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Introduction

In 2006 over 160.000 hip replacement surgeries were counted in Germany, vastly increasing
regarding the ageing society. Of these operations almost 20.000 were secondary interven-
tions, requisite due to wear, dislocation or fixation failure of the implant [8]. Although
not entirely, the success of a hip replacement and a pain-free long-time behaviour of
the joint depends heavily on the experience of the surgeon and a good pre-operational
planning. This planning is usually done based on X-ray data only. The anatomical
centre of rotation and implant size and position are settled by using simple templates
[76]. Recent approaches to digitalise this templating exist [98] but they do not close the
clear gap between the purely geometric construction in 2D and the three dimensional
dynamic reality. First software tools based on CT or MRI data were developed recently.
These allow to perform a virtual range of motion analysis based on the assumption that
the hip joint is a perfect ball and socket joint and hence the centre of rotation stays
fixed [24]. These approaches have the disadvantage that no proper stability analysis of
the joint centre under loads can be performed and thus detection of possible dislocation
cannot be done.
With the work in this thesis we want to contribute to the improvement of present surgery
planning by introducing a patient-specific finite element hip joint model for virtual
testing. Based on the statistical shape model [85] the model provides the possibility of
an automatic construction from CT data. In this thesis we focus on using this model for
a range of motion and impingement (contact) analysis. The most important part of such
a virtual testing framework is the modelling of contact and its fast and robust numerical
solution, which is the main focus of the first part of this thesis.

Although dynamic large deformation contact problems arise in many industrial applica-
tions like auto mobile engineering or biomechanics, only very few methods exist for their
solution, all having their advantages and disadvantages. Most of these methods are based
on the continuous contact model by Laursen and Simo [90]. In this approach the contact
traction forces are explicitly included in the weak formulation and treated as additional
unknowns. In this thesis we will follow a different path that first appeared in [70]. Using
non-smooth calculus [99] we will properly derive a differential inclusion depending only on
the deformation. The idea is to incorporate the non-penetration constraints directly into
Hamilton’s principle from which the weak equations of motion are derived. This approach
can also be used for general constrained Hamiltonian systems as it does not depend on the
explicit form of the constraints. Hence also more general contact descriptions, e.g. only
demanding the intersection of two bodies to be empty, can be treated formally. Analysing
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this abstract description in the framework of subdifferential calculus might even lead
to new existence results, which have been derived recently for a similar formulation of
Signorini-type problems by Schuricht [122].

The discretisation of large deformation contact problems is complicated by the non-
linearity, geometric and material, of the equations of motion and the non-penetration
constraint.
In the framework of linearised contact, i.e. displacements are assumed to be small, many
successful time discretisation schemes based on the Newmark family were developed
[34, 78]. Unfortunately, for the large deformation model one can observe that, even
in the absence of contact, most of these classical integrators loose their unconditional
stability [125]. The reason for this is that spectral stability is only a necessary condition
for stability in non-linear structural mechanics. Belytschko and Schoeberle showed that
in non-linear mechanics the conservation or decay of the total energy is a sufficient
criterion for the stability of implicit schemes [18]. In combining this conclusion with
classical time integrators, Simo and Tarnow introduced the Energy–Momentum method
[125], which is the prevalent basis of most time integrators for large deformation contact
problems. A more detailed overview of present time discretisations can be found in
Section 2.1. The idea of this method is to algorithmically enforce conservation of energy
by adjusting the implicit midpoint rule suitably in each time step. One drawback of this
approach is that the conservation is achieved at the cost of loosing the symmetry of the
underlying tangent stiffness operator [84]. Now our motivation for investigating contact
problems has its origin in virtual medicine where short computing times and hence a fast
numerical solution is of importance. On the other hand the evolutions of interest, e.g.
the range of motion of the hip joint, need to be resolved in very high detail to predict
the resulting stresses accurately. With this mind, our first experimental choice for the
discretisation of the non-standard differential inclusion, is the implicit midpoint rule.
As clinical application in general require a high resolution of the trajectories we neglect
the restricted stability. In the presence of contact numerical experiments showed that
the midpoint rule is generating energy. Motivated by the predictor-corrector method
in [70], we propose to stabilise the midpoint rule by modifying the generalised gradient
term, which corresponds to the implicit contact forces. This results in a dissipative-like
behaviour. In Section 4.4.3 we investigate the scheme numerically and suggest further
stabilising steps to improve the method further.

A second difficulty of contact problems is the discretisation of the non-penetration
constraint which involves identifying the discrete contact boundaries with each other, see
Section 2.2 for a more thorough overview. A widely used approach is the Node-to-Segment
method [7, 65]. Therein, each node of one surface is identified with a segment on the
opposing surface and non-penetration is enforced for each of these nodes. Recently the
use of mortar methods became more and more popular [79, 93]. The idea is to enforce
the contact constraints in a variationally consistent manner which improves the stability
of the underlying methods significantly [93]. Krause and Wohlmuth proposed to use
dual basis functions for the mortar discretisation of linearised contact problems, which
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enabled them to decouple the non-penetration constraints and to apply fast monotone
multigrid solvers for the solution of the algebraic problems [79]. In this thesis we extend
this approach to large deformation contact problems. First, we note that when dealing
with large deformations, the mortar discretisation requires to integrate the constraints
over the deformed configuration to account for the changing contact boundaries [65].
This prevents a simple decoupling as in the linearised case [79].
As mentioned before, methods that are based on the Energy–Momentum scheme do not
inherit the symmetry of the continuous tangent stiffness operator. The resulting algebraic
non-linear systems are usually solved using an active set strategy [68, 62, 66] or penalty
methods [93], see also Chapter 4. In our approach we exploit that the resulting spatial
problems of the stabilised midpoint rule can be reformulated as constrained minimisation
problems. In this thesis we develop a solver based on sequential quadratic programming
(SQP), i.e. the successive local approximation of the non-linear functional and constraints
by quadratic models. As hyperelastic materials are in general non-convex, we apply a
trust–region globalisation strategy to cope with the possible unboundedness of the local
problems. In the case of non-linear constraints further adjustments of the trust–region
method have to be made, as the intermediate iterates are in general not feasible w.r.t the
non-linear constraints. A novel approach that is avoiding any penalty parameters is the
filter method [45]. The idea is to accept a trial point if it either has a lower energy or a
better feasibility w.r.t. the non-linear constraints than previous iterates. Under suitable
conditions this method is shown to converge globally [46]. When applying this algorithm
to large deformation contact problems, the linearised constraints are almost of the form
as in the small strain framework, which could be decoupled into bound constraints [79].
Therefore, we extend the standard filter–trust–region method to allow inexact constraint
Jacobians, namely the portion which allows to employ the same decoupling strategy. The
mechanism of this inexact filter method works as follows: Solve inexact local problems
until an approximate convergence criterion is fulfilled. Then, if the exact convergence
criterion is not fulfilled, switch to solving exact local problems.
The inexact local problems are quadratic, non-convex and subject to simple bound
constraints. To this end, we extend the monotone multigrid method [79, 54, 55] and
prove global convergence for this class using the framework of upper hemi-continuity, see
Section 3.1. A short overview of solvers for non-linear obstacle problems can be found
in Section 4.4.1. In Section 3.4 we also prove that the inexact filter method converges
globally when the approximation error, that we make by using inexact Jacobians, is
controlled. Numerical results showed that already for small problems the computation
time could be reduced up to 30% when the inexact filter method is used, see Chapter 4.

The second part of this thesis is concerned about the description of a heterogeneous hip
joint model and a computational framework for a range of motion and femoroacetabular
impingement analysis. The mathematical model is a direct extension of the knee joint
model, introduced in [117, 120], to large deformation contact. The model comprises
the pelvis and femur bones and the three major ligaments. Further, cartilage can be
incorporated but is not considered here due to the usual lack of MRI data in practical
applications. The bones are assumed to be three dimensional hyperelastic materials and
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large deformation contact is enforced between the femoral head and the acetabulum. As
proposed by Sander [117], we use a one-dimensional Cosserat rod model for the ligaments.
The main assumption in this model is, that the cross-sections of the rod do not deform and
hence can thus be considered to be rigid objects. The configuration space of a Cosserat rod
is a manifold, the special Euclidean group, and standard finite elements cannot be applied
any more. One way to handle this difficulty is to exchange the linear interpolation by
interpolation along geodesics, leading to geodesic finite elements, introduced by Sander in
[117]. The range of motion of the hip joint can only be estimated correctly if additionally
non-penetration between the bones and ligaments is enforced. We neglect the traction
forces that the ligaments exert on the bones and consider Signorini-type problems for
the ligaments. In this thesis we introduce a novel contact model for Cosserat rods and
propose a first nodal discretisation. For the numerical solution of the corresponding
algebraic problem we combine the Riemannian trust–region method [116] with a filter
mechanism. The coupling of ligaments and bones lead to transmission conditions on the
coupling interface, derived by Sander in [117]. The resulting heterogeneous problems
is solved using a Dirichlet–Neumann algorithm [115]. This has the advantage that the
heterogeneous system decouples and successively large deformation contact problems for
the bones and Signorini-type problems for the ligaments are solved using the methods
described in this thesis.

The thesis is organised as follows. Chapter 1 covers a detailed introduction to large
deformation contact between hyperelastic continua and a derivation of the weak equations
of motion in the classical way. We then introduce a non-smooth Hamilton principle
and construct a non-standard differential inclusion. We close the chapter by showing
that classical solutions fulfil the differential inclusion. Chapter 2 is concerned about the
temporal and spatial discretisation of the inclusion. We apply the implicit midpoint rule
and describe the modification leading to an improved energy behaviour. Then we shortly
depict the spatial discretisation using dual mortar elements and the derivation of the
algebraic problems. In Chapter 3 we first introduce an extension of the monotone multigrid
method to non-convex problems subject to box-constraints. We prove global convergence
of the scheme by reformulating it as successive directional minimisation algorithm. Then
we describe the filter trust–region method, incorporating inexact constraint Jacobians.
Expanding the original proof for the exact filter method, we show that global convergence
still holds if the approximation error is controlled. In chapter Chapter 4 we then apply
the filter method to large deformation contact problems and shortly describe how the
monotone multigrid is adjusted to handle the linearised non-penetration constraints.
We close the chapter by showing some numerical results that confirm the theoretical
convergence proofs. The proposed modified midpoint scheme is investigated numerically
and further extension to improve the method are suggested. Finally in the last chapter 5
the heterogeneous hip joint model is described and first results of an advanced range of
motion analysis are shown. The appendix of this thesis comprises a short introduction to
concepts from non-linear optimisation that are used within this thesis and the detailed
steps of the global convergence proof of the filter–trust–region method.
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1. Contact Mechanics

In this chapter we introduce the dynamic large deformation contact problem of general
non-linear hyperelastic materials. First, we derive the governing equations of motion
which arise from momentum conservation in non-linear elasticity and then show how non-
penetration between time-dependent contact boundaries can be modelled. Afterwards, we
derive the variational formulation of the problem and prove conservation of momenta and
energy under suitable conditions. Finally, based on a non-smooth Hamilton principle we
will establish a non-standard variational inclusion which generalises the weak formulation
to more abstract contact models.

1.1. Non-linear Elasticity

Let Ω ⊂ Rd, d = 2, 3 denote the reference configuration of a body which is assumed to
be stress-free. Assume further that the boundary of the domain is smooth enough such
that the outer unit normal field n : ∂Ω −→ Rd exists everywhere and is continuously
differentiable. Let the boundary be decomposed into disjoint open sets ∂Ω = Γ̄D ∪ Γ̄N
which can possibly be empty. Further denote by [0, T ] the time interval of interest.

We call ϕ : Ω̄ × [0, T ] −→ Rd a configuration of Ω if for any t ∈ [0, T ] the mapping
ϕt := ϕ(·, t) : Ω −→ Rd is a deformation, i.e. it is sufficiently smooth, locally injective
and orientation-preserving

det∇ϕt(x) > 0 ∀x ∈ Ω. (1.1)

By Newton’s second law, i.e. balance of momentum, and Cauchy’s stress principle [96,
142], the equations of motion and boundary conditions of a continuum are given by

divσt + f(t) = ρ ϕ̈t in ϕt(Ω),

σtnt = π(t) on ϕt(ΓN), (1.2)

ϕt = ϕD(t) on ϕt(ΓD),

for each t ∈ (0, T ) and supplemented with initial deformation and velocity conditions

ϕ0 = ϕ̂0, ϕ̇0 = v̂0 on Ω.
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1. Contact Mechanics

The functions f(t) ∈ L2(Ω)d and π(t) ∈ L2(ΓN )d are external volume and traction forces
and ρ is the mass density of the body. In this thesis we will assume that the mass
density is constant over time and the external forces are dead loads, i.e. independent
of the deformation. The function ϕD(t) ∈ C(ΓD)d denotes possible prescribed Dirichlet
boundary conditions, e.g. clamping of the body.

For the sake of simplicity in what follows we will sometimes omit the index t and simply
write ϕ. The symmetric Cauchy stress tensor field σ : ϕ(Ω) −→ S(d), where S(d) is the
set of symmetric (d× d)-matrices, represents the internal force that arises due to external
loading or boundary conditions. Its existence is assured by Cauchy’s stress principle
which also gives an interpretation of the tensor as follows. For each sub-volume V ⊂ ϕ(Ω)
the traction forces acting on its boundary ∂V , with normal n, by the surrounding tissue
are given by

tC := σn on ∂V. (1.3)

The traction force (1.3) is called Cauchy traction or Cauchy stress vector. A material is
called elastic if the Cauchy stress tensor is depending on the deformation only through
the deformation gradient and the deformed position σ = σ(ϕ(x),∇ϕ(x)).

The partial differential equations (1.2) are complicated by the fact that they are formulated
on the deformed domain ϕ(Ω) which is a priori unknown. The common approach in
continuum mechanics is to reformulate the problem in reference coordinates using the
first Piola–Kirchhoff stress tensor

P(x) := det(∇ϕ(x))σ(ϕ(x),∇ϕ(x))∇ϕ(x)−T . (1.4)

This transformation is called Piola transform and it has the advantage that the equations
of motion in reference coordinates are still in divergence form as it holds

div P(x) = det(∇ϕ(x)) divσ(ϕ(x),∇ϕ(x)), (1.5)

cf. [26, Theorem 1.7-1]. In reference coordinates the system (1.2) transforms as follows

div Pt + fR(t) = ρR ϕ̈R,t in Ω,

Ptn = πR(t) on ΓN , (1.6)

ϕt = ϕD(t) on ΓD,

for each t ∈ (0, T ), where the forces and density transform according to

fR = det(∇ϕt)f , (1.7)

πR = det(∇ϕt)‖∇ϕ−Tt nt‖π, (1.8)

ρR = det(∇ϕt)ρ, (1.9)

see e.g. [26, Section 2.6] and ϕ̈R,t denotes the material acceleration, see [96, Chaper
1]. For simplicity in what follows, we will use the same notion f ,π, ρ, ϕ̈t for both the
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1.1. Non-linear Elasticity

reference and the deformed quantities. The Piola stress tensor has the disadvantage that
it is in general not symmetric. This is why often the equations of motion are formulated
in terms of the symmetric second Piola–Kirchhoff stress tensor

Σ(∇ϕ) := ∇ϕ−1P(∇ϕ). (1.10)

In this thesis we will only consider hyperelastic continua. A continuum is called hyperelastic
if there exists a stored energy functional W (x, F ) : Ω×M+(d) −→ R such that

∂W

∂F
(x,∇ϕ(x)) = P(x,∇ϕ(x)), (1.11)

where M+(d) is the space of (d× d)-matrices with positive determinant. The relation
(1.11) is called constitutive or material law of the hyperelastic continuum. It links the
stresses to the deformation of the body and thus determines the main properties of the
considered material.

Remark 1.1.1. Usually, instead of enforcing the orientation preservation condition (1.1)
as a hard constraint, it is built in the hyperelastic energy functional such that

W (x,∇ϕ(x)) =∞ if det∇ϕ(x) ≤ 0.

An important axiom in continuum mechanics is the objectivity of the material. It
postulates that the stress is invariant under change of coordinates

σ(QF, x) = Qσ(F, x)QT ∀Q ∈ SO(d) ∀F ∈ M+(d), (1.12)

where SO(d) denotes the group of rotations. If the material is objective, which from
now on we will assume to hold, the stored energy functional W only depends on the
deformation through the right Cauchy-Green strain tensor

C(ϕ) := ∇ϕT∇ϕ, (1.13)

see [21, Theorem 1.6]. This tensor is a measure for the distortion of the body which can
be seen using the shifted Green–St.Venant strain tensor

E(ϕ) :=
1

2
(C(ϕ)− Id). (1.14)

Proposition 1.1.2 (Strain Measure). A deformation ϕ is a rigid body motion if and
only if E(ϕ) = 0.

Proof. [26, Theorem 1.8-2]

Some important examples of hyperelastic materials are the St.Venant–Kirchhoff material

W (x,∇ϕ) =
λ(x)

2
tr(E(ϕ))2 + µ(x)‖E(ϕ)‖2, (1.15)
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1. Contact Mechanics

which is derived by Taylor approximation and assuming a linear isotropic material
behaviour [21, Theorem 1.11]; and the Mooney–Rivlin material

W (x,∇ϕ) = a(x) tr(E(ϕ)) + b(x) tr(E(ϕ))2 + c(x)||E(ϕ)||2 + γ(det∇ϕ), (1.16)

which is a general model for a non-linear stress-strain relation. The function γ is penalising
the violation of the local orientation-preservation of the material, cf. Remark 1.1.1. The
norm of the strain tensor ‖E(ϕ)‖ is induced by the tensor contraction which we will
denote by : in the following. These energy functionals are in general non-convex whenever
large deformations and rotations are considered.

Remark 1.1.3. In the linearised framework when the deformation of the body is assumed
to be small, the Green strain tensor can be approximated by

E(ϕ) ≈ ε(u) :=
1

2
(∇uT +∇u), (1.17)

which is the linearisation of (1.14) evaluated at the reference configuration ϕ = Id. The
displacement u is defined by

u(x) := ϕ(x)− x.
In combination with the linear St.Venant–Kirchhoff material law (1.15) this results in
the quadratic convex strain energy functional

W (∇ϕ) =
1

2
ε(u) : C : ε(u), (1.18)

where C denotes the 4th order Hooke tensor.

In the quasi-static case, i.e. when inertia terms are neglected, the equilibrium states of
hyperelastic materials are characterised as minimisers of the strain energy functional

J (ϕ) :=

∫
Ω

W (ϕ) dx− ext. forces, (1.19)

cf. [26, Theorem 4.1-2]. To prove the existence of minimisers one typically assumes
some kind of convexity of the functional J . In [26] Ciarlet proved that any strain
energy functional that explicitly depends on det(ϕ) cannot be convex [26, Theorem
4.8-1]. However, John Ball was able to prove existence of minimisers requiring only the
weaker poly-convexity of the functional (and additional properties such as coerciveness)
[26, Theorem 7.7-1]. Thus, for general non-convex hyperelastic energy functionals the
coefficients, e.g. a, b, c in (1.16), are typically chosen such that these properties hold.

1.2. Frictionless large deformation contact

Next we describe how non-penetration of two bodies can be modelled in the presence
of large deformations and rotations. There exist many approaches of how to enforce
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1.2. Frictionless large deformation contact

Figure 1.1.: Left: Feasible configuration. Right: Unfeasible configuration.

non-penetration of two bodies. In [70] Kane et al. proposed a contact description that
is avoiding outer normal fields. While this approach can also be applied for domains
with non-smooth boundary, it comes with the cost of having nseg many constraints for
each face on the contact boundary, where nseg denotes the total number of faces on the
contact boundary. Further, this approach, like most of the earlier contact models [69,
14], can only be formulated for discrete problems.

We will use the first and widely applied continuum-based model proposed by Laursen and
Simo [90], where the existence of smooth outer normal fields on the contact boundaries
is assumed. Let us consider two hyperelastic bodies Ωi ⊂ Rd, i = 1, 2 with continuous
differentiable boundaries that can be decomposed into open disjoint sets ∂Ωi = Γ̄iN ∪
Γ̄iD ∪ Γ̄iC . We assume that the contact boundaries ΓiC are compactly contained within
∂Ωi \ΓiD and that in the reference configuration these bodies are not exerting any traction
forces on each other through possible initial contact. As before the equations of motion
in reference coordinates are given by for each t ∈ (0, T )

div Pi
t + f(t) = ρi ϕ̈it in Ωi,

Pi
tn
i = π(t) on ΓiN , (1.20)

ϕit = ϕiD(t) on ΓiD,

supplemented with initial deformation and velocity conditions

ϕi0 = ϕ̂i0, ϕ̇i0 = v̂0
i on Ωi,

cf. (1.6). The subsets ΓiC denote the parts of the boundaries where possible contact may
occur. Now the modelling of non-penetration can be done in several ways. In the first
papers about continuous contact formulations [90, 87, 139] these surfaces were identified
with each other by the closest point projection Φcp : Γ1

C × [0, T ] −→ Γ2
C parametrised

over Γ1
C

Φcp(x, t) := arg min
y∈Γ2

C

||ϕ1
t (x)−ϕ2

t (y)||. (1.21)

This projection defines a unit vector field on ϕ1
t (Γ

1
C) called contact normal by

νcp
Φ (x, t) := n2

t (ϕ
2
t (Φ

cp(x, t))), (1.22)
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1. Contact Mechanics

where n2
t denotes the unit outer normal on ϕ2

t (Γ
2
C). Note that as Φcp is a best approxi-

mation, the vector field
Vt(x) := ϕ1

t (x)−ϕ2
t ◦ Φcp(x, t)

is itself normal to ϕ2
t (Γ

2
C). Now the signed distance function of the two bodies is defined

by
gcp(x, t) := νcp

Φ (x, t) · (ϕ1
t (x)−ϕ2

t ◦ Φcp(x, t)). (1.23)

Recently using the normal projection along n1
t has become more and more popular [93,

106, 66, 128]. In this case the contact boundaries are identified with each other through
the projection

Φ(x, t) = min
µ∈R

{
y ∈ Γ2

C : ϕ2(y, t) = ϕ1(x, t) + µn1
t (x, t)

}
. (1.24)

The corresponding distance function is given by

g(x, t) := −n1
t (x, t) · (ϕ1

t (x)−ϕ2
t ◦ Φ(x, t)). (1.25)

The function g : Γ1
C × [0, T ]→ R (and gcp) is called gap function. Both approaches have

their advantages and disadvantages. While the closest point projection does not have to
be unique (cf. Curnier et al. [64]) and is more difficult to compute, the normal projection
is lacking orthogonality to Γ2

C which is complicating the linearisation of the gap function
that is needed within the solution of the discretised problems [93]. In the following we
only consider the normal projection approach, although also the closest point gap can
be used within the discretisation and solution techniques that we will develop in the
subsequent chapters.

Remark 1.2.1. We remark here that by (1.25) the gap function clearly also depends on
the deformation

g = g(x,ϕ1
t ,ϕ

2
t ).

To keep the notation low we will omit this dependence in the strong formulation of the
problem as the focus rather lies on the point wise evaluation at x. When deriving and
analysing the weak integral (mortar) formulation of the constraint we will switch to
considering the gap function as a mapping between function spaces (1.3 and following).

To enforce non-penetration of the bodies one has to ensure that the gap stays non-negative
at all times

g(x, t) ≥ 0 ∀ (x, t) ∈ Γ1
C × [0, T ], (1.26)

which is illustrated in Figure 1.1.

Remark 1.2.2. In the linearised framework where the deformation is assumed to be
small, cf. Remark 1.1.3, a first-order Taylor approximation of the gap function at the
reference configuration is used which results in the following linear constraints

glin(x, t) := g(x, 0)−
(
u1(x, t)− u2(x, t) ◦ Φ(x, 0)

)
· n1(x, 0) ≥ 0, (1.27)

16



1.2. Frictionless large deformation contact

see [87, Section 4.4.1]. The standard linearised non-penetration constraint is then given
by enforcing that the relative displacement in normal direction stays smaller than the
initial gap (

u1(x, t)− u2(x, t) ◦ Φ(x, 0)
)
· n1(x) ≤ g(x, 0). (1.28)

It is also assumed that n1(x) ≈ −n2(Φ(x)) so that both versions of the gap function
coincide in this framework.

Remark 1.2.3. The gap function can also be defined on the deformed configuration
directly g : ϕ1

t (Γ
1
C) −→ R

g(x) := −n1(x) · (x− Φ(x)), (1.29)

where Φ : ϕ1
t (Γ

1
C) −→ ϕ2

t (Γ
2
C) is the normal projection defined on the deformed contact

boundaries.

So far the non-penetration constraint was derived only from a kinematical point of view.
To investigate the effect of these constraints on the elastic systems we examine the Piola
traction

TC := P(∇ϕ1)n1, (1.30)

cf. (1.3), on the contact boundary Γ1
C in more detail. First, the Piola traction can be

decomposed into a normal and a tangential part

TC = TNn1 + TT , (1.31)

where

TN := n1 · (P(∇ϕ1)n1), (1.32)

TT := TC − TNn1. (1.33)

In this thesis we are considering frictionless contact only so the tangential traction TT

at the contact boundary vanishes

TC = TNn1. (1.34)

Moreover the contact forces must be compressive, i.e. directed towards the inside of Ω1.
This leads to the necessary condition

TN ≤ 0. (1.35)

The complementary condition states that the normal stress can only be non-zero if the
bodies are in contact with each other

g(x) · TN(x) = 0 ∀x ∈ Γ1
C . (1.36)

Altogether these conditions are of the form of the classical Karush-Kuhn-Tucker conditions
known from constrained optimization [101]

TN ≤ 0, g ≥ 0, g · TN = 0. (1.37)

The normal stress TN can therefore be interpreted as a Lagrangian multiplier (or strictly
speaking the negative multiplier).
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1. Contact Mechanics

1.3. Weak equations of motion

In this section we derive the variational formulation of the dynamic large deformation
contact problem. In what follows we will use Ω to denote product spaces defined on
(Ω1,Ω2). Let L2(Ω) :=

∏2
i=1 L

2(Ωi)d denote the vector-valued Lebesgue space of square
integrable functions and H1(Ω) :=

∏2
i=1 H

1(Ωi)d be the first order Sobolev space with
weak derivatives in L2(Ω). Further, denote by H1

D(Ω) and H1
0(Ω) the corresponding

Sobolev spaces with inhomogeneous resp. zero Dirichlet boundary conditions on ΓiD in
the sense of traces [3].

The weak equation of motion for the large deformation contact problems is obtained
by multiplication with test functions v ∈ H1

0(Ω), integration over the domains Ωi and
application of Green’s formula for each t ∈ (0, T )

0 =

∫
Ωi
ρiϕ̈it v − div Pi

t v dx−
∫

Ωi
ft v dx =∫

Ωi
ρiϕ̈it v + Pi

t : ∇v dx−
∫

Ωi
ft v dx−

∫
ΓiN

πt v ds−
∫

ΓiC

Ti
C v ds, i = 1, 2.

Adding up both equations we arrive at the following variational equation

Fdyn(ϕt) + Fint(ϕt) = Fext(t) + Fcon(TC), (1.38)

where the operators F∗ : H1(Ω) −→ R representing the internal, external, inertial and
contact force terms are defined according to

Fdyn(ϕt,v) :=
2∑
i=1

∫
Ωi
ρiϕ̈it v

i dx, (1.39a)

Fint(ϕt,v) :=
2∑
i=1

∫
Ωi

Pi(∇ϕit) : ∇vi dx, (1.39b)

Fext(t,v) :=
2∑
i=1

∫
Ωi

ft v
i dx+

∫
ΓiN

πt v
i ds, (1.39c)

Fcon(TC ,v) :=
2∑
i=1

∫
ΓiC

Ti
C vi ds. (1.39d)

The contact forces (1.39d) arise from the non-penetration constraints and are a priori
unknown in contrast to the external tractions πt. To simplify this term we first push-
forward the contact tractions TC to the deformed configuration ϕ(Ω)

Fcon(tC ,v) =

∫
ϕ1
t (Γ

1
C)

t1
C v1 ds+

∫
ϕ2
t (Γ

2
C)

t2
C v2 ds. (1.40)
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1.3. Weak equations of motion

Figure 1.2.: Contact traction forces at the active contact boundary.

From the Karush-Kuhn-Tucker conditions (1.37) we know that the contact tractions
tiC(x) at some point x ∈ ϕ(ΓC) vanish if no contact occurs. As a result, we can
restrict the contact forces to the active contact boundaries, which we will denote by γiC
correspondingly, see Figure 1.2.

Fcon(tC ,v) =

∫
γ1C

t1
C v1 ds+

∫
γ2C

t2
C v2 ds. (1.41)

Next, we identify the contact boundaries with each other through the normal projection
(1.24). By the balance of forces it holds

t1
C ds = −t2

C ◦ Φ ds.

Therefore, we can parametrise the contact forces over γ1
C only:

Fcon(tC ,v) =

∫
γ1C

t1
C(v1 − v2 ◦ Φ) ds, (1.42)

which again, as in (1.34), can be decomposed into a normal and vanishing tangential part

Fcon(tN ,v) =

∫
γ1C

tNn1(v1 − v2 ◦ Φ) ds. (1.43)

Remark 1.3.1. The normal contact pressure tN acts as a Lagrangian multiplier cor-
responding to the non-penetration constraints, which can be seen from the following
equivalent reformulation [87, Section 4.4.1] of the contact forces

Fcon(tN ,v) =

∫
γ1C

tNδg(ϕt) v ds,

where the gap g is considered as a function

g : H1(Ω) −→ H
1
2 (Γ1

C), ϕ 7→ g(ϕ),
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1. Contact Mechanics

cf. Remark 1.2.1, and δg denotes the corresponding directional derivative

δg(ϕt) v :=
d

dh
g(ϕt + hv)|h=0.

Summarising, the weak equations of motion are given as follows:
Find ϕ ∈ C([0, T ],H1

D(Ω)) with weak derivatives

ϕ̇ ∈ H
1
2

(
(0, T ),L2(Ω)

)
, ϕ̈ ∈ L2((0, T ),H−1(Ω)), (1.44)

and tN ∈ L2((0, T ), H−
1
2 (Γ1

C)), such that

Fdyn(ϕt) + Fint(ϕt) = Fext(t) + Fcon(tN) a.e. on (0, T ), (1.45)

where the operators Fdyn,Fint,FextFcon are defined according to (1.39), (1.43) and it
holds

tN ≤ 0, g(ϕ) ≥ 0, g(ϕ) · tN = 0,

ϕ0 = ϕ̂0, ϕ̇0 = v0 on Ω.

Existence and uniqueness of solutions

The existence and uniqueness of solutions of dynamic contact problems is still an open
question. In the linearised framework of small displacements, cf. Remark 1.2.2, the
existence and uniqueness for the weak formulation is well known [117, Lemma 3.2.1]. First
results on contact problems with friction can be found in [138, 36]. Recently Schuricht
derived a general existence proof for static large deformation contact problems between
a poly-convex hyperelastic continuum and a rigid obstacle [122, Theorem 3.3] using
the concept of generalised derivatives and non-smooth calculus [27]. Generalising this
approach to an abstract two-body-contact formulation, combined with the non-smooth
Hamilton principle that we will introduce in the upcoming section could lead to new
insights regarding the existence of minimisers.

Conservation of momentum and energy

In this paragraph we prove conservation of linear and angular momentum of the weak
formulation (1.45) in the absence of external forces. Afterwards we will show that the
total energy is conserved if the persistency condition holds, cf. [88].

We assume that the external body and traction forces vanish, ft = πt = 0 and that there
are no Dirichlet boundary conditions ΓD = ∅. The total linear and angular momentum

20



1.3. Weak equations of motion

of the system are defined by

Kt :=

∫
Ω1

ρ1ϕ̇1
t dx+

∫
Ω2

ρ2ϕ̇2
t dx, (1.46)

Jt :=

∫
Ω1

ρ1ϕ1
t × ϕ̇1

t dx+

∫
Ω2

ρ2ϕ2
t × ϕ̇2

t dx, (1.47)

where ϕ̇it denote the material velocities.

Proposition 1.3.2 (Momentum conservation).
(i) The total linear momentum is conserved

d

dt
Kt = 0.

(ii) The total angular momentum is conserved

d

dt
Jt = 0.

Proof. (i) To show the conservation of linear momentum we first insert a translation, i.e.
a spatially constant function v(x) = c ∈ Rd as a test function into Equation (1.45)

0 = Fdyn(ϕt, c) + Fint(ϕt, c)− Fcon(tN , c)

= Fdyn(ϕt, c) +

∫
γ1C

tNn1(c− c) ds

=

(
2∑
i=1

∫
Ωi
ρiϕ̈it dx

)
· c

=

(
d

dt
Kt

)
· c,

which implies d
dt
Kt = 0 because c ∈ Rd is arbitrary.

(ii) Similar for the conservation of angular momentum we insert the time-dependent test
function v = c×ϕt, c ∈ Rd into (1.45)

0 = Fdyn(ϕt,v) + Fint(ϕt,v)− Fcon(tN ,v). (1.48)

We will now investigate these terms in more detail separately. A straight-forward
calculation yields

Fdyn(ϕt,v) =

∫
Ω

ρϕ̈t · (c×ϕt) dx =

∫
Ω

ρϕt × ϕ̈t dx · c

=

∫
Ω

ρ(ϕ̇t × ϕ̇t +ϕt × ϕ̈t) dx · c

=

(
d

dt
Jt

)
· c.
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1. Contact Mechanics

Before we show that the internal force vanishes, we first bring to mind that the cross
product can equivalently be written as a matrix-vector multiplication (here for d = 3)

c = a× b⇐⇒ c = Âb (1.49)

where the skew-symmetric matrix Â is given by

Â :=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 .

Now one can deduce

Fint(ϕt,v) =

∫
Ω

P(∇ϕt) : ∇(c×ϕt) dx =

∫
Ω

P(∇ϕt) : Ĉ∇ϕt dx

=

∫
Ω

∇ϕtΣt : Ĉ∇ϕt dx =

∫
Ω

∇ϕtΣt∇ϕTt : Ĉ dx = 0,

where Σt is the symmetric second Piola–Kirchhoff tensor (1.10). The third equality
follows from basic tensor contraction rules. As ∇ϕtΣt∇ϕTt is symmetric and ĉ is skew-
symmetric, their contraction is zero. The contact force term also vanishes by definition
of gap function

Fcon(tN ,v) =

∫
γ1C

tNn1 · (c×ϕ1
t − c×ϕ2

t ◦ Φ) ds

= c ·
∫
γ1C

tNn1 × (ϕ1
t −ϕ2

t ◦ Φ) ds = 0,

where the last equality follows from the collinearity of normal gap (ϕ1
t −ϕ2

t ◦Φ) and the
outer normal n1, cf.(1.24). Combining all steps then leads to the conservation of angular
momentum.

To prove energy conservation one further has to assume that the so-called persistency
condition holds

ġ · tN = 0. (1.50)

This assumption states that non-zero contact forces only occur during persistent contact.
Many time discretisations for contact problem ensure energy conservation by enforcing
this condition algorithmically [7, 66, 88]. Nevertheless, this assumption is considered to
be invalid for many applications, see [87]. For simplicity we restrict ourselves to the case
of vanishing external forces, the result can be extended to the case of dead loads, see [87,
Section 7.2.1].

Proposition 1.3.3 (Energy conservation). If the persistency condition (1.50) holds and
the external forces vanish, then the total energy

E(ϕt, ϕ̇t) := Ekin(ϕ̇t) + Epot(ϕt), (1.51)
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1.3. Weak equations of motion

where

Ekin(ϕ̇t) :=
1

2

2∑
i=1

∫
Ωi
ρi|ϕ̇it|

2
dx,

Epot(ϕt) :=
2∑
i=1

∫
Ωi
W i(∇ϕit) dx,

is conserved.

Proof. We insert the material velocity ϕ̇t as a test function in (1.45)

0 = Fint(ϕt, ϕ̇t) + Fdyn(ϕt, ϕ̇t)− Fcon(tN , ϕ̇t)

=
d

dt
Epot(ϕt) +

d

dt
Ekin(ϕ̇t)− Fcon(tN , ϕ̇t),

where the equality follows from application of the constitutive law (1.11) and the chain
rule. Due to the persistency condition the contact force term vanishes

Fcon(tN , ϕ̇t) =

∫
γ1C

tN n1 · (ϕ̇1
t − ϕ̇2

t ◦ Φ) ds =

∫
γ1C

tN ġ ds = 0,

which concludes the proof.

A variationally consistent formulation of non-penetration

We now derive an equivalent variational formulation of the non-penetration constraint
(1.26), which has been done for the case of small deformations in [138, Lemma 2.1]. Let
us consider the set of admissible deformations

K :=
{
ϕ ∈ H1

D(Ω) : g(ϕ) ≥ 0 a.e. on Γ1
C

}
, (1.52)

where we assume that the normal projection Φ : Γ1
C −→ Γ2

C and the normal field
n1 : Γ1

C −→ Rd are smooth enough such that the gap function maps into the trace space

H
1
2 (Γ1

C)

H1
D(Ω) 3 ϕ 7→ g(ϕ) ∈ H

1
2 (Γ1

C). (1.53)

Note that as we assumed the contact boundary to be compactly embedded in ∂Ω \ Γ1
D, it

suffices to consider the standard trace space and its dual

W := H
1
2 (Γ1

C),

M := H
1
2 (Γ1

C)′.
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1. Contact Mechanics

The cone of positive functions and dual functionals is denoted by

W+ := {v ∈ W : v ≥ 0} ,
M+ :=

{
µ ∈M : 〈µ, v〉M×W ≥ 0, ∀ v ∈ W+

}
,

where 〈·, ·〉M×W denotes the dual paring of the trace space. We will just write 〈·, ·〉 if the
spaces are clear from the context.

Proposition 1.3.4. Let the non-linear function b : M ×H1(Ω) −→ R be given by

b(µ,ϕ) := 〈µ, g(ϕ)〉. (1.54)

Then, the feasible set (1.52) is characterised by

K =
{
ϕ ∈ H1

D(Ω) : b(µ,ϕ) ≥ 0, ∀µ ∈M+
}
. (1.55)

Proof.
(i) If g(ϕ) ≥ 0 in the L2 sense, then by definition b(µ,ϕ) ≥ 0 for all µ ∈M+.

(ii) Now assume that for some ϕ ∈ H1
D(Ω) it holds that b(µ,ϕ) ≥ 0 for all µ ∈M+. To

derive a contradiction suppose that g(ϕ) < 0 on some subset Y ⊂ Γ1
C with meas(Y ) > 0.

Let χY ∈ L2(Γ1
C)+ ⊆M+ denote the characteristic function of the set Y

χY (s) =

{
1 s ∈ Y,
0 else.

(1.56)

Then

b(χY ,ϕ) = 〈χY , g(ϕ)〉 =

∫
Γ1
C

χY g(ϕ) ds =

∫
Y

g(ϕ) ds < 0 (1.57)

which contradicts the assumption. Above we used the fact that

W ⊆ L2(Γ1
C) ∼= (L2(Γ1

C))′ ⊆M (1.58)

is a Gelfand triple. Hence, it holds for f ∈ (L2(Γ1
C))′ and u ∈ W

〈f, u〉M×W = 〈f, u〉(L2)′×L2 =

∫
Γ1
C

f u ds,

see [61, Section 6.3.3].

1.4. A non-smooth Hamilton principle

In this paragraph we introduce a way to derive weak equations of motion for general
Hamiltonian systems with inequality constraints. Therefore, we apply a non-smooth
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1.4. A non-smooth Hamilton principle

Hamilton principle, first postulated in [70] without providing the correct non-smooth
calculus to derive the resulting weak equations. Here we will introduce this principle in
more detail and properly derive the weak formulation using the theory of generalised
gradients and Fréchet subdifferentials [99, 100]. This approach has the advantage that
the Lagrange multipliers, i.e. the contact pressure tN , are treated completely implicitly.
Consequently, only constrained problems for the primal variable have to be solved.
Following Marsden et al. [70, 96] we first define the Lagrangian of the mechanical system
as the difference of kinetic and potential energy

L(ϕ, ϕ̇) := Ekin(ϕ̇)− Epot(ϕ) =
1

2

∫
Ω

ρ |ϕ̇|2 dt−
∫

Ω

W (ϕ) dx, (1.59)

where W denotes the hyperelastic strain energy (1.11). For mechanical systems with
smooth Lagrangian function Hamilton’s principle states:

Principle 1 (Hamilton’s principle). The true evolution ϕ : Ω × [0, T ] −→ Rd of a
mechanical system between two fixed states ϕ(·, 0) = ϕ0, ϕ(·, T ) = ϕT renders the
action integral stationary

0 = δI(ϕ) := δ

∫ T

0

L(ϕ, ϕ̇) dt, (1.60)

where δ denotes the first variation

δI(ϕ)v = lim
h−→0

I(ϕ+ hv)− I(ϕ)

h
. (1.61)

If the Lagrangian is smooth the first variation of the action integral can be characterised
by calculating the directional derivative along smooth perturbations v ∈ C∞0 ([0, T ],R)
with zero boundary values v(0) = v(T ) = 0,

δI(ϕ)v =

∫ T

0

(
∂L

∂ϕ
(ϕ, ϕ̇) v +

∂L

∂ϕ̇
(ϕ, ϕ̇) v̇

)
dt,

=

∫ T

0

(
∂L

∂ϕ
(ϕ, ϕ̇)− d

dt

∂L

∂ϕ̇
(ϕ, ϕ̇)

)
v dt, (1.62)

where the second equation is obtained from Green’s formula. By assumption the first
variation is vanishing for all test functions v ∈ C∞0 ([0, T ]) which implies the Euler–
Lagrange equation

∂L

∂ϕ
(ϕt, ϕ̇t)−

d

dt

∂L

∂ϕ̇
(ϕt, ϕ̇t) = 0 a.e. in (0, T ) (1.63)

Remark 1.4.1. As expected, in the case of non-linear hyperelasticity the Euler–Lagrange
equation coincide with the weak equation derived in the classical way, cf. Section 1.3

Fdyn(ϕt) + Fint(ϕt) = Fext(t) a.e. in (0, T ). (1.64)

25



1. Contact Mechanics

Figure 1.3.: Left: Subgradients of a convex function. Right: Directional Gateaux derivative
of a non-convex function.

Next, we extend this principle to constrained non-convex mechanical systems like the
one at hand. Following the idea of Kane et al. [70], we consider the indicator function of
the set of admissible deformations (1.55)

IK(ϕ) :=

{
0 ϕ ∈ K,
∞ else,

(1.65)

and incorporate it into the potential energy of the mechanical system. This results in
the non-smooth Lagrangian

L̄(ϕ, ϕ̇) := L(ϕ, ϕ̇)− IK(ϕ). (1.66)

This can be seen as an exact infinite penalisation to ensure that the trajectory of the
mechanical system stays within the feasible set. In the following we repeat some results of
non-smooth calculus and generalised derivatives which will be useful for the construction
of a framework for non-differentiable Lagrangians. For convex functions a well-established
extension of a differential is given by the concept of subdifferentials, see Ekeland and
Temam [38].

Definition 1.4.2. Let L : H1
0(Ω) −→ R be convex. A subgradient at ϕ ∈ H1

0(Ω) is a
linear functional f ∈ H−1(Ω) := (H1

0(Ω))′ such that

〈f ,v〉 ≤ LG(ϕ,v) := lim
h↓0

L(ϕ+ hv)− L(ϕ)

h
∀v ∈ H1

0(Ω), (1.67)

where LG is the directional Gateaux derivative of L.

The convex subdifferential is defined as the collection of all those functionals

∂L(ϕ) :=
{
f ∈ H−1(Ω) : 〈f ,v〉 ≤ LG(ϕ,v) ∀v ∈ H1

0(Ω)
}
. (1.68)

In Figure 1.3(left) this concept is illustrated. When the function is smooth the subdiffer-
ential reduces to the classical derivative ∂L(ϕ) = {L′(ϕ)}, see [121, Proposition 4.1.8];
therefore, this concept is a real extension of differentiability.
A generalised criterion to characterise minimal points is given as follows:

26



1.4. A non-smooth Hamilton principle

Proposition 1.4.3. Let L : H1
0(Ω) −→ R be convex. Then ϕ∗ ∈ H1

0(Ω) is a minimizer
of L if and only if

0 ∈ ∂L(ϕ∗). (1.69)

Proof. [111, Theorem 10.1]

For convex functions the directional Gateaux derivative always exists, even if the function
itself is not differentiable ([121, Theorem 4.1.3]). In the non-convex case the subdifferential
defined by (1.68) does in general not lead to a satisfactory calculus, as e.g. ∂L(ϕ) = ∅,
cf. Figure 1.3(right). A first generalisation of this concept to non-convex, local Lipschitz
functions was proposed by Clarke. He replaced the directional Gateaux derivative, which
does not need to exist in this case, by an upper convex sub-linear approximation ([121,
Definition 7.3.1],[27]). Kruger and Mordukhovich [99] then extended this framework to
arbitrary non-Lipschitzian functions, like IK, introducing the Fréchet subdifferential [52]

∂FL(ϕ) :=

{
f ∈ H−1(Ω) : lim inf

v−→0

L(ϕ+ v)− L(ϕ)− 〈f ,v〉
‖v‖1

≥ 0

}
. (1.70)

For this subdifferential only approximate calculus rules hold in general, e.g. sum- or
chain rules([121, Section 9.2]) and it is strongly linked to lower semi-continuous functions:

Lemma 1.4.4. Let L : H1
0(Ω) −→ R̄ := R ∪ {−∞,∞} and ϕ ∈ H1

0(Ω). If ∂FL(ϕ) 6= ∅
then L is lower semi-continuous at ϕ.

Proof. [82, Proposition 1.7]

Remark 1.4.5. A richer and exact calculus was established recently for the Mordukhovich
subdifferential which is based on generalised normals and extremal principles [99, 100]. In
our case the non-smoothness arises from the indicator function IK which is lower semi-
continuous for closed K. Consequently we restrict ourselves to Fréchet subdifferential.

The indicator function enters in the potential energy and is subtracted from the La-
grangian. Thus it is suitable to use an upper approximation of the functional to extend the
Hamilton principle. The upper construction corresponding to the Fréchet subdifferential
is called Fréchet superdifferential.

∂FL(ϕ) :=

{
f ∈ H−1(Ω) : lim sup

v−→0

L(ϕ+ v)− L(ϕ)− 〈f ,v〉
‖v‖1

≤ 0

}
. (1.71)

The relation between both differentials is given by

∂FL(ϕ) = −∂F (−L), (1.72)

see [99, Definition 1.86] and it holds
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Proposition 1.4.6. Let L : H1
0(Ω) −→ R and ϕ such that L(ϕ) is finite. Then

∂FL(ϕ) 6= ∅ and ∂FL(ϕ) 6= ∅ if and only if L is Fréchet differentiable at ϕ. Then
∂FL(ϕ) = ∂FL(ϕ) = {L′(ϕ)}.

Proof. [99, Proposition 1.87].

Moreover, characterisation of critical points is given by the Fermat rule

Proposition 1.4.7 (Generalised Fermat rule). Let L : H1
0(Ω) −→ R and ϕ∗ ∈ H1

0(Ω)
be a locally stationary point with L(ϕ∗) finite. Then

0 ∈ ∂FL(ϕ∗) ∪ ∂FL(ϕ∗). (1.73)

Proof. [99, Proposition 1.114].

The generalised Fermat rule now allows us to extend Hamilton’s principle to non-smooth
mechanical systems.

Principle 2 (Non-smooth Hamilton principle). The true evolution ϕ : Ω× [0, T ] −→ Rd

of a mechanical system between two fixed states ϕ(·, 0) = ϕ0, ϕ(·, T ) = ϕT renders the
action integral stationary

0 ∈ ∂FI(ϕ) ∪ ∂FI(ϕ). (1.74)

The corresponding equations of motion for Lagrangians of the form (1.66) can be
characterised as follows:

Theorem 1.4.8. Stationary points of the action integral, where the non-smooth La-
grangian is given by (1.66), fulfil the following Euler–Lagrange inclusion

0 ∈ d

dt

∂L

∂ϕ̇
(ϕ, ϕ̇)− ∂L

∂ϕ
(ϕ, ϕ̇) + ∂IK(ϕ) a.e. in (0, T ). (1.75)

Proof. To prove the proposition we need the following sum rule:

Proposition 1.4.9 (Sum rule). Let L, IK : H1
0(Ω) −→ R be finite at ϕ ∈ H1

0(Ω) and L
be Fréchet differentiable at ϕ, then

∂F (L+ IK)(ϕ) = L′(ϕ) + ∂F IK(ϕ). (1.76)

Proof. [99, Proposition 1.107]

By Proposition 1.4.6 exactly one of ∂FI(ϕ) and ∂FI(ϕ) is empty when I is not differen-
tiable at ϕ. We will thus consider both differentials separately

0 ∈ ∂FI(ϕ), 0 ∈ ∂FI(ϕ).
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1.4. A non-smooth Hamilton principle

First we apply the sum rule to the principle (1.74) considering only the Fréchet subdif-
ferential:

∂FI(ϕ) =

(∫ T

0

L(ϕ, ϕ̇) dt

)′
+ ∂F

∫ T

0

−IK(ϕ(t)) dt. (1.77)

As −IK(·) is upper semi-continuous (K is closed), the function

ϕ 7→
∫ T

0

−IK(ϕ(t)) dt

is as well upper semi-continuous by Fatou’s lemma. By Lemma 1.4.4 we conclude that
∂FI(ϕ) = ∅ whenever ϕ(t) ∈ ∂K for some t ∈ (0, T ). If ϕ stays in the interior of the
feasible set K at all times, then the superdifferential and subdifferential coincide. Hence,
we can restrict ourselves to the superdifferential

0 ∈ ∂FI(ϕ) = −∂F (−I)(ϕ)⇐⇒ 0 ∈ ∂F (−I)(ϕ), (1.78)

Applying the sum rule to (1.78) yields

∂F (−I)(ϕ) =

(∫ T

0

−L(ϕ, ϕ̇) dt

)′
+ ∂F

∫ T

0

IK(ϕ(t)) dt. (1.79)

The derivative of the smooth part is characterised by(∫ T

0

−L(ϕ, ϕ̇) dt

)′
v =

∫ T

0

(
d

dt

∂L

∂ϕ̇
(ϕ, ϕ̇)− ∂L

∂ϕ
(ϕ, ϕ̇)

)
v dt, (1.80)

cf. (1.63). The second term is given as∫ T

0

IK(ϕ(t)) dt =

{
0 ϕ ∈ K a.e. in (0, T ),

∞ else.
(1.81)

Combining these two equations yields the result.

For the large deformation contact problem the Euler–Lagrange inclusion is given by

0 ∈ Fdyn(ϕ(t)) + Fint(ϕ(t))− Fext(t) + ∂F IK(ϕ(t)), (1.82)

with K given by (1.52) and the operators Fdyn,Fint,Fext are defined as in the classical
weak formulation, cf. (1.39a) and Remark 1.4.1.
Now we will show that for smooth contact boundaries solutions of the classical weak
form (1.45) are also solutions of the differential inclusion (1.82).

Theorem 1.4.10. Let (ϕ̄, tN) be a solution of the classical weak equations of motion
(1.45) and the contact boundaries be continuously differentiable, then ϕ̄ is also a solution
of the inclusion (1.82).
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1. Contact Mechanics

To prove the theorem we have to establish that the contact force term

Fcon(tN ,v) =

∫
γ1C

tNδg(ϕ)v ds.

is contained in the Fréchet subdifferential ∂F IK(ϕ̄). Therefore, we first pull-back the
contact forces on the reference domain

Fcon(TN ,v) =

∫
Γ1
C

TNδg(ϕ)v ds. (1.83)

Next, we reformulate the non-penetration constraint (1.26) as a non-smooth scalar
function

G(ϕ) := ess sup
Γ1
C

−g(ϕ, ·), (1.84)

where g is the normal gap function

g(ϕ, x) := −n1(x) · (ϕ1(x)−ϕ2 ◦ Φ(x)),

cf. (1.25). By definition it holds

G(ϕ) ≤ 0⇐⇒ g(ϕ, ·) ≥ 0 a.e. on Γ1
C .

For the proof we need the following two results

Proposition 1.4.11. Let G : H1
0(Ω) −→ R ∪ ∞ be proper and locally Lipschitz on a

neighbourhood of ϕ̄ ∈ H1(Ω) with G(ϕ̄) = 0. Set

K :=
{
ϕ ∈ H1(Ω) : G(ϕ) ≤ 0

}
.

Moreover, assume that 0 /∈ ∂CG(ϕ̄), where ∂C denotes the Clarke subdifferential

∂CG(ϕ) :=

f ∈ H−1(Ω) : 〈f ,v〉 ≤ lim sup
h↓0
w→v

1

h
(G(ϕ+ hw)−G(ϕ))

 . (1.85)

Then
∂F IK(ϕ̄) ⊆ R+∂CG(ϕ̄). (1.86)

If in addition G is strictly differentiable at ϕ̄, then (1.86) holds with equality.

Proof. [121, Theorem 11.6.1] together with the fact that

∂F IK(ϕ) ⊂ ∂CIK(ϕ), (1.87)

see [99, p. 14–17].

The Clarke subdifferential of (1.84) can be characterised as follows
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1.4. A non-smooth Hamilton principle

Proposition 1.4.12. Let ϕ̄ ∈ H1
0(Ω) and Γ ⊂ Rd be compact. Let g(ϕ̄, ·) be upper

semicontinuous on a convex neighbourhood U of ϕ̄ and g(·, x) be Lipschitz on U .
Assume that the set {g(ϕ̄, x) : x ∈ Γ} is essentially bounded. Then, the Clarke subdiffer-
ential of

G(ϕ) := ess sup
Γ

g(ϕ, ·),

at ϕ̄ is given by

∂CG(ϕ̄) =

{∫
Γ

∂Cg(ϕ̄, x)µ(dx) : µ ∈ P [M(ϕ̄)]

}
, (1.88)

where

M(ϕ) = {x ∈ Γ : g(ϕ, x) = G(ϕ)} ,

and P [M(ϕ)] is the set of probability Radon measures with support M(ϕ).
If g(·, x) is strictly continuously differentiable on a neighbourhood U and g(·, ·) is contin-
uous, then

∂CG(ϕ̄) =

{∫
Γ

δg(ϕ̄, x)µ(dx) : µ ∈ P [M(ϕ̄)]

}
, (1.89)

where again δ denotes the first variation, cf. Remark 1.3.1.

Proof. [27, Theorem 2.8.2]

Remark 1.4.13. The subgradients f ∈ ∂CG(ϕ) defined above act as functionals in the
following way

〈f ,v〉 =

∫
Γ

δg(ϕ) v µf (dx).

Proof of Theorem 1.4.10.

(i) If no active contact occurred, i.e. tN = 0 and g(ϕ̄) > 0, then ∂F IK(ϕ̄) = {0} and
both formulations reduce to the problem of non-linear elasticity.

(ii) From now on let ϕ̄ be such that G(ϕ̄) = 0. If the contact boundaries are smooth
enough, then the normal projection is continuously differentiable for all x ∈ Γ1

C and thus
G(ϕ) is locally Lipschitz. Hence, we can apply Propositions 1.4.11 and 1.4.12 and obtain
an explicit representation of the Clarke subdifferential in terms of probability Radon
measures

∂CG(ϕ̄) =

{∫
Γ1
C

−δg(ϕ̄, x)µ(dx) : µ ∈ P [M(ϕ̄)]

}
,

where M(ϕ̄) ⊆ Γ1
C is the part of contact boundary where active contact occurs g(ϕ̄, x) = 0.

Finally, we can use the fact that in Rd the Lebesgue measure, which we denote by dx, is
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1. Contact Mechanics

a Radon measure itself, see e.g. [39, VIII Corollary 1.12], and for any positive weighting
function λ ∈ L1(Γ1

C , dx) the measure

m(E) :=

∫
E

λ dx

is again a Radon measure, see [48, p.220 Nr.8]. We conclude that there exists a Radon
measure µtN such that ∫

Γ1
C

−δg dµtN =

∫
Γ1
C

tNδg dx, (1.90)

and therefore Fcon(tN) ∈ ∂F IK(ϕ).
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2. Discretisation

In this chapter we describe the discretisation of the Euler–Lagrange inclusion (1.82).
We employ the method of time layers, also called Rothe’s method, cf. [35, Section
9.2]. In this approach first (possibly adaptive) discretisation in time is performed. The
resulting semi-discrete problems are then approximated by (possibly adaptive) spatial
discretisations which, from a theoretical point of view, are treated as a perturbation of
the time integration scheme. Therefore, this approach combines adaptive integration in
time and space. In this thesis we will not consider adaptivity but we will utilize Rothe’s
method to allow its incorporation in future work.
Usually the variational equation (1.38) is discretised together with the unknown contact
traction forces tN [44, 62, 66, 106, 93]. We will follow a different path consider the
differential inclusion (1.82). This has the advantage that no algorithmic treatment of
the contact forces (1.40) has to be done explicitly. We will show that the residual of
the fully discrete inclusion corresponds to the consistent discrete mortar contact forces,
which fulfil a discrete analogue of the KKT conditions (1.37). First in Section 2.1 we will
discretise the inclusion (1.82) in time applying a novel contact-stabilised midpoint rule,
inspired by the modified Newmark method of Kane et al. [70] and its further extension
by Deuflhard, Krause and Klapproth [34, 72]. The stabilised scheme shows a dissipative
energy behaviour which is investigated numerically in Chapter 4. Then in Section 2.2
we shortly describe how the spatial problems are discretised with standard linear finite
elements and dual mortar elements [137, 79] for the non-penetration constraint.

2.1. Time discretisation

In this section we are concerned with the time discretisation of the differential inclusion
(1.82). Most common integrators for linear dynamic systems like the Newmark schemes or
the midpoint rule can lead to a blow-up of energy when applied to non-linear mechanical
systems [125]. Belytschko and Schoeberle found, that this happens because the spectral
stability of these schemes is only a necessary, but not sufficient condition any more for
stability. They further showed that the unconditional stability of implicit schemes in
non-linear mechanics is guaranteed if the total energy of the system is conserved or
dissipated [18].
In the spirit of this stability criterion, time integration schemes for large deformation con-
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2. Discretisation

tact can be divided into two categories: the ones that introduce artificial dissipation based
on the generalised α-method [84] and the energy conserving schemes that algorithmically
enforce energy preservation. The latter use either the Energy–Momentum method by
Simo and Tarnow [125] or its extension, the discrete gradient approach by Gonzalez [51],
which was originally introduced for non-linear elastodynamics. Both are based on the
symplectic implicit midpoint rule [125], where in addition the discrete internal force term
is modified leading to energy conservation but also to an asymmetric tangential stiffness
operator. The extension of this class of integrators to large deformation contact prob-
lems is usually done by algorithmically enforcing a discrete analogue of the persistency
condition (1.50), which is necessary to prove conservation of energy of the continuous
system. The first extensions proposed in [88, 7] are enforcing energy conservation at
the cost of modified constraints, which leads to violations of the exact non-penetration
condition. This drawback is overcome by Laursen and Love through the introduction of
a discrete contact velocity which accounts for the discontinuity of the velocity during
impact [89]. Therein, the conservation of energy is recovered by computing a velocity
correction in a post-processing step. Combining energy correction techniques with the
discrete gradient approach, Hauret and Le Tallec developed a conserving method that
avoids the contact velocity update [63].
The integrators named so far are formulated only for the point wise non-penetration
constraint (1.26). In the case of variationally consistent discretisations using the mortar
method, Hartmann and Ramm combined the generalised Energy–Momentum method [84]
and the discrete contact velocity to establish an energy conserving integrator [62]. Due
to simplifying assumptions during the constraint linearisation, this method does not
conserve the total angular momentum. To overcome this problem Hesch and Betsch
re-parametrised the mechanical system in terms of invariants which naturally incorporates
conservation of momenta but also leads to generalised saddle point problems which have
to be solved within each time step [66].
In this thesis we will take a different path. As already mentioned, Energy–Momentum
methods lead to spatial problems with non-symmetric tangential stiffness operator. This
in turn prevents the use of fast descent algorithms like multigrid methods for the algebraic
solution [79, 117]. In the following we will introduce a contact-stabilised midpoint rule,
treating the contact forces completely implicitly, as done in [70] and which reduces
to the standard (possibly unstable) implicit midpoint rule in the absence of contact.
We are interested in the accurate prediction of stresses arising from contact between
complex geometries like the human hip joint and controlled by external (muscle) forces.
Accordingly a small time step size is required in any case to resolve the full process
accurately.

2.1.1. Contact-stabilised midpoint rule.

Let us split the time interval of interest [0, T ] into subintervals defined by 0 = t0 < . . . <
tM = T , where we assume for simplicity equidistant time steps τ = τ k := tk+1− tk. In the
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2.1. Time discretisation

following we simply write ∂ to denote the Fréchet subdifferential ∂F and use the notation
ϕn ≈ ϕ(tn) to term the approximation of a quantity at the time step tn. The midpoint
rule is constructed by approximating the deformation and velocity by a truncated Taylor
expansion

ϕn+1 = ϕn + τϕ̇n +
τ 2

4

(
ϕ̈n+1 + ϕ̈n

)
,

ϕ̇n+1 = ϕ̇n +
τ

2

(
ϕ̈n+1 + ϕ̈n

)
,

(2.1)

and evaluating the inclusion

0 ∈ Fdyn(ϕ(t)) + Fint(ϕ(t))− Fext(t) + ∂IK(ϕ(t)),

cf. (1.82), at the averaged midpoints

ϕ(tn+1/2) ≈ ϕn+1/2 :=
ϕn+1 +ϕn

2
. (2.2)

This leads to the following semi-discrete inclusion for the deformation

0 ∈ 2

τ 2
ρ
(
ϕn+1 −ϕn − τϕ̇n

)
+ Fint(ϕn+1/2)− Fext(tn+1/2) + ∂IK(ϕn+1/2). (2.3)

Note that in the operator formulation above the first operator acts as follows

2

τ 2
ρ
(
ϕn+1 −ϕn − τϕ̇n,v

)
L2(Ω)

∀v ∈ H1
0(Ω). (2.4)

Once the inclusion (2.3) is solved the new velocity is updated accordingly to

ϕ̇n+1 =
2

τ

(
ϕn+1 −ϕn

)
− ϕ̇n, (2.5)

which is an immediate consequence of (2.1), obtained by subtracting the scaled first
equation from the second one. In the absence of contact it is straight-forward to shown
that this scheme conserves the total linear and angular momentum, by insertion of test
functions v = c ∈ Rd and v = c × ϕn+1/2 correspondingly, see [125]. The proof of
momenta conservation in the present contact formulation (2.3) is complicated by the
Fréchet normal cone ∂IK(ϕn+1/2). In [70] it is stated without proof, that the conservation
follows directly from the translational and rotational invariance of the non-penetration
constraint and Noether’s theorem [97, Theorem 11.4.1]. A detailed extension of Noether’s
theorem to non-smooth Lagrangians has not been done yet and will be subject of
future work. As already observed in the linearised framework of small displacements
the energy behaviour of time integration schemes can be improved significantly when
contact forces are computed only from the resulting ϕn+1 [70, 34]. Motivated by the
predictor–corrector scheme in [70] we propose to modify the implicit midpoint rule (2.3)
such that the generalised gradient is evaluated at the endpoint ϕn+1. This leads to

0 ∈ 2

τ 2
ρ
(
ϕn+1 −ϕn − τϕ̇n

)
+ Fint(ϕn+1/2)− Fext(tn+1/2) + ∂IK(ϕn+1). (2.6)
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2. Discretisation

The resulting scheme yields an enhanced energetic behaviour and stability which is
investigated in more detail in Section 4.4.3. By the generalised Fermat rule 1.4.7 all local
solutions of the following constrained non-convex minimisation problem are solutions of
the differential inclusion (2.6)

ϕn+1 ∈ K : J (ϕn+1) ≤ J (v) ∀v ∈ K, (2.7)

with

J (v) :=

∫
Ω

1

τ 2
ρ|v|2 + 2W

(
v +ϕn

2

)
− l(v) dx, (2.8)

l(v) :=
2

τ 2

∫
Ω

ρ (ϕn + τϕ̇n) v dx, (2.9)

where W denotes the hyperelastic strain energy functional (1.11) and we omitted the
external forces Fext for simplicity.

2.2. Spatial discretisation

In this section we will shortly describe the spatial discretisation of the differential inclusion
(1.82) using first order finite elements. Therefore, let T ih = Th(Ωi) be regular simplicial
grids of the bodies Ωi with maximal mesh size h > 0 and denote by N i = N i(Ωi) the set
of vertices of the grid. The vector-valued space of linear finite elements is defined as

Sih := Sh(T ih )d :=
{
ϕh ∈ C(Ωi)d : ϕh linear on T, ∀T ∈ T ih

}
. (2.10)

To simplify notation we introduce the product space Sh := S1
h × S2

h with N := N 1 ∪N 2

and Th := T 1
h ∪T 2

h . The total number of vertices is denoted by N = |N | and scalar nodal
basis function λp ∈ Sh corresponding to a node p ∈ N is characterised by

λp(q) = δqp :=

{
1 p = q,

0 else.
(2.11)

A basis of Sh is given by

B := {λpej : p ∈ N , 1 ≤ j ≤ d} , (2.12)

where ej denotes the j’th Euclidean basis vector. The deformation and velocity are
discretised by replacing H1

0(Ω) by the finite dimensional subspace Sh,0 ⊂ H1
0(Ω). Each

element of the finite element space has a unique algebraic representation

ϕh ∈ Sh ⇐⇒ ∃ ϕ̂ ∈ RdN : ϕh =
∑
p∈N

ϕ̂pλp, (2.13)
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2.2. Spatial discretisation

and in the following we will not distinguish between the two representations. Exchanging
the continuous operators in (2.6) by their discrete counterparts yields

0 ∈ 2

τ 2

(
ϕn+1
h −ϕnh − τϕ̇nh

)T
Mh + Fint

h (ϕ
n+1/2
h )− Fext

h (tn+1/2) + ∂IK(ϕn+1
h ), (2.14)

where Mh is the global mass matrix scaled with the density

(Mh)pq =

∫
Th
ρ λpλq dx, (2.15)

and the components of the discrete internal and external forces are given by(
Fint
h (ϕ

n+1/2
h )

)
p

=

∫
Th

P(∇ϕn+1/2
h ) : ∇λp dx,(

Fext
h (t)

)
p

=

∫
Th

f(t)λp dx+

∫
ΓN,h

π(t)λp ds.
(2.16)

What is left is the discretisation of the subdifferential ∂IK(ϕ), which is described in the
next section.

2.2.1. Dual mortar discretisation of the contact constraints

One difficulty of contact problems is the proper enforcement of the geometric non-
penetration constraint (1.26). In the last decades the use of Node-to-Segment methods
(NTS) has been very popular [7, 88, 89, 63, 65]. In this approach each node of the
so-called slave side is identified with a segment on the opposing master contact surface
and non-penetration is only enforced for these slave nodes. A further modification of
this method additionally enforcing non-penetration of all master nodes leads to the two
pass NTS method. When sliding occurs these methods generate artificial jumps in the
discrete contact forces whenever a slave node leaves the contact area or passes to another
master segment, which leads to instabilities [93].
In this context the mortar method could be called a Segment-to-Segment approach. It
was first introduced by Bernardi, Maday and Patera for the coupling of spectral and finite
element methods [19] and subsequently successfully applied as a domain decomposition
method for non-matching grids [108, 137]. The key idea of the mortar method is to
replace the point wise interface conditions, e.g. the vanishing of a jump term, by a weak
integral constraint, which is variationally consistent. It is typically derived by integrating
the point wise condition over the coupling interface of the slave or nonmortar side, the
choice is arbitrary but needs to be fixed, and multiply it with “suitable” test functions
µ ∈M . Here, “suitable” means, such that the method ensures enhanced stability.
Belgacem et al. first extended the mortar method to the linearised contact problem (1.28)
using nodal Lagrange multipliers to discretise the mortar space and proved a first non-
optimal a priori error estimate [17]. Krause and Wohlmuth later proposed to discretise
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2. Discretisation

Figure 2.1.: Dual basis function in 1D.

the weak contact constraints using dual basis functions and derived optimal error bounds
under suitable assumptions [79, 138]. Puso and Laursen [93] and Fischer&Wriggers [44]
were the first who successfully applied the mortar method to static large deformation
contact problems. While the first used a penalty approach, the latter combined the
Lagrange multiplier method and an active-set strategy. Further extensions to e.g.
frictional contact [140], quadratic elements [107] and dual mortar elements [62, 106]
followed.
In the following we will consider the gap function as a mapping of ϕ only

H1
D(Ω) 3 ϕ 7→ g(ϕ) ∈ H

1
2 (γ1

C),

cf. Remark 1.2.1 and we assume from now on that g is smooth enough such that
g(ϕ) ∈ H 1

2 (γ1
C). Note that we also pushed forward the gap in the deformed configuration

γ1
C = ϕ1(Γ1

C), cf. Remark 1.2.3, which will ease the discretisation and algorithmic
treatment.
In Section 1.3 we showed that for the continuous problem the strong non-penetration
constraint (1.26) (in H

1
2 sense) is equivalent to the variational formulation

b(µ,ϕ) ≥ 0, ∀µ ∈M+, (2.17)

where M+ denotes the cone of positive functionals on H
1
2 (γ1

C)+ and b : M×H1(Ω) −→ R
is given by

b(µ,ϕ) = 〈µ, g(ϕ)〉
M×H

1
2
,

cf. Proposition 1.3.4. As suggested in [137, 79] we discretise the mortar space M+ by
dual functions. For simplicial grids, on each simplex, these can be computed as a linear
combination of the Lagrange basis functions

θp|T = (dλp −
∑
q∈T
q 6=p

λq)|T ∀T ∈ γ1
C,h (2.18)

The dual functions form a partition of one and are in general discontinuous, see Figure 2.1.
However, they fulfil the following bi-orthogonality condition∫

γ1C,h

λp θq ds = δpq

∫
γ1C,h

λp ds, ∀ p ∈ N (γ1
C,h). (2.19)
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2.2. Spatial discretisation

This property will be crucial in Chapter 4 to decouple the non-penetration constraints.

Remark 2.2.1. In this thesis we will restrict ourselves to simplicial grids. In this case
the construction of dual functions that fulfil (2.19) can be done independently of the
deformed domain γ1

C,h. For higher order finite elements or quadrilateral elements the
dual functions are depending on the deformation of the domain, which complicates the
linearisation of the non-penetration constraint [137, 106].

The corresponding discrete mortar cone M+
h ⊂M+ is given by

M+
h :=

{
µh ∈ Θh :

∫
γ1C,h

µh vh ds,≥ 0 ∀ vh ∈ Sh
(
γ1
C,h

)
, vh ≥ 0

}
, (2.20)

where Θh denotes the dual basis

Θh := span
{
θp : p ∈ N (γ1

C,h)
}
. (2.21)

Note that we discretise the functionals µ ∈M by functions µh ∈ Sh(γ1
C,h) in the sense

〈µh, vh〉 =

∫
γ1C,h

µh vh ds ∀ vh ∈ Sh(γ1
C,h). (2.22)

This leads to the following weak non-penetration constraint∫
γ1C,h

−n1 · (s− Φ(s)) µh ds ≥ 0 ∀µh ∈ Θh. (2.23)

For the discretisation of the normal field n1 (or contact normal, cf.(1.22)) there are
various approaches. In [44] at each quadrature point the mortar element normal at the
closest point projection is explicitly computed. Hesch and Betsch use the discontinuous
non-mortar element normal field to approximate n1 [66] We will use a nodally averaged
non-mortar normals, i.e. for each non-mortar vertex p ∈ γ1

C,h with neighbouring faces
e ∈ E(p) and corresponding face normal ne we set

nh,p =

∑
e∈E(p) ne

‖
∑

e∈E(p) ne‖
. (2.24)

This approximation in general yields a smoother behaviour when sliding occurs, cf. [93,
140]. The resulting discrete non-penetration constraint gh : Sh −→ Rm reads

gh,p(ϕh) :=

∫
γ1C,h

−nh,pθp · (s− Φ(s) ds, p ∈ N (γ1
C,h), (2.25)

where m := |N (γ1
C,h)|. We denote the corresponding discretised feasible set by

Kh = {ϕh ∈ Sh : gh(ϕh) ≥ 0} . (2.26)
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2. Discretisation

More details on the implementation of the normal projection Φ : γ1
C,h −→ γ2

C,h can be
found in Chapter 4. We arrive at the fully discrete differential inclusion

0 ∈ 2

τ 2

(
ϕn+1
h −ϕnh − τϕ̇nh

)T
Mh + Fint

h (ϕ
n+1/2
h )− Fext

h (tn+1/2) + ∂IKh(ϕn+1
h ). (2.27)

In the finite dimensional case we can explicitly compute the subdifferential ∂IKh(ϕh).

Proposition 2.2.2. Let ϕh ∈ Kh and denote the active constraints by

A(ϕh) :=
{
p ∈ N (γ1

C,h) : gh,p(ϕh) = 0
}
. (2.28)

Then

∂IKh(ϕh) =

{∑
p∈A

ξp∇gh,p(ϕh) : ξp ∈ R, ξp ≤ 0

}
. (2.29)

Proof. [121, Proposition 11.6.2]

Once the differential inclusion (2.27) is solved the discrete contact forces −Fcon
h (ϕn+1

h ) ∈
∂IKh(ϕ

n+1
h ) corresponding to the mortar constraints (2.25) can be computed from the

residual of the inclusion

Fcon
h (ϕn+1

h ) :=
2

τ 2

(
ϕn+1
h −ϕnh − τϕ̇nh

)T
Mh + Fint

h (ϕ
n+1/2
h )− Fext(tn+1/2). (2.30)

Analogously to the continuous case (1.37) the following discrete KKT conditions hold

gh ≥ 0, tN,h ≤ 0, gh tN,h = 0, (2.31)

where the components of tN,h are given by

(tN,h)p :=

{
ξp p ∈ A(ϕh),

0 else,
(2.32)

and
Fcon
h (ϕn+1

h ) =
∑
p∈A

ξp∇gh,p(ϕn+1
h ). (2.33)

Remark 2.2.3. When considering the standard weak formulation of the problem (1.38),
the straight-forward finite element discretisation of the unknown contact traction forces
(1.43) in general leads to inconsistent discrete contact forces when the mortar method
is used. This results in the loss of angular momentum conservation [93]. The resulting
contact forces of the weak non-penetration constraint (2.17) additionally include the
linearisation of the deformed integration domain γ1

C,h, which vanishes in the continuous
case due to the KKT conditions (1.37), see [44]. In the discrete case however, this is
not true any more. To recover the consistent discrete contact forces (2.29) typically a
contact potential is postulated to derive them [93, 66], which is motivated from equality
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2.2. Spatial discretisation

constrained Hamilton systems, see [20]. In the non-smooth Hamilton approach presented
in this thesis (1.82) this construction is not necessary as the contact forces only enter
implicitly. This allows us to discretise the continuous problem in the standard way by
substituting the continuous spaces by finite-dimensional subspaces.

Conservation of linear and angular momentum is inherited from the continuous problem
if the discrete contact forces are again translational and rotational invariant. The proof
is rather technical because the exact linearisation of the discrete weak non-penetration
constraint (2.25) has to be analysed step by step. Therefore we will omit the proof here
and refer the interested reader to [66, Section 3.3] or [106, Section 3.5]. We will return to
this point in the numerical study of the time discretisation scheme in Section 4.4.3.

In the small deformation framework optimal discretisation error bounds for the dual
mortar discretisation were shown recently when the normal field is constant on Γ1

C and
additional technical assumptions

‖ϕ−ϕh‖H1(Ω) + ‖µ− µh‖H− 1
2 (Γ1

C)
≤ chs−1|ϕ|Hs+1(Ω), (2.34)

where µ ∈M+ and µh ∈M+
h denote the dual Lagrange multiplier corresponding to the

contact constraint, see Wohlmuth [138]. An overview of further results on quadratic
finite elements and frictional problems can be found in the overview article [138]. In the
large deformation framework to our knowledge no discretisation error bounds exists yet.

Like in the time-discrete case solutions of the fully discrete inclusion (2.27) can be
calculated by solving the following non-convex non-linear minimisation problem.

ϕn+1
h ∈ Kh : J (ϕn+1

h ) ≤ J (vh) ∀vh ∈ Kh, (2.35)

with

J (vh) :=
1

τ 2
vThMhvh + 2

∫
Ω

W

(
vh +ϕnh

2

)
− l(vh), (2.36)

l(vh) :=
2

τ 2
vThMh (ϕnh + τϕ̇nh,vh) , (2.37)

cf. (2.7). Note that we again omitted the external forces, they can be incorporated if
suitable external potentials exist.
The next chapter focuses on the construction of fast and globally convergent algorithms
to solve the minimisation problem (2.35).
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3. Filter–Trust–Region-Multigrid
Methods

The aim of this chapter is to describe the construction of a fast and globally convergent
algorithm for the solution of the discretised large deformation contact problem (2.35).
With this goal in mind we will consider general non-linear non-convex constrained
minimisation problems in the following. The simplest class of solvers for these problems
are penalty methods. The underlying idea is to augment the energy by a penalty term
that is ”punishing“ the violation of the constraints and then minimise this energy instead.
The advantages are that only unconstrained problems have to be solved and it is very
easy to implement. The critical point is the choice of the penalty parameter. If it is
chosen too small the constraints are not fulfilled exactly. On the other hand the condition
number of the Hessian of the energy increases with growing penalty parameter, which in
turn is a necessary requirement for the convergence of the method [42, 93]. The basis of
most of the remaining approaches is sequential quadratic programming (SQP) which is a
straight-forward extension of Newton’s method additionally linearising the constraints.
Hence only local convergence can be expected [30].
In the Merit function approach SQP and penalty methods are combined. In this method
the SQP corrections are accepted if the penalty function is decreased and rejected
otherwise. Again, convergence only holds if the penalty parameter is sufficiently large.
Moreover, if the curvature of the constraints is not taken into account, then the fast local
convergence of the SQP method is in general prohibited by the Maratos effect [95].
If the energy functional is non-convex, the local SQP problems are possibly unbounded.
The trust–region method can cope with these cases by imposing a supplementary constraint
on the step size. While this leads to a natural and automatic damping strategy, it may also
result in infeasible local problems if the trust–region and linearised SQP constraints are
incompatible [30]. This can be resolved by decomposing the correction into a normal step,
increasing the fulfilment of the constraints, and a tangential which is solely decreasing
the objective functional. This approach is called Composite-Step method and it is usually
used within trust–region methods for constrained optimisation [23].
A novel approach that completely avoids any penalty parameters was recently developed
by Fletcher and Leyffer [45]. The filter method is an alternative to merit functions that
provides an elegant way to compare iterates. While the decrease of energy is controlled
by line-search or trust–region methods, the filter ensures the feasibility of the solution
w.r.t. the non-linear constraints.
Nowadays solvers for non-convex non-linear constrained optimisation problems typically
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3. Filter–Trust–Region-Multigrid Methods

consist of a combination of the different techniques described above [133, 23, 130, 50],
where the trend is going towards using filter methods.

This chapter is organised as follows. In the first Section 3.1 we will introduce a new class
of successive subset minimisation algorithms and prove global convergence of a monotone
multigrid method for symmetric non-coercive quadratic obstacle problems within this
framework in Section 3.2. Then, in Section 3.3 we will give a short introduction to
the trust–region method and show convergence of this approach when the previously
constructed multigrid method is used to solve the quadratic sub-problems. In the last
Section 3.4 we will then describe an extension of the filter–trust-region method taking
into account an inexact linearisation of the constraints which leads to bound constrained
local problems. For this method we prove global convergence when the approximation
error is controlled by the trust-region norm. In the following, if not stated otherwise, we
denote by ‖·‖ the Euclidean norm for vectors and the Frobenius norm for matrices.

3.1. Successive Direction Minimisation

In this section we consider the general problem of finding a local minimum of a possibly
non-convex functional J : RN −→ R subject to bound constraints

min
v∈K
J (v), (3.1)

where the compact set of feasible solutions is given by

K :=
N∏
i=1

[li, ui] ⊂ RN . (3.2)

For simplicity, we assume that −∞ < li ≤ ui <∞ for all 1 ≤ i ≤ N and J is continuous
on K, which ensures the existence of solutions of (3.1). In the following we will introduce
a general framework for iterative methods that successively minimise the energy along a
set of search directions

D :=
{
d1, . . . , dm

}
. (3.3)

We use the notation ⇒ to denote set-valued mappings, i.e. mappings that map points
onto sets. Let h : RN × RN ⇒ R denote a mapping that for each point v and a search
direction di returns an interval of feasible line search parameters, i.e.

h : (di, v) 7−→ [l(di, v), u(di, v)] ⊂ R,
α ∈ [l(di, v), u(di, v)] =⇒ v + αdi ∈ K.

(3.4)

Whenever it is clear from the context we will omit the dependency on v and the index of
the search directions and simply write

[ld, ud] := [l(di, v), u(di, v)].
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3.1. Successive Direction Minimisation

Note that this interval does not have to coincide with the interval of all feasible line
search parameters but can also be more restrictive. This is usually the case for the
coarse grid corrections within monotone multigrid methods which ensures its optimal
complexity [54]. The mapping that is used within the monotone multigrid method is the
Mandel restriction which was originally introduced by Mandel for the construction of
multilevel methods for obstacle problems [94].

Example 3.1.1 (Mandel restriction).

h(d, v) =

 max
1≤i≤N
di 6=0

(l − v)i, min
1≤i≤N
di 6=0

(u− v)i

 ,
where a lower subscript vi denotes the i’th component of a vector. For each search
direction di let Mi : RN ⇒ RN be the set-valued mapping given by exact minimisation
in the direction di within the feasible line search domain h(di, ·)

Mi(w) :=

{
w + βdi : β ∈ arg min

α∈[ld,ud]

J (w + αdi)

}
. (3.5)

Note that to reduce notation we omit the dependence of Mi on the feasible line search
mapping h. The set-valuedness of the mappingsMi is a consequence of the non-convexity
of the energy, as multiple minimisers might exist in this case.

We are now ready to define an abstract iterative solver for the minimisation of (3.1).

Algorithm SDM (Successive Direction Minimisation)
Let D be given by (3.3) and a mapping h as in (3.4).

Given: w0 = vk ∈ K.
For i = 1, . . . ,m {

Choose wi+1 ∈ Mi(wi)
}
Set vk+1 = wm

By now this algorithm is not well-defined because the exact choice of the next iterate is
left open yet. However the global convergence theorem we will present here is independent
of the explicit choice. Algorithm SDM can also be written in terms of one operator

vk+1 ∈Msdm(vk),

given by the composition of the directional minimisation operators Mi

Msdm :=Mm ◦ . . . ◦M1. (3.6)
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3. Filter–Trust–Region-Multigrid Methods

The composition of two set-valued mappings S, T : RN ⇒ RN is given by

S ◦ T (v) = {u ∈ S(w) : w ∈ T (v)} .

We now want to analyse the mappings Mi in more detail and derive properties which
ensure global convergence of Algorithm SDM. To cope with the non-convexity and the
resulting non-uniqueness of the local solutions we will first introduce a weaker concept of
continuity for set-valued mappings.

Definition 3.1.2. Let V ⊆ RN . A set-valued mapping M : V ⇒ V is called upper-
hemicontinuous (u.h.c) at w̄ ∈ V if for every open neighbourhood O of M(w̄), there
exists a neighbourhood K of w̄ such that M(v) ⊆ O for all v ∈ K.

A slightly weaker property that we will need is given by the following:

Definition 3.1.3. Let V ⊆ RN . A set-valued mapping M : V ⇒ V is called closed at
w̄ ∈ V , if for every convergent sequence wk −→ w̄ and any sequence vk ∈ M(wk) with
vk −→ v̄, it holds that v̄ ∈ M(w̄).

The relation between these two properties is shown in the next proposition

Proposition 3.1.4. If M : V ⇒ V is closed and the range of M

range(M) :=
⋃
v∈V

M(v)

is contained in a compact set, thenM is u.h.c. Conversely, ifM is u.h.c. and additionally
closed valued, i.e. M(w) is closed for each w ∈ V , then M is closed.

Proof. To give an idea of the proof we will show the second part.
(i) First let M be u.h.c. and closed valued. Consider two convergent sequences

wk −→ w̄, vk −→ v̄,

with vk ∈ M(wk). Choose ε > 0 arbitrary and let Oε be an open neighbourhood of
M(w̄) such that

min
w∈M(w̄)

‖v − w‖ < ε ∀ v ∈ Oε.

Now from the u.h.c there exists a neighbourhood Kε(w̄), s.t. M(w) ⊂ Oε for all
w ∈ Kε(w̄). As wk −→ w̄ we thus know that wm ∈ Kε(w̄) for m large enough and

vm ∈M(wm) ⊂ Oε.

From the convergence of vk we obtain v̄ ∈ Oε. Letting ε −→ 0 and using the compactness
of M(w̄) then yields the claim.
(ii) The other direction follows by a contradiction proof, see e.g. [4, Theorem 17.16].
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3.1. Successive Direction Minimisation

Closed mappings are in general not u.h.c which can be seen at the following example at
w = 0

M(w) =

{
{0} w = 0,{

1
w

}
else.

The next convergence theorem is due to Zangwill [143] for a general class of algorithms
given by closed mappings.

Theorem 3.1.5 ([143], Theorem A). Let an algorithm be given by the set-valued mapping
M : V ⇒ V and a procedure to specify the sequence of iterates wk ∈ M(wk−1). Let
KSol ⊂ V be a solution set with the following properties:

• If w /∈ KSol, then
J (v) < J (w) ∀ v ∈ M(w). (3.7)

• If w ∈ KSol, then either the algorithm stops or

J (v) ≤ J (w) ∀ v ∈ M(w). (3.8)

Further assume that the range of M is contained in a compact set K ⊂ V and that M is
closed at all w /∈ KSol.
Then either the algorithm stops at an w ∈ KSol or the limit of any convergent subsequence
is in KSol.

Proof. If the algorithm stops at some w ∈ K then by (3.7) and (3.8) it must be in KSol.
Hence let (wk)k ⊂ K be an infinite sequence produced by the algorithm.
From the compactness of K we obtain the existence of a convergent subsequence (wkl)l,
wkl −→ w∗. As J is continuous and the sequence J (wk) is monotone decreasing, we can
deduce that

lim
k−→∞

J (wk) = J (w∗). (3.9)

Now consider the subsequence (wkl+1)l. By restriction to a further subsequence we get
wkl+1 −→ w∗+1 and thus by the same arguments as in (3.9)

J (w∗) = J (w∗+1). (3.10)

To close the proof let us assume that w∗ /∈ KSol. Now as wkl −→ w∗, w
kl+1 ∈ M(wkl)

and wkl+1 −→ w∗+1, we get from the upper hemicontinuity that w∗+1 ∈M(w∗) and by
(3.8) it holds

J (w∗+1) < J (w∗),

which contradicts (3.10).

We now want to investigate under which assumptions the global convergence of Algo-
rithm SDM holds.
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3. Filter–Trust–Region-Multigrid Methods

Assumption M1. The feasible line search mappings h(di, w) depend continuously on
w for each di ∈ D.

This assumption ensures the closedness of the mappings Mi.

Proposition 3.1.6. If Assumption M1 holds the mappings Mi are closed.

Proof. Let the sequences (wk), (vk) ⊂ K be given with vk ∈ Mi(wk), and let wk −→ w̄,
vk −→ v̄. By definition each vk = wk + αkdi for some αk ∈ [lkd , u

k
d] := h(di, wk) and

further v̄ = w̄ + ᾱdi with αk −→ ᾱ.
We now have to show that v̄ ∈ Mi(w̄) which by (3.5) is equivalent to

J (v̄) = J (w̄ + ᾱdi) ≤ J (w̄ + αdi) ∀α ∈
[
l̄d, ūd

]
. (3.11)

The continuity of h(di, ·) yields that lkd −→ l̄d and also ukd −→ ūd. Thus for all α ∈ (l̄d, ūd)
and k large enough we obtain α ∈ [lkd , u

k
d] and

J (wk + αkdi) ≤ J (wk + αdi).

Let k −→∞, then from the continuity of J we deduce

J (v̄) ≤ J (w̄ + αdi) ∀α ∈ (l̄d, ūd).

The last case that has to be shown is that (3.11) also holds for α ∈
{
l̄d, ūd

}
. We only

prove it for the case α = l̄d where l̄d is contained in finitely many intervals [lkd , u
k
d].

As lkd −→ l̄d, and both wk and αk converge, the continuity of J guarantees that
J (w̄ + ᾱdi) ≤ J (w̄ + l̄ddi) and (3.11) holds.

By definition of the mappingsMi and h(di, w) it is assured that all intermediate iterates
are feasible and

range(Mi) ⊂ K. (3.12)

From this we can deduce the closedness of the composition.

Lemma 3.1.7. Let K be compact and S, T : K⇒ K. If S is closed at w and B on T (w),
then also the composition S ◦ T is closed at w.

Proof. [143, Corollary 4.2.1]

By Proposition 3.1.6 and Lemma 3.1.7 the closedness of Msdm now follows immediately.

Corollary 3.1.8. Msdm is closed and range(Msdm) ⊂ K.

To ensure that the energy cannot increase throughout the iteration we assume that
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3.1. Successive Direction Minimisation

Assumption M2. 0 ∈ h(di, w) ∀w ∈ K.

Further to avoid that Algorithm SDM gets stuck at saddle-points we require:

Assumption M3. If w is no local minimum of (3.1) , then

J (v) < J (w) ∀ v ∈ Msdm(w).

The second assumption further guarantees that the set of search directions is rich enough,
i.e. in general

spanD = RN . (3.13)

Still, requiring (3.13) only is not enough, which is illustrated in Figure 3.1. Under these

1
0.5

0
-0.5

-1-1

-0.5

0

0.5

5

4

3

2

1

0

-1
1

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.1.: Example of a case where the algorithm gets stuck at a saddlepoint if Assump-
tion M3 does not hold. Left: Graph of a non-convex quadratic functional
with a saddle point at (0, 0). Right: Contour lines of the functional. If the
search directions are chosen as in the picture, then the algorithm will stay at
(0, 0).

conditions Algorithm SDM converges globally to a local minimiser.

Theorem 3.1.9. Assume that Assumptions M1–M3 hold. Then for any rule of choosing
the next iterate wk+1 ∈ Msdm(wk), Algorithm SDM either stops at a local minimum of
(3.1) or the limit of any convergent subsequence is a local minimiser.

Proof. To prove this theorem we have to show that all requirements for Theorem 3.1.5
are fulfilled. First we define the solution set to be the set of all local minima

KSol := {w ∈ K : J (w) ≤ J (v) locally} .

The closedness of the mapping Msdm was proven in Proposition 3.1.4. (3.8) is an imme-
diate result of the exact minimisation property of the mappingsMi and Assumption M2.
The condition (3.7) coincides with Assumption M3.
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3. Filter–Trust–Region-Multigrid Methods

3.2. Monotone Multigrid Methods

In this chapter we will introduce a monotone multigrid method for a class of non-convex
obstacle problems and prove global convergence using the framework introduced in the
previous section. This method will be used as a solver for the local quadratic sub-problems
appearing in the filter method described in Section 3.4. Geometric multigrid methods
were originally introduced for the solution of elliptic partial differential equations [40,
60]. While for elliptic obstacle problems the global convergence of these methods is well
established [73, 75, 54], to our knowledge up to now no convergence proof for non-convex
problems exists.
In this section we first introduce a continuous non-convex obstacle problem and then
show how the discretised problem can be solved using an extension of the monotone
multigrid method described in [54]. To prove global convergence of this method we will
reformulate it as a successive direction minimisation SDM and apply Theorem 3.1.9. The
notation is taken from the survey article by Kornhuber and Gräser [54].

Let Ω ⊂ Rd be a bounded polygonal domain and H ⊂ H1(Ω) a closed subset of the
Sobolev-space H1(Ω). We are looking for a local solution of

min
v∈K
J (v) :=

1

2
a(v, v)− l(v), (3.14)

where l ∈ H ′ and a is a symmetric and continuous bilinearform, i.e.

a(w, v) ≤ γ‖w‖1 ‖v‖1.

Note that we do not require a to be coercive as it for example the case when a corresponds
to the second derivative of a non-convex non-linear strain energy functional (1.16). The
set of feasible solutions is of the form

K := {v ∈ H : ϕl ≤ v ≤ ϕu a.e. on Ω} , (3.15)

with lower and upper obstacles ϕl, ϕu ∈ H ∩ C(Ω̄). Next, we apply the finite ele-
ment method to discretise (3.14). Let Tj be a triangulation of Ω and Sj = Sj(Tj) :=
span〈λj1, . . . , λ

j
Nj
〉 be the space of piecewise linear finite elements on Tj. The number of

vertices is denoted by Nj = |Nj| and λjp is the Lagrange basis function corresponding to
the node p ∈ Nj, cf. (2.11). The discretised problem then reads

min
vj∈Kj

J (vj), (3.16)

with
Kj := {vj ∈ Sj : ϕl ≤ vj ≤ ϕu} ,

where, using the same notation, ϕl, ϕu ∈ Sj denote piecewise linear approximations of
the continuous obstacles.
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3.2. Monotone Multigrid Methods

The idea of multigrid methods is to first apply a smoother like the Gauss–Seidel method,
i.e. an algorithm that only removes the high-frequency parts of the error rather than
reducing it and then project the smoothed iterate to a coarser finite element space. The
remaining low-frequency components of the error however, correspond to high-frequencies
on the coarser grid level. Hence, they can be eliminated by applying a smoother on
the coarse level. Repeating this procedure on a grid hierarchy then leads to very fast
algorithms [22]. Let us assume that there exists a nested hierarchy of triangulations

T0 ⊂ . . . ⊂ Tj,

and denote the corresponding linear finite element spaces by

S0 ⊂ . . . ⊂ Sj.

For each finite element space Sk let Nk denote the set of nodes with Nk = |Nk| and let
λkp be the nodal basis function corresponding to the node p ∈ Nk. If no constraints are
present, i.e. Kj = Sj, then the standard multigrid method with Gauss–Seidel smoothers
is given by

Algorithm MG (Standard Multigrid Method)
Given: uνj ∈ Sj
Initialise iterate: vj+1 = uνj
for k = j, . . . , 1 {

Gauss−Seidel smoothing:
wk0 = vk+1

for p = 1, . . . , Nk do {
Choose αp ∈ arg minJ (wkp + αλkp)

wkp = wkp−1 + αpλ
k
p

}
Set vk = wkNk

}
Coarse grid smoothing/solution:

v0 ∈ arg min
w∈S0

J (v1 + w)

Next iterate: uν+1
j = v1 + v0

To extend this multigrid method to obstacle problems one has to decide how to incorporate
the constraints into the coarse level problems. Simply choosing the exact defect obstacles
ϕl − vk on each level will result in a suboptimal method as the fine grid Tj has to
be revisited within each Gauss–Seidel smoothing, see [54]. The idea of the monotone
multigrid method is to reduce the computational complexity by approximating the coarse
grid defect obstacles using monotone restriction operators Rk−1

k : Sk −→ Sk−1

(Rk−1
k ψ)(p) = max

{
ψ(q) : q ∈ Nk ∩ int suppλk−1

p

}
∀ p ∈ Nk−1, (3.17)
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see [54]. The straight-forward extension of this method to non-convex problems is given
as follows:

Algorithm MMG (Monotone Multigrid Method)
Given: uνj ∈ Kj
Initialise iterate: vj+1 = uνj
Initialise defect obstacles: ψjl = ϕl − vj+1

ψju = ϕu − vj+1

For k = j, . . . , 1 {
Gauss−Seidel smoothing:
wk0 = vk+1

for p = 1, . . . , Nk {
Choose αp ∈ arg min

α∈[ψkl (p),ψku(p)]

J (wkp−1 + αλkp)

wkp = wkp−1 + αpλ
k
p

}
Set vk = wkNk , α

k := (αp)p
Update defect obstacle: ψkl = ψkl − αk, ψku = ψku − αk
Monotone restriction: ψk−1

l = Rk−1
k ψkl , ψk−1

u = −Rk−1
k ψku

}

Coarse grid smoothing/solution:
v0 ∈ arg min

w∈S0
J (v1 + w) s.t. ψ0

l ≤ w ≤ ψ0
u

Next iterate: uν+1
j = v1 + v0

Remark 3.2.1. Note that in practice the monotone multigrid method can be written
and implemented as a V-cycle which ensures optimal complexity. In this section we are
investigating the global convergence of this method when applied to non-convex problems.
For this purpose the successive subset minimisation formulation proved to be more suitable.
Furthermore, truncation of the coarse grid basis functions can be applied to speed-up the
method, see [74]. This does not affect the convergence theory developed within this thesis
and will be neglected at this point for simplicity.

Remark 3.2.2. The one-dimensional local problems in Algorithm MMG can be solved
exactly:

a(λkp, λ
k
p) > 0 =⇒ αp = med

{
ψkl (p),

l(λkp)− a(wkp−1, λ
k
p)

a(λkp, λ
k
p)

, ψku(p)

}
. (3.18)

a(λkp, λ
k
p) ≤ 0 =⇒ αp ∈ arg min

α∈{ψkl (p),ψku(p)}
J (wkp−1 + αλkp), (3.19)

where the median is defined via

a = med {a, b, c} ⇐⇒ b ≤ a ≤ c or c ≤ a ≤ b.
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If the quadratic one-dimensional problem is concave the minimal value must lie on the
boundary of the feasible domain [ψkl (p), ψku(p)] which corresponds to the second case (3.19).

Remark 3.2.3. Although, as in the previous section, we do not have to specify an explicit
choice which minimal value we select in the case of multiple minima αp, in practice we
will choose zero, if possible, or the value on the left boundary of the interval, i.e. ψkl (p).

Convergence Proof

We now will prove global convergence of Algorithm MMG by applying Theorem 3.1.5.
To this end, we rewrite the algorithm as a successive direction minimisation method and
show that all necessary requirements are fulfilled. First we need to define the set of search
directions. As in (2.13) we directly identify finite element functions with their coefficient
vectors in RNj . The algebraic fine grid representation of quantities defined on coarser
levels k < j is thereby computed by interpolating them to the fine grid and considering
the corresponding coefficient vector. Using the same notation for finite element functions
and their algebraic representation, the set of search directions is given by the multilevel
basis interpolated to the finest level j

D =
{
λkp ∈ Rnj : p ∈ Nk, 0 ≤ k ≤ j

}
. (3.20)

The definition of the feasible line search mappings (3.4) is complicated by the fact that
only approximate coarse obstacles are used which are restricted after the Gauss–Seidel
smoothing on each level Nk. A workaround is to extend the state spaces to R3Nj and
consider triples of finite element functions and the defect obstacles

z := (ψl, ψu, w) ∈ R3Nj ,

where again the fine grid representation of the defect obstacles is considered. Now for
each multilevel basis function we define the feasible line search mapping via

h(λkp, z) = h(λkp, (ψl, ψu, w)) = [ψl(p), ψu(p)] , (3.21)

where ψl(p) ∈ R denotes the component of the fine grid vector corresponding to the
node p ∈ Nk. These coarse defect obstacles are in general more restrictive than the exact
obstacles and thus guarantee the feasibility of the intermediate iterates. Furthermore,
Assumptions M1 and M2 are fulfilled.

Lemma 3.2.4. The mappings h(λkp, ·) are continuous for all λkp. Further, for each
w ∈ Kj, the intermediate iterates wkp of Algorithm MMG are feasible and it holds

0 ∈ h(λkp, (ψ
k
l , ψ

k
u, w

k
p)), (3.22)

where ψkl , ψ
k
u denote the corresponding defect obstacles.
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Proof. We only consider the lower obstacles in the following, the upper case can be
obtained analogously. By construction of the defect obstacles we obtain

max
1≤i≤Nj
(λkp)i 6=0

(ϕl − w)i ≤ ψkl (p),

and hence the intermediate iterates are feasible. On the finest level j it holds

ψjl = ϕl − w ≤ 0.

Now (3.22) follows by observing that

ψkl ≤ 0 =⇒ (Rk−1
k ψkl )(q) ≤ 0 ∀ q ∈ Nk−1. (3.23)

The continuity follows from the definition of h.

With this at hand we now construct the directional minimisation mappings (3.5) as
follows:

Mk
p(ψl, ψu, w) =

{
(ψl − αpλkp, ψu − αpλkp, w + αpλ

k
p) : αp ∈ arg min

α∈[ψl(p),ψu(p)]

J (w + αλkp)

}
.

The mappings Mk
Nk

corresponding to the last nodes of each level Nk ∈ Nk additionally
perform the monotone restriction

(ψl, ψu, w) 7→ (Rk−1
k (ψl − αNkλkNk),−R

k−1
k (ψu − αNkλkNk), w + αnkλ

k
Nk

).

The monotone multigrid can now be written in terms of these mappings

Mmmg =M0
N0
. . . ◦M0

1 ◦M1
N1
. . . ◦Mj

1, (3.24)

where for simplicity we assumed that the coarse grid correction is again computed using
the Gauss–Seidel method.

Corollary 3.2.5. Algorithm MMG is equivalent to

uν+1
j ∈Mmmg(ϕl − uνj , ϕu − uνj , uνj , ). (3.25)

From Proposition 3.1.6 we can deduce the closedness of the directional minimisation
operators.

Lemma 3.2.6. The mappings Mk
p are closed.

Proof. The monotone restriction operator is continuous on the space of continuous
functions. As a result, the closedness of Mk

p and Mk
Nk

follows immediately from Propo-
sition 3.1.6 and the continuity of the mapping (3.21) in the second component.
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3.2. Monotone Multigrid Methods

The last requirement we have to show is Assumption M3. We consider the set of local
critical points, i.e. the set of local minima and saddle-points.

KSol := {w ∈ Kj : w local critical point} . (3.26)

It is shown in Figure 3.2 that there exist cases where Assumption M3 does not not hold
without additional modification of the monotone multigrid method. To circumvent this

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10.80.60.40.20
0

0.5

0.5

1

0

-0.5

-1
1

Figure 3.2.: Example of a case where the energy is not reduced although the starting
point is not critical. Left: Graph of a non-convex quadratic functional with
constant zero right “boundary”. Right: Contour lines of the functional. If
the search directions λ0 is chosen first, then Assumption M3 does not hold
for the intermediate iterate wλ0 = (1, 1)

we prepend the leading Gauss–Seidel step by first minimising in the direction where the
gradient is decreasing the most. We denote the set of the corresponding fine grid basis
functions by

E(uj) :=

{
λjp ∈ RNj : p ∈ arg min

q∈Nj

{
(−1)r∇J (uj)λ

j
q

}
, r s.t. (−1)rλjq ∈ TKj(uj)

}
,

(3.27)
where TKj(uj) is the contingent cone of Kj at uj, see [121]. The scaling in (3.27) has
to be added to sort out the directions pointing out of the feasible set Kj for the case
where uj ∈ ∂Kj. If uj lies in the interior of Kj, then TKj(uj) = RNj , cf. Figure 3.3. The
corresponding directional minimisation

Msg(w) :=

{
w + αpλ

j
p : αp ∈ arg min

β∈[ψl(p),ψu(p)]

J (w + βλjp), λ
j
p ∈ E(uj)

}
,

fulfils Assumption M3.

Corollary 3.2.7. Let w ∈ Kj not be first order critical, then

J (w) < J (v) ∀ v ∈ Msg(w). (3.28)
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3. Filter–Trust–Region-Multigrid Methods

Figure 3.3.: The contingent cone TKj of a convex set Kj at different points uj.

Note that in the definition of Msg we omitted the dependency on the defect obstacles
ψjl , ψ

j
u for simplicity. For this mapping it further holds

Lemma 3.2.8. The mapping Msg is closed.

Proof. Consider the convergent sequences

wn −→ w̄, vn −→ v̄,

with vn ∈ Msg(wn). From vn ∈ Msg(wn) we obtain that for each vn there exists
λjp(n) ∈ E(wn), such that

vn = wn + αnλjp(n),

for a sequence αn −→ ᾱ. We now have to distinguish between the case where w̄ = v̄ and
w̄ 6= v̄.
First let w̄ 6= v̄. Then, as vn converges, for n large enough we obtain vn = wn + αnλjp for
some fixed λjp ∈ E(w̄). Again, by definition of Msg the following inequality holds for n
large enough

J (vn) = J (wn + αnλjp) ≤ J (wn + αλjp) ∀α ∈ [ψjl (p), ψ
j
u(p)].

Taking the limit and using the continuity of J we deduce

J (v̄) = J (w̄ + ᾱλjp) ≤ J (w̄ + αλjp) ∀α ∈ [ψjl (p), ψ
j
u(p)].

We conclude

v̄ ∈Msg(w̄)⇐⇒ λjp ∈ E(w̄).

Now from the continuity of ∇J it follows that for n large enough E(wn) ⊂ E(w̄) which
completes the proof for the case w̄ 6= v̄.
The case where w̄ = v̄ can be handled analogously by choosing a subsequence wnl with
vnl = wnl + αnlλjp. As also the subsequences converge to w̄ and v̄ correspondingly, the
claim follows.
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3.3. Trust–Region Methods

Theorem 3.2.9. The monotone multigrid method MMG prepended with the Gauss–
Seidel step Msg either stops at a first order critical point of (3.16) or the limit of every
convergent subsequence is first order critical.

Proof. Use Theorem 3.1.5 with the solution set (3.26) and the preceding Corollary 3.2.7
and Lemmata 3.2.4, 3.2.6 and 3.2.8.

Remark 3.2.10. Although this theorem only ensures convergence towards first order
critical points, in practice the method does not get stuck at saddle points because the
number of search directions λkp exceeds the space dimension nj. This also motivates why
in practical applications prepending the monotone multigrid method with Msg can be
neglected and Assumption M3 in general still holds.

This theory is numerically confirmed in Section 4.4.1, where the solver is tested within
an obstacle problem for a non-convex non-linear hyperelastic body.

3.3. Trust–Region Methods

In preparation of the next section 3.4 we now shortly describe the trust–region method
at the example of a non-linear non-convex obstacle problem. Trust–region techniques
together with line search methods are typically used within non-linear optimisation
schemes to ensure the sufficient decrease of energy in each iteration. A more detailed
introduction and a general overview to this topic can be found in [30]. In the appendix
A the interested reader can find a short introduction to non-linear optimisation and
criticality measures. In this section we consider the non-linear obstacle problem

min
ϕ∈K
J (ϕ), (3.29)

with J : RN −→ R continuously differentiable on K, which is given by

K :=
{
ϕ ∈ RN : l ≤ ϕ ≤ u

}
, li, ui ∈ R̄, 1 ≤ i ≤ N. (3.30)

To solve (3.29) efficiently, a local quadratic approximation of the energy at ϕk ∈ K is
minimised and subsequently updated.

min
v∈RN

mk(v) :=∇J (ϕk)
Tv +

1

2
vTHkv,

l ≤ ϕk + v ≤ u,
(3.31)

where Hk ≈ ∇2J (ϕk) is a symmetric approximation of the Hessian of the energy. In the
unconstrained case this scheme corresponds to applying Newton’s method to the necessary
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3. Filter–Trust–Region-Multigrid Methods

optimality condition ∇J (ϕ) = 0. When the energy functional (3.29) is non-convex the
Hessian is not necessarily positive definite any more and thus the local problem (3.31)
can be unbounded. The idea of the trust–region method is now to accept this correction
step v only if (3.31) is a reasonably good approximation of (3.29). Therefore, first a
constraint on the step size is imposed

min
v∈RN

mk(v),

l ≤ ϕk + v ≤ u,

‖v‖k ≤ ∆k.

(3.32)

The choice of the norm ‖·‖k is arbitrary and can be adjusted to the type of problem or the
actual iterate [30]. After solving (3.32) approximately, the trust–region ∆k is adjusted
by comparing the energy reduction predicted by the model to the actual achieved energy
decrease (or increase) of the local solution vk

ρk :=
J (ϕk)− J (ϕk + vk)

mk(0)−mk(vk)
. (3.33)

The general trust–region algorithm reads

Algorithm TR (Standard Trust–Region Method)

Given ϕk ∈ K,∆k ∈ R.
Choose 0 < µ0 ≤ µ1 ≤ 1, 0 < γ1 < 1 ≤ γ2.

Compute vk that approximately minimises (3.32).

If (ρk ≥ µ1) // very successful step
ϕk+1 = ϕk + vk, ∆k+1 = γ2 ∆k,

else if (µ2 ≤ ρk ≤ µ1) // successful step
ϕk+1 = ϕk + vk, ∆k+1 = ∆k,

else // unsuccessful step
ϕk+1 = ϕk, ∆k+1 = γ1 ∆k.

The trust–region method can be interpreted as a Newton method with an built-in
damping strategy. Close to minimisers the trust–region will become inactive and local
quadratic convergence is achieved if the exact Hessians are used. Global convergence
of this method can be shown under the mild assumption that the model energy mk is
reduced sufficiently within each iteration. Next, we introduce the notion of a criticality
measure

Definition 3.3.1 (Criticality Measure). A function χ : RN −→ R is called criticality
measure of the problem (3.29) if
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3.3. Trust–Region Methods

• χ is non-negative and continuous.

• χ(ϕ) = 0 ⇐⇒ ϕ is a local first order critical point.

See also Appendix A.1 for a more detailed introduction.

Theorem 3.3.2. Let (ϕk)k∈N be a sequence generated by the trust–region method TR
and let χ be a criticality measure of (3.29). Assume that the following assumptions hold

• The set
L :=

{
ϕ ∈ RN : J (ϕ) ≤ J (ϕ0)

}
(3.34)

is compact and non-empty.

• The approximate Hessians are bounded ‖Hk‖ ≤ C indep. of k.

• The approximate solutions of (3.32) fulfil

mk(0)−mk(vk) ≥ κχk min

{
χk
‖Hk‖

,∆k

}
, (3.35)

for some constant κ > 0 and χk := χ(vk).

Then
lim
k−→∞

χk = 0,

and thus
lim
k−→∞

ϕk = ϕ∗,

where ϕ∗ is a first order critical point.

Proof. [29, Theorem 11]

The condition (3.35) is called sufficient Cauchy decrease. It can be shown that the
generalized Cauchy point, i.e. the first local minimum on the projected gradient path,
fulfils this condition, cf. Remark A.9. In the following, to avoid incompatibility of the
trust–region and the linearised constraints, cf. Section 3.4, and to enable the application
of fast monotone multigrid methods, we will always choose the trust–region norm to be
the infinity norm

‖v‖k = ‖v‖∞ = max
1≤p≤N

{|vp|} . (3.36)

The local problems (3.32) can be reformulated as

min
v∈RN

mk(v), lk ≤ v ≤ uk, (3.37)
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3. Filter–Trust–Region-Multigrid Methods

with

lk,i = max {(l − ϕk)i,−∆k} , 1 ≤ i ≤ N,

uk,i = max {(u− ϕk)i,∆k} , 1 ≤ i ≤ N.

Corollary 3.3.3. Let (ϕk)k∈N be a sequence generated by the trust–region method TR,
where (3.37) is solved using the monotone multigrid method MMG and assume that the
following assumptions hold

• The sublevel set (3.34) is compact and non-empty.

• The approximate Hessians are bounded ‖Hk‖ ≤ C indep. of k.

Then ϕk converges to a first order critical point.

Proof. The corollary follows from Theorems 3.2.9 and 3.3.2 and a suitable number of
iteration steps of the monotone multigrid method.

Remark 3.3.4. Numerical tests strongly indicate that already one monotone multigrid
iteration is enough to exceed the decrease generated by the generalised Cauchy point.

3.4. Inexact Filter–Trust-Region Methods

The filter method was first introduced by Fletcher and Leyffer in 1997 [45], as an penalty-
free alternative to the widely used merit function approach. It was originally constructed
as an extension of the trust–region method to non-linear constrained problems but
nowadays also extensions to line search methods exist, see e.g. [132].
The standard trust–region method TR cannot be used in the presence of general con-
straints because the acceptance of an iterate is only decided upon by the achieved energy
reduction. In most algorithms based on sequential quadratic programming (SQP) the
intermediate iterates are not necessarily feasible any more. This is why the comparison
of two iterates may not only involve the corresponding energy values but also their
infeasibility with respect to the non-linear constraints.
In this section we start with presenting the basic first order consistent SQP method. Af-
terwards, we introduce a class of inexact constraint Jacobians that induce box-constrained
local problems. For this class we then develop an extension of the classical filter approach
that allows the use of inexact constraint Jacobians and prove global convergence towards
first order critical points within the framework of composite-step methods. The inexact
local problems can be solved using fast monotone multigrid methods which speeds up the
overall method considerably, see Section 4.4.2. In the following we consider the general
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3.4. Inexact Filter–Trust-Region Methods

case of minimising a smooth non-convex energy functional J : RN −→ R subject to
smooth possibly non-convex inequality constraints g : RN −→ Rm

min
ϕ∈K
J (ϕ), (P)

where the set of feasible configurations is given by

K :=
{
ϕ ∈ RN : g(ϕ) ≥ 0

}
. (3.38)

Sequential Quadratic Programming

The SQP method can be derived by applying Newton’s method to the first order optimality
system of the problem

∇J (ϕ) + λT∇g(ϕ) = 0,

g(ϕ) ≥ 0,
(3.39)

where λ denotes the Lagrange multiplier, cf. (KKT) in the appendix. In the following
we will use the following abbreviations:

fk := ∇J (ϕk), Gk = ∇g(ϕk),

Hk := ∇2J (ϕk), Lk = Hk + λTk∇2g(ϕk).

Now applying Newton’s method to the system (3.39) results in

Lku+ µGk = −fk, Gk u ≥ −g(ϕk),

which has to be solved for the correction (u, µ) of the configuration and the Lagrange
multiplier

ϕk+1 = ϕk + u, λk+1 = λk + µ.

The Newton problem can be equivalently written as a quadratic minimisation problem

min
u∈RN

mk(u) := fTk u+
1

2
uTLk u,

Gk u+ g(ϕk) ≥ 0.
(3.40)

Having its origin in the Newton method, successively solving (3.40) can be shown
to converge locally super-linear or quadratically under suitable assumptions, see [30,
Theorem 15.2.1]. In this thesis we will apply an approximate SQP method where Lk is
replaced by Hk.

min
u∈RN

mk(u) := fTk u+
1

2
uTHk u,

Gk u+ g(ϕk) ≥ 0.
(3.41)

61



3. Filter–Trust–Region-Multigrid Methods

Remark 3.4.1. Note that the model (3.41) is not second order consistent any more
as the Hessian of the Lagrangian function is replaced by the Hessian of the objective
functional J which is widely accepted [30]. Although this is preventing local quadratic
convergence, it also avoids the need of updating the intermediate Lagrange multipliers.
Further, local quadratic convergence in constrained optimization is usually complicated by
the Maratos effect, which involves additional computational effort, e.g. by second order
corrections [101].

Inexact constraint Jacobians

In this paragraph we present a certain class of inexact constraint Jacobians G̃k ≈ ∇g(ϕk)
that allow to transform the local SQP problems into box-constrained ones, for which a
large variety of fast solution schemes exist. We remark here that the global convergence
proof of the inexact filter method does not depend on this special structure of the local
problems. Hence it can be extended to a broader class of constraint approximations under
additional, but standard, assumptions. From now on let G̃k denote an approximation of
the exact constraint Jacobian ∇g(ϕk).

Assumption J. The approximate constraint Jacobians are continuous and there exists a
continuous invertible transformation T = T (ϕ) : RN −→ RN , such that the transformed
Jacobians

G̃kT (ϕk)
T (3.42)

are positive, diagonal and the inverse is bounded away from zero

‖(G̃kT (ϕk)
T )−1‖ ≤ κT . (3.43)

with κT > 0 independent of k.

If Assumption J holds the inexact local problems can be transformed into box-constrained
ones using Tk := T (ϕk)

min
u∈RN

mk(u) :=fTk T
T
k u+

1

2
uTTkHk T

T
k u,

u+ g̃k ≥ 0,
(QP)

where
g̃k := (G̃k T

T
k )−1g(ϕk). (3.44)

The approximation error that we make by using an inexact constraint Jacobian will be
denoted by

ek(u) := ‖(Gk − G̃k)u‖.

To simplify notation, we will use the same notation Hk, fk for the quantities in Euclidean
coordinates and in transformed “diagonal” coordinates.
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Composite-Step method

As mentioned earlier, having their origin in Newton’s method, SQP can only be expected
to converge locally. In the previous section 3.3 we shortly showed how the trust-region
mechanism can be used as a globalisation technique, adding an automatic damping
strategy. In this paragraph we will introduce the composite-step method that aims at
incorporating the trust–region constraints into the local SQP model with approximate
Jacobians (QP). Therefore, we first augment the local model as follows

min
u∈RN

mk(u),

u+ g̃k ≥ 0,

‖u‖∞ ≤ ∆k,

(TRQP)

where we again choose the infinity norm to restrict the step size, cf. (3.36). In general,

Figure 3.4.: Incompatible linearised constraints and trust-region obstacles

imposing the additional trust-region constraints can lead to local quadratic problems
that are infeasible if the linearised constraints and the trust-region obstacles are not
compatible, see Figure 3.4. To resolve this issue composite-step methods have been
developed which decompose the SQP iteration into a normal and a tangential step

uk = nk + tk. (3.45)

The normal step nk is aiming towards reducing the infeasibility of the iterate, e.g. by
solving

min
n∈RN

1

2
‖n‖2, n+ g̃k ≥ 0. (3.46)

In the case of box constraints the normal step can be calculated directly by projection
on the feasible set

nk,i

{
−g̃k,i gi(ϕk) < 0,

0 else.
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Once a normal step is found the tangential step tk tries to achieve a reduction of the
local energy while retaining the feasibility

min
t∈RN

mk(nk + t),

t+ nk + g̃k ≥ 0,

‖t+ nk‖∞ ≤ ∆k.

(3.47)

If the infeasibility is too large, e.g. g̃k ≈ −∆k, and as a result the norm of nk is close to
∆k, one might not be able to compute a tangential step that can sufficiently reduce the
energy within the trust-region. The following definition of “good” cases is usually used
within composite-step methods.

Definition 3.4.2. TRQP(ϕk,∆k) is called compatible if there are constants κµ > 0, κ∆ ∈
(0, 1], and µ ∈ (0, 1) such that

‖nk‖ ≤ κ∆∆k min{1, κµ∆µ
k}. (3.48)

Remark 3.4.3. Note that in the case of diagonal constraint Jacobians the normal step
nk always exists and the compatibility of the local problems can be checked directly. In
practical computations the decomposition can thus be omitted when a globally convergent
solver is used for the minimisation of the local energy. Still, we will formally apply this
splitting, on the one hand for the possible extension to non-diagonal inexact Jacobians
and on the other hand as a theoretical tool to proof global convergence of the filter method.

If the local problem is not compatible we have to use a more “aggressive” strategy to
compute a suitable correction uk, which will be introduced in the next section 3.4. The
trust–region framework is used to ensure the sufficient decrease of energy. Accordingly,
we will require the tangential step to fulfil the sufficient Cauchy decrease condition

mk(nk + tk)−m(0) ≥ κscχ̃k min{ χ̃k
‖Hk‖

,∆k}, (3.49)

which was introduced in the previous section (3.35). The first order criticality measure
χ̃k corresponds to the local tangential problem with inexact constraint Jacobians (3.47).

χ̃k = χ̃(tk) := | min
d+nk+g̃k≥0
‖d‖=1

〈∇m(nk + tk), d〉|, (3.50)

cf. (A.11). Analogously we define the exact criticality measure by

χ(tk) := | min
Gk(nk+d)+g(ϕk)≥0

‖d‖=1

〈∇m(nk + tk), d〉|, (3.51)

Remark 3.4.4. When the exact criticality χ(0) = 0, then nk is a critical point of the
local problem TRQP. If additionally the iterate ϕk is feasible and therefore nk = 0, then
ϕk is itself a first order critical point of the non-linear problem (P), see [32, Lemma 5].
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3.4. Inexact Filter–Trust-Region Methods

One advantage of this criticality measure is, that it can be computed by solving a linear
convex problem. Hence, it can be used to directly monitor the convergence of a non-linear
algorithm.

Filter - How to compare iterates

The second difficulty that appears when combining SQP methods with a trust-region
globalisation strategy is that the intermediate iterates (3.41) are in general not feasible
w.r.t the non-linear constraints. This is why the trust-region mechanism, which decides
on the acceptance of a trial point only by comparing the energy decrease, cannot lead
to a convergent method. The filter method resolves this issue by forcing the iterates to
converge towards the feasible set. This in combination with the trust-region mechanism
leads to globally convergent methods [46]. To measure the infeasibility of an iterate we
use the following non-smooth function

ϑ(ϕ) := max
i=1,...,m

{0,−gi(ϕ)} . (3.52)

In the following we use the abbreviations Jk := J (ϕk) and ϑk := ϑ(ϕk) to denote the
energy and infeasibility of an iterate. If a candidate ϕk+1 is dominated by an previous
iterate ϕj, i.e.

Jj ≤ Jk+1 and ϑj ≤ ϑk+1, (3.53)

then the candidate should be rejected. The critical case is to decide for the case where

Jk+1 < Jj, ϑk+1 > ϑj, (3.54)

whether ϕk+1 is acceptable or not. To overcome this difficulty Fletcher and Leyffer
introduced the notion of a filter [45]

Definition 3.4.5. A set of tuples (ϑi,Ji) is called a filter F , if

F := {(ϑi,Ji) : no pair dominates each other} . (3.55)

Candidates are acceptable if the following criterion holds

Definition 3.4.6. A configuration ϕ is called acceptable to the filter F , if

ϑ(ϕ) < (1− γϑ)ϑi or J (ϕ) < Ji − γϑϑ(ϕ) ∀ (ϑi,Ji) ∈ F , (3.56)

for some fixed constant 0 < γϑ ≤ 1, cf. Figure 3.5

Remark 3.4.7. To require an iterate not to be dominated by the filter is not enough
to ensure convergence of the iterates towards the feasible set. The use of the slightly
stronger criterion (3.56) was proposed in [46], which guarantees a sufficient reduction of
the infeasibility whenever a point is acceptable.
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Figure 3.5.: Illustration of a filter with four points. The area above the dotted line is not
acceptable by the filter.

Within the filter method, whenever a pair is added to the filter F , all pairs that are
dominated by the new pair are removed so that F stays a filter. From this acceptance
criterion convergence of the iterates towards the feasible set can be shown

Lemma 3.4.8. Let (ϕk)k∈N be a bounded sequence which is added to the filter, then

ϑk −→ 0. (3.57)

Proof. [30, Lemma 15.5.2]

Based on the original filter–trust–region method from [47], we are now ready to formulate
the main algorithm of this chapter.

Algorithm FTR (Inexact Filter Trust–Region Step)

Given ϕk, F (or initialize by ∅)
Choose ε, κac, κϑ > 0, 0 < γϑ ≤ 1 \\ filter parameter

0 < η1 < η2 ≤ 1, 0 < γ1 < 1 < γ2 \\ trust−region parameter

// Close to the optimal point, make an exact step
1. If χ̃k < ε

Solve TRQP (ϕk,∆k) with exact Gk, go to 4.

//Check if TRQP (ϕk,∆k) is feasible
2. If TRQP (ϕk,∆k) not compatible {

add ϕk to the filter,
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call restoration phase → (ϕk+1,∆k+1), go to 1.
}

// Check error of the inexact constraints
3. Compute uk = nk + tk from TRQP (ϕk,∆k)

If

ek(uk) > κac∆
2
k, (3.58)

then
solve TRQP (ϕk,∆k) with exact Gk

// Check if iterate is acceptable
4. Evaluate ϑ(ϕk + uk), J (ϕk + uk)

// Unsuccessful Iteration
If

ϕk + uk not acceptable to the Filter

or if ρk < η1 and

mk(0)−mk(uk) ≥ κϑ(ϑk)
2, (3.59)

then // Reject iterate and reduce trust-region
ϕk+1 = ϕk, ∆k+1 = γ 1

2
∆k

// Accept trial point
ϕk+1 = ϕk + uk

// ϑ−type iteration to decrease infeasibility.
If (3.59) does not hold

add ϕk to filter

// Very Successful Iteration, increase trust−region
If (3.59) and ρk ≥ η2

∆k+1 = γ2∆k

If the local problem TRQP(ϕk,∆k), with exact or inexact Jacobian, is not compatible, i.e.
solvable, we have to enter the so-called feasibility restoration phase (FRP ). In this phase
we try to compute a new iterate ϕk+1 = ϕk + rk and trust-region radius ∆k+1 > 0 such
that the new iterate is acceptable to the filter and the local problem TRQP(ϕk+1,∆k+1)
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3. Filter–Trust–Region-Multigrid Methods

is compatible. This is usually done by applying an iterative method that minimises the
infeasibility directly

min
ϕ∈RN

ϑ(ϕ). (3.60)

To enable the (FRP ) to find an acceptable new iterate it is thus crucial that the filter
does not contain any feasible points, i.e.

(ϑj,Jj) ∈ F =⇒ ϑj 6= 0.

This is ensured by condition (3.59) which was first proposed in [47]. If (3.59) fails,
the filter iteration is merely trying to reduce the infeasibility, which is called an ϑ-type
iteration. If the infeasibility is not dominating then the algorithm is using the standard
trust-region tools to achieve a reduction in energy, an J -type iteration.

The condition (3.58) ensures that we control the error that we make by using approximate
constraint Jacobians. If the approximation error is larger than the bound we have to
solve the quadratic problem with exact constraint Jacobian to ensure global convergence
of the method towards a critical point.

Further, whenever the inexact criticality measure χ̃k is indicating that the iterate is close
to the solution, the local problem with the exact Jacobian has to be soled, or if the exact
problem is incompatible, the (FRP ) is entered. In this case we assume that the solver is
again generating sufficient Cauchy decrease (3.49) with respect to the exact criticality
measure (3.51). This ensures that for a sequence (ϕk)k∈N with

lim
k−→∞

χ̃k = 0,

it also holds that

lim
k−→∞

χk = 0.

Global Convergence of the filter SQP-method

Now we will prove global convergence of Algorithm FTR. To a great extend the proof
goes along the lines of the proof for the filter method with exact constraint Jacobians [47].
In this section will only show the main convergence theorem and the parts of the proof
that had to be adjusted to account for the inexactness. The interested reader can find
the details on the whole proof in the Appendix B. For the rest of this section we make
the following assumptions.

Assumption F1. The iterates ϕk of Algorithm FTR stay in a compact set C ⊇ K.

Assumption F2. The energy functional J and the constraints g are twice continuously
differentiable on C.
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3.4. Inexact Filter–Trust-Region Methods

Assumption F3. The inexact Jacobians G̃(·) are continuous on C and induce a con-
tinuous invertible transformation T . The transformed inexact Jacobians are positive,
diagonal and the inverse is bounded away from zero

‖(G̃(ϕ)T (ϕ)T )−1‖ ≤ κT . (3.61)

Assumption F4. For a compatible sub-problem the tangential step tk fulfils

m(nk + tk)−m(0) ≥ κscχ̃k min{χ̃k,∆k}.

By Assumptions F1 and F2 the Hessians of the energy and constraints are bounded for
each iterate ϕk

‖Hk‖ ≤ κH := max
ϕ∈C
‖∇2J (ϕ)‖, (3.62)

‖fk‖ ≤ κf := max
ϕ∈C
‖∇J (ϕ)‖, (3.63)

κg := max
ϕ∈C
‖∇2g(ϕ)‖. (3.64)

Moreover, from the diagonal structure of the approximate linearised constraints we can
deduce the following.

Lemma 3.4.9 (Existence + Boundedness of the normal step nk). The normal step nk
always exists and it holds

‖nk‖ ≤ κnϑk, κnϑk ≤ ‖nk‖, (3.65)

for constants κn, κn > 0 independent of k.

Proof. The existence of the normal step is trivial

nk,i =

{
−g̃k,i if gi(ϕk) < 0,

0 else.

Now assume that nk 6= 0 and let i be the index of a maximal component, i.e. nk,i = ‖nk‖∞.
Then, from Assumption F3 it follows

0 ≤ nk,i = −g̃k,i = −(G̃kT
T
k )−1

ii gi(ϕk) ≤ κTϑk.

We conclude
‖nk‖ ≤

√
N‖nk‖∞ ≤

√
NκTϑk := κnϑk.

The lower bound can be established as follows. Let j denote the index corresponding to
the maximal constraint violation, i.e ϑk = −gj(ϕk). Then, by definition of the normal

step (3.46) and the continuity of G̃ and T we obtain

ϑk =
(
G̃kT

T
k nk

)
j
≤ N‖G̃kT

T
k ‖∞‖nk‖∞ ≤ N

√
N max

ϕ∈C
‖G̃(ϕ)T (ϕ)T‖‖nk‖ := κ−1

n ‖nk‖.
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The old and the new infeasibility can be bounded by the trust-region radius.

Lemma 3.4.10. Assume that TRQP(ϕk,∆k) is compatible and let uk = nk + tk be the
solution of the normal/tangential sub-problems. Then, there exists a constant κui > 0
such that

ϑk ≤ κui∆
1+µ
k ,

ϑ(ϕk + uk) ≤ κui∆
2
k.

Proof. From the compatibility condition (3.48) and Lemma 3.4.9 we obtain

κnϑk ≤ ‖nk‖ ≤ κ∆∆k min{1, κµ∆µ
k} ≤ κ∆κµ∆1+µ

k .

To derive a bound for the new infeasibility we have to distinguish between the case where
the exact and where the inexact Jacobians are used. We will only consider the inexact
case, the exact one follows similarly. Performing a first order Taylor expansion of the
i’th constraint at ϕk yields

−gi(ϕk + uk) = −gi(ϕk)−Gi(ϕk)uk −
1

2
uTk∇2gi(ξk)uk,

where ∇2g(ξk) denotes the remainder term. Adding the zero G̃k,i − G̃k,i and using the
approximation error bound (3.58) we can deduce

−gi(ϕk + uk) = −gi(ϕk)− G̃i(ϕk)uk +
(
G̃i(ϕk)−Gi(ϕk)

)
uk −

1

2
uTk∇2gi(ξk)uk

≤ 0 + κac∆
2
k + κN max

1≤i≤m
max
ϕ∈C
‖∇2gi(ϕ)‖‖uk‖2

≤ κacκNκg∆
2
k.

The first term vanishes because uk is a solution of the local problem TRQP(ϕk,∆k), the
second term can be bounded because of the condition on to the approximation error
(3.58). The result follows with

κui := max{κacκNκg, κ∆κµκ
−1
n }.

With Lemmata 3.4.9 and 3.4.10 at hand the remainder of the proof is done along the
lines of the exact filter convergence proof, see [47]. For completeness we will only prove
the main convergence theorem. Again, the interested reader can find the detailed steps
needed on the way towards this main result with a short description of the proofs in the
appendix B.
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3.4. Inexact Filter–Trust-Region Methods

Theorem 3.4.11. Let (ϕk)k∈N be a sequence generated by Algorithm FTR. Then either
the feasibility restoration phase terminates unsuccessfully by converging to a critical point
of (3.60) or there exists a subsequence (ϕkl)l∈N ⊆ (ϕk)k∈N such that

lim
l−→∞

ϕkl = ϕ∗,

where ϕ∗ is a first-order critical point of the non-linear problem (P).

Proof. Assume that the feasibility restoration always terminates successfully. Then by
Lemmata B.6, B.7 and B.9 there exists a subsequence (ϕkl)l∈N with

lim
l−→∞

ϑkl = lim
l−→∞

χ̃kl = 0.

For k large enough we get χ̃kl ≤ ε and thus eventually only the exact local problems are
solved. We conclude that it also holds

lim
l−→∞

χkl = 0. (3.66)

By the compactness F1 we can now find a convergent subsubsequence which we denote
again by (ϕkl)l∈N

lim
l−→∞

ϕkl = ϕ∗.

From the asymptotic feasibility and Lemma 3.4.9 it follows

lim
l−→∞

‖nkl‖ ≤ κn lim
l−→∞

ϑkl = 0.

By perturbation theory [43, Theorem 2.2.6] and (3.66) we can deduce that at ϕ∗ the
local criticality measure (3.51) at zero vanishes

χ(0) = | min
G(ϕ∗)d+g(ϕ∗)≥0

‖d‖=1

〈∇mϕ∗(0), d〉| = 0. (3.67)

From ∇mϕ∗(0) = ∇J (ϕ∗) it follows that ϕ∗ is also a critical point of the non-linear
problem (P), cf. Remark 3.4.4.

After developing this framework for inexact constraint Jacobians and completing this
part of the thesis, we got to know that recently Andrea Walther and Lorenz Biegler also
proposed a filter method with inexact constraint Jacobians [134]. For this method they
also proved global convergence along the lines of the exact filter convergence proof [47].
Their motivation is from optimisation problems where the assembly of the constraint
Jacobians is very costly. In their approach it is assumed that the approximate Jacobians
can be refined, e.g. by using quasi-Newton updates, whenever the local model is not a
good approximation. As the global convergence proof is also based on [47], the model in
the algorithm is refined whenever a similar condition to our approximation error bound
(3.58) is violated or when the iterate is close to a locally critical point. In contrast to our
framework the approximate Jacobians are not assumed to induce a diagonal structure.
Consequently additional assumptions on the existence and boundedness of the normal
step have to be made.
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4. Application to large deformation
contact problems

In this section we will apply the solver presented in Chapter 3 to the discretised large
deformation contact problem (2.35). Up to now the prevailing solution strategies for
large deformation contact problems are based on active-set methods. In these methods
the non-penetration inequality constraints (2.25) are eliminated iteratively by estimating
which constraints are active. The resulting equality constrained problems are then set-up
by assembling the portion of the contact forces (2.29) that corresponds to the estimated
active constraints. These are then incorporated by either a penalty approach [7, 89, 63,
140] or the Lagrange multiplier method [93, 44]. Recent approaches apply the primal-dual
active set strategy, first introduced by Hübner and Wohlmuth [68], where the discrete
contact forces are eliminated using dual mortar elements [62, 106]. The discrete contact
forces can then be recomputed in a post-processing step, similar to our approach. In
[106] the contact detection and solution of the non-linear weak equations (1.38) is further
combined within one loop. Both approaches make simplifying assumptions on the contact
forces, which in turn results in a loss of angular momentum conservation.
In [66] the contact forces are eliminated by applying a discrete null space method. While
they retain angular momentum preservation, the method is computationally very costly
because generalised saddle-point problems have to be solved. In our case the fully
discrete problems (2.27) can be solved by computing local optimal points of a non-linear
constrained minimisation problem (2.35). We can thus directly apply techniques from
constrained optimisation without having to eliminate the inequalities first.
The chapter is organised as follows: First in Section 4.1 we specify a class of inexact
constraint Jacobians and show that they fulfil all requirements for the filter method.
Then, in Section 4.2 we present an extension of the monotone multigrid method MMG
to contact problems, that is used for the fast solution of the inexact local filter problems.
Afterwards, we shortly comment on implementational aspects. We close this chapter by
showing some numerical results that illustrate the convergence theory of Chapter 3 and
a numerical study of the proposed time discretisation scheme in Section 4.4.
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4. Application to large deformation contact problems

4.1. Inexact constraint Jacobians

In what follows for simplicity we will omit all indices corresponding to the current time
step. Upper indices (·)k will denote the iteration index within the filter–trust–region
Algorithm FTR. Recall that the algebraic problem we consider is to minimise the smooth
energy functional J : RN −→ R, cf. (2.35). The problem is supplemented by the non-
linear mortar discretised non-penetration constraint gh : RN −→ Rm, with components
given by

gh,p(ϕh) :=

∫
γ1C,h

−nh,pθp · (s− Φ(s)) ds 1 ≤ p ≤ m, (4.1)

cf. (2.25). We now apply the inexact filter method FTR to solve the algebraic problem
(2.35) subject to (4.1). This method relies on the successive linearisation of the non-linear
energy and the non-penetration constraint. The linearisation of the constraint can be
split into the following three parts:

δgh,p(ϕh) =

∫
γ1C,h

−δnh,pθp · (s− Φ(s)) ds+

∫
γ1C,h

−nh,pθp · δ(s− Φ(s)) ds

+

∫
γ1C,h

−nh,pθp · (s− Φ(s)) δds.

(4.2)

The first part involves the linearisation of the nodally averaged normal. In the continuous
case the nodally averaged normals correspond to the continuous normal field nh,p =̂ n1(s).
As Φ is the normal projection s− Φ(s) = µ(s)n1(s) and n1(s) are collinear. Hence the
first term vanishes as it holds

n1(s) · n1(s) = 1,

=⇒ δn1(s) · n1(s) = 0,

=⇒ δn1(s) · µ(s)n1(s) = 0.

The second term is the linearisation of the point-wise gap function. This coincides with
the non-penetration constraint in the small displacement contact framework, cf. (1.28).
The third summand labels the linearisation of the deformation dependent integral domain,
which we denote by δds.

Motivated by the availability of fast multigrid methods that have been developed for the
small strain framework [79, 55], we will use the second term only to approximate the
constraint Jacobians

∇gh,p(ϕh)v ≈ G̃p(ϕ)v =

∫
γ1C,h

−nh,pθp · (v1(s)− v2 ◦ Φ(s)) ds, (4.3)

cf. (1.28) and Section 3.4. Note that this approximation does not completely coincide
with the second term of (4.2). We additionally omit the linearisation of the contact
mapping Φ.
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4.1. Inexact constraint Jacobians

Remark 4.1.1. Using this approximation of the constraint Jacobians is similar to the
simplifying assumptions on the contact forces that are made in [93, 106, 62]. While in
other approaches this allows the condensation of the dual Lagrange multiplier, we exploit
the special structure of the Jacobians to speed-up our algebraic solver using multigrid
methods. Furthermore, whenever it is necessary, we switch back to the contact forces that
are consistent with the mortar discretisation.

In the following we will investigate whether the requirements introduced in Section 3.4
for the inexact Jacobians are fulfilled. The algebraic form of the approximate Jacobians
applied to a function from the product space v ∈ Sh is given by

G̃(ϕh)v = −ODv1 +OMv2, (4.4)

where the deformation-dependent non-mortar and mortar block-matrices, with diagonal
d× d blocks, are given by

Dpq =

∫
γ1C,h

θpλ
1
q ds, (4.5)

Mpq =

∫
γ1C,h

θpλ
2
q ds, (4.6)

and the block-diagonal matrix O ∈ Rm×dm

Opp = nTh,p.

Note that for the assembling of the mortar matrix M , the basis functions λ2
q have to be

evaluated at the projected points Φ(s). Due to the bi-orthogonality (2.19) of the dual
basis functions θp the non-mortar matrix is diagonal

Dpp =

∫
γ1C,h

λ1
p ds. (4.7)

The construction of a continuous transformation T (ϕh) ∈ RN×N such that G̃(ϕh)T (ϕh)T

is positive and diagonal, cf. Assumption J, can be done as proposed by Krause and
Wohlmuth in [79]. To this end, we sort the deformation coefficient vector ϕh =
(ϕMh ,ϕ

NM
h ,ϕRh ) into mortar ϕMh , non-mortar ϕNMh and the remaining degrees of freedom

ϕRh .
Further, as suggested by Kornhuber and Krause for Signorini’s problem [75], we consider
the block-diagonal matrix Ô ∈ Rm×m, consisting of the householder reflections of the
first Euclidean basis vector onto the nodally averaged normal nh,p. For the re-ordered
coefficients the basis transformation takes the form

T (ϕh) :=

Id M̂T 0

0 Ô 0
0 0 Id

 , (4.8)
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4. Application to large deformation contact problems

where M̂ := D−1M . Note that the householder reflections are symmetric and invertible,
hence Ô−1 = ÔT = Ô.

The transformed inexact Jacobian can now be computed as follows

G̃(ϕh)T
T (ϕh) =

(
OM −OD 0

)Id 0 0

M̂ Ô 0
0 0 Id

 =
(
0 D 0

)
, (4.9)

which are positive and diagonal.

Remark 4.1.2. The resulting constraints only restrict the nodes of the non-mortar side,
or more precisely, only the first component of each node. The corresponding degrees of
freedom of the mortar contact boundary are constructed such that they always fulfil the
linearised constraints, see [79, p.10].

Moreover, the transformation is invertible with

T (ϕh)
−1 =

Id −M̂T Ô 0

0 Ô 0
0 0 Id

 , (4.10)

and the inverse inexact Jacobians(
G̃(ϕh)T (ϕh)

T
)−1

= D, (4.11)

are bounded away from zero whenever the faces of the deformed contact boundary γ1
C,h

are not degenerated. Hence, the inexact Jacobians G̃ fulfil Assumption J, which is
required for the global convergence of the filter method.

Remark 4.1.3. In comparison to other recent approaches that use the dual mortar
discretisation [62, 106], our inexact filter–trust–region method can also be seen as a
Newton method using approximate contact forces corresponding to (4.3). The difference
is that, whenever it is necessary, we switch back to the fully consistent contact forces
(2.29).

4.2. Multigrid methods for contact problems

In this section we describe how the monotone multigrid method MMG can be extended
to the local SQP problem with inexact Jacobians (4.4) and supplemented by trust–region
constraints

‖uh‖∞ ≤ ∆k. (4.12)
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The monotone multigrid method described in Section 3.2 can only handle bound con-
straints. An extension of this method to small deformation contact problems has been
introduced in [79] by constructing a hierarchical multilevel basis, based on the trans-
formations (4.8). While this method is very reliable and robust, it also requires the
assembling of the transformation for each grid level in the hierarchy and a monotone
restriction operator to obtain suitable coarse grid defect obstacles [79, p.15]. By incor-
porating the additional trust–region constraints and restricting them with the Mandel
restriction (3.1.1), this method can be extended to the linearised filter problems and
global convergence can be proven in the same way as in Section 3.2. First ideas on this
method have been developed by Sander in [114].

Recently, Gräser introduced a novel multigrid method for convex quadratic problems
with obstacles and more complicated non-linearities that avoids the need of constructing
coarse defect obstacles [55]. The idea of the truncated non-smooth Newton multigrid
method (TNNMG) is to make a non-linear pre-smoothing step only on the finest level.
Then a coarse grid correction is computed by solving the unconstrained truncated defect
problem using a linear multigrid step. To regain feasibility the resulting correction is
projected back onto the feasible set Kh. Conclusively a line search along the projected
correction is performed which guarantees sufficient decrease of energy. This method is
proven to be globally convergent [53].
Furthermore, as only the non-linear pre-smoothing step on the finest level has to be
implemented, this algorithm is relatively easy to implement. In [117] this method is
extended to small displacement contact problems using the transformation (4.8) to
decouple the constraints. On the finest grid level a projected Gauss–Seidel step in the
transformed coordinates is performed. The smoothed iterate is then transformed back to
Euclidean coordinates and the linear multigrid method is used to compute a coarse grid
correction.
Compared to the monotone multigrid method this approach has the advantage that only
the canonical transfer operators are needed on the coarser levels and hence, in the case
of contact problems, only the mortar matrix Mj on the finest level has to be computed.
We extend this idea to large deformation contact problem with inexact constraint Jaco-
bians (4.9) as follows. We only sketch the method here, a more detailed description can
be found in [117, Section 3.4].

Algorithm TNMMG (Truncated Nonsmooth Newton Monotone Multigrid)

1. Gauss−Seidel step with inexact constraints

G̃kT
T
k vh ≥ −g(ϕh,k), ‖vh‖∞ ≤ ∆k (1)

2. MMG step in Euclidean coordinates with trust−region constraints only

3. Projection of the correction onto the feasible set given by (1)
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4. Application to large deformation contact problems

4. Line search in the direction of the projected correction

Proposition 4.2.1. Under the assumptions of Theorem 3.2.9, the method TNMMG
converges globally to a locally critical point.

Proof. Follows from the monotonicity of the coarse grid correction and the global conver-
gence of the preceding Gauss–Seidel step, see Theorem 3.2.9.

4.3. Implementational Aspects

The normal projection Φ

For the assembling of the non-penetration constraint and the (in-)exact Jacobian the nor-
mal projection has to be implemented efficiently. Therein, each pair of faces (∆NM ,∆M )
needs to be checked for intersections, where ∆NM ∈ γ1

C,h corresponds to a non-mortar face
and ∆M ∈ γ2

C,h to a mortar face respectively. To avoid the quadratic effort of checking all
pairs of faces, we use the optimal advancing front algorithm by Gander and Japhet [49].
In this scheme, after an initial intersecting pair is found, only neighbouring information
is used which leads to a linear complexity. The computation of the intersection polygon
for two faces is done similarly to the method proposed in Puso and Laursen [93]:

Let pNMi and pMi denote the corners of ∆NM and ∆M respectively and let nNMi denote
the nodally averaged normals (2.24) associated with the non-mortar vertices pNMi . Then,
the intersections are computed as follows:

1. Project each pNMi along nNMi onto the ∆M -plane

2. Check which pNMi are contained in ∆M .

3. Check which pMi are contained in the projected ∆̃NM

4. Compute edge intersections and determine which neighbours intersect

5. Compute nodally averaged centre and triangulate the polygon

Exact linearisation of the mortar non-penetration constraint

The consistent linearisation of the discrete non-penetration constraint (4.2) is very
complicated because the integration must be performed over the triangulated intersection
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Figure 4.1.: Computation and triangulation of an intersection polygon.

polygons Figure 4.1. Hence, the deformation-dependent polygonal corners have to be
linearised which has to be done according to the type of intersection they arise from,
i.e. non-mortar/mortar corner, edge intersection or averaged centre. The corresponding
formulas are very lengthy and can be adapted from the similar discretisations in [106,
93]. To validate our implementation we tested the consistent linearisation against a finite
difference approximation for several grids.

4.4. Numerical Examples

We will now show some numerical examples to illustrate the performance of the multigrid
method MMG and filter–trust–region method FTR presented within this thesis. Further
we will investigate the behaviour of the proposed time discretisation scheme in more
detail. The implementation of all the solvers and the mortar discretisation has been done
within the Dune environment which is a free c++ toolbox for the solution of partial
differential equations [12, 10, 11].

The implementation of the contact mapping Φ : γ1
C,h −→ γ2

C,h, cf. Section 4.3, can be
found within the Dune module dune-grid-glue [9] and originated from the PSurface
library by Oliver Sander [118], which is also used to generate and handle the parametrised
boundaries in the hip joint range of motion analysis (Chapter 5). As a grid manager we
used UG [13]. For the solution of the coarsest problems within the multigrid step and
for the solution of the exact local problems, cf. Section 4.3, we apply the CoinIpOpt
library which uses an optimised interior point algorithm [133].
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4. Application to large deformation contact problems

Figure 4.2.: Left: Reference domain and boundary conditions. Right: Deformed configu-
ration with the resulting von-Mises stresses.

4.4.1. Obstacle problems in non-linear elasticity

In this section we want to illustrate the performance of the monotone multigrid method
introduced in Section 3.2. There is a large variety of optimisation algorithms for non-
linear minimisation problems subject to simple bound constraints [29, 28, 129, 56, 58]. In
[28] Coleman and Li suggest a Newton approach with a non-standard reflective linesearch
to keep the iterates feasible. Ulbrich et al. extended this approach to infinite-dimensional
problems in terms of interior point methods [129]. Motivated by the convergence speed
of multilevel methods Gratton et al. developed a recursive trust-region algorithm where
on each grid level a local trust-region method is applied [56]. This method was refined
by Krause and Gross in [58] such that the resulting method can be implemented as a
V-cycle. In our approach we will go the other way round: Instead of first decomposing
the system hierarchically and performing a trust–region step on each level, we apply the
standard trust—region scheme TR directly to the fine level and solve the local problems
with the monotone multigrid extension introduced in Section 3.2.
The following numerical example is adopted from [58]. We consider the non-linear Ogden
material [103]

W (ϕ) = a trE(ϕ) + b (trE(ϕ))2 + c tr(E(ϕ)2) + dΓ(det(∇ϕ)), (4.13)

where E denotes the Green strain tensor (1.14) and Γ is a penalty function

Γ(x) = − ln x,

that “enforces” local injectivity. The constants are chosen such that

a = −dΓ′(1), b =
1

2
(λ− Γ′(1) + Γ′′(1)), c = µ+ dΓ′(1), d > 0, (4.14)

where λ and µ denote the bulk and shear modulus. This material approximates the
St.Venant–Kirchhoff material (1.15) for small deformations and reproduces it for d = 0.
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We only consider the quasi-static problem (1.19). The initial geometry is the unit cube
Ω = [0, 1]3 with Dirichlet boundary ΓD = {(x1, x2, 1) ∈ R3} and skewed Dirichlet values

g(x) = −0.2 (x1 + x2), x ∈ ΓD.

The cube is subject to lower bound constraints given by the affine x1-x2-plane through
(0, 0,−0.05), see Figure 4.2. We use the following material parameters: d = 100, λ =
34, µ = 136. The local problems are solved using the monotone multigrid method MMG
until the relative correction error falls beyond the tolerance εmg = 10−10. The trust-region
algorithm is performed until the first order criticality measure χ, see (A.9), falls below
10−9. In the left of Figure 4.3 the reduction of the criticality measure is plotted against the
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Figure 4.3.: Left: Reduction of the criticality measure of the trust–region method in the
case of 692,835 degrees of freedom. Middle and Right: Averaged convergence
rates and number of iteration steps of the multigrid method for increasing
number of degrees of freedom. The flattening of the curve indicates mesh-
independence or midly dependent convergence.

trust-region iterations. Already after five iterations the measure falls beyond 10−9 which
corresponds to a convergence speed of the same order as the recursive multilevel approach
in [58]. In the middle and right of Figure 4.3 we compared the multigrid iterations and
convergence rates averaged over the trust-region steps for five uniform refinement steps.
While for small levels the numbers still increase, they flatten for increasing degrees of
freedom which indicates mesh-independent or mildly dependent convergence.

81



4. Application to large deformation contact problems

4.4.2. Convergence Analysis of the filter–trust–region

In this section we want to illustrate the convergence of the proposed filter–trust–region
method at the example of the ironing problem. This problem is used to test the robustness
of the mortar discretisation and the applied algebraic solver due to its difficulty [93,
106]. We adopt the initial configuration and loading set-up from [106], see Figure 4.4.
In this example a block is placed under a half-spherical shell. The block is fixed at

Figure 4.4.: The initial configuration of the coarse ironing grids.

the bottom with homogeneous Dirichlet conditions. For the shell non-homogeneous
Dirichlet conditions are prescribed on the top boundary that are enforced in loading steps:
First, the shell is pressed vertically into the block with a prescribed total displacement
of 1.4 units. Then, in the second phase it is swiped over the block until a horizontal
displacement of 2.1 is reached, see Figure 4.5. As done in [106] we apply an equidistant
loading increment of 0.14. Both bodies are modelled by the Neo–Hookean material law

W (ϕ) =
λ

4
(det(∇ϕ)2 − 1)− (

λ

2
+ µ) log(det(∇ϕ)) + µ trE(ϕ), (4.15)

with
λshell = 750, µshell = 375,

λblock =
3

4
, µblock =

3

8
.

In this example the stiffness ratio of the two bodies is very high with 1 : 1000. In the
case of a softer contact (1 : 100) similar convergence results were obtained. The loading
problems are solved with the inexact filter–trust–region method until the criticality
measure χ, see (3.51), falls below 10−9 or the relative error in the H1−norm is less than
10−15. The linearised SQP problems with exact constraints are solved using the optimised
IpOpt-Library [133], until a tolerance of 10−8 is reached. For the inexact problems we
apply the truncated non-smooth Newton multigrid method TNMMG until the relative
error in the H1−norm falls below a tolerance of 10−8. The constant in the control of
the approximation error (3.58) is chosen κac = 1. We switch from inexact to exact local
problems when the approximate criticality χ̃, cf. (3.50), falls below 10−3.
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4.4. Numerical Examples

Figure 4.5.: Left:Ironing problem after the horizontal displacement. Right: Ironing prob-
lem after the vertical displacement

On the left side of Figure 4.6 the convergence of the inexact filter method and
corresponding filter with exact Jacobians are shown for an exemplary step during the
swiping phase at the increment 0.28. For this computation the block grid has been
refined uniformly three times and the shell grid once. As can be seen in the picture, the
decrease of the exact criticality is flattening when only the “cheap” inexact problems are
solved. This is why it is important for the performance of the inexact filter method to
choose the switching point, i.e. the tolerance for the inexact criticality measure, carefully
or adjust it dynamically.
Already in this rather small problem with 26, 550 degrees of freedom, the computation
time for the solution of the inexact local problems with the multigrid method is about ten
times smaller than the time needed by the optimised solver for the exact problem (1.5s
resp. 15s). In this exemplary loading step 12 inexact iterations were performed before
switching to exact constraint Jacobians, which corresponds to a decrease of computation
time of 15%. In total the computation time needed for this example with a three times
refined block and once refined shell was reduced about 14%, see Figure 4.6 and Table 4.1
Further refining the grids (≈ 200, 000 degrees of freedom) already leads to a difference in

exact inexact difference
comp. time 18,495s 16,027s 2,648s

Table 4.1.: The total averaged computation times for the exact and inexact filter. Using
inexact Jacobians results in a reduction of 14%.

computation time of 20s to 20 minutes per local solution.

Only linear convergence can be expected due to the approximate Hessians that are used
within the filter method, cf. Remark 3.4.1. Extending this approach to second order
consistent models will be done in future work.
In the right of Figure 4.7 the total inexact filter iterations are plotted for different
refinement levels, where the grids are refined alternatingly. During the first phase the
iteration numbers seem to remain constant for decreasing mesh size; in the second phase
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Figure 4.6.: Left: Reduction of the criticality measure χ of the exact and inexact filter
method during the 12th loading step. The arrow marks the spot where the
approximate criticality measure reached its tolerance. The flattening in that
area shows that exact steps are necessary for the convergence. Further, the
switch between exact and inexact steps has to be chosen appropriately to
guarantee a high reduction of computation time. Right: Comparsion of the
inexact and exact steps that were computed during all loading steps. The
total iteration numbers of the inexact and exact filter are comparable. As a
result, the use of cheap inexact steps results in a decrease computation time.

this independence is lost, although the increase is still in an acceptable range.

In Figure 4.7 we compare the solutions generated by our filter method to the results that
are computed by only solving the inexact local problems until χ̃ < 10−10. We observe
that, although this error is small, convergence to the true minimisers cannot be expected
in general. Finally in Figure 4.8 the L2-norm of the Lagrange multipliers (2.32) is plotted.
As expected from the mortar discretisation the contact forces evolve smoothly even in
the presence of large sliding.

4.4.3. Numerical Study of modified midpoint rule

In the following example we examine the modified midpoint rule (2.6) in more detail.
To this end, we consider an elastic ball bouncing on an elastic block. A coarsened
representation of the initial configuration is shown in Figure 4.9. For the dynamic
simulations the ball is additionally refined twice and the block once resulting in 49518
degrees of freedom. Again the bodies are modelled by the Neo–Hookean material law
(4.15) with identical (soft) elastic parameters

λ = 22, µ = 11, (4.16)

and mass density ρ = 0.01. The ball is supplemented with an initial velocity of (0, 0.2, 1.5)
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Figure 4.7.: Left: A comparsion of the filter iteration numbers for different refinement
levels and the exact filter method on the finest grid. During the swiping
phase (steps 10− 24) a mild mesh-dependence can be observed. Right: The
H1−error of the true minimizers to approximate ones that are computed from
the sole solution of inexact problems. While the error seems to be constant
and small, convergence of a purely inexact solver cannot be expected.

units and additional gravity forces

Fext(t,vh) =

∫
Ωball

ρ f vh(x) dx, f = (0, 0, 9.81)T , (4.17)

are prescribed. The block is set-up with homogeneous Dirichlet conditions prescribed
at its lower boundary and a rather coarse time step size τ = 0.01 is chosen. The
corresponding spatial problems are solved with the inexact filter–trust–region method
until the tolerance of 10−10 is reached. We switch from inexact to exact local problems
whenever χ̃ ≤ 10−5.
In dynamic simulations like the one at hand or the range of motion analysis that is
presented in the next chapter 5 the inexact filter method shows its full potential. During
time steps where no active contact occurs, the solution of inexact local problems suffices
to achieve full convergence towards the solution, see Figure 4.10. In the present simulation
this results in a decrease of total computation time by 30%, see Table 4.2. In Figure 4.11

exact inexact difference
comp. time 212,500s 151,131s 61,369s

Table 4.2.: The total averaged computation times for the exact and inexact filter. Using
inexact Jacobians results in a reduction of 30%.

the energy evolution of the midpoint rule (2.3) and our proposed modified version (2.6)
are compared. While the midpoint rule is strictly generating energy during each contact
phase, the modified version is almost dissipative and the energy loss is rather small
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Figure 4.8.: L2-norm of the dual Lagrange multipliers. As we expected from the mortar
discretisation the contact forces evolve smoothly during the sliding.

Figure 4.9.: Initial configuration of the bouncing problem.

compared to the increase of the unmodified scheme. In the right of Figure 4.11 the energy
of the stabilised scheme is shown in more detail. One can see that the energy is lost
during the attachment of the contacting bodies. In [34, 72] this phenomena was also
observed in the framework of small deformations for a modified Newmark method (which
coincides with the proposed scheme in the linear case). The authors suggest to add a
further contact stabilisation by making a predictor-L2-projection step. The resulting
predicted contact forces enter the velocity update which improves the energetic behaviour
of the scheme. This could also help to avoid the small gain in energy observed during
the detachment phase.

Remark 4.4.1. The modifications proposed in [34] and [72] also eliminate artificial
oscillations at the contact boundary in the small displacement framework. In the presented
numerical examples we did not observe these kind of oscillations which is possibly due
to sliding and rotation. We will investigate this issue in more detail and examine the
incorporation of further stabilisation techniques like in [34, 72] in future work.

Furthermore, while improving the stability of the time discretisation significantly, the
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Figure 4.10.: Left: The total number of iterations needed by the inexact and exact filter
method. During the contact phases the iteration numbers increase. When no
constraints are active it suffices to perform inexact steps only, which leads
to a large speed-up. Right: The L2−norm of the dual Lagrange multipliers
for the stabilised scheme which again show a smooth evolution of the contact
forces.
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Figure 4.11.: Left: The total energy of the midpoint rule and its stabilised pendant. While
the midpoint rule is increasing the energy during each contact phase, the
modified version is almost conserving. Right: The total energy of the
stabilised scheme together with the number of active constraints. The main
energy loss is observed during the attachment phase while it is increased a
little during the detachment.
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Figure 4.12.: Linear and angular momentum of the two schemes in the absence of external
forces and boundary conditions. While both schemes conserve the linear
momentum, the stabilising modification of the midpoint rule leads to a loss
of angular momentum preservation.

modification leads to a loss of angular momentum conservation, see Figure 4.12. In [71]
Kaufman et al. suggest to use generalised reflections to regain momentum and energy
conservation which is similar to the modified velocity update in [72]. We will investigate
this behaviour in more detail by carefully going through the exact linearised constraints
and identify where the rotational invariance is lost.

Concluding remarks

In conclusion the monotone multigrid and the truncated non-smooth Newton multigrid
method work extremely well even in the case of non-convex problems. Further, the
numerical results are in accordance with the convergence theory developed in Chapter 3.
Compared to its exact pendant a large reduction in computational time can be expected,
especially in dynamic simulations, when the switching parameter is chosen appropriately.
The proposed time discretisation scheme (2.6) for the non-standard differential inclusion
showed an improved energy behaviour. Further investigations and extensions have to be
made to recover energy and momentum conservation.
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5. Femoroacetabular Impingement
Analysis

In this chapter we present a heterogeneous joint model and a framework for the numerical
simulation of patient-specific range of motion (ROM) and femoroacetabular impingement
(FAI) analysis. After describing the medical background and the prevailing pre-operational
hip surgery planning, we will introduce the heterogeneous joint model in Section 5.1
and a computational framework of how it can be used to estimate the range of motion
and impingement zones in Section 5.2. We close this chapter by showing first promising
results and compare our approach to a state-of-the-art FAI model [86].

5.0.4. The human hip-anatomy, functionality and failures

Figure 5.1.: Anatomy of the hip joint. Picture taken from [104].
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5. Femoroacetabular Impingement Analysis

The main task of the hip joint is to bear the body weight during movements or standing
positions. It is a classical ball and socket joint which allows the movement of the
leg in almost all directions. This movement is restricted by the joint capsule, the
extracapsular iliofemoral, ischiofemoral and pubofemoral ligaments and surrounding
muscles, in favour of enhanced stability [110]. The femoral head and the acetabulum are
covered with articular hyaline cartilage which is lubricated as most of the motion involves
sliding [110]. The extracapsular ligaments are reinforcing the joint and are among the
strongest ligaments of the whole body [105]. The intracapsular ligament teres connects
the acetabular notch and the femoral head. While its stabilising effect on the joint can
be neglected, it can provide artery supply to the femur bone.

Range of motion (ROM)

Figure 5.2.: Sagittal (green), coronal (blue) and axial plane (red).

The range of motion of the hip joint is quantified by measuring the maximal angles of
deflection along the three orthogonal axes of motion of the ball joint. All axes pass
through the centre of the femoral head and they are aligned to the planes of motion, the
sagittal, coronal and the axial plane, see Figure 5.2. Flexion and extension is motion
that decreases resp. increases the angle between two parts of the body. For the hip joint
this corresponds to movements in the sagittal plane, cf. Figure 5.3. While the maximal
extension is strongly restricted by all three ligaments, a lot of flexion is possible, only
limited by contact of the thigh and the chest [102]. Adduction and abduction (coronal
plane) describes motion that moves extremities towards resp. away from the body centre.
The maximal possible angle depends on if the thigh is flexed or not. In the flexed
position the tension in the iliofemoral is reduced, which allows a much higher adduction.
The abduction is also reduced by the pubofemoral ligament [102]. The internal and
external rotation denotes rotation towards resp. away from the body axis. The maximal
internal rotation is restricted by the ischiofemoral and the lateral iliofemoral ligament,
the external rotation is controlled by the transversal part of the iliofemoral ligament,
again allowing a larger rotation when the hip is flexed [102]. Average angles of each
motion in the standing position can be found in Table 5.1
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Figure 5.3.: Movements along the axes of motion. Picture redrawn from [102][p.207].

Flexion 130− 140◦

Extension 10− 15◦

Abduction 30− 40◦

Adduction 20− 30◦

Ext. rot. 40◦

Int. rot. 50◦

Table 5.1.: Average maximal angles along the axes of motion, taken from [102, 104].

Femoroacetabular Impingement (FAI)

It is widely accepted nowadays that FAI is one of the most common cause of osteoarthritis
in hip joints [15]. FAI denotes the impingement (contact) of the femoral head and the
acetabular rim resulting in unnatural stresses that cause pain. There are two types of
FAI, the pincer -type, typically originating from an excessively deep acetabulum, and the
cam-type impingement, caused by a diminished femoral neck offset, see Figure 5.4. Both
types can be present at the same time and they in general reduce the flexion, abduction
and internal rotation [16]. When the impingement type is detected, the surgeons task is
to restore the femoral head neck or eliminate focal impingement lesions correspondingly.
The pre-operational orthopaedic surgery planning nowadays is still mainly based on
X-rays. Even in complex processes as total hip arthroplasty, simple templating, digital
or by hand, cf. Figure 5.5, are used to decide on shape, size and position of the implant
[76]. This gap between the 2-dimensional surgery planning and the 3-dimensional reality
is one of the motivations for virtual medicine in orthopaedic surgery.

State-of-the-art FAI analysis

The prevailing toolboxes for a virtual FAI analysis are based on computerised tomography
(CT) (HipOp[86],Articulis[112], HipProject[109], HipNav[126]), and due to the
lack of data, rarely on magnetic resonance imaging (MRI). In a first step the data is
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5. Femoroacetabular Impingement Analysis

Figure 5.4.: Impingement zones colored in red. Left: Pincer-type impingement. Right:
Cam-type impingement.

Figure 5.5.: Acetabular templating stencil to determine the center of rotation. Picture
taken from [76].

segmented and three-dimensional geometries of the bones are extracted. The centre of
rotation of the joint is computed using e.g. a sphere fitting algorithm. Then, a ROM
analysis is conducted to determine the impingement zones. Practically all available FAI
tools assume that the hip is a perfect ball and socket joint with fixed rotational centre.
The analysis can then be accomplished by simple rigid body rotation along the axis of
motion until collision is detected [86, 81, 109, 24, 83]. The maximal rotation angle is
computed e.g. by doing a binary search [81]. Extensions of this approach exist where the
femur, apart from rotating along the prescribed axis, additionally can translate freely.
This is used to smooth out collisions that do not correspond to pincer- or cam-type
impingement. In these models an impingement is detected if the joint cannot be set into
a collision-free status by translation of the femur in less than e.g. 3mm [112, 16]. For the
collision detection real-time algorithms can be constructed, e.g. by using a lookup table
and linear transforms to speed-up the process [67], cf. Figure 5.6. The surgeon can then
remodel the joint and re-evaluate the analysis to improve the ROM and, based on this,
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5.1. A heterogeneous hip joint model

Figure 5.6.: Real-time collision detection in the visualisation software Amira [41].

develop an optimal surgery strategy [92].
Finite element models have been developed for the case where rather the joint loading
than the ROM is of interest. The model in [91] is based on an idealised joint geometry
that consists of rigid bones and sliding contact between linear elastic cartilage layers.
Ligaments and muscles are neglected and the evolution is driven by external forces that
were measured during in vivo experiments. In contrast to the previous approaches this
model cannot be used for virtual testing and ROM optimisation as the evolution of the
system is prescribed by the measured data. Furthermore, ligaments are not included,
which are significant for an accurate estimation of the ROM, see Section 5.0.4. Similar
finite element approaches can be found in [131, 25]. In [131] additionally the hip abduc-
tors are modelled by stiff cable elements. A more complex model of the knee-thigh-hip
complex is proposed in [124]. The cortical bone is modelled by an orthotropic material
and ligaments by one-dimensional discrete elements. The approach further contains
(passive) muscles and a soft tissue mass distribution simulating the patients weight.
Finally, also near-real-time models are available using the discrete element method [6,
1]. In these approaches the bones are assumed to be rigid and cartilage between the
acetabulum and femoral head is simulated by a series of springs.

5.1. A heterogeneous hip joint model

In this section we present a heterogeneous joint model that can be used for an advanced
FAI analysis and further tasks in virtual medicine. The mathematical model is an
extension of the knee joint model previously developed in [120]. It includes the proximal
extremity of the femur, the pelvis bone and the major iliofemoral, ischiofemoral and
pubofemoral ligaments, cf. Figure 5.7. We omit the joint capsule, hyaline cartilage and
surrounding soft tissue for now. Although they could be incorporated in the mathematical
model as passive tissues, in practical situations only CT or X-ray data is available, which
makes the reconstruction of soft-tissues impossible.
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5. Femoroacetabular Impingement Analysis

Figure 5.7.: The heterogeneous joint model (left: AP-view, right: PA-view) with the three
(re-meshed) major ligaments iliofemoral (green), ischiofemoral (purple), and
pubofemoral (blue).

Hyperelastic bones

Bone is an anisotropic multiscale material [33]. Depending on the specific application
a large variety of models, ranging from biphasic models [80], to orthotropic [124], and
linear elastic ones [141], exist. On the macroscopic scale that we are interested in,
the cortical bone can be considered as homogeneous, isotropic elastic material [117,
Chapter 2.2]. Therefore, we model the femur and the pelvis as geometrically non-linear
St.Venant–Kirchhoff materials (1.15). In contrast to the small strain approach [120], we
model large deformation contact between the femoral head and the acetabulum of the
pelvis, see Figure 5.8, which allows for the proper simulation of rotational movements.
The algorithmic treatment of these components is done as described in the previous
chapters 1–4.
In [120] uniform articular cartilage layers on top of the bones are modelled by a linear

Figure 5.8.: Left and Middle: Contact boundaries of the pelvis and the femur.Right:
Articular cartilage layer.

visco-elastic Kelvin–Voigt material. We note that the same construction can be applied
to add cartilage to the present hip joint model, see Figure 5.8, although only hyperelastic
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materials fit in the algorithmical framework currently.

5.1.1. Ligaments as Cosserat rods

We use Cosserat rods to model the ligaments, which was first proposed by Sander in
[117]. Ligaments are long and slender objects which motivates to use a reduced model to
avoid any meshing problems. The main assumption in one-dimensional Cosserat continua
is that the cross-sections of a rod hardly deform and hence can be assumed to be rigid.
We will only give a short introduction to Cosserat rods here, a detailed introduction, and
much more, can be found in e.g. [5].
The configuration of a Cosserat rod is given by a curve in space r (the centreline) together
with a set of rotations q describing the orientation of the cross-sections

ψ : [0, L] −→ R3 × SO(3),

ψ(s) = (r(s),q(s)),
(5.1)

cf. Figure 5.9. The columns of the orthogonal rotation matrix q(s) define a local
coordinate system {d1(s),d2(s),d3(s)}, where the directors d1(s),d2(s) lie in the plane
spanned by the cross-section and d3(s) is orthogonal to that plane, but does not necessarily
coincide with the tangent of the centreline r′(s), see Figure 5.9. Similar to the full-
dimensional continuum case we denote by ψ0 the reference configuration of the rod. We
assume that in the reference configuration the centreline r0 is parametrised by arc-length.
Although the model is one-dimensional it can still represent shearing, stretching, bending
and twisting, which is crucial for the proper simulation of ligaments. Suitable strain
measures v,w are defined by

v(s) := r′(s), d′i(s) = w(s)× di(s) i = 1, 2, 3. (5.2)

When represented in the local basis {di}, the strain v measures shearing and stretching
and w quantifies strain due to bending and twisting. In contrast to the previous approach
[120] we will neglect the inertia terms for now and only consider quasi-static Cosserat
rods. A description of how the dynamic model can be incorporated into the joint model
can be found in [120]. The balance of momentum in the quasi-static case is given in
terms of the resulting net forces n and moments m

n′ = 0 on [0, L],

m′ + r′ × n = 0 on [0, L].
(5.3)

Note that we omitted external forces and momenta in (5.3) for simplicity. As usual,
additional boundary conditions and the constitutive law linking the resulting forces to
the strains have to be prescribed to close the system (5.3). Like in Chapter 1 we only
consider hyperelastic Cosserat materials, i.e. we assume that there exists an energy
functional W (y, z, s), such that

n =
∂W

∂y
(v − v0,w −w0, s), m =

∂W

∂z
(v − v0,w −w0, s), (5.4)
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where v0,w0 denote the initial strains of the reference configuration. Ligament is a
multiscale material that shows elastic and visco-elastic behaviour. The prevailing models
in the field of joint mechanics are simple spring models, but also more complex approaches
have been used, see [117] for an overview. We are only interested in the macroscopic
mechanics of the hip joint and that is why we will use a linear elastic, yet geometrically
exact, material law in this model.

W (y, z, s) =
1

2

(
y
z

)T
C(E, ν)

(
y
z

)
, (5.5)

where the diagonal matrix C only depends on the Poisson ratio ν, the elastic modulus
E and the shape of the cross-sections, see [120] for more details. We further prescribe
Dirichlet boundary conditions

(r(0),q(0)) = (ϕ0,F0), (r(L),q(L)) = (ϕL,FL), (5.6)

that depend on the deformation of the attached bones, as will be shown in the next
section. Analogously to (1.19) the equilibrium states of a hyperelastic Cosserat rod are

Figure 5.9.: Left: Reference and deformed configuration of a Cosserat rod. Right: Local
coordinate system defined by the directors.

characterised as minimisers of the non-convex strain energy

min
ψ∈H

J (ψ) :=

∫ L

0

W (v(ψ)− v0,w(ψ)−w0) ds, (5.7)

where the Sobolev space for manifold-valued functions is defined as

H := H1
D([0, L], SE(3)) =

{
ψ ∈ H1

D([0, L],Rk) : ψ ∈ SE(3) a.e. on [0, L]
}
, (5.8)

and SE(3)= R3 × SO(3) denotes the special Euclidean group. The integer k depends
on the embedding of the orthogonal group SO(3). We will use unit quaternions which
are numerically stable (in this case k = 7). A detailed description of how to use unit
quaternions for the description of rotations can be found in [116].

Theorem 5.1.1. There exist solutions of (5.7) subject to Dirichlet boundary conditions
(5.6) and the orientation constraint

〈v,d3〉 > 0 (5.9)

These solutions are in general not unique.

Proof. Wolfe and Seidman [123, Theorem 3.8]
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Geodesic Finite Elements

The price we pay for the reduction in dimension is that the configuration space SE(3)
is no longer a linear space. Therefore, the standard finite element method, which is
based on linear interpolation, cannot be used any more. To overcome this difficulty
Sander developed geodesic finite elements which, in the first order case, replace linear
interpolation by interpolation along geodesics [116]. Let a grid T of [0, L] be given by
0 = s1 < . . . < sn = L.

Definition 5.1.2 (Geodesic Finite Elements). A function ψh : [0, L] −→ SE(3) is a
geodesic finite element, if it is continuous and ψh restricted to each element [si, si+1] is a
minimising geodesic in SE(3).

Remark 5.1.3. In [57] the construction of higher order geodesic finite elements can be
found and optimal a priori discretisation error bounds are proven.

We set
Vh := {ψh : [0, L] −→ SE(3) : ψh is a geodesic finite element} .

The discrete problem is derived by replacing the infinite-dimensional function space by
the finite-element one:

min
ψh∈Vh

J (ψh), s.t. ψh(0) = (ϕ0,F0), ψh(L) = (ϕL,FL). (5.10)

The derivation of an equivalent algebraic formulation is complicated by the fact that
the identification of a geodesic finite element with its coefficient vector SE(3)n is not
necessarily unique. It is guaranteed if the grid T is sufficiently fine, see [116, Lemma 5.2].
Assuming the uniqueness of the coefficient vectors the algebraic formulation of (5.10)
reads

min
ψh∈SE(3)n

J (ψh), s.t. ψh,0 = (ϕ0,F0), ψh,L = (ϕL,FL), (5.11)

where in a slight abuse of notation we denote both the coefficient vector and the
corresponding geodesic finite element function by ψh. More details and the formulas for
the evaluation of the geodesics and their derivatives using quaternions can be found in
[116].

Riemannian Trust-Region Solver

In this paragraph we describe the Riemannian trust-region algorithm that can be used to
solve the non-convex minimisation problems (5.11). This method was first proposed by
Absil et al. [2] for matrix manifolds and then applied to Cosserat rods by Sander [116,
117], where again the details and the explicit formulas for the case M = Vh can be found.
In Section 3.3 we introduced the standard trust-region method for non-linear optimisation
problems in RN . The main idea was to locally approximate the energy functional by
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5. Femoroacetabular Impingement Analysis

quadratic models and then compute a correction by minimising this model instead. The
extension of this algorithm to manifolds consists of locally lifting the energy to the
tangential space TψhSE(3)n using the exponential map expψh : TψhSE(3)n −→ SE(3)n

J̄ (u) = J (expψh u). (5.12)

Now J̄ : TψhSE(3)n −→ R is a mapping between linear spaces which can be approximated
by a quadratic model with the help of the Riemannian metric hψh : TψhSE(3)n ×
TψhSE(3)n −→ R in a straightforward manner

mψh(u) := J̄ (0) + hψh(∇J̄ (0), u) +
1

2
hψh(∇2J̄ (0)u, u). (5.13)

For a given iterate ψk
h the local problems of the Riemannian trust-region methods are

given by

min
u∈TψhSE(3)n

mψkh(u), (5.14)

‖u‖TR ≤ ∆k, (5.15)

cf. (3.32). The trust-region norm can again be chosen arbitrarily. One option is to take the
norm induced by the Riemannian metric ‖·‖TR =

√
hψh(·, ·). Further selecting the infinity

norm has the advantage that the trust-region constraints are bound constraints, which
enables us to solve (5.14) efficiently using the monotone multigrid method introduced
in Section 3.2. Once the local problem (5.14) is solved the iterate is updated using the
exponential map

ψk+1
h = expψh u. (5.16)

The acceptance criterion of the trial iterate and the update of the trust-region norm ∆k

is done analogously to Algorithm TR.

One-sided contact between ligament and bone

To predict the range of motion and impingement zones it is essential to enforce non-
penetration of the bones and ligaments. We make the assumption that the contact forces
which the ligaments exert on the bones are small such that we can neglect them. Hence,
it is sufficient to model Signorini-type contact for the ligaments, considering the bones to
be rigid moving obstacles. To our knowledge, there exist no other continuous models for
contact between Cosserat rods and rigid obstacles. A discrete approach that is based on
collision detection, neglecting elastic forces between the discrete degrees of freedom was
proposed in [127] in the field of computer graphics.
In the following we will consider the case of one Cosserat rod and a rigid obstacle
Γobs ⊂ R3. We assume that the obstacle has a sufficiently smooth boundary, such that
the outer normal field nobs exists and is continuous. Further, we only consider Cosserat
rods with circular cross-section and constant radius l.
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5.1. A heterogeneous hip joint model

Let the boundary of a Cosserat rod with configuration ψ be decomposed into a Dirichlet
part ΓψD = {A0,AL} given by the cross-sections at 0 and L, and the potential contact
boundary ΓψC . To derive a parametrisation of the contact boundary we note again that
each cross-section is characterised by the position of the centreline r(s), the radius l and
the first two directors d1(s),d2(s). The contact boundary can be written as

ΓψC := {r(s) + l (d1(s) cosα + d2(s) sinα) : s ∈ (0, L), α ∈ [0, 2π)} . (5.17)

As we introduced in Section 1.2, the non-penetration of two bodies can be modelled using
the closest point mapping Φcp : ΓψC −→ Γobs

Φcp(x) := arg min
y∈Γobs

||x− y||, (5.18)

cf. (1.21). To simplify the notation we formulate the closest point mapping on the
deformed domain ΓψC . Although not written explicitly, the mapping Φcp also depends on
the actual rod configuration ψ.

Remark 5.1.4. Note that in contrast to the full-dimensional case in Chapter 1, we
use the closest point projection rather than the normal projection, which simplifies the
discretisation of the constraints significantly.

The corresponding contact normal field on ΓψC , is defined by

νΦ(x) := nobs(Φcp(x)). (5.19)

cf. (1.22). Φcp is a best approximation and that is why the vector x− Φcp(x) is itself
normal to Γobs at Φcp(x). Hence, the gap function

gR(x) := νΦ(x) · (x− Φcp(x)) (5.20)

is a signed measure for the distance of the Cosserat rod to the obstacle, see (1.23).
Non-penetration of the rod and the obstacle is ensured by enforcing that

gR(x) ≥ 0 ∀x ∈ Γψ (5.21)

holds. Combining (5.21) with the assumption of hyperelasticity (5.7), we arrive at the
following constrained minimisation problem:

min
ψ∈H
J (ψ),

gR(ψ) ≥ 0 on Γψ.
(5.22)
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5. Femoroacetabular Impingement Analysis

Figure 5.10.: Left: Exact nodal non-penetration constraint. Middle: Piece wise linear
discretised cross-section boundary. Right: Approximate closest point by
projection.

Discretisation of contact

We will now propose a nodal discretisation of the contact constraints. Let again T be a
grid of [0, L] and assume that the Cosserat rod is discretised using geodesic finite elements
(5.10). Now consider a node p ∈ T in the grid and denote by Ap the corresponding
cross-section within the current configuration ψh. Let xp ∈ ∂Ap be the point closest to
the obstacle, i.e.

xp = arg min
x∈∂Ap

‖x− Φcp(x)‖. (5.23)

A straightforward discretisation of the non-penetration constraint is to demand that

ḡRp (ψh) := νΦ(xp) · (xp − Φcp(xp)) ≥ 0 2 ≤ p ≤ n− 1. (5.24)

These constraints still require the solution of a continuous minimisation problem (5.23)
and thus have to be discretised further. One possibility is to discretise the cross-section
boundaries ∂Ap by piecewise linear segments and prescribe non-penetration for all corner
points or only the one that is closest to the obstacle, see the middle of Figure 5.10.
We will use a different approach: First we compute the closest point xr on the obstacle
to the centreline point rp. Then we project the distance vector xr − rp onto the plane
spanned by the cross-section and use the resulting point x̂p on the boundary ∂Ap as an
approximation of the exact closest point xp, see the right of Figure 5.10. The fully-discrete
nodal non-penetration constraints then read

gRp (ψh) := νΦ(x̂p) · (x̂p − Φcp(x̂p)) ≥ 0 2 ≤ p ≤ n− 1, (5.25)

leading to the non-linear non-convex constrained minimisation problem

min
ψh∈Vh

J (ψh),

gR(ψh) ≥ 0.
(5.26)

Remark 5.1.5. During the assembling of the contact constraints (5.25) the closest point
mapping Φcp has to be evaluated. This requires the computation of the point within a
face f ∈ Γobs, that is closest to the target point x̂p(or rp). This is implemented using the
polyhedral Gauss–Seidel method, where the face edges are used as search directions [59].
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5.1. A heterogeneous hip joint model

Filter–Riemannian–trust–region method

Finally, we solve the constrained minimisation problem (5.26) using by a combination of
the filter method Algorithm FTR and the Riemannian trust–region algorithm described
in Section 5.1.1.

5.1.2. Heterogeneous coupling of bones and ligament

Motivated by classical domain decomposition theory the following coupling conditions for
the Cosserat problem and a linear elastic continuum were first proposed by Sander in [115,
117]. Later Schiela and Sander extended them to the non-linear case and proved existence
of solutions of the coupled system [119]. In classical domain decomposition generally
two types of coupling conditions have to be prescribed to ensure the well-posedness of
the system: A condition guaranteeing the continuity of the primal variables and a dual
constraint, ensuring that the transmitted forces are preserved, see [108]. In the following

Figure 5.11.: Coupling interface of a Cosserat rod and a continuum

we consider a hyperelastic body Ω with deformation ϕ and a Cosserat rod [0, L] with
configuration ψ. We denote the corresponding coupling boundaries by Γ ⊂ ∂Ω and Ao, i.e.
the cross-section corresponding to o ∈ {0, L}. For the primal coupling the deformation
ϕ has to coincide, in some sense, with the rod configuration ψ(o) = (r(o),q(o)). This
can be achieved by prescribing that the average deformation equals the position of the
centreline

r(o) =
1

|Γ|

∫
Γ

ϕ(s) ds. (5.27)

Furthermore, the orientation q(o) has to be matched. To this end we define the average
orientation of a deformation by

F(ϕ) :=
1

|Γ|

∫
Γ

∇ϕ(s) ds. (5.28)

Assuming enough regularity, the polar decomposition can be used to decompose this
matrix into a rotational part F rot(ϕ) and a stretching H(ϕ)

F(ϕ) = F rot(ϕ)H(ϕ), (5.29)
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5. Femoroacetabular Impingement Analysis

see [117, Lemma 5.2.1]. Now let ψ0 denote the reference configuration of the rod and
q0(o) the corresponding orientation at o ∈ {0, L}. The coupling for the orientation then
reads

F rot(ϕ) q0(o) = q(o). (5.30)

In what follows we will denote the collected average deformation and orientation by

AvΓ(ϕ) =

(
1

|Γ|

∫
Γ

ϕ(s) ds,F rot(ϕ) q0(o)

)
. (5.31)

The primal coupling conditions are then summarised by

AvΓ(ϕ) = ψ(o).

The dual conditions, i.e. the balance of stresses and moments, can be derived in a
straightforward manner:

−n(o)νR(o) =

∫
Γ

P(ϕ) n(s) ds,

−m(o)νR(o) =

∫
Γ

(s− r(o))× (P(ϕ) n(s)) ds,

(5.32)

where νR denotes the outer unit normal field of [0, L], i.e.

νR(o) =

{
−1 o = 0,

1 o = L,
(5.33)

and P the first Piola Kirchhoff stress tensor (1.4).

A Dirichlet–Neumann algorithm

We solve the coupled system using the Dirichlet–Neumann algorithm developed by Sander
[117, 115]. In this method the heterogeneous system is decoupled by iterating over the
coupling-interface values and successively solving the two sub-problems. For simplicity
we will consider only one Cosserat rod connecting the pelvis Ωp and the femur Ωf with
coupling interfaces Γ0 ⊂ ∂Ωp,ΓL ⊂ ∂Ωf . Let some initial proximal and distal interface
iterate λ0

0, λ
0
L ∈ SE(3) be given and denote by ϕp,ϕf ∈ Sh the deformations of the pelvis

and femur at some fixed time. The method can be summarised in the following three
steps:

1. Dirichlet problem for the Cosserat rods of Signorini-type

Solve the constrained Cosserat problem with rigid obstacles

ψk+1
h = arg min

ψh∈Vh

J (ψh),

gR(ψk+1
h ) ≥ 0,

Γobs =ϕp(Ωp) ∪ϕf (Ωf ),
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5.1. A heterogeneous hip joint model

subject to Dirichlet conditions

ψk+1
h (0) = λk0, ψk+1

h (L) = λkL.

2. Large deformation contact problem with Neumann forces

From the solution of the Cosserat problem ψk+1
h we evaluate the resulting stresses and

moments at the coupling interfaces o = 0, L

ψk+1
h 7−→ nk+1

i ,mk+1
i .

Then a Neumann force field tk+1 for the bones is constructed such that the dual coupling
conditions (5.32) hold approximately:

nk+1,mk+1 7−→ tk+1,

such that

−nk+1
i νRi =

∫
Γi

tk+1 ds,

−mk+1
i νRi =

∫
Γi

(s− rk+1
i )× tk+1 ds.

(5.34)

With this at hand the large deformation contact problem (2.35) is solved with additional
external traction forces on the coupling interfaces given by tk+1

tk+1 7−→ ϕk+1
p ,ϕk+1

f . (5.35)

3. Damped geodesic update

To update the interface values, first the average deformation (5.27) and orientation (5.28)
are evaluated

ϕk+1
p ,ϕk+1

f 7−→ AvΓi(ϕ
k+1
i ). (5.36)

After that, a damped correction is added to the old interface value using the exponential
map

λk+1
i = expλki ω

[
exp−1

λki
AvΓi(ϕ

k+1
i )

]
, (5.37)

where 0 ≤ ω ≤ 1 is a suitable damping parameter.

Remark 5.1.6. In [117] it is proven for the linear elastic case with small deformations,
that under suitable conditions the damped Dirichlet–Neumann algorithm converges to a
solution of the coupled heterogeneous system.

Remark 5.1.7. The Neumann force fields tk+1 are constructed to be “as constant
as possible” to account for the rigidity of the cross-sections Ai. This is achieved by
minimising

min
t∈L2(Γi)
c∈R3

∫
Γs

‖t(s)− c‖ ds, (5.38)

under the constraint that (5.34) holds, see [117] for more details.
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5. Femoroacetabular Impingement Analysis

Remark 5.1.8. The damped update of the interface values (5.37) within Dirichlet–
Neumann methods is necessary for the convergence of the scheme. An example of
divergence in the undamped case is shown in [108, p.12].

Remark 5.1.9. An extension of the model considering two-body contact between the
ligaments and the bones could be solved with the algorithm described above, by additionally
updating the rigid obstacle Γobs in each iteration and augmenting the Neumann force field
tk+1 by the traction forces exerted by the ligaments. The construction of suitable contact
forces like in (5.38) is subject of future work.

Automatic construction of the geometric model

Figure 5.12.: Morphing of the mean shape (left) into a patient-specific geometry (right).

The joint geometries that we consider stem from the articulated statistical shape model
developed by Lamecker et al. [85], which is making use of a principal component analysis.
Starting from an averaged mean shape this model allows the approximate reconstruction
of patient-specific hip geometries by minimising a suitable error measure [37]. The
resulting shape parameters define the individual geometries by morphing of the mean
shape, see Figure 5.12.
We constructed the insertion sites of the ligaments for the mean shape in consistency with
anatomy books [104]. Hence, the shape parameters automatically define the corresponding
insertion sites for the patient-specific geometry by morphing, see Figure 5.13.

Figure 5.13.: Movement of the insertion sites of the ligaments.

Remark 5.1.10. The statistical shape model [85] has another great advantage. The
patient-specific geometries depend on the shape-parameter and the mean shape. Thus,
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the governing equations of motion can be formulated as a parameter-dependent system
of PDEs. For these kind of problems reduced basis methods have been developed [113]
that use a priori information to speed-up the costly finite element simulations drastically,
which will be the focus of future work.

5.2. Finite element ROM and FAI analysis

Based on the heterogeneous joint model introduced in Section 5.1, we propose the
following finite element FAI analysis. Let us assume that a 3D joint geometry was already
constructed by e.g. segmentation of a CT and that the insertion sites of the ligaments
are known, either from MRI data or constructed in an automatic way, cf. Section 5.1.2.
Moreover, assume that the centre of rotation has been determined, e.g. using a sphere
fitting algorithm, and that the corresponding axes of motion are given, see Figure 5.2.
The initial configurations of the ligaments are constructed by solving a static Cosserat
problem (5.26) with non-penetration constraints given by the bones and Dirichlet values
given by the insertion sites.
For each of the six motions (flexion, extension, abduction, etc.) we drive the finite element
joint model to maximal deflection by applying time-dependent Neumann forces to the
femur while fixing the pelvis with homogeneous Dirichlet conditions, see Figure 5.14. The
Neumann traction forces are chosen such that they induce a rotational motion within
the corresponding plane of motion. Once impingement of the femur and the acetabular
rim occurs the maximal deflection is reached and the associated angle is measured.

Figure 5.14.: Left: Dirichlet patch of the pelvis and Neumann boundary of the femur.
Middle: Sagittal cut of the joint illustrating the time-dependent Neumann
forces in tangential direction. Right: Sagittal cut of the joint at maximal
extension.
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5.2.1. Comparison with state-of-the-art models

In the following example we compare our finite element FAI model with a state-of-the-art
model [86]. In this approach the centre of rotation is fixed and rigid body rotation along
the axes of motion is performed until collision is detected. In this spirit we will call our
FAI analysis a “flexible centre” approach hereafter. We use the 3D hip geometry of the
mean shape, cf. 5.1.2, which we extended by ligaments.

In the left of Figure 5.15 the initial coarse grids of the joint are shown, that have been
extracted together with a boundary parametrisation [77] from the statistical shape model
[85], using the PSurface implementation [118] within Amira [41]. In the middle
the three times refined grids (130,560 degrees of freedom) are shown together with the
ligaments that have been visualised as triangulated surfaces. Realistic material parameters

Figure 5.15.: Left: Coarse bone grids. Middle: Fine initial joint position with remeshed
ligaments. Right: Joint in the final extended position.

for the bones and ligaments have been taken from the literature [33] and [135]. As

parameter bone ligament
Young’s modulus 17 GPa 330 MPa
Poisson ratio 0.3 0.3

mass density 2 g/cm3 1 g/cm3

Table 5.2.: Material parameters for bone and ligaments.
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5.2. Finite element ROM and FAI analysis

Figure 5.16.: Construction of the Neumann traction forces. First each node P of the
Neumann boundary is projected onto the plane of motion. Then the distance
vector of the projected node P̃ to the center is rotated about a fixed amount.
The resulting displacement is used to determine the direction of the traction
force tP and scaled suitably.

described in the previous Section 5.2 the pelvis grid is supplemented with homogeneous
Dirichlet boundary conditions. At the lower end of the femur time-dependent rotational
Neumann forces are prescribed as described in Figure 5.16. In this simulation a total
number of 30 time steps with step size τ = 0.01 were computed. The solution of the local
problems took about 30s for an inexact one and 160s for the exact problem. Compared to
the computation times obtained in the previous numerical example in Section 4.4.2, the
multigrid convergence deteriorated a bit. This behaviour was observed before whenever
parametrised boundaries are used [117]. In this case the refined approximation of the
grid boundaries does not yield nested grid hierarchies in general.
In Figure 5.17 the configuration at the time of the first contact between the pelvis and
the femur is compared to the analogous position of a rigid body rotation with fixed joint
centre. Our model predicted a slightly different extension angle, but more importantly, a
displacement of the joint centre about 2mm was measured, see Figure 5.18.

Concluding remarks

The model proposed in this thesis is by no means complete. Many unknowns like the
patient-specific cartilage layers or ligament positions and initial strains make an exact
prediction of the impingement zones very difficult. However, in contrast to prevailing
approaches, a proper stability analysis of the centre under loads can be performed and
even extreme movements like hyperextensions can be tested to predict possible dislocation
of hip joint implants. We conclude that the proposed FAI analysis has the potential to
improve present virtual medicine in pre-operational hip surgery planning.
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Figure 5.17.: Left: Comparision of our finite element FAI and the pure rigid body approach.
The red grid corresponds to the rotation with fixed rotational centre; the
yellow shade to the flexible centre.

Figure 5.18.: Range of motion analysis in the sagittal plane. The black dot denotes the
initial centre and the red one the moving centre of femoral head. From
left to right: a) Initial position. b) Extension position with fixed rotational
centre. c) Extension position for flexible centre.
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A. Appendix

A. Introduction to Constrained Optimisation

In this section we will give a short introduction to the theory of non-linear constrained
optimisation. First we start with a very general problem and repeat the first order
optimality conditions and then construct a criticality measure for bound constrained
problems to monitor the convergence of several descent algorithms. Let us consider the
general non-linear constrained minimization problem

min
ϕ∈K
J (ϕ), (P)

with

K :=
{
ϕ ∈ RN : g(ϕ) ≥ 0

}
. (A.1)

The functions g : RN −→ Rm, J : RN −→ R are assumed to be twice continuously
differentiable on an open neighbourhood of the feasible set and can be non-convex.
By adding the indicator function of (A.1), the problem (P) can be reformulated as a
non-smooth unconstrained minimisation problem

min
ϕ∈RN

J (ϕ) + IK(ϕ). (A.2)

Analogously to Theorem 1.4.8 it can be shown that for critical points ϕ∗ of (A.2) it holds

0 ∈ ∇J (ϕ∗) + ∂F IK(ϕ∗). (A.3)

To derive the classical Karush-Kuhn-Tucker (KKT) optimality conditions one has to make
a further assumption on the constraint Jacobian to exclude degenerate cases. Therefore,
let the set of active constraints be denoted by

A(ϕ) := {i ∈ N : gi(ϕ) = 0} . (A.4)

Definition A.1 (Linear Independence Constraint Qualification). Let ϕ ∈ K, then
(LICQ) holds at ϕ if

∇gi(ϕ), i ∈ A are linear independent. (LICQ)
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Remark A.2. The condition (LICQ) can be weakened further to derive the (KKT)
conditions [121, Chapter 12]. We will restrict ourselves to this assumption because it is
equivalent to the uniqueness of the Lagrange multipliers [31].

When this constraint qualification holds, the Fréchet subdifferential ∂F IK(ϕ) can be
characterised as follows:

Proposition A.3. Let ϕ ∈ K and let (LICQ) hold at ϕ. Then

∂F IK(ϕ) =

{∑
i∈A

λi∇gi(ϕ) : λi ∈ R, λi ≤ 0

}
. (A.5)

Proof. [121, Corollary 11.6.2]

We are now ready to state the classical first order optimality conditions.

Theorem A.4 (Karush-Kuhn-Tucker Optimality Conditions). Let ϕ∗ ∈ K be a locally
critical point of (P) and assume that (LICQ) holds at ϕ∗. Then there exists a unique
Lagrange multiplier λ ∈ Rm, such that

∇J (ϕ∗) + λT∇g(ϕ∗) = 0,

g(ϕ∗) ≥ 0, g(ϕ∗)λ = 0, λ ≤ 0.
(KKT)

Proof. Follows from Proposition A.3 and extending the multiplier by zero for all inactive
components. The uniqueness of λ is proven in [31].

A.1. Criticality measures

In this section, following [30, Chapter 12], we will introduce a measure for the first order
criticality of an iterate to monitor the convergence of an algorithm.

Definition A.5 (Criticality Measure). A function χ : RN −→ R is called criticality
measure of (P) if

• χ is non-negative and continuous.

• χ(ϕ) = 0 ⇐⇒ ϕ is a local first order critical point.

We now want to construct a computable criticality measure for the case of convex
constraints. This measure will be used to identify solutions of the local quadratic
problems within SQP methods. In the global method convergence of the sequence
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towards critical points of (P) can be shown using this local criticality measure and
perturbation theory, see e.g. [43, Theorem 2.2.6]. Let us assume for the rest of this
section:

Assumption A. The constraints gi are convex.

We denote the closest point projection onto the convex set K by PK : RN −→ K. Note
that for convex sets the projection PK(ϕ) is unique, see e.g.[136]. For the case of
box-constraints it can be computed explicitly

K =
N∏
i=1

[li, ui] =⇒ PK(ϕ) =


ϕi li ≤ ϕi ≤ ui,

li ϕi < li,

ui ui < ϕi.

(A.6)

The criticality measure we will construct is based on the projected gradient path.

Definition A.6. The path p : RN × [0,∞) −→ RN

p(ϕ, t) := PK (ϕ− t∇J (ϕ)) , (A.7)

is called projected gradient path.

Figure A.1.: Example of a projected gradient path.

Similar to the gradient being zero in the unconstrained case, the projected gradient path
can be used to characterise local critical points in the constrained case.

Proposition A.7. Let Assumption A hold. Then, ϕ∗ is a locally critical point of Problem
(P) if and only if

p(ϕ∗, t) = ϕ∗ ∀ t ≥ 0. (A.8)
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Proof. The proof is based on the property that if for some t∗ ≥ 0

0 ∈ ∇J(ϕ) + ∂IK (p(ϕ, t∗)) ,

then it holds

p(ϕ, t∗) = p(ϕ, t) ∀ t ≥ t∗.

See [30, Theorem 12.1.2]

Proposition A.8. Let Assumption A hold. Then the function

χ(ϕ) := ‖p(ϕ, 1)−ϕ‖, (A.9)

is a criticality measure of (P).

Proof. [30, Theorem 12.1.6]

Remark A.9. Consider the local trust–region problem (3.32) with mk,∆k,ϕk ∈ K given.
Then the first local minimum t∗ ≥ 0 on the corresponding projected gradient path p(ϕk, ·)
fulfils

mk(0)−mk(p(ϕk, t
∗)−ϕk) ≥ κχ(ϕk) min

{
χ(ϕk)

‖∇2mk(0)‖
,∆k

}
, (A.10)

for some constant κ > 0, see e.g. [30, Theorem 12.2.2].

Remark A.10. An equivalent definition of the criticality measure χ as the solution of a
convex linear minimisation problem is given by

χ(ϕ) = | min
g(ϕ+d)≥0
‖d‖=1

〈∇J (ϕ), d〉|. (A.11)

See e.g. [30, Theorem 12.1.6].

B. Detailed steps towards convergence of the
filter–trust–region method.

In this section we assume the following:

Assumption F1. The iterates ϕk of Algorithm FTR stay in a compact set C ⊇ K.

Assumption F2. The energy functional J and the constraints g are twice continuously
differentiable on C.
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Assumption F3. The inexact Jacobians G̃(·) are continuous on C and induce a con-
tinuous invertible transformation T . The transformed inexact Jacobians are positive,
diagonal and the inverse is bounded away from zero

‖(G̃(ϕ)T (ϕ)T )−1‖ ≤ κT . (B.12)

Assumption F4. For a compatible sub-problem the tangential step tk fulfils

m(nk + tk)−m(0) ≥ κscχ̃k min{χ̃k,∆k}.

With these assumptions and Lemmata 3.4.9 and 3.4.10 the single steps towards the
main convergence theorem can be carried out identically to the proof of the original
filter method [47]. In the following we will state the needed lemmata and give a short
description of how to proof them. First one can show that the model decrease of the full
step can be bounded from below by the trust-region if the radius is sufficiently small and
the inexact critically measure is not zero.

Lemma B.1. Assume that TRQP(ϕk,∆k) is compatible, that

χ̃k ≥ ε > 0, (B.13)

and that

∆k ≤ min

{
ε

κH
, 2

(
κf

κHκ∆κµ

) 1
1+µ

,

(
κscε

4κfκ∆κµ

)1+µ
}

=: δm.

Then

mk(0)−mk(uk) ≥
1

2
κscε∆k.

Proof. The proof consists of using the Cauchy decrease F4 and bounding the model
decrease of the normal step using Assumption F1 and the compatibility bound 3.48, see
[47, Lemma 3.5].

By restricting the trust–region further the local model becomes a better approximation
of the non-linear functional and very successful iterations can be guaranteed

Lemma B.2. Assume that TRQP(ϕk,∆k) is compatible, that

χ̃k ≥ ε > 0,

and that

∆k ≤ min

{
δm,

(1− η2)κscε

2κm

}
=: δρ.

Then
ρk ≤ η2.
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Proof. Use Lemma B.1 and the fact that

|J (ϕk + uk)−mk(uk)| ≤ κm∆2
k,

[47, Lemma 3.6].

Next it can be shown that for a small trust-region the ϑ-type condition holds

Lemma B.3. Assume that TRQP(ϕk,∆k) is compatible, that

χ̃k ≥ ε > 0,

and that

∆k ≤ min

{
δm,

(
κscε

2κϑκ2
ui

) 1
1+2µ

}
=: δf .

Then

mk(0)−mk(uk) ≥ κϑϑ
2
k.

Proof. Follows from the compatibility 3.48 and Lemmata 3.4.10 and B.1

If the infeasibility is small one can further deduce that enough energy decrease is generated
so that the iterate is acceptable to the filter.

Lemma B.4. Assume that TRQP(ϕk,∆k) is compatible, that

χ̃k ≥ ε > 0,

and that

ϑk ≤ κ
− 1
µ

ui

(
η2κscε

2γϑ

) 1+µ
µ

=: δϑ.

Then

J (ϕk + uk) ≤ J (ϕk)− γϑϑk.

Proof. Lemmata 3.4.10, B.1 and B.2

The compatibility condition of the local problem TRQP can be proven if the infeasibility
is bounded by the trust-region radius. To conclude that this holds when both the radius
and the infeasibility are small is the result of the next lemma.
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B. Detailed steps towards convergence of the filter–trust–region method.

Lemma B.5. Assume that
χ̃k ≥ ε > 0,

that k > 0 with
ϑk ≤ δϑ,

and

∆k ≤ min

γ 1
2
δρ,

(
γ2

1
2

(1− γϑ)κ∆κµ

κuiκn

) 1
1−µ
 =: δR.

Then TRQP(ϕk,∆k) is compatible.

Proof. Proof by contradiction, using the previous lemmata, see [47, Lemma 3.9].

With these tools at hand it can be concluded that if during the filter method an infinite
number of iterates is added to the filter, then there exist a convergent subsequence. To
this end we define

Z := {k ∈ N|ϕk is added to the filter} .

Lemma B.6. Assume that the feasibility restoration phase (FPR) always terminates
successfully and let (ϕk)k be a sequence generated Algorithm FTR such that |Z| = ∞.
Then there exists a subsequence (kl)l ⊆ Z such that

lim
l−→∞

ϑkl = 0,

and
lim
l−→∞

χ̃kl = 0.

Proof. This lemma is again proven by contradiction. Assume that the criticality measure
is bounded away from zero

χ̃kl ≥ ε1 > 0,

and that in this case the trust-region is not converging to zero

∆kl ≥ ε2 > 0.

The feasibility of the sub-sequence follows immediately from Lemma 3.4.8. See [47,
Lemma 3.10] for more details.

Finally we prove Lemma B.6 for the case when only finitely many iterates were added to
the filter.
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Lemma B.7. Assume that the feasibility restoration phase (FPR) always terminates
successfully and let (ϕk)k∈N be a sequence generated by Algorithm FTR such that |Z| <∞,
then

lim
k−→∞

ϑk = 0.

Proof. From |Z| <∞ it follows that for k large enough condition (3.59)

mk(0)−mk(uk) ≥ κϑϑ
2
k ≥ 0,

never fails. Thus using Assumptions F1 and F2 and the mechanism of the algorithm
yields the result, [47, Lemma 3.11].

With this lemma at hand one can deduce that for non-critical points the trust-region
radius cannot become arbitrarily small.

Lemma B.8. Assume that the feasibility restoration phase (FPR) always terminates
successfully and let (ϕk)k∈N be a sequence generated by Algorithm FTR such that |Z| <∞,
and

χ̃k ≥ ε > 0,

for all k large enough. Then there exists ∆min > 0 such that

∆k ≥ ∆min,

for all k ∈ N.

Proof. Proof by contradiction using the mechanism of the algorithm, see [47, Lemma 3.12].

This then yields the desired result for the case of a finite filter.

Lemma B.9. Assume that the feasibility restoration phase (FPR) always terminates
successfully and let (ϕk)k∈N be a sequence generated by Algorithm FTR such that |Z| <∞.
Then

lim inf
k−→∞

χ̃k = 0.

Proof. Proof by contradiction, assuming that

χ̃k ≥ ε > 0,

and using the previous lemmata, see [47, Lemma 3.13].
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beim Hüftendoprothesenwechsel. Mittelfristige klinische und radiologische Ergeb-
nisse.” PhD thesis. Philipps-Universität Marburg Medizin, 2008.

[9] P. Bastian, G. Buse, and O. Sander. “Infrastructure for the coupling of Dune
grids”. In: Numerical Mathematics and Advanced Applications 2009. Springer,
2010, pp. 107–114.

[10] P. Bastian et al. “A Generic Grid Interface for Parallel and Adaptive Scientific
Computing. Part I: Abstract Framework”. In: Computing 82.2–3 (2008), pp. 103–
119. doi: http://www.springerlink.com/content/4v77662363u41534/.

[11] P. Bastian et al. “A Generic Grid Interface for Parallel and Adaptive Scien-
tific Computing. Part II: Implementation and Tests in DUNE”. In: Computing
82.2–3 (2008), pp. 121–138. doi: http://www.springerlink.com/content/
gn177r643q2168g7/.

[12] P. Bastian et al. DUNE Web page. http://www.dune-project.org. 2011.

[13] P. Bastian et al. “UG–a flexible software toolbox for solving partial differential
equations”. In: Computing and Visualization in Science 1.1 (1997), pp. 27–40.

117

http://dx.doi.org/10.1016/S0045-7825(97)00256-9
http://dx.doi.org/http://www.springerlink.com/content/4v77662363u41534/
http://dx.doi.org/http://www.springerlink.com/content/gn177r643q2168g7/
http://dx.doi.org/http://www.springerlink.com/content/gn177r643q2168g7/


Bibliography

[14] K. Bathe and A. Chaudhary. “A solution method for planar and axisymmetric
contact problems”. In: Int. J. Num. Meth. in Eng. 21.1 (1985), pp. 65–88. doi:
10.1002/nme.1620210107.

[15] M. Beck et al. “Hip morphology influences the pattern of damage to the acetabular
cartilage femoroacetabular impingement as a cause of early osteoarthritis of the
hip”. In: Journal of Bone & Joint Surgery, British Volume 87.7 (2005), pp. 1012–
1018.

[16] A. Bedi et al. “Surgical treatment of femoroacetabular impingement improves
hip kinematics a computer-assisted model”. In: The American journal of sports
medicine 39.1 suppl (2011), 43S–49S.

[17] F. B. Belgacem, P. Hild, and P. Laborde. “Approximation of the unilateral
contact problem by the mortar finite element method”. In: Comptes Rendus de
l’Academie des Sciences Series I Mathematics 324.1 (1997), pp. 123–127. doi:
10.1016/S0764-4442(97)80024-9.

[18] T. Belytschko and D. F. Schoeberle. “On the Unconditional Stability of an Implicit
Algorithm for Nonlinear Structural Dynamics”. In: J. of Appl. Mech. 42.4 (1975),
pp. 865–869. doi: 10.1115/1.3423721.

[19] C. Bernardi, Y. Maday, and A.T. Patera. “A new nonconforming approach
to domain decomposition: the mortar element method”. In: Nonliner Partial
Differential Equations and Their Applications 9 (1994), pp. 13–51. url: http:
//ci.nii.ac.jp/naid/10018481740/en/.

[20] P. Betsch and C. Hesch. “Energy-momentum conserving schemes for frictionless
dynamic contact problems”. In: IUTAM symposium on computational methods in
contact mechanics. Springer. 2007, pp. 77–96.

[21] D. Braess. Finite elements: Theory, fast solvers, and applications in solid mechan-
ics. Cambridge University Press, 2007.

[22] A. Brandt. “Rigorous Quantitative Analysis of Multigrid, I. Constant Coefficients
Two-Level Cycle with L 2-Norm”. In: SIAM Journal on Numerical Analysis 31.6
(1994), pp. 1695–1730.

[23] R. H. Byrd, M. E. Hribar, and J. Nocedal. “An interior point algorithm for large-
scale nonlinear programming”. In: SIAM Journal on Optimization 9.4 (1999),
pp. 877–900.

[24] T. Chang et al. “A pre-operative approach of range of motion simulation and
verification for femoroacetabular impingement”. In: The International Journal of
Medical Robotics and Computer Assisted Surgery 7.3 (2011), pp. 318–326.

[25] G. Chen et al. “A three-dimensional finite element model for biomechanical
analysis of the hip”. In: Cell biochemistry and biophysics 67.2 (2013), pp. 803–808.

[26] P. Ciarlet. Mathematial Elasticity: Volume I Three-Dimensional Elasticity. Elsevier,
1988.

118

http://dx.doi.org/10.1002/nme.1620210107
http://dx.doi.org/10.1016/S0764-4442(97)80024-9
http://dx.doi.org/10.1115/1.3423721
http://ci.nii.ac.jp/naid/10018481740/en/
http://ci.nii.ac.jp/naid/10018481740/en/


Bibliography

[27] F. Clarke. Optimization and Nonsmooth Analysis. Vol. 5. Siam, 1990. doi: 10.
1137/1.9781611971309.

[28] T. F. Coleman and Y. Li. “On the convergence of interior-reflective Newton meth-
ods for nonlinear minimization subject to bounds”. In: Mathematical programming
67.1-3 (1994), pp. 189–224.

[29] A. R. Conn, N. I. M. Gould, and P. L. Toint. “Global convergence of a class
of trust region algorithms for optimization with simple bounds”. In: J. of Appl.
Mech. MPS-SIAM Series on Optimization 25.2 (1988). doi: 10.1137/0725029.

[30] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. MPS-SIAM
Series on Optimization. Siam, 2000. doi: 10.1137/1.9780898719857.

[31] A. R. Conn and J. W. Tolle. “A necessary and sufficient qualification for con-
strained optimization”. In: J. on Appl. Math. 20.2 (1971), pp. 164–172. doi:
10.1137/0120021.

[32] A. R. Conn et al. “Global convergence of a class of trust region algorithms for
optimization using inexact projections on convex constraints”. In: SIAM Journal
on Optimization 3.1 (1993), pp. 164–221.

[33] J. D. Currey. Bones: structure and mechanics. Princeton University Press, 2002.

[34] P. Deuflhard, R. Krause, and S. Ertel. “A contact-stabilized Newmark method
for dynamical contact problems”. In: Int. J. Numer. Methods Eng. 73 (2008),
pp. 1274–1290. doi: 10.1002/nme.2119.

[35] P. Deuflhard and M. Weiser. Adaptive numerical solution of PDEs. Walter de
Gruyter, 2012.

[36] C. Eck, J. Jarusek, and M. Krbec. Unilateral contact problems: variational methods
and existence theorems. Vol. 270. CRC Press, 2005.

[37] M. Ehlke et al. “Towards Robust Measurement of Pelvic Parameters from AP
Radiographs using Articulated 3D Models”. In: Int. J. Comp. Ass. Rad. and Surg.
(2015).

[38] I. Ekeland and R. Temam. Convex Analysis and Variational Problems. Siam, 1987.
doi: 10.1137/1020024.

[39] J. Elstrodt. Maß-und Integrationstheorie. Springer-Verlag, 2006. isbn: 3540267034.

[40] R. P. Fedorenko. “A relaxation method for solving elliptic difference equations”. In:
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1.5 (1961), pp. 922–
927.

[41] FEI. Amira Web page. http://www.amira.com.

[42] A. V. Fiacco and G. P. McCormick. Nonlinear programming: sequential uncon-
strained minimization techniques. Vol. 4. Siam, 1990.

[43] A.V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Pro-
gramming. Mathematics in science and engineering. Academic Press, 1983. isbn:
9780122544507.

119

http://dx.doi.org/10.1137/1.9781611971309
http://dx.doi.org/10.1137/1.9781611971309
http://dx.doi.org/10.1137/0725029
http://dx.doi.org/10.1137/1.9780898719857
http://dx.doi.org/10.1137/0120021
http://dx.doi.org/10.1002/nme.2119
http://dx.doi.org/10.1137/1020024


Bibliography

[44] K. Fischer and P. Wriggers. “Frictionless 2D Contact formulations for finite
deformations based on the mortar method”. In: Comp. Mech. 36 (2005), pp. 226–
244. doi: 10.1007/s00466-005-0660-y.

[45] R. Fletcher and S. Leyffer. “Nonlinear programming without a penalty function.”
In: Math. Programming 91 (2002), pp. 239–269. doi: 10.1007/s101070100244.

[46] R. Fletcher, S. Leyffer, and P. Toint. “On the Global Convergence of a Filter–
SQP Algorithm”. In: SIAM Journal on Optimization 13.1 (2002), pp. 44–59. doi:
10.1137/S105262340038081X.

[47] R. Fletcher et al. “Global Convergence of a Trust-Region SQP-Filter Algorithm
for general nonlinear programming”. In: SIAM Journal on Optimization 13.3
(2002), pp. 635–659. doi: 10.1137/S1052623499357258.

[48] G. B. Folland. Real analysis: modern techniques and their applications. John Wiley
& Sons, 2013. isbn: 1118626397.

[49] M. Gander and C. Japhet. “An algorithm for non-matching grid projections with
linear complexity”. In: Domain Decomposition Methods in Science and Engineering
XVIII. Springer, 2009, pp. 185–192.

[50] P. E. Gill, W. Murray, and M. A. Saunders. “SNOPT: An SQP algorithm for
large-scale constrained optimization”. In: SIAM journal on optimization 12.4
(2002), pp. 979–1006.

[51] O. Gonzalez. “Exact energy and momentum conserving algorithms for general
models in nonlinear elasticity”. In: Comp. Meth. Appl. Mech. Eng. 190 (1999),
pp. 1763–1783. doi: 10.1016/S0045-7825(00)00189-4.

[52] M.S. Bazaraa J. Goode and M. Z. Nashed. “On the cones of tangents with
applications to mathematical programming”. In: Journal of Optimization Theory
and Applications 13.4 (1974), pp. 389–426.
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[55] C. Gräser, U. Sack, and O. Sander. “Truncated Nonsmooth Newton Multigrid
Methods for Convex Minimization Problems”. In: Proc. of DD18. 2009, pp. 129–
136. doi: 10.1007/978-3-642-02677-5.

[56] S. Gratton, A. Sartenaer, and P. L. Toint. “Recursive trust-region methods for
multiscale nonlinear optimization”. In: SIAM Journal on Optimization 19.1 (2008),
pp. 414–444.

[57] P. Grohs, H. Hardering, and O. Sander. “Optimal a priori discretization error
bounds for geodesic finite elements”. In: Foundations of Computational Mathe-
matics (2013), pp. 1–55.

120

http://dx.doi.org/10.1007/s00466-005-0660-y
http://dx.doi.org/10.1007/s101070100244
http://dx.doi.org/10.1137/S105262340038081X
http://dx.doi.org/10.1137/S1052623499357258
http://dx.doi.org/10.1016/S0045-7825(00)00189-4
http://dx.doi.org/10.1007/978-3-642-02677-5


Bibliography

[58] C. Groß and R. Krause. “A recursive trust-region method for non-convex con-
strained minimization”. In: Lecture Notes in Computational Science and Engi-
neering 70 LNCSE.409 (2009), pp. 137–144. issn: 14397358. doi: 10.1007/978-
3-642-02677-5\_13.
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Zusammenfassung

Die Hüftoperationsplanung heutzutage basiert trotz modernster Technologien immer noch
hauptsächlich auf Röntgenbildern. Das Gelenkzentrum, die Größe und die Position eines
Implantats werden dabei nur mit Hilfe von simplen Schablonen bestimmt [76]. Daraus
resultierend lag die Rate an sekundären Hüftoperation im Jahre 2006 bei fast 15% [8]. Ziel
der vorliegenden Arbeit ist die Entwicklung eines patienten-spezifischen Finite-Element
Hüftmodells, welches für die Schätzung der Spannungen während alltäglicher Bewegungen,
wie auch einer Bewegunsraumanalyse, verwendet werden kann. Der Vorteil solch eines
Finite-Element Modells gegenüber den fachüblichen Starrkörper-Simulationspaketen, ist
die Möglichkeit der Stabilitätsanalyse des Gelenks selbst unter extremen Belastungen.
Der Kern eines solchen Hüftmodells liegt in der akkuraten Modellierung und Simulation
von dynamischen Kontaktproblemen mit großen Deformationen.
In dem ersten Teil dieser Arbeit leiten wir auf der Vorarbeit von [70] eine neuartige
Formulierung von Kontaktproblemen her, welche auf einer Erweiterung des Hamilton-
schen Prinzips basieren. Diese Formulierung hat den Vorteil, dass die Kontaktkräfte
nur implizit auftreten und variationell konsistent aus dem Residuum der gelösten Gle-
ichung wiederhergeleitet werden können. Für diese schwache Formulierung entwickeln
wir eine Stabilisierung der implizierten Mittelpunktsregel, welche das energetische Ver-
halten des Zeit-Integrators deutlich verbessert. Wegen der erschwerten theoretischen
Analyse des Verfahrens, wird dieses nur numerisch getestet und Schritte zur weiteren
Verbesserung vorgeschlagen. Das Hauptresultat dieser Arbeit liegt in der Entwicklung
eines inexakten Filter Verfahrens für die Lösung der diskretisierten Probleme. Zur
Beschleunigung des Lösers werden solange wie möglich approximierte Linearisierungen
der Nicht-Durchdringungs-Bedingung verwendet, welche mit schnellen monotonen Mehr-
gitter Verfahren gelöst werden können. Die Erweiterung der monotonen Mehrgitter für
nicht-konvexe Probleme, genauso wie ein Beweis der globalen Konvergenz wird hergeleitet
und numerisch bestätigt. Ebenso wird die Konvergenz des inexakten Filter Verfahrens
bewiesen, solange der Approximationsfehler der inexakten Linearisierung kontrolliert wird.
Im zweiten Teil der Dissertation wird eine heterogenes Finite-Element Hüftmodell beste-
hend aus dem Femur und Pelvis Knochen und den drei Hauptbändern vorgestellt. Dies
ist eine direkte Erweiterung des Knie-Modells [120] auf nichtlineare Materialien und große
Deformationen. Im Zuge dessen wird eine neue Kontaktmodellierung, Diskretisierung
und Lösungsverfahren für Cosserat Stäbe mit starren Hindernissen entwickelt, welche zur
Darstellung der Bänder benutzt werden. Erste Ergebnisse einer Bewegungsraumanalyse
und ein Vergleich mit einem Starrkörper-Ansatz werden durchgeführt.
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