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Abstract

Modern systems of official statistics require the estimation and publication of business statistics

for disaggregated domains, for example, industry domains and geographical regions. Outlier robust

methods have proven to be useful for small area estimation. Recently proposed outlier robust model-

based small area methods assume, however, uncorrelated random effects. Spatial dependencies,

resulting from similar industry domains or geographic regions, often occur. In this paper we propose

outlier robust small area methodology that allows for the presence of spatial correlation in the data. In

particular, we present a robust predictive methodology that incorporates the potential spatial impact

from other areas (domains) on the small area (domain) of interest. We further propose two parametric

bootstrap methods for estimating the mean-squared error. Simulations indicate that the proposed

methodology may lead to efficiency gains. The paper concludes with an illustrative application by

using business data for estimating average labour costs in Italian provinces.

Keywords: Bias correction, projective and predictive estimators, spatial correlation, business surveys

1 Introduction

An important set of outputs for National Statistical Institutes (NSIs) are enterprise and trade statistics

derived from business survey data. This has recently extended to small area/domain estimates for busi-

ness statistics. During the last two decades there has been substantial growth in the development and

application of model-based small area methods. However, small area estimation using business survey

data presents a number of challenges. In this paper we focus on small area estimation when there are

representative outliers (Chambers, 1986) in the sample data.

Outliers can invalidate the conventional parametric assumptions of Gaussian random effects and unit

level errors of model-based methods, which in turn can impact the validity of model-based small area

estimators. Sinha and Rao (2009) proposed a robust methodology for estimating the parameters of the

nested error regression model that controls for the influence of outliers. An alternative approach that also

uses influence functions to control the impact of outliers but is based on a different model was proposed
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by Chambers and Tzavidis (2006). Both outlier robust estimators of Sinha and Rao (2009) and Chambers

and Tzavidis (2006) are plug-in estimators. This implicitly assumes that all non-sample values follow a

well-behaved working model, so that their sum can be predicted using an outlier robust fit of this working

model to the outlier contaminated sample data. Chambers et al. (2014) refer to such methods as robust

projective. Robust projective methods typically lead to biased estimators with lower variances. This is

due to the fact that it is extremely unlikely that the non-sampled values in the target population are drawn

from a distribution with the same mean as the sample non-outliers. To correct for this bias, Dongmo-

Jiongo et al. (2013) and Chambers et al. (2014) proposed bias-corrected robust small area estimators with

either local (area-specific) or global correction terms. Such bias-corrected estimators are referred to by

Chambers et al. (2014) as robust predictive. The methodology used for building these robust predictive

estimators goes back to the seminal work of Chambers (1986) and Welsh and Ronchetti (1998), in the

sense that the local correction is obtained when the robust estimator is defined as the expected value of the

small area mean under the outlier robust distribution function proposed by Welsh and Ronchetti (1998),

while the global correction is motivated by extending the outlier robust population mean estimator of

Chambers (1986) to a mixed effects working model.

In this paper we extend these ideas to outlier robust small area estimation under spatial correlation.

Borrowing strength over space in small area estimation has been shown to offer some efficiency gains.

One approach considers the use of geographically weighted regression (cf. Chandra et al., 2012 and

Salvati et al., 2012), but this usually assumes that geo-referenced data at the individual level is available.

This is hardly ever the case in business survey data. Another approach extends the nested error regression

model by allowing for spatially correlated random effects that follow a simultaneously autoregressive

(SAR) process (cf. Pratesi and Salvati, 2008). However, none of these methods considered estimation in

the presence of outliers.

The approach we follow in this paper assumes a nested error regression model with correlated random

effects that follow a SAR process. After reviewing the current literature on outlier robust small area

estimation in Section 2, we present robust projective and robust predictive small area estimators under

spatial correlation in Section 3. Mean Squared Error (MSE) estimation is studied in Section 4 by using

two parametric bootstrap schemes that account for the spatial structure. The first scheme is based on a

modified version of the parametric bootstrap proposed by Sinha and Rao (2009), whereas the second one

is grounded on a modified version of the parametric bootstrap proposed by Dongmo-Jiongo et al. (2013).

In Section 5 we empirically evaluate the proposed methodology by using a Monte-Carlo simulation

under a range of scenarios. In Section 6 we apply the proposed methodology to business survey data

from Italy. We conclude the paper by summarising our main findings and by providing some ideas for

further research.

2 Outlier robust small area estimation

In this section we review the current literature on outlier robust small area estimation. We assume that

the population of interest U of size N is divided into m non-overlapping small areas of sizes Ni and that
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individual level data is available. The variable of interest is denoted by yj and is assumed to be linearly

related to a set of individual level auxiliary variables xj and a set of area level covariates zj . The sample

s of size n is selected from the population by using a sampling design which is non-informative given

xj and zj . The population is divided into n sampled and N − n non-sampled units, indexed by s and

r respectively. We use the subscript i to indicate the restriction to the specific area i, i. e., si (ri) stands

for the set of sampled (non-sampled) units from area i. Furthermore, we assume that all small areas are

sampled and that the small area population averages of xi and zi for i = 1, ...,m are known.

The industry standard approach to model-based small area estimation with unit level data uses the

Battese, Harter and Fuller model (cf. Battese et al., 1988). This is a nested error regression model with

area-specific random effects:

y = Xβ +Zv + e, (1)

v ∼ N(0,G),

ε ∼ N(0,R).

In (1) β is the k× 1 vector of regression parameters and v is the (m× 1) vector of area specific random

effects. The unit level errors e are assumed to be independently normally distributed with mean 0 and

covariance R = σ2eIN . The covariance matrices G and R depend on a vector of variance parameters

θ = {σ2v , σ2e}. When the area effects are assumed to be independent, the covariance matrix of the random

effects simplifies to G = σ2vIm. Finally, since the two error terms v and e are independent, the covari-

ance matrix of y is given by V = R + ZGZT . Let β̂(θ) define the Best Linear Unbiased Estimator

(BLUE) of β and v̂(θ) denotes the Best Linear Unbiased Predictor (BLUP) of v (cf. Henderson, 1950 or

Searle, 1971). In practice, θ is unknown and needs to be estimated by using e.g. maximum likelihood or

restricted maximum likelihood estimation. This leads to the empirical best versions of β̂(θ̂) and v̂(θ̂).

The EBLUP of the mean in small area i is then given by

ŷ
EBLUP
i = N−1i

{∑
j∈si

yj +
∑
j∈ri

(xTj β̂ + v̂i)
}
. (2)

The EBLUP (2) is optimal when the model assumptions (1) hold. However, the presence of outliers

in the data can invalidate these assumptions. The impact of outliers on estimation can be controlled by

replacing β̂ and v̂ by robust alternatives. One approach for achieving this was proposed by Sinha and

Rao (2009). The paper suggested the use of the Huber influence function ψ for deriving robust versions

of the maximum likelihood estimating equations leading to robust estimators β̂ψ, θ̂ψ and v̂ψ. An outlier

robust version of (2) is

ŷ
REBLUP
i = N−1i

{∑
j∈si

yj +
∑
j∈ri

(xTj β̂
ψ + v̂ψi )

}
. (3)

Chambers et al. (2014) use the term robust projective to refer to estimators such as (3). Robust

projective methods can be severely biased. The reason for the bias is not difficult to find. It is extremely
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unlikely that the non-sampled values in the target population are drawn from a distribution with the same

mean as the sample non-outliers, and yet these methods are built on precisely this assumption. Chambers

(1986) recognised this dilemma and coined the concept of a representative outlier, i. e., a sample outlier

that is potentially drawn from a group of population outliers, and hence, cannot be unit-weighted in

estimation. He noted that representative outliers cannot be treated on the same basis in estimation as other

sample data which are more consistent with the working model for the population, since such values can

seriously destabilise the survey estimates. Chambers (1986) suggested an addition of an outlier robust

bias correction term to a robust projective survey estimator, e. g., one based on outlier-robust estimates

of the model parameters. Such bias-corrected estimators are referred to as robust predictive since they

attempt to predict the contribution of the population outliers to the population parameter of interest.

Chambers et al. (2014) proposed a robust-predictive version of the REBLUP (3) based on the ideas

of Chambers (1986) and Welsh and Ronchetti (1998). This estimator is

ŷ
CCST
i = ŷ

REBLUP
i + (1− ni

Ni
)
1

ni

∑
j∈si

ωψi φk

{
(yj − xTj β̂ψ − v̂

ψ
i )/ω

ψ
i

}
, (4)

where φk denotes a less restrictive influence function (|φ| ≥ |ψ|) with tuning constant k > 0 (cf.

Tzavidis et al., 2010) and ωψi is the median absolute deviation of the residuals in area i. Note that setting

k = 0 leads to the robust projective estimator (3). Hence, the bias-correction term depends only on

local information from area i. Although estimator (4) has very good bias properties, it can suffer from

high variability due to the fact that the correction term depends on the area-specific sample size which

is usually fairly small. To amend this issue, Dongmo-Jiongo et al. (2013) proposed alternative robust

predictive estimators that incorporate a global bias correction term which also depends on information

from other small areas.

The first estimator of Dongmo-Jiongo et al. (2013) uses the ideas of Chambers (1986). The EBLUP

(2) can be reformulated as a weighted linear function of the values in the sample s (cf. Royall, 1976) by

ŷ
EBLUP
i =

1

Ni

∑
j∈s

wEBLUPj yj = (wEBLUP
is )Tys. (5)

Dongmo-Jiongo et al. (2013) used this result and derived the following robust predictive estimator

ŷ
CHAM
i = ŷ

REBLUP
i +N−1i

∑
j∈si

ψk1
{
(wj − 1)(yj − xTj β̂ψ − v̂

ψ
i )
}

(6)

+N−1i

m∑
h 6=i

h=1

∑
j∈sh

ψk1
{
wj(yj − xTj β̂ψ − v̂

ψ
h )
}
+N−1i

m∑
h=1

ψk2
{
$hv̂

ψ
h

}

where

$h =


∑

j∈si wj −Ni, h = i∑
j∈sh wj , h 6= i
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and ψk is the Huber influence function with tuning constant k. Dongmo-Jiongo et al. (2013) pointed out

that the robust predictor (6) converges to the EBLUP (2) for large values of the tuning constant and to the

(3) for small values of the tuning constant. A second approach by Dongmo-Jiongo et al. (2013) uses the

close relationship between the concept of conditional bias (CB) and the influence function (cf. Beaumont

et al., 2013). The conditional bias, originally developed by Muñoz-Pichardo et al. (1995), measures the

average influence of a unit j on an estimator. It is defined by

Bj
(
yj , vh,β,θ

)
= E

(
ŷi(θ)− yi|s, yj , vh

)
(7)

of a unit j in an area h (cf. Beaumont et al., 2013).

Using the concept of conditional bias, Dongmo-Jiongo et al. (2013) proposed a second robust pre-

dictive estimator,

ŷ
CB
i = ŷ

REBLUP
i +N−1i

∑
j∈si

ψk1
{
(wj − 1)(yj − xTj β̂ψ − v̂

ψ
i )
}

(8)

+N−1i

m∑
h 6=i

h=1

∑
j∈sh

ψk1
{
wj(yj − xTj β̂ψ − v̂

ψ
h )
}
+N−1i

m∑
h=1

$hv̂
ψ
h .

3 Robust projective and predictive estimators with spatially correlated

random effects

The robust projective estimators (3) of Sinha and Rao (2009) and the robust predictive estimators (4), (6)

or (8) of Chambers et al. (2014) and Dongmo-Jiongo et al. (2013) have all been developed under a nested

error regression model that assumes uncorrelated random effects. Recent literature has demonstrated that

in some cases borrowing strength over space can improve the efficiency of small area estimators. In this

section we define robust projective and robust predictive estimators in the presence of correlated random

effects.

One way to model spatial correlation is to allow for correlated random effects. We extend the nested

error regression model along the lines of the work by Petrucci et al. (2005) and Pratesi and Salvati (2008)

assuming a SAR process. The SAR model is defined by

y =Xβ +Zv + e, (9)

where the covariance matrices of v and e are defined as in (1) but with

G = σ2v
(
(I − ρW T )(I − ρW )

)−1
(10)

R = diag(σ2e) (11)

respectively. The parameter ρ describes the strength of the spatial correlation andW is a given contiguity

matrix that describes neighbourhood structure between the small areas. Under (9) an estimator of the
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small area mean is defined by

ŷ
SEBLUP
i = N−1i

∑
j∈s

wspj yj = N−1i (wsp
is )

Tys. (12)

The weights wsp
is are given by

(wsp
is )

T =
(
1Ts + (Ni − ni)

(
xTriA+ zTriB(Is −XsA)

))
, (13)

where

A =
(
XT
s V

−1X
)−1

XT
s V

−1

B =
(
ZTR−1Z +G−1

)−1
ZTR−1

and 1s is a vector of size n with

1s =

 1, j ∈ si
0, j ∈ sh

.

As we saw in Section 2, outliers can severely impact upon the estimation of model (9). In order to

control their influence, a robust projective estimator of the small area mean under (9) uses robust ML

equations for the estimation of β, θ, v and ρ leading to

ŷ
SREBLUP
i = N−1i

{∑
j∈si

yj +
∑
j∈ri

(xTj β̂
ψ,sp + v̂ψ,spi )

}
(14)

= N−1i

{
niysi + (Ni − ni)(xTriβ̂ψ,sp + zTriv̂

ψ,sp
i )

}
,

where the superscript ψ points to the dependence of the estimator on the influence function and the

superscript sp indicates that the parameters depend on the spatial correlation parameter ρ (cf. Schmid

and Münnich, 2014). The robust projective estimator (14) is an extension of the Sinha and Rao estimator

under (9), and hence, can suffer from the same bias problems. Thus, there is need to develop robust

predictive estimators in the presence of spatial correlation.

The first robust predictive estimator we propose in this paper uses a local bias correction and is

defined by

ŷ
SCCST
i = ŷ

SREBLUP
i (15)

+(1− ni
Ni

)
1

ni

∑
j∈si

ωψ,spi φk

{
(yj − xTj β̂ψ,sp − v̂

ψ,sp
i )/ωψ,spi

}
,

where ωψ,spi is the median absolute deviation of the residuals under the SAR model (9).

Two additional robust predictive estimators that use global bias correction terms are proposed under

model (9). We start by noticing that (12) can be reformulated as follows (the detailed derivation is
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available in the Appendix),

ŷ
SEBLUP
i = ŷ

SREBLUP
i +N−1

∑
j∈si

(
wspj − 1

)(
yj − xTj β̂ψ,sp − v̂

ψ,sp
i

)
(16)

+N−1
m∑
h 6=i

h=1

∑
j∈sh

wspj
(
yj − xTj β̂ψ,sp − v̂

ψ,sp
h

)
+N−1

m∑
h=1

$sp
h v̂

ψ,sp
h ,

where

$sp
h =


∑

j∈si w
sp
j −Ni, h = i∑

j∈sh w
sp
j , h 6= i

.

The influence of outliers on (16) can be controlled by using a a Huber influence function in the last three

terms of the estimator leading to the following robust predictive estimator,

ŷ
SCHAM
i = ŷ

SREBLUP
i +N−1i

∑
j∈si

ψk1
{
(wspj − 1)(yj − xTj β̂ψ,sp − v̂

ψ,sp
i )

}
(17)

+N−1i

m∑
h6=i

h=1

∑
j∈sh

ψk1
{
wspj (yj − xTj β̂ψ,sp − v̂

ψ,sp
h )

}

+N−1i

m∑
h=1

ψk2
{
$sp
h v̂

ψ,sp
h

}
.

The tuning constants used in the influence function are defined utilising the ideas in Dongmo-Jiongo

et al. (2013). For small values of the tuning constants k1 and k2 the robust predictive estimator converges

to the robust projective estimator (14), whereas for large tuning constants it converges to (12). A detailed

discussion about the choice of the constants is given in Chambers et al. (2014) or Dongmo-Jiongo et al.

(2013). Additional discussion is also provided in Section 5 of the present paper.

The second robust predictive estimator we propose in this paper is based on the concept of conditional

bias, however it is developed under the SAR model. The conditional bias in this case is given by

Bj
(
yj , vh,β,θ

)
=



1
Ni

(wspj − 1)(yj − xTj β − vi) +N−1i $sp
i vi, j ∈ si

1
Ni
wspj (yj − xTj β − vh) +N−1i $sp

h vh, j ∈ sh with h 6= i

− 1
Ni
wspj (yj − xTj β − vi) +N−1i $sp

i vi, j ∈ ri
1
Ni
$sp
h vh, j ∈ rh with h 6= i

.

This leads to the following robust predictive estimator

ŷ
SCB
i = ŷ

SREBLUP
i +N−1i

∑
j∈si

ψk1
{
(wspj − 1)(yj − xTj β̂ψ,sp − v̂

ψ,sp
i )

}
(18)

+N−1i

m∑
h 6=i

h=1

∑
j∈sh

ψk1
{
wspj (yj − xTj β̂ψ,sp − v̂

ψ,sp
h )

}
+N−1i

m∑
h=1

$sp
h v̂

ψ,sp
h .
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4 Mean squared error estimation

Sinha and Rao (2009) and Dongmo-Jiongo et al. (2013) have already pointed out that the estimation

of the mean squared error (MSE) is a challenging problem in the case of robust predictors. In this

section we propose two parametric bootstrap schemes for estimating the MSE of the proposed robust

predictive small area estimators we presented in Section 3. These bootstrap MSE estimators are extended

to incorporate the spatial structure in the data. Both schemes are based on the work in Hall and Maiti

(2006), Sinha and Rao (2009) and Dongmo-Jiongo et al. (2013). The difference between these bootstraps

is in the mechanism used for generating the bootstrap population. In particular, the first bootstrap scheme

generates bootstrap realisations of the random effects v∗ and the error terms e∗ by using the non-robust

estimates of the variance components (cf. Dongmo-Jiongo et al., 2013). In contrast, the second bootstrap

uses robust estimates of the variance components for generating the bootstrap population (cf. Sinha and

Rao, 2009). The comparison between these alternative bootstrap methods is considered for the first time

in the present paper.

The steps of the bootstrap are as follows:

1. For given β̂ψ,sp, θ̂ and ρ̂ estimated with the original sample generate area-specific random effects

v∗ from N(0, G(θ̂, ρ̂)) and e∗ from N(0, R(θ̂)). Use these to generate the bootstrap population

and bootstrap sample,

y∗(b) = Xβ̂ψ,sp + Zv∗ + e∗, (19)

and calculate the corresponding bootstrap population parameter for each area i which we denote

by τ (b)i .

For the first bootstrap method, we generate the bootstrap population by using non-robust estimates θ̂ =

(σ̂v, σ̂e) and ρ̂ = p̂. For the second parametric bootstrap approach we utilise robust estimates θ̂ =

(σ̂ψv , σ̂
ψ
e ) and ρ̂ = p̂ψ. It is important to note that generation of the bootstrap population accounts for

spatial correlation between the random effects.

2. Using the bootstrap sample, estimate model (9). Using the estimated model parameters from the

bootstrap sample, compute the corresponding small area estimator of the population mean in area

i, τ̂ (b)i . τ̂ is a generic notation used to denote an estimator of the small area average.

3. Using B bootstrap samples, the MSE estimator of the corresponding estimator in area i, τi, is

given by

ˆMSE(τ̂i) =
1

B

B∑
b=1

(
τ̂ bi − τ bi

)2
.

5 Empirical evaluations

In this section, we present results from Monte-Carlo simulations that we carried out for assessing the

performance of the proposed spatial robust estimators from Section 3. These estimators are compared
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against those suggested by Chambers et al. (2014) and Dongmo-Jiongo et al. (2013) in Section 2. We

further evaluate the performance of the MSE estimators.

Following Chambers et al. (2014), we generated population data for m = 40 small areas with Ni =

100 using a nested error regression model as follows

yj = 100 + 5xj + vi + eij . (20)

The covariates were generated from a log-normal-distribution with µx = 1 and σx = 0.5. The unit level

errors eij and the random effects vi were generated under a range of scenarios. In particular, following

Chambers et al. (2014), we focus on non-symmetric outlier contamination in the area and unit level

errors. This is due to the fact that outlier robust projective estimators suffer from bias, especially under

asymmetric contamination. The results in the case of symmetric contamination are available from the

authors on request. Random effects and the individual errors were generated by using a mixture type

contamination mechanism,

vi ∼ (1− γv) ·N(0,G) + γv ·N(9, 20) (21)

eij ∼ (1− γe) ·N(0, 6) + γe ·N(10, 150),

where γv and γe control the percentage of outlier contamination in the population. G is defined as in

(10) by

G = σ2v
(
(I − ρW T )(I − ρW )

)−1
using σ2v = 3. We assume that the outlying areas are uncorrelated in (21). The spatial autoregressive

parameter ρ is set to 0 for the non-spatial scenarios and to 0.8 for the scenarios with spatial correlation.

W is defined by a 8× 5 first-order contiguity matrix based on a rook structure (cf. Bivand et al., 2008).

According to the rook structure, neighbours are cells to the horizontal and to the vertical of a cell, but not

to the diagonal. W is row standardized to meet the requirements of the SAR model (cf. Petrucci et al.,

2005). This leads to a row stochastic non-symmetric contiguity matrix. In the present of outliers in the

data, the contamination levels are set to γv = 0.1 and γe = 0.03. We investigated three spatial and three

non-spatial scenarios in total:

1. (0, 0) - No contamination and no spatial correlation; γv = γe = ρ = 0.

2. (v, 0) - Contamination only at the area level and no spatial correlation: vi ∼ N(0, 3) for areas

1-36, vi ∼ N(9, 20) for areas 37-40, eij ∼ N(0, 6) and ρ = 0.

3. (v, e) - Contamination at both levels and no spatial correlation: vi ∼ N(0, 3) for areas 1-36,

vi ∼ N(9, 20) for areas 37-40, eij ∼ 0.97N(0, 6) + 0.03N(10, 150) and ρ = 0.

4. (0, 0)ρ - No contamination and spatial correlation; γv = γe = 0 and ρ = 0.8.

5. (v, 0)ρ - Contamination only at area level and spatial correlation: vi ∼ N(0, G) for areas 1-36,

vi ∼ N(9, 20) for areas 37-40, eij ∼ N(0, 6) and ρ = 0.
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6. (v, e)ρ - Contamination and spatial correlation: vi ∼ N(0, G) for areas 1-36, vi ∼ N(9, 20) for

areas 37-40, eij ∼ 0.97N(0, 6) + 0.03N(10, 150) and ρ = 0.8.

Samples of size ni = 5 were selected from the population by simple random sampling without replace-

ment within each area. The population and sample sizes were held fixed for all areas. Each setting was

repeated independently 500 times. The choice of small sample sizes is for two reasons. First, we investi-

gate the proposed small area estimators under extreme cases. Second, the sample sizes in our application

in Section 6 are approximately of similar size.

Several estimators of the small area population averages are evaluated. These are the standard

EBLUP (2), which serves as a benchmark for other estimators, the spatial EBLUP (SEBLUP) (12),

the robust EBLUP (REBLUP) (3) and the spatial robust EBLUP (SREBLUP) (14). Furthermore, the

robust predictive estimators CCST (4), CHAM (6) and CB (8) are evaluated alongside their proposed

spatial extensions SCCST (15), SCHAM (17) and SCB (18). Following Dongmo-Jiongo et al. (2013),

the tuning constants for the bias-correction we used are equal to 3.

The following quality measures, over Monte-Carlo simulations R, are used to evaluate the perfor-

mance of an estimator of the average in area i, τ̂i,

• The relative bias (RB)

RB(τ̂i) =
1

R

R∑
r=1

τ̂i − τi
τi

.

• The relative root mean squared error (RRMSE) for each area i:

RRMSE(τ̂i) =

√√√√ 1

R

R∑
r=1

(
τ̂i − τi
τi

)2

.

Table 1 reports the RB and the RRMSE of the small area estimators. It can be observed that all esti-

mators are unbiased in the scenarios without outliers (0, 0) and (0, 0)ρ. Furthermore, the results confirm

our expectations regarding the performance of the robust estimators. The robust projective estimators

(REBLUP and SREBLUP) suffer from a negative bias in the case of non-symmetric outlier contamina-

tion (cf. for instance scenarios [v, e] or [v, e]ρ). Chambers et al. (2014) have already pointed out that this

is mainly caused by the implicit assumption of robust projective estimators which assume that the out-

lier contamination component has zero expectation and that all outliers are observed in the sample. Our

simulation scenarios have been specifically constructed to violate the assumptions of robust projective

estimators. It is therefore natural that the robust projective estimators suffer from bias. On the other hand,

the robust predictive estimators correct this bias. In particular, the robust (CCST and CHAM) and spatial

robust predictive estimators (SCCST and SCHAM) have lower relative bias than the projective estimators

(REBLUP and SREBLUP), especially in the areas 37-40. Furthermore, the CCST and SCCST estimators

reveal slightly smaller relative bias compared to the CHAM and SCHAM estimators. In contrast, the CB

and SCB estimators suffer from a relative large bias in the outlying areas 37-40 which is expected due to
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Table 1: Model-based simulation results: performance of predictors of small area means

Median values of the RB in %

Scenarios (0, 0) (0, 0)ρ (v, 0) (v, 0)ρ (v, 0) (v, 0)ρ (v, e) (v, e)ρ (v, e) (v, e)ρ
Areas 1-40 1-40 1-36 1-36 37-40 37-40 1-36 1-36 37-40 37-40
Estimators
EBLUP 0.00 0.00 0.09 0.09 -0.53 -0.53 0.12 0.11 -1.14 -1.13
SEBLUP 0.00 0.01 0.06 0.04 -0.44 -0.44 0.07 0.05 -1.02 -1.03
REBLUP 0.00 0.00 0.11 0.11 -0.47 -0.47 -0.08 -0.08 -0.77 -0.77
SREBLUP 0.00 0.00 0.07 0.05 -0.43 -0.45 -0.13 -0.13 -0.74 -0.77
CCST 0.00 -0.00 0.01 0.02 0.00 0.01 -0.11 -0.11 -0.18 -0.19
SCCST 0.00 0.00 0.02 0.02 0.01 0.01 -0.11 -0.11 -0.19 -0.19
CHAM 0.00 0.00 0.04 0.04 -0.03 -0.03 -0.06 -0.06 -0.28 -0.28
SCHAM 0.00 0.00 0.03 0.02 -0.03 -0.04 -0.08 -0.08 -0.27 -0.29
CB 0.00 0.00 0.09 0.09 -0.53 -0.53 0.03 0.03 -1.24 -1.23
SCB 0.00 0.01 0.06 0.04 -0.44 -0.45 -0.01 -0.03 -1.11 -1.12

Median values of the RRMSE in %

Scenarios (0, 0) (0, 0)ρ (v, 0) (v, 0)ρ (v, 0) (v, 0)ρ (v, e) (v, e)ρ (v, e) (v, e)ρ
Areas 1-40 1-40 1-36 1-36 37-40 37-40 1-36 1-36 37-40 37-40
Estimators
EBLUP 0.81 0.82 0.86 0.86 1.01 1.01 1.19 1.18 1.70 1.69
SEBLUP 0.82 0.77 0.85 0.82 0.99 1.03 1.17 1.11 1.65 1.71
REBLUP 0.83 0.84 0.83 0.84 1.01 1.00 0.91 0.91 1.24 1.24
SREBLUP 0.84 0.79 0.84 0.79 0.98 1.04 0.92 0.87 1.21 1.27
CCST 0.92 0.92 0.93 0.93 0.86 0.86 1.12 1.12 1.02 1.02
SCCST 0.92 0.92 0.92 0.92 0.86 0.86 1.12 1.11 1.02 1.02
CHAM 0.86 0.86 0.90 0.91 0.86 0.86 1.02 1.02 1.02 1.02
SCHAM 0.87 0.83 0.90 0.89 0.85 0.85 1.02 1.00 1.02 1.02
CB 0.81 0.82 0.86 0.86 1.01 1.01 0.96 0.96 1.66 1.65
SCB 0.82 0.77 0.85 0.82 0.99 1.03 0.96 0.92 1.60 1.67

the contamination mechanism we use in the simulations. This bias is due to the non-robustified last terms

in (8) and (18). Dongmo-Jiongo et al. (2013) present encouraging results for the CB estimator under a

different data generation mechanism. Although the relative biases are small, we notice that SEBLUP

and the SREBLUP estimators offer some bias reduction when compared respectively to the EBLUP and

REBLUP estimators in the case of spatial scenarios.

We now turn to the RRMSE results in Table 1. As expected, in scenario (0, 0) the robust predictive

estimators CB and SCB are almost as efficient as the EBLUP, whereas the CHAM and SCHAM and the

robust projective methods (REBLUP and SREBLUP) are somewhat less efficient.

In the case of the spatial scenario (0, 0)ρ the spatial methods have a lower RRMSE compared to the

corresponding non-spatial methods, for instance, the RRMSE of SCB is 0.77% compared to 0.82% for

the CB estimator. For scenario (v, e)ρ the bias-corrected predictive spatial methods (SCCST, SCHAM

and SCB) offer some gains in RRMSE when compared to the non-spatial predictive estimators (CCST,

CHAM and CB) in the areas 1-36. It appears that accounting for the spatial structure in the estimation

leads to some efficiency gains.
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The CB and SCB estimators are slightly more efficient than the CCST or CHAM based methods in

the areas 1-36 at the cost of a higher RRMSE in areas 37-40, where area and individual outliers occur

at the same time. The bias part of the MSE is not negligible for the CB and SCB estimators in these

areas. The CCST and CHAM spatial and non-spatial methods indicate a more consistent performance

with low RRMSEs over all areas in scenarios (v, e) and (v, e)ρ. In contrast to the relative bias, the

CHAM and SCHAM estimators perform slightly better in terms of RRMSE compared to the CCST and

SCCST estimators. It seems that using information from other areas for the bias-correction in the CHAM

methods helps to stabilise the results at the cost of a slightly higher bias compared to the CCST methods.

These results illustrate the potentially beneficial effect of combining the spatial information with the bias

correction offered by robust predictive estimators leading to more efficient results. However, robustness

against outliers appears to be more important than incorporating the spatial structure in the estimation.

We now investigate the performance of the different MSE estimators. The objective of this part is

twofold. First, we assess the performance of the proposed bootstrap methods for the spatial versions of

the projective and predictive estimators. Second, we compare the performance of the robust and non-

robust bootstrap methods in more detail in the case of spatial correlation. For both aims we focus on the

scenarios with and without contamination in v and e.

MSE estimation is implemented with the parametric bootstrap methods presented in Section 4 with

B = 100 bootstrap replicates. We denote by NonRobB and RobB the parametric bootstrap schemes

where the v∗ and e∗ are generated by using non-robust or robust variance estimators respectively. We

have also tested two selected scenarios, (0, 0)ρ and (v, e)ρ, by using B = 500 bootstrap replicates and

the results did not change considerably . MSE results for some estimators such as for the EBLUP (using

the Prasad-Rao estimator and the bootstrap MSE estimator), the CB (using the bootstrap MSE) and the

SCB (using the bootstrap MSE) are excluded but are available from the authors on request.

Starting with the first aim, Table 2 presents the results for the MSE estimators and shows the me-

dian values of their area-specific RB and RRMSE. We observe that both the robust and the non-robust

spatial bootstrap methods work well for the scenarios without contamination. Under contamination, the

bootstrap methods for the spatial estimators, SREBLUP, SCCST and SCHAM, lead to similar biases and

stability compared to the bootstrap methods for the REBLUP, CCST and CHAM. Hence, the proposed

MSE estimators that account for the additional spatial correlation in the data perform similarly to the

bootstrap methods proposed by Sinha and Rao (2009) and Dongmo-Jiongo et al. (2013).

Having assessed the overall performance of the spatial versions of the bootstrap schemes, we now

compare the proposed spatial robust and non-robust bootstrap methods explicitly. Figure 1 presents a

more detailed picture of this comparison. It shows the ratio of the estimated non-robust MSE to the

empirical (true) MSE (x-axis) against the ratio of the estimated robust MSE to the empirical (true) MSE

(y-axis) for three estimators, the SREBLUP, the SCCST and the SCHAM. The crosses in the plot in-

dicate the outlying areas 37-40. The vertical grey line indicates the sector where the empirical MSE

corresponds to the estimated non-robust MSE. Areas left to the vertical grey line suffer from underesti-

mation, whereas areas right to the vertical line indicate overestimation. The same principle applies to the
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Table 2: Performance of MSE estimators in model-based simulations
Median values of the RB in %

Scenarios (0, 0) (0, 0)ρ (v, e) (v, e)ρ (v, e) (v, e)ρ
Areas 1-40 1-40 1-36 1-36 37-40 37-40
Estimators MSE
REBLUP RobB -2.97 -2.64 1.28 1.75 -31.04 -30.66

NonRobB -1.27 -1.56 39.91 41.02 -5.65 -5.57
SREBLUP RobB -2.82 -5.76 -0.90 0.93 -30.25 -34.84

NonRobB -3.51 -5.86 34.07 37.48 -6.03 -10.24
CCST RobB 0.75 1.02 -11.18 -11.32 -10.30 -10.57

NonRobB 0.38 0.19 22.37 22.74 23.29 23.38
SCCST RobB 0.98 0.87 -10.29 -9.86 -10.38 -10.41

NonRobB -0.66 -0.90 21.83 22.20 23.87 23.43
CHAM RobB -1.46 -1.44 -7.47 -7.08 -13.70 -13.63

NonRobB -0.60 -0.91 27.30 27.68 17.82 18.07
SCHAM RobB -1.73 -4.01 -7.16 -8.69 -14.33 -16.55

NonRobB -2.76 -4.61 24.66 24.68 16.25 13.89

Median values of the RRMSE in %

Scenarios (0, 0) (0, 0)ρ (v, e) (v, e)ρ (v, e) (v, e)ρ
Areas 1-40 1-40 1-36 1-36 37-40 37-40
Estimators MSE
REBLUP RobB 11.12 9.90 10.70 10.61 32.32 31.98

NonRobB 9.73 9.26 44.38 45.33 17.12 17.09
SREBLUP RobB 11.69 12.33 10.80 11.84 31.46 35.92

NonRobB 10.55 11.55 38.94 42.37 17.63 19.46
CCST RobB 10.26 9.95 14.46 15.09 14.21 14.54

NonRobB 9.30 9.28 30.63 31.01 31.26 31.33
SCCST RobB 10.42 10.27 14.47 14.24 14.03 14.31

NonRobB 9.26 9.33 30.06 30.55 31.40 31.00
CHAM RobB 10.63 9.82 12.22 11.99 16.73 16.83

NonRobB 9.64 9.06 33.55 33.59 25.79 25.96
SCHAM RobB 10.84 10.72 12.14 13.54 17.10 19.16

NonRobB 9.74 10.62 31.08 31.24 24.61 23.14

horizontal grey line for the estimated robust MSE (underestimation below the grey line, overestimation

above). The diagonal represents the sector where the estimated robust and non-robust MSE lead to the

same results. Figure 1 reveals that the robust and the non-robust bootstrap schemes perform similarly

in scenario (0, 0)ρ. As a first comment in the scenario (v, e)ρ, we note that the non-robust bootstrap

method suffers from overestimation when estimating the MSE of the predictive estimators (SCHAM

and SCCST). Second, the non-robust bootstrap method for the robust projective estimator (SREBLUP)

overestimates the MSE for most areas, but not for the outlying areas 37-40 which is indicated by the

crosses. In contrast, the robust version of the bootstrap MSE for the SREBLUP estimator is more stable,

especially in the areas with only individual contamination (cf. areas 1-36), but underestimates the MSE

for the outlying areas, because of a negative bias shown in Table 2. Third, the robust bootstrap MSE

estimator performs consistently better than the non-robust version when used to estimate the MSE of

the predictive estimators (SCCST and SCHAM). These results suggest that using the robust version of
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Figure 1: Robust and non-robust bootstrap estimators under spatial correlation.

the bootstrap for estimating the MSE of the predictive estimators appears to have appealing properties

regarding the stability and bias in these scenarios.

6 Application: Small area estimation of average labour costs for small

and medium-sized enterprises in Italy

In Section 5 we evaluated the performance of different small area estimators under known contamination

mechanisms. When using real data, however, the outlier contamination mechanism is unknown. In

this section we employ the proposed methodology for estimating average labour costs for provinces in

Italy. The focus here is on small and medium-sized enterprises with less than 100 employees as this

group of firms is of great interest for economic policy (cf. Acs and Audretsch, 1988 or Sawyerr et al.,

2003). In addition, for practical reasons, we only focus on one industry domain NACE 25 which refers

to enterprises producing rubber and plastic products.

The business survey data of interest for this application come from Small and Medium Enterprises

(SME) survey carried out annually by the Italian National Statistical Institute (ISTAT). In addition to the

survey data, small area estimation is facilitated by the use of auxiliary information from the Italian

Statistical Business Register (Asia - Archivio Statistico delle Imprese Attive). However, the use of

business survey small area data is governed by strict confidentiality rules. To overcome this problem,

in the application we use a synthetic dataset (TRItalia), which was created by using real data from the

SME survey and the Asia register and preserves the structure of the original data (cf. Kolb et al., 2013).

Similar to the Asia register, the TRItalia dataset consists of around 12,000 enterprises in the NACE 25

industry domain. Using the TRItalia dataset we selected a sample of 795 enterprises following a sampling

design similar to the one of the SME survey. The design is a single stage stratified random sampling with

strata defined by the cross-classification of administrative areas (NUTS 1) and a categorical variable for
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Table 3: Summary statistics over provinces.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Sample size 3.00 5.00 6.00 7.72 9.00 39.00
LCO (in KEUR) 0.01 9.67 50.68 216.10 176.60 15800.00
EMT 1.00 2.00 6.00 10.82 13.00 96.00

company size leading to 20 strata. In this application we are interested in providing reliable small area

estimates of the average labour costs for enterprises in the NACE 25 sector for 103 Italian provinces.

Similar to Fabrizi et al. (2013), the outcome of interest is the labour costs (LCO) in thousand Euro

(KEUR).

Table 3 presents the distribution of the sample sizes, labour costs and number of employees (EMT)

over provinces. The asymmetry in the unconditional distribution of labour costs is evident. It is more ap-

propriate, though, to analyse the conditional distribution of labour costs given a set of auxiliary variables

available.

To do so, we use a 2-level random effects model (level 1 = enterprise; level 2 = province) for labour

costs with random effects specified at the level of provinces. The auxiliary variables used in this model

consist of the number of employees. To control for the stratified design of our sample, we further in-

cluded the stratification variable defined by the cross classification between administrative areas and a

categorical variable for company size. This defines 20 strata. This model provides a starting point which

can later be extended. To assess departures from the model assumptions, Figure 2 presents normal prob-

ability plots of level 1 and level 2 residuals. The figure indicates that the Gaussian assumptions of the
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Figure 2: Normal probability plots of level 1 (left) and level 2 (right) residuals.

model are violated. Furthermore, the Shapiro-Wilk test, which rejects the null hypothesis of normal

distributed residuals (p-values: level 1 = 2.2e-16 and level 2 = 2.2e-16) confirms this. Using a robust

estimation method to control for the influence of outliers may be advisable in this case.

Evidence of moderate spatial correlation in the data is also present. Following Pratesi and Salvati

(2008), we compute two diagnostics for the presence of spatial autocorrelation. Moran’s I (cf. Moran,

15



Table 4: Values of the Moran’s I and Geary’s C tests.

Value p value

Moran’s I 0.443 < 1.9e−11

Geary’s C 0.509 < 1.3e−11

Table 5: Distribution of average labour costs (in KEUR) over provinces in Italy.

Min. 1st Qu. Median Mean 3rd Qu. Max.

REBLUP 10.39 53.57 85.48 94.19 125.20 311.90
SREBLUP 10.43 54.02 85.05 93.87 125.90 313.10
CHAM 9.81 57.49 100.60 102.40 136.30 323.60
SCHAM 9.71 60.42 98.80 102.00 134.50 329.60
CCST 11.06 54.84 83.00 98.43 124.30 348.20
SCCST 11.06 54.01 86.52 98.20 124.00 350.10

1950) is analogous to the correlation coefficient with values between -1 (strong negative spatial correla-

tion) and 1 (strong positive spatial correlation), whereas 0 indicates no spatial correlation. Geary’s C (cf.

Cliff and Ord, 1981) ranges between 0 (strong positive spatial correlation) and 2 (strong negative spatial

correlation). Both tests, shown in Table 4, indicate the presence of positive spatial correlation in the data.

Estimates of average labour costs for each province are calculated by using the robust projective

estimators REBLUP (3) and SREBLUP (14). We also computed estimates using the robust predictive

estimators CCST (4) and CHAM (6), as well as their corresponding spatial extensions SCCST (15)

and SCHAM (17). In order to save space, we omit the results for the standard EBLUP (2) and spatial

EBLUP (12). We further exclude the CB (8) and SCB (18). These results are available from the authors

on request.

Table 5 presents the distribution of the estimated average labour costs in the sector of interest (NACE

25) for provinces in Italy. Our first observation is that there are some differences between the estimates

obtained from the robust projective estimators (REBLUP and SREBLUP) and those from the robust

predictive estimators (CCST, CHAM, SCCST and SCHAM). In order to further investigate the reason

for these differences we performed the following sensitivity analysis. Using the Cook’s distance measure,

we removed the most influential outliers from the sample. In total we removed 56 out of 795 observations.

Using this reduced dataset, we recomputed the small area estimates. Figure 3 shows the robust projective

estimator (REBLUP) (x-axis) against the robust predictive estimator (CHAM) (y-axis) for the reduced

and original samples. The corresponding plot for the SREBLUP and SCHAM estimators is presented in

Figure 4. We observe that the point estimates of the projective and predictive estimators are closer in the

reduced sample. This behaviour can be explained by the fact that the restricted dataset includes a smaller

number of outliers, and hence, the robust projective and predictive estimators provide closer results. In

contrast, the stronger contamination in the original sample leads to systematically smaller estimates of

the REBLUP and SREBLUP compared to the robust predictive estimators (CHAM and SCHAM). The
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same picture holds also for the comparison between the projective estimators (REBLUP and SREBLUP)

and the predictive estimators (CCST and SCCST). The results from this sensitivity analysis provide

evidence that using a predictive estimator is possibly appropriate in this case.
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Figure 3: Differences between the projective estimator (REBLUP) and the predictive estimator (CHAM)
for the reduced and original samples.

SREBLUP estimator

S
C

H
A

M
 e

st
im

at
or

0

100

200

300

0 50 100 150 200 250 300

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●●● ●

●●

●

●
●●

●

● ●

●

●●
●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

Original Sample

0 50 100 150 200 250 300

●●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●

●●

●

●
●●

●
●

●

●

●●●

●

●

●●
●

●
●●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

Reduced Sample

Figure 4: Differences between the projective estimator (SREBLUP) and the predictive estimator
(SCHAM) for the reduced and original samples.

MSE estimates, using the two bootstrap schemes we described in Section 4, are presented in Table

6. Based on the findings from the model-based simulations, in the presence of contamination we may

expect overestimation of the MSE when bootstrapping from the non-robust estimates of the variance

components. Indeed, the results suggest that this MSE estimator provides estimates that are very differ-

ent to the ones obtained from the bootstrap method that uses the robust variance estimators. Examining

further the MSE estimates, we note that the SREBLUP MSE estimates are lower than the corresponding

REBLUP estimates. This suggests some efficiency gains obtained by incorporating the spatial informa-

tion in estimation. The same holds true when comparing the CHAM to the SCHAM and the CCST to

the SCCST estimators. Considering the point and MSE estimates, we can conclude that the SCHAM

or SCCST estimators appear to be a good choice for producing small area estimates of average labour
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costs. The conservative analyst would choose the SCCST estimator, because of the slightly lower bias

at the cost of a higher variance compared to the SCHAM estimator. In contrast, the SCHAM estimator

offers more stability at the expense of a higher bias in relation to the SCCST estimator.

Table 6: MSE estimation
MSE estimates using robust parametric bootstrap

Min. 1st Qu. Median Mean 3rd Qu. Max.

REBLUP 19.12 44.10 51.38 54.74 63.80 105.40
SREBLUP 17.76 41.97 48.22 51.10 58.84 89.46
CHAM 20.38 49.84 56.33 59.75 69.27 113.10
SCHAM 18.36 45.29 54.09 55.65 64.90 97.99
CCST 25.95 117.10 168.90 185.70 243.20 447.90
SCCST 26.51 113.50 171.20 183.10 241.30 398.80

MSE estimates using non-robust parametric bootstrap

Min. 1st Qu. Median Mean 3rd Qu. Max.

REBLUP 5191 11890 14060 14240 15870 26980
SREBLUP 4843 9927 11110 11780 13650 26000
CHAM 5693 13210 15640 15680 17780 28300
SCHAM 4899 11310 12190 12760 14560 28970
CCST 6748 27670 38160 39780 50800 93640
SCCST 6278 25070 35510 37980 46460 83500

In Table 7 we investigate the estimates obtained from the SCHAM estimator in detail (SCCST esti-

mates are available from the authors upon request). This table shows the mean labour costs per province

divided by the average number of employees obtained from the synthetic register. An average employee

in a small and medium-sized enterprise earns in Italy around 16,440 EUR per year. This is consistent

with official results provided by ISTAT (cf. ISTAT, 2007). A more detailed picture of the spatial distri-

bution of labour costs can be found in Figure 5. The figure shows the labour costs per employee for the

103 Italian provinces. As expected, we detect large regional disparities. The north-south divide in labour

costs in Italy is clearly depicted in this figure.

7 Concluding remarks

The paper proposes extensions to the currently available outlier robust projective and robust predictive

small area estimators in the presence of spatial correlation. The gains offered by the proposed method-

ology are twofold. First, the outlier robust nature of the estimators reduces the impact of the misspecifi-

cation of the model assumptions. Second, the methodology allows for modelling the spatial structure in

the data. MSE estimation is performed by using two parametric bootstrap schemes that incorporate the

Table 7: Labour costs per employee per province (in KEUR) using the SCHAM estimator.

Min. 1st Qu. Median Mean 3rd Qu. Max.

LCO per employee 5.26 13.94 16.76 16.44 19.13 42.35
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Figure 5: Mean labour costs per employee per province (in KEUR) using the SCHAM estimator.

spatial dimension. The results from the model-based simulations show that in the presence of contami-

nation bootstrapping the data should be done as in Sinha and Rao (2009) by using the robust estimates

of the variance components.

Currently, estimation relies on the a-priori choice of the tuning constants to be used in the influence

functions. One could develop an adaptive (data driven) tuning constant to be used for small area predic-

tion. This provides one avenue for future research. Moreover, the spatial small area estimators depend

on the structure of a given contiguity matrix W . Another line for further work could be to investigate

the effect of errors in specifying W on the estimation. Furthermore, the use of a bootstrap MSE esti-

mator is computationally very demanding. Although the implementation of the proposed methodology

is facilitated by the availability of a computationally efficient algorithm using C++ in R, its application

in practice is challenging. Developing analytic MSE estimators similar to the one proposed in Chambers

et al. (2014) offers an additional avenue for future research.
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Appendix

In the appendix we show how the SEBLUP in equation (16) can be reformulated.
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