Ralf Moritz

Infrarotspektroskopische Struktur
untersuchungen zur Faltung von unmarkierter und $^{13}\mathrm{C}\text{-markierter}$ Ribonukle
ase T1

DISSERTATION

zur Erlangung des Grades Doktor der Naturwissenschaften im Fachbereich Biologie, Chemie, Pharmazie der Freien Universität Berlin

Berlin 2003

Betreuer und Gutachter der Arbeit: PROF. DR. D. NAUMANN Zweiter Gutachter der Arbeit: PROF. DR. W. SAENGER Tag der mündlichen Prüfung: 15. August 2003

Inhaltsverzeichnis

1	\mathbf{Ein}	eitung	1			
	1.1	Proteine	1			
		1.1.1 Proteinstruktur	1			
		1.1.2 Proteinfaltung \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	2			
		1.1.3 Methoden zur Untersuchung der Proteinstruktur und Protein-				
		faltung	3			
		1.1.4 Ribonuklease T1	6			
	1.2	FOURIER-Transform-Infrarot-Spektroskopie	9			
		1.2.1 Physikalische Grundlagen der FTIR-Spektroskopie	9			
		1.2.2 FTIR-Spektrometrie	12			
		1.2.3 Infrarotspektroskopische Untersuchungen an Proteinen	17			
2	\mathbf{Ziel}	setzung	25			
3	Material 2					
	3.1	Chemikalien	27			
		3.1.1 Nährmedien	28			
		3.1.2 Puffer	28			
	3.2	Materialien und Geräte	29			
4	Methoden 3					
	4.1	Proteinexpression und -aufreinigung	31			
		4.1.1 Expressionssytem	31			
		4.1.2 Aufreinigungsprozedur	33			
	4.2	CD-Spektroskopie	39			
	4.3	FTIR-Spektroskopie	39			
		4.3.1 Messungen unter Bedingungen des thermodynamischen Gleich-				
		gewichts	40			
		4.3.2 Zeitaufgelöste Messungen	42			
	4.4	Berechnung der Amid-I-Bande auf Basis von Übergangsdipolkopplungen (TDC)	54			
5	Erg	ebnisse	57			
	5.1	Proteinaufreinigung	57			
		5.1.1 Chromatographie	57			

		5.1.2	Spezifische Enzymaktivität	58
		5.1.3	CD-Spektroskopie	58
		5.1.4	FTIR-Spektroskopie	59
	5.2	FTIR-	Messungen unter Gleichgewichtsbedingungen	59
		5.2.1	Schmelzkurvenvergleich der beiden Proteinvarianten anhand von	
			IR-Markerbanden.	69
	5.3	Berech	nnete Spektren	72
	5.4	FTIR-	Messungen unter Nicht-Gleichgewichtsbedingungen	74
		5.4.1	Differenzspektren	74
		5.4.2	Totzeitspektren	88
6	\mathbf{Disl}	cussior	1	93
	6.1	Expre	ssion und Aufreinigung von unmarkierter und ¹³ C-markierter	
		RNase	εΤ1	93
		6.1.1	Charakterisierung der in <i>S. cerevisiae</i> exprimierten RNase T1	
			mit bioanalytischen Methoden	94
	6.2	FTIR-	spektroskopische Strukturuntersuchungen	95
		6.2.1	Diskussion der spektralen Unterschiede zwischen unmarkierter	
			und ¹³ C-markierter RNase T1 unter Bedingungen des thermo-	
			dynamischen Gleichgewichts	97
		6.2.2	Berechnung der Schwingungsspektren unmarkierter und ¹³ C-	
			markierter RNase T1	103
		6.2.3	Zeitaufgelöste FTIR-Spektren von unmarkierter und ¹³ C-mar-	
			kierter RNase T1 unter Bedingungen des thermodynamischen	
			Nicht-Gleichgewichts	105
7	Aus	blick		117

Tabellenverzeichnis

1.1	Übersicht der verschiedenen spektralen Regionen im infraroten Spek-	
	trum elektromagnetischer Strahlung	9
1.2	Übersicht der Amidbanden	18
1.3	Absorptionen der Aminosäureseitengruppen im Amid-I- und -II-Bereich	
	in D_2O	20
1.4	Theoretische Zuordnung von Peptidschwingungsbanden verschiedener	
	Konformationen im Amid-I- und Amid-II-Bereich	21
3.1	Liste der verwendeten Chemikalien	27
3.2	Liste der verwendeten Materialien	29
3.3	Liste der verwendeten Geräte	30
5.1	Bandenzuordnung für den Amid-I-Bereich von RNase T1	62
5.2	Schmelztemperaturen und VAN´T HOFF-Enthalpieänderungen am Pha-	
	senübergang von unmarkierter und 13 C-markierter RNase T1 aus S. ce-	
	<i>revisiae</i>	72
5.3	Kinetische Konstanten der Temperatursprungexperimente von $65^{\circ}\mathrm{C}$	
	auf 10° C, 20° C und 45° C.	80

Tabellenverzeichnis

Abbildungsverzeichnis

1.1	Kristallstruktur von RNase T1	7
1.2	Schematischer Aufbau eines MICHELSON-Interferometers.	14
1.3	Interferogramme und die daraus FOURIER-transformierten Spektren	
	einer monochromatischen und polychromatischen Lichtquelle $\ \ldots$.	15
1.4	IR-Spektren von H_2O und D_2O	19
4.1	eq:RP-HPLC-Chromatogramm von aus Hefen exprimierter RNase T1 nach	
	der ersten Aufreinigung über eine Anionenaustauschersäule	36
4.2	IR-Spektren von aus $S.$ cerevisiae und $E.$ coli exprimierter RNase T1	37
4.3	RP-HPLC-Chromatogramm von aus Hefen exprimierter RNase T1 nach der ersten Aufreinigung über eine Anionenaustauschersäule. Die Tren- nung erfolgte mit einer Nucleogel-C 18-Trennsäule, ohne die Verwen-	
	dung von TFA als Ionenpaarbildner.	38
4.4	RP-HPLC-Kalibrationsgerade für RNase T1	39
4.5	Neuentwickelten Temperatursprungapparatur (schematischer Aufbau)	44
1.0	zeitstabilität)	46
4.7 4.8	Weiterentwickelte Temperatursprungapparatur (schematischer Aufbau) Dekumentation des nötigen Probenvolumens für die weiterentwickelte	47
4.0	Temperatursprungapparatur	48
4.9	Dokumentation der Resttemperaturanpassung bei einem Temperatur- sprungexperiment mit der weiterentwickelten Temperatursprungappa-	
	ratur	50
4.10	Dokumentation der Standardabweichung während eines Temperatur- sprungexperimentes	52
5.1	RP-HPLC-Chromatogramm einer Mischung von RNase-T1-Standard aus $A. oryzae$ und ¹³ C-markierter sowie unmarkierter RNase T1 aus	
5.0	S. cerevisiae DT1103	57
0.2	und unmarkierter RNase T1	58
5.3	Zweite Ableitungen der IR-Spektren von aus $S.$ cerevisiae DT1103 und	
	aus <i>E. coli</i> exprimierter nicht markierter RNase T1	59

Abbildungsverzeichnis

5.4	Absorbanzspektren, FSD-Spektren und zweite Ableitungen der Absorbanzspektren von unmarkierter RNase T1 im Temperaturbereich von 20 °C bis 80 °C.
5.5	Absorbanzspektren, FSD-Spektren und zweite Ableitungen der Absorbanzspektren von ¹³ C-markierter RNase T1 im Temperaturbereich von 20 °C bis 80 °C.
5.6	Original- und FSD-Spektrum von ¹³ C-markierter und unmarkierter RNase T1 bei 20°C.
5.7	Original- und FSD-Spektrum von ¹³ C-markierter und unmarkierter RNase T1 bei 80°C
5.8	Differenzspektrum bei 80 °C zwischen den zweiten Ableitungen der 13 C-markierten und unmarkierten RNase T1
5.9	Differenzspektren zwischen ¹³ C-markierter und unmarkierter RNase T1 bei 20 und 80 °C
5.10	Schmelzkurven einiger IR-Banden von ¹³ C-markierter und unmarkier- ter RNase T1
5.11	Normierte Schmelzkurven einiger IR-Banden von ¹³ C-markierter und unmarkierter RNase T1
5.12	Amid-I-Bereich der berechneten Spektren von unmarkierter und ¹³ C- markierter RNase T1
5.13	Differenzspektrum der berechneten Spektren von Abbildung 5.12 auf Seite 73
5.14	Differenzspektren von unmarkierter und ¹³ C-markierter RNase T1 bei einem Temperatursprung von 65 nach 10 °C
5.15	Differenzspektren von unmarkierter und ¹³ C-markierter RNase T1 bei einem Temperatursprung von 65 nach 20 °C
5.16	Differenzspektren von unmarkierter und ¹³ C-markierter RNase T1 bei einem Temperatursprung von 65 nach 45 °C
5.17	Intensitätsverläufe der Banden bei 1626, 1633 und 1643 cm ⁻¹ , sowie der zeitliche Verlauf der Tyrosinbandenposition von unmarkierter und ¹³ C-markierter RNase T1
5.18	Differenzspektren während der Rückfaltung von unmarkierter RNa- se T1 innerhalb diskreter Zeitintervalle bei einer Rückfaltungstempe-
5.19	ratur von 10 °C
5.20	Differenzspektren während der Rückfaltung von unmarkierter RNa- se T1 innerhalb diskreter Zeitintervalle bei einer Rückfaltungstempe- ratur von 20°C.
5.21	Differenzspektren während der Rückfaltung von ¹³ C-markierter RNa- se T1 innerhalb diskreter Zeitintervalle bei einer Rückfaltungstempe- ratur von 20°C.

5.22	Differenzspektren während der Rückfaltung von unmarkierter RNa- se T1 innerhalb diskreter Zeitintervalle bei einer Rückfaltungstempe-	
	ratur von 45° C	86
5.23	Differenzspektren während der Rückfaltung von ¹³ C-markierter RNa-	
	se T1 innerhalb diskreter Zeitintervalle bei einer Rückfaltungstempe-	
	ratur von 45 °C	87
5.24	Spektrale Gesamtänderungen zwischen 20 bzw. 45° C und 65° C im	
	Gleichgewichtsexperiment, detektierte Gesamtänderungen der zeitauf-	
	gelösten Experimente und darunter die aus den beiden Differenzspek-	
	tren berechneten Ereignisse während der ersten 100 ms der Tempera-	
	tursprungexperimente (Totzeit)	89
6.1	Positionen der isotopenmarkierten Proline in der Kristallstruktur von	~
	RNase T1	97
6.2	TDC zwischen C=O-Gruppen im antiparallelen β -Faltblatt	101
6.3	trans- und cis-Konformation von Prolin. Die Pfeile markieren den Ver-	
	lauf des Polypeptidrückgrats.	106
6.4	Intensitätsverläufe der Markerbande bei 1626 $\rm cm^{-1}$ von unmarkierter	
	RNase T1 nach Temperatursprüngen von 65 °C auf 10, 20 und 45 °C	108
6.5	Faltungswege der RNase T1	109
6.6	Modell eines Faltungstrichters	110
6.7	Späte Ereignisse während der Rückfaltung von unmarkierter RNase T1	
	bei einer Rückfaltungstemperatur von 20°C	114
6.8	Späte Ereignisse während der Rückfaltung von ¹³ C-markierter RNa-	
	se T1 bei einer Rückfaltungstemperatur von 20°C.	115

Abbildungsverzeichnis

a	Beschleunigung
A	Absorbanzspektrum
A. oruzae	Asperaillus oruzae
AcN	Acetonitril
AE	Absorptionseinheiten
Arg	Arginin
Asn	Asparagin
Asp	Aspartat
ATR	attenuated total reflection
BSE	Bovine Spongiforme Enzophalopathie
c	Konzentration
c	Lichtgeschwindigkeit $(2,99792 \cdot 10^8 \text{ m/s})$
cal	Kalorie (4,1868 J)
CD	Circulardichroismus
$\Delta H_{\mathrm{VAN}{}^{\prime}\mathrm{T}}$ Hoff	Enthalpieänderung (bestimmt mit der VAN´T HOFF-Gleichung)
$\Delta \bar{\nu}$	Phasendifferenz zweier interferierender Stahlen
d	Abstand zweier Spektrallinien
d	Schichtdicke
D	Differenzspektrum
D_2O	$^{2}\mathrm{H}_{2}\mathrm{O}$
Da	Dalton (Einheit der relativen Molmasse, keine SI-Einheit)
DFT	Diskrete Variante der FOURIER-Transformation
DNA	Desoxyribonukleinsäure
DTGS	Deuteriertes Triglycinsulfat
ϵ	Extinktionskoeffizient
E	Energie
E	Extinktion (synonym verwendet mit dem Begriff Absroption; ent-
	sprechend <i>engl. absorbance</i>)
E. coli	Escherichia coli
EDTA	Ethylendiaminetetraessigsäure
esu	electrostatic unit
F	Kraft
FSD	FOURIER-Selbst-Dekonvolution
FTIR	FOURIER-Transform-Infrarotspektroskopie
Gln	Glutamin

Glu	Glutamat
GpC	Dinukleotid der Nukleoside Guanosin und Cytidin, die über eine
-	Phosphatgruppe miteinander verknüpft sind
h	PLANCKsche Konstante $(6.6 \cdot 10^{-34} \text{Js})$
HPLC	high performance liquid chromatography
Ι	Intensität der Probe
	Intensität der Referenz
I(x)	Intensität als Funktion des Spiegelweges x (Interferogramm)
J	Joule
k k	Kraftkonstante
K	Kelvin
K12	Bezeichnung für Laborstämme von <i>E coli</i> , die für die Herstellung
	rekombinanter Proteine verwendet werden dürfen
λ	Wellenlänge
	reduzierte Masse $(\mu = \frac{m_1 m_2}{m_1 m_2})$
μ m	Masse
MALDI	masse matrix asserted laser desorption ionisation
MCT	Quecksiller Cadmium Tellurid (mercury cadmium telluride)
MWCO	molocular weight out off
	Frequenz
$\overline{\nu}$	Wellenzehl
V N	Anzahl dar Atomo
N	Newton
IN NIMD	New ton
	nuclear magnetic resonance
рн-	pH-wert einer D-Losung ermittelt mit einer Standard-Glaselektrode
	Ella Format des matrix dats hars
pap	File-Format der <i>protein aata oase</i>
PEG	Polyetnylengiykol
Pro	Prolin C_{1} (0.21451 HZ^{-1} 1-1)
R	Gaskonstante (8,31451 JK ⁺ mol ⁻¹)
RMS	root mean square
RNA	ribonucleic acid
RNase T1	Ribounklease T1
RP	reversed phase (Umkehrphase)
RT	Raumtemperatur
S S()	Einkanalspektrum
$S(ar{ u})$	maximale Intensität des monochromatischen Lichtstrahls der Wel- lenzahl $(\bar{\nu})$
S. cerevisiae	Saccharomyces cerevisiae
S54G/P55N	Ribonuklease T1 mit Glycin statt Serin an Position 54 und Aspara-
/	gin statt Prolin an Position 55
88	single stranded
t	Zeit

Temperatur
Temperatur des Phasenübergangs (Schmelztemperatur)
transition dipole coupling
trifluoroacetic acid
time of flight
tris(hydroxymethyl) aminomethane
transistor transistor logic
Tyrosin
Temperatursprung
Ultraviolett
visible
Schwingungsqunatenzahl
Ribonuklease T1 mit Tyrosin anstelle von Tryptophan an Position
59
$\bar{\nu} = \frac{1}{\lambda} (\mathrm{cm}^{-1})$
Spiegelposition
yeast nitrogen base
spezifische Elliptizität
Schwingungsfreiheitsgrad