented
by ρ. Let A be some finite region and decompose O+ as O+ = QA + RA, where QA is supported on
the complement of A and RA is supported on A. Then we have the inequalities

Tr(Qm−k
A ρ(Q∗A)m−k)

Tr(Qm
A ρ(Q∗A)m)

≤ (µoN)−2k (61)

and

r(M)
A =

�������

Tr
(
(O+)M ρ(O−)M

)
Tr(QM

A ρ(Q∗A)M )

�������
≥ 2 − exp(

2|A|M
µN

) ≥ 2 − eµ/8 (62)

for N ≥ 16 |A |2

µ2 and |MN | ≤
µ2

16 |A | .

Proof. We reproduce the proof at the end of the section for the reader’s convenience. �

Lemma 14 (Local observables). Let A be any local observable. Then

���Tr
(
χ(m,m′)A

) ��� ≤O

(
M |A| ‖A‖

N

)
+

�������

Tr
(
ρ(O−)m′(O+)mA

)
Tr((O+)mρ(O−)m)1/2Tr

(
(O+)m′ ρ(O−)m′ )1/2

�������
.

Proof. First we split the expectation values into

Tr
(
ρ(O−)m′A(O+)m

)
=Tr

(
ρ(O−)m′[A, (O+)m]

)
+ Tr

(
ρ(O−)m′(O+)mA

)
. (63)

We have to show that the first term divided by the denominator is of the corresponding order. To
do that let us split up O+ as O+ = QA + RA, where QA is supported on the complement of A and RA

is supported on A. This implies that [QA,A] = 0 and [QA,RA] = 0. Using a binomial expansion, we
obtain

1st term=
m′∑

k=0

m∑
l=0

(
m′

k

) (
m
l

)
Tr

(
ρ(Q∗A)m′−k(R∗A)k[A, Qm−l

A Rl
A]

)
=

m′∑
k=0

m∑
l=1

(
m′

k

) (
m
l

)
Tr

(
ρ(Q∗A)m′−k(R∗A)k[A, Rl

A]Qm−l
A

)
. (64)

We now use the Schwartz inequality

|Tr(ρA∗BC)| ≤
[
Tr(ρA∗A)Tr(ρC∗B∗BC)

]1/2

≤ ‖B‖
[
Tr(ρA∗A)Tr(ρC∗C)

]1/2, (65)
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together with inequality (61) to obtain

������

1st term

Tr(Qm
A ρ(Q∗A)m)1/2Tr(Qm′

A ρ(Q∗A)m′)1/2

������
≤ 2 ‖A‖

m′∑
k=0

m∑
l=1

(
m′

k

) (
m
l

) (
|A|
µN

)k+l

≤ 2 ‖A‖ exp

(
|A|m′

µN

) (
exp

(
|A|m
µN

)
− 1

)
≤ 2 ‖A‖ exp

(
|A|M
µN

) (
exp

(
|A|M
µN

)
− 1

)
≤ 2 ‖A‖

16|A|

µ2
eµ/16(eµ/16 − 1)

M
N

, (66)

where we assumed N ≥ 16 |A |2

µ2 and |MN | ≤
µ2

16 |A | . Multiplying with the ratio (62), we obtain the desired
bound. �

Let us now turn to the proof of the theorem. We note that the proof does not depend on the
symmetry of the Liouvillian, just on the symmetry and long-range order of ρ, and the locality and
reversibility of the dynamics. Without the loss of generality, we can assume that m, m′ ≥ 0 since
otherwise we merely have to exchange O+ and O� and some operators with their adjoints in the
proof.

By the above lemma, we have

∆
(m,m′)(A, B) '

ω
(
(O−)m′(O+)m(L [A] B − AL [B])

)
ω ((O+)m(O−)m)1/2 ω

(
(O+)m′(O−)m′ )1/2

=:ω(Ω(m,m′)(L [A] B − AL [B])), (67)

where ' denotes equality up to terms that vanish in the thermodynamic limit and we have introduced
the operator

Ω
(m,m′) :=

(O−)m′(O+)m

ω ((O+)m(O−)m)1/2 ω
(
(O+)m′(O−)m′ )1/2

. (68)

We will now first approximate L by a strictly local Liouvillian L̃, by approximating each local term
Lx by a term L̃l

x that is supported within the ball of radius l around x. For each term, this introduces
at most an error cf(l). We collect the correcting terms in an error term R, so that we have

L = L̃ + R. (69)

Lemma 15 (Approximate detailed balance). The Liouvillian L̃ satisfies approximate detailed
balance with respect to ω: For any two operators, we have

|ω(L̃ [A] B) − ω(AL̃ [B])| = |ω(R [A] B) − ω(AR [B])| ≤ 2|Λ|cf (l) ‖A‖ ‖B‖ . (70)

Proof. The claim follows immediately from |ω(X)| ≤ ‖X ‖ for any state ω and operator X. �

Remembering that f (l) decays faster than any polynomial, the above lemma shows that, even if
A or B grow polynomially with the system size, L̃ is asymptotically in detailed balance if we choose
that l grows at least like Lα for some 0 < α < 1.

Similarly, if we write ∆̃(m,m′) for the same quantity as ∆(m,m′), but where we replace L with L̃,
we obtain

���∆
(m,m′)(A, B) − ∆̃(m,m′)(A, B)��� ≤ 2 ‖A‖ ‖B‖ |Λ|cf (l). (71)

In particular, if we can choose l ∝ Lα for some constant 0 < α < 1, this error vanishes in the thermody-
namic limit. We will therefore now consider ∆̃(m,m′) and show that it vanishes in the thermodynamic
limit as long as we choose α < 1/2.

So suppose from now on that l =Lα with α < 1/2. We will again use an approximate derivation-
property of the Liouvillian L̃ together with the fact that it is asymptotically reversible with respect
to ω. To do that, we will denote by L̃Ã the Liouvillian containing all terms of L̃ whose support has
overlap with A. Due to the locality of L̃, there are at most |Ã| ≤ |A|ld such terms.
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The following lemma will be, together with Lemma 13, the key result to prove the theorem. This
property will be particularly useful in combination with Lemma 8.

Lemma 16 (Asymptotically local derivation). Let A be a local observable and let f (l) grow at
most like Lα with 0 < α < 1 with the system size. Then

lim
Λ↗Zd

ω(ΓL̃(Ω(m,m′), A))= lim
Λ↗Zd

ω(ΓL̃Ã
(Ω(m,m′), A))= 0. (72)

Before we give the proof of this lemma, we will show how it implies the main theorem. The steps
are essentially the same as in the case of discrete symmetry breaking. Let A, B be local operators. We
first use approximate detailed balance together with the approximate derivation property to rewrite
∆̃(m,m′)(A, B),

∆̃
(m,m′)(A, B)'ω

(
Ω

(m,m′)
(
AL̃ [B] − L̃ [A] B

))
(73)

'ω
((
L̃(Ω(m,m′)A) −Ω(m,m′)L̃ [A]

)
B
)

(74)

'ω
(
L̃

[
Ω

(m,m′)
]

AB
)
'ω

(
Ω

(m,m′)L̃ [AB]
)

, (75)

where again ' denotes equality up to terms that vanish in the thermodynamic limit and where we
have used approximate detailed balance in the last step. On the other hand, since AB is also a local
observable, we can also use the approximate derivation property to show

ω
(
L̃

[
Ω

(m,m′)
]

AB
)
'ω

(
L̃

[
Ω

(m,m′)AB
] )
− ω

(
Ω

(m,m′)L̃ [AB]
)

(76)

'−ω
(
Ω

(m,m′)L̃ [AB]
)

. (77)

Combining the two estimates with ∆̃(m,m′)(A, B)'∆(m,m′)(A, B), we therefore get

−ω
(
Ω

(m,m′)L̃ [AB]
)
'∆(m,m′)(A, B)'ω

(
Ω

(m,m′)L̃ [AB]
)

. (78)

In other words,
lim
Λ↗Zd

∆
(m,m′)(A, B)= 0. (79)

Proof (Of Lemma 16). To prove the lemma, we split up O+ as O+ = Q + R, where Q is supported
on the complement of Ã and R collects the remaining terms. In particular, this means that L̃Ã [QX]
=QL̃Ã [X] for any operator X. Let us also introduce the short-hand notation

Z (m,m′) :=ω((O+)m(O−)m)1/2ω((O+)m′(O−)m′)1/2. (80)

We now use a binomial expansion to write

���ω(ΓL̃Ã
(Ω(m,m′), A))��� ≤

m∑
k=0

m′∑
k′=0

(
m
k

) (
m′

k ′

) �������

ω
(
ΓL̃Ã

((Q†)m′−kQm−k(R†)k′Rk , A)
)

Z (m,m′)

�������

=

m∑
k=0

m′∑
k′=0

(
m
k

) (
m′

k ′

) �������

ω
(
(Q†)m′−kQm−kΓL̃Ã

((R†)k′Rk , A)
)

Z (m,m′)

�������
. (81)

But
ΓL(1, X)= 0 (82)

for any operator X and any Liouvillian L. Therefore we can neglect the term with k ′ = k = 0.
Combining this with another application of the Cauchy-Schwartz inequality, we get

���ω(ΓL̃Ã
(Ω(m,m′), A))���

≤
∑′

k,k′

(
m
k

) (
m′

k ′

)
ω

(
(Q†)m′−kQm′−k

)1/2
ω

(
(Q†)m−kQm−k

)1/2

Z (m,m′)

×
ΓL̃Ã

((R†)k′Rk , A) , (83)



033302-15 Wilming et al. J. Math. Phys. 58, 033302 (2017)

where the primed sum omits the term k ′ = k = 0. We can now use Lemma 13 to bound the fraction as

ω
(
(Q†)m′−kQm′−k

)1/2
ω

(
(Q†)m−kQm−k

)1/2

Z (m,m′)
≤

(µoLd)−2(k+k′)

2 − eµ/8
, (84)

provided that Ld ≥
16 |Ã |2

µ2 and | M
Ld | ≤

µ2

16 |Ã |
, where M ≥ |m|, |m′ |. Since by assumption |Ã| ≤ |A|Lαd , the

inequalities are fulfilled for large enough system sizes as long as α < 1/2. Similarly, by the locality
of the Liouvillian, we can upper bound the norm-factor as

ΓL̃Ã
((R†)k′Rk , A) ≤ 3b|Ã| ‖R‖k+k′ ‖A‖ ≤ 3b|A| ‖A‖ Lαd

(
o|A|Lαd

)k+k′
. (85)

Combining the two estimates, we get

���ω(ΓL̃Ã
(Ω(m,m′), A))��� ≤

3b|A| ‖A‖

2 − eµ/8
Lαd

∑′

k,k′

(
m
k

) (
m′

k ′

) (
|A|
µ

L(α−1)d
)k+k′

≤
3b|A| ‖A‖

2 − eµ/8
Lαd

(
exp(
|A|
µ

ML(α−1)d) − 1

)
. (86)

But Lαd
(
exp

(
|A |
µ ML(α−1)d

)
− 1

)
converges to zero as L→∞ as long as α < 1/2. This finishes the

proof. �

1. Proof of Lemma 13

Let am :=Tr(Qm
A ρ(Q∗A)m). We have to prove

am

am−1
≥ (µoN)2. (87)

We first calculate a1, which gives

a1 = Tr((O+ − RA)ρ(O− − R∗A))

≥ Tr(ρO−O+) − 2 O+R∗A
 ≤ 2No2 |A|

=
1
2

[
Tr(ρO+O−)Tr(ρO−O+) + Tr(ρ[O+, O−])

]
− 2o2N |A|

≥ Tr(ρO(1)2
) + Tr(ρO(2)2

) − 2o2(1 + |A|)N

≥ 2o2µ2N2
[
1 −

1 + |A|

µ2N

]
. (88)

Using the bound N ≥ 16 |A |2

µ2 , we have

1 −
1 + |A|

µ2N
≥ 1 −

1 + |A|

16|A|2
≥ 1 −

1
8
> 0, (89)

since |A| ≥ 1. Therefore a1 > 0. Next we can again use the Schwartz inequality to get

(am−1)2 ≤ Tr(ρ(Q∗A)m−2Qm−2
A )Tr(ρ(Q∗A)m−1QAQ∗AQm−1

A )

= am−2

{
Tr(ρ(Q∗A)mQm

A ) + Tr(ρ(Q∗A)m−1[QA, Q∗A]Qm−1
A )

}

≤ am−2

{
am + 4o2Nam−1

}
. (90)

Assuming am−2 , 0, am−1 , 0, which is true for m = 2, we get

am

am−1
≥

am−1

am−2
− 4o2N . (91)
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Summing up, we obtain

am

am−1
≥ a1 − 4o2N(m − 2)

≥ 2(µoN)2
[
1 −

1 + |A|

µ2N
−

2(m − 2)

µ2N

]

≥ 2(µoN)2
[
1 −

1 + |A|

µ2N
−

2M

µ2N

]

≥ 2(µoN)2
[
1 −

1 + |A|

16|A|2
−

1
8|A|

]

≥ 2(µoN)2
[

16 − 2 − 2
16

]
= (µoN)2 3

2
> (µoN)2, (92)

where we have used N ≥ 16 |A |2

µ2 , |MN | ≤
µ2

16 |A | , and |A| ≥ 1. The desired bound thus holds by induction.
Let us now lower bound the ratio

r(M)
A =

�������

Tr
(
(O+)M ρ(O−)M

)
Tr(QM

A ρ(Q∗A)M )

�������
. (93)

We use a binomial expansion again to first obtain

���Tr
(
(O+)M ρ(O−)M

) ��� =
�������
Tr(QM

A ρ(Q∗A)M ) +
′∑

k,l

(
M
k

) (
M
l

)
Tr

(
ρ(Q∗A)M−k(R∗A)kQM−l

A RM−l
A

) �������

≥ |Tr(QM
A ρ(Q∗A)M )| −

′∑
k,l

�����

(
M
k

) (
M
l

)
Tr

(
ρ(Q∗A)M−k(R∗A)kQM−l

A RM−l
A

) �����
, (94)

where the primed sum goes over all k, l = 0, . . . , M except for k = l = 0. Using the Schwartz inequality
and (61) again we get the bound

r(M)
A ≥ 1 −

′∑
k,l

(|A|o)k+l(µoN)−(k+l)

≥ 1 −


(
1 +
|A|
µN

)2M

− 1


≥ 2 − exp(
2|A|M
µN

) ≥ 2 − eµ/8. (95)

Note that, in particular, r(M)
A > 0, since 0 < µ≤ 1

C. Goldstone modes

Here we give a sketch of how to construct dissipative Goldstone modes above a symmetry-broken
steady-state if the Liouvillian is symmetric and commutes with charge in the sense of Eq. (21) of the
main text. For simplicity, we will assume that the dynamics is strictly local. For any cubical volume
Λ ⊆ Zd of side-length L and local region A ⊂Λ, define

UA := exp *.
,

2πi
L

∑
x∈A

d∑
j=1

xjCx
+/
-

. (96)

The operator UΛ creates a spin-wave of wavelength L on the whole volume Λ. We can then define
states

σ(M)
Λ

(A)=ω(M)
Λ

(
(UΛ)†AUΛ

)
. (97)
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For large M these describe symmetry-broken states with one spin-wave excitation in each space-
direction. Now fix some local observable A. As Λ increases, we can approximate UA by an operator
VA that effects a spatially constant rotation in the region A,

VA := exp

(
2πi
L
ϕCA

)
= exp *.

,

2πi
L

(
d∑

j=1

x(0)
j )CA

+/
-

, (98)

where x(0) is a point in the center of A. A Taylor-expansion then yields

UÃL
Λ
A [A] U†

Ã
− VÃL

Λ
A [A] V†

Ã
 ≤

2π
L





∑
y∈Ã

d∑
j=1

(yj − x(0)
j )Cy,LΛA [A]




+ O(1/L2)

≤
2π
L

diam(Ã)d |Ã|22co ‖A‖ + O(1/L2)=O(1/L), (99)

with c > 0 as in Definition 5 and o= ‖Cx ‖. We thus obtain

σ(M)
Λ

(
LΛ [A]

)
=ω(M)

Λ

(
UÃL

Λ [A] U†
Ã

)
≈ω(M)

Λ

(
VÃL

Λ [A] V†
Ã

)
=ω(M)

Λ

(
LΛ

[
V†AAVA

] )
≈ 0,

where ≈ denotes equality up to a difference of order 1/L. Thus time-derivatives of local observables
become vanishingly small as the system-size (and wave-length) increases. The actual expectation
values instead can differ arbitrarily. In particular, for any L the order parameter m(x)= (O(1)

x , O(2)
x )

perfectly distinguishes the two states: Its image m(Λ) ⊂R2 is a single point forω(M)
Λ

and an arbitrarily

dense (as L increases) circle for σ(M)
Λ

. Note that the above arguments did not rely on the reversibility
assumption but only on the locality and symmetry of the Liouvillian under the action of a locally
generated symmetry.

V. DISCUSSION

The properties of local dissipative dynamics, such as locality,17 mixing times,9,27,32 and stability
against perturbations9,33 have recently attracted a great deal of interest. These results are mainly
motivated by the question of whether such dissipative processes can be used for reliably storing
quantum information in quantum memories,34–36 performing computations37,38 and quantum simu-
lations,14 or preparing certain quantum states,39 in particular topological phases of matter.12,40 Here,
we have shown that they also give a dynamical view-point on the emergence of spontaneous sym-
metry breaking: our results show that local dissipative dynamics satisfying detailed balance with
respect to a state with extensive fluctuations of an order parameter necessarily also prepares dif-
ferent symmetry-breaking phases in the thermodynamic limit. Thus symmetry-breaking phases are
dynamically stabilised by dissipative dynamics in detailed balance. We hence also provide further
insight into asymptotic stationarity in the dynamics of dissipative processes such as those involving
multi-component Rydberg gases, as have recently been discussed in the literature.41

An important feature of our work is that it shifts the perspective of symmetry breaking phase
transitions from properties of Hamiltonians to properties of quantum states. This mindset is similar
to recent studies in the field of topological order, where the emphasis has been put on states described
by tensor networks and their entanglement structure instead of Hamiltonians.42–44

Our results rely on the locality of the dynamics and detailed-balance. While locality is clearly
necessary, the role of reversibility is not quite as clear: It is known that with simple non-reversible
update rules of an asynchronous cellular automaton, it is possible to have a domain of stability in
the phase diagram even though this is impossible for equilibrium statistical mechanics models.45,46

It is an open problem whether criticality can be induced robustly out of equilibrium without the
simultaneous production of asymptotically stationary states.

In the case of discrete symmetry breaking, examples of Liouvillians fulfilling our assumptions
can be given easily, since such Liouvillians exist for any Gibbs state of commuting local Hamilto-
nians27 as, for example, the Ising model. In the case of continuous, non-commutative symmetries,
we currently cannot provide an explicit example, mirroring the lack of exactly solvable models
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showing continuous symmetry-breaking in the Hamiltonian case. Indeed, it is a long-standing open
problem in mathematical physics to show whether reversible and quasi-local Gibbs samplers exist
for non-commutative Hamiltonians, in particular below the critical temperature. While Liouvillians
constructed through weak-coupling techniques always fulfill detailed balance, they are typically not
quasi-local anymore. Our results imply that if non-commutative Gibbs samplers exist, they neces-
sarily also have to prepare different phases below a phase transition temperature. Finally, it will be
interesting to study whether similar results hold for discrete time (quantum) Markov processes. These
would give information about the convergence of (quantum) Markov chain Monte Carlo algorithms,
which are typically in detailed balance and are used in many areas of physics.
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APPENDIX: DETAILED BALANCE

As detailed balance plays an important role for the present work, we briefly explain here how the
notion of detailed balance that we use precisely generalises the classical notion of detailed balance. To
do that let L be a Liouvillian in detailed balance with the quantum stateω, i.e.,ω(L(A)B)=ω(ALB)
for any two bounded operators A, B. For simplicity, let us assume that the dynamics takes place on a
finite-dimensional Hilbert-space. We can decompose ω into mutually orthogonal pure states ψj with
associated projection operators Pj and probabilities pj. Then we have

ω(etL [Pi] Pj)= pjψj(e
tL [Pi])=: pjP(i, j; t), (A1)

where P(i, j; t) denotes the probability to end up in the state ψi after time t when having started in the
state j. From detailed balance, we then get (upon integrating)

pjP(i, j; t)=ω(etL [Pi] Pj)=ω(Pie
tL

[
Pj

]
)= piP(j, i; t), (A2)

which is precisely the condition of detailed balance in a classical Markov chain defined over the
states ψj with transition probabilities P(i, j; t). In particular, if ω is a Gibbs state of a non-degenerate
Hamiltonian at inverse temperature β, the states ψj are energy-eigenstates associated with energies
Ej and we get the well-known relation

P(i, j; t)= e−β(Ej−Ei)P(j, i; t). (A3)
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