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Abstract

Small area estimation is a research area in official and survey statistics of great practical rel-
evance for National Statistical Institutes and related organisations. Despite rapid developments in
methodology and software, researchers and users would benefit from having practical guidelines that
assist the process of small area estimation. In this paper we propose a general framework for the
production of small area statistics that is based on three broadly defined stages namely, Specification,
Analysis/Adaptation and Evaluation. The corner stone of the proposed framework is the principle of
parsimony. Emphasis is given on the interaction between a user and a methodologist for specifying
the target geography and parameters in light of the available data. Model-free and model-dependent
methods are described with focus on model selection and testing, model diagnostics and adaptations
e.g. use of data transformations. The use of uncertainty measures and model and design-based sim-
ulations for method evaluation are also at the centre of the paper. We illustrate each stage of the
process both theoretically and by using real data for estimating a simple and complex (non-linear)
indicators.
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1 Introduction

Small area estimation (SAE) has been and still predominately is a very fertile area of academic research

in official statistics with important theoretical and applied contributions. In the last decade an increasing

number of National Statistical Institutes (NSIs) and other organisations across the world have recognised

the importance of producing small area (SA) statistics and their potential use for informing policy de-

cisions. Examples of NSIs with well-developed programmes in the production of SA statistics include

the US Bureau of Census, the UK Office for National Statistics (ONS) and the Statistical Office of Italy

(ISTAT). After appropriate evaluation, SA estimates may gain accreditation as national official statistics

as it is the case for the annual set of unemployment estimates for unitary authorities and local author-

ity districts (UALADs), or the estimates of average income for electoral wards both produced by the

ONS in the UK. Other organisations and research groups have promoted the use of small area estimation

techniques via the development of new methodologies and computational tools available for public use.

An excellent example of this approach is the work by the World Bank (WB) and the use of its software
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PovMap (The World Bank, 2013). In collaboration with country teams, the WB has used SAE tech-

niques for producing poverty maps in more than twenty developing countries. This is perhaps the most

wide spread application of SAE to-date and country case studies can be found in The World Bank (2007).

Over time users’ needs have surpassed the limits of what can be achieved with traditional SAE meth-

ods. Nowadays in addition to simple statistics for example, averages and proportions, users request the

estimation of more complex indicators for example, measures of deprivation and inequality. Meeting

the increasing complexity of users’ needs requires specialised methodology and software that extends

beyond conventional survey operations within NSIs. This has created opportunities for closer collabo-

ration between researchers and NSIs and for transferring research into practice hence, maximising the

impact of research for society. At this point we should mention that the term researchers can include

both researchers working outside an NSI and researchers working as part of an NSI’s methodology unit.

A common model used by many NSIs includes both academic researchers and methodologists collabo-

rating for producing SA statistics of interest.

Despite the fast development of SAE methods and software researchers and users of SA statistics

would benefit by a more open discussion on the practical aspects of SAE and by having a general frame-

work that can guide the SAE process. The lack of such a framework is evident by the type of queries

researchers receive from practitioners. Examples include decisions about specifying the target indica-

tors, and disaggregation levels, the types of data required for estimation, the use of models and diagnostic

analysis, model adaptations, measuring uncertainty and evaluation. There are many possible ways one

can use to describe a general framework for producing SA statistics. In the present paper we propose a

framework based on three broadly defined stages, namely (i) Specification, (ii) Analysis/Adaptation and

(iii) Evaluation, which are summarized in Figure 1. Starting with the description of user needs, the avail-

able sources of data and existing SAE methods as inputs to the Specification stage, the user jointly with

the methodologist defines a set of possible target geographies, indicators and suitable small area methods

that can be supported by the available data. The outputs of the Specification stage act as inputs for the

subsequent stage i.e. Analysis and Adaptation. It is our view that the decision about which estimators to

use should be governed by the principle of parsimony and hence we recommend that the Analysis and

Adaptation stage start by using estimators that can be easily computed as part of the usual survey process

within an NSI without involving explicit modelling or additional data sources. These are the initial SAE

estimates (see Section 3.1). In addition, alternative estimators that involve the explicit use of models may

also be used (see Section 3.2), which involves model building and model diagnostics. Depending on the

results from diagnostic analysis, adaptation of the models for example, data transformations or use of

alternative parametric assumptions may be required. At the end of this process multiple sets of tentative

point estimates will be available to the user. Evaluating these sets of estimates is the aim of the next

step in the process. Evaluation involves both producing uncertainty estimates and method evaluation

(see Sections 4.1 and 4.2). The SAE process is finalised provided that at least one set of estimates is

considered of acceptable quality as assessed by uncertainty measures and method evaluation. Otherwise,

the process needs to return again to the specification stage for defining alternative geographies, target

indicators and/or data sources.

We believe that keeping a practical focus in this paper is of paramount importance hence each step of

the process outlined in Figure 1 is illustrated by using real data. The data we use in this paper come from

one of the most unequal regions in the world namely, Latin America and in particular Mexico. Despite

being one of the largest economies in Latin America, according to the World Bank Mexico is still among

the most unequal countries in the world. Developing policies against deprivation therefore requires
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a detailed description of the spatial distribution of income deprivation and inequality. The National

Council for the Evaluation of Social Development Policy (CONEVAL Consejo Nacional de Evaluacion

de la Politica de Desarrollo Social) is responsible for estimating measures of poverty, social deprivation

and inequality in Mexico. Furthermore, and according to the general social development law (LGDS Ley

General de Desarrollo Social), it is necessary to provide measures at the national and state levels every

two years and measures at the municipal level every five years. For the purposes of empirical analysis in

this paper we use a sample from the a household income and expenditure survey called ENIGH (Encuesta

Nacional de Ingreso y Gasto de los Hogares) and a large sample of Census micro-data. Both datasets are

produced by the National Institute of Statistics and Geography (INEGI Instituto Nacional de Estadistica

y Geografia) and they were provided to the authors by CONEVAL. SAE usually includes a large number

of different outputs for example, SAE with continuous and discrete outcomes and estimation of a wide

range of linear and non-linear indicators. Hence, it is unavoidable that the present paper will have to

focus on specific applications. In particular, we illustrate the SAE process for continuous outcomes and

for estimating linear and non-linear indicators. Nevertheless, most of the steps of the SAE process we

describe in this paper will also be valid also in applications with discrete outcomes.

The paper is structured as follows. Section 2 presents the specification stage. Section 3 discusses the

analysis and adaptation stages. The starting point in this Section is the production of a set of initial esti-

mates the computation of which can be done as part of standard survey processes within an organisation

and without access to additional data sources and use of new methods and software. This Section then

covers model-based small area estimation that includes model specification, diagnostics and adaptations.

Section 4 describes another important stage in the SAE process namely, evaluation. Different evaluation

measures that include unconditional and conditional mean squared error (MSE) estimators are discussed

alongside a number of approaches for method evaluation. Section 5 provides an up-to-date review of

open source software for SAE. Finally, in Section 6 we conclude the paper with some final remarks and

open areas for research .

2 Specification

In this Section we describe the elements of the first stage in our framework. This includes specifying the

user needs, the targets of estimation, the target geography and reviewing the data sources available and

their geographical coverage.

2.1 Specify user needs: Targets of estimation and target geography

The first step in planning for small area estimation requires the specification of the user needs. This

involves specifying the targets of estimation and the target level of geography. Before proceeding it is

important to clarify that in this paper we refer to geography by using interchangeably either the term area

or the term domain. The latter term is more general as it may also include non-geographic dimensions

in its definition. Specifying the user needs is an important step that will impact upon the subsequent

stages of small area estimation. It is the responsibility of the statistician/methodologist to guide the user

through the specification stage and explain the consequences of the alternative options. Sample surveys

are designed to provide estimates with acceptable precision at national and specific sub-national levels

but usually have insufficient sizes to allow for precise estimation at lower levels of aggregation.

It may seem as if the user has a clear idea about the target level of geography and the targets of

estimation. However, this is not true in general. To start with, the complexity of the targets of estimation
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Figure 1: Framework for the production of SA statistics.
Stages of the project are represented by blocks. Inputs and outputs of each stage are represented by
ellipses. Decisions to be made are represented by diamonds. Arrows indicate the direction of the rela-
tionship, i.e., an input/output. Text in parenthesis indicates optional items
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and whether the user is interested in cross-sectional estimates of estimates of changes over time will

affect both the data required for small area estimation and the estimation methodologies that are available.

Users may be interested in estimating simple linear indicators such as averages and proportions or more

complex, non-linear indicators for example, the percentiles of the income distribution locally. Increasing

the complexity of the target of estimation also increases the detail of the data one needs to have access to.

On many occasions users have unrealistic expectations about the level of geography at which they wish to

produce small area estimates for and what the available data can support. To start with, the chosen level

of geography should provide useful estimates for the user. For example, estimates should be produced

at a level which can inform policy. It is very tempting for the user to specify a target geography that is

unrealistically low. As we will see in the next Section doing so will affect the quality (precision) of the

estimates and the methods and assumptions used in computing the estimates. Hence, the recommended

approach is to start from a relatively high level of geographical aggregation, at which direct estimation

of acceptable precision is supported by the survey data, and move on to more disaggregated levels of

geography by assessing the feasibility of producing small area estimates at each level in turn.

2.2 Data availability and geographical coverage

As we mentioned before specifying the targets of estimation is essential for identifying what data is

needed for estimation. This is a first point that needs to be clearly communicated to the user since this

will have implications for the workload of staff in NSIs and similar organisations. Small area estimation

is a prediction problem and typically relies on the use of survey data and data from the Census or adminis-

trative/register data sources. The Census data contain auxiliary information that is potentially correlated

with the target variable and hence it can be used for assisting with the estimation. Access to Census and

administrative data sources is usually challenging due to confidentiality constraints. Most commonly,

access to Census aggregate (area/domain) level data is possible but access to Census micro-data is very

challenging. The question is how the type of Census data available affects small area estimation. If the

user is interested in estimating linear statistics for example, small area averages, access to area level Cen-

sus or administrative data will be sufficient for small area estimation. To illustrate this, suppose we have

data on an outcome variable yik and a set of covariates xik for individuals, i in domains, k. The target

of estimation is the domain average and for now let us assume that estimation is assisted by a regression

model with model parameters β. An estimator of the small area average is defined as follows,

ˆ̄θk = N−1k

 nk∑
i=1

yik +

Nk∑
i=nk+1

xTikβ̂

 . (1)

The first summation in (1) is computed by using the survey data in domain k, assuming that sample data

are available in the domain. The second summation in (1) represents the out-of-sample model predic-

tions. It is easy to see that in order to compute (1), there is no need to have access to covariate micro-data.

Instead, access to domain-level covariates x̄k will be sufficient. If the interest is however in estimating

non-linear indicators, then access to Census or administrative micro-data is needed. Access to such data

is very challenging and has implications for staff resources for example, ensuring appropriate use of

the data and respecting confidentiality constraints. Hence, the complexity of the targets of estimation

determines the data requirements for small area estimation.

A second important step is to examine the data coverage at the specified level of geography. Are

sample observations available for every small area? What is the distribution of the sample size across
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areas? These are important questions. For example, if the majority of the target areas have no sample

data (out-of-sample areas), the user must realise that small area estimation will heavily rely on model

assumptions. In this case a better strategy might be to consider producing small area estimates at the

next, higher, meaningful level of geography.

2.3 Illustration using the data from Mexico

We now illustrate the specification stage in practice using the data from Mexico. In the case of Mexico

the targets of estimation and the required geography are specified by the LGDS (see Section 1). Figure

2 depicts a two-dimensional definition of deprivation with one dimension defined by economic welfare

and the second dimension defined by social deprivation. In Figure 2 MPL and EPL defines poverty lines

for moderate and extreme income poverty respectively.
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Figure 2: Two-dimensional definition of deprivation

Using Figure 2, Table 1 presents 18 indicators that the Government in Mexico is interested in esti-

mating. We notice that the interest is both in producing estimates of proportions and totals but also in

more complex, non-linear, indicators such as estimates of the Gini coefficient and the income ratio. It is

therefore clear that SAE requires the use of Census micro-data. Are appropriate data available? Method-

ologists working in CONEVAL have access to micro-data from the most recent Census and survey data

from the ENIGH. Hence, the estimation of the target indicators described in Table 1 is feasible from the

point of view of data availability.

Let us now look in more detail at the data available and their geographic coverage. Mexico is divided

into 32 federal entities (states), of which the State of Mexico (EDOMEX Estado de Mexico), in addition

to having the highest population density, is regarded by the United Nations Development Programme

(UNDP) to be one of the states that most contribute to inequality in Mexico. EDOMEX is made up

of 125 municipalities, which by their geographical and demographic characteristics are further grouped

into 16 socioeconomic regions districts. This geographic information is presented on the left in Figure

3. The pilot data we have available in this paper were provided by CONEVAL and come from the 2010

ENIGH survey and the 2010 Census in EDOMEX. In particular, ENIGH survey data comprise 2748

households in 58 out of 125 municipalities. Census data come from a big sample of Census micro-data

that covers all EDOMEX municipalities. The survey and Census data sources include a large number

socio-demographic variables many of which are common and are measured in similar ways in both
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Table 1: Targets of estimation in municipalities in Mexico

Category Measurement

Poverty

1. Population in poverty
2. Population in moderate poverty
3. Population in extreme poverty
4. Vulnerable population by social deprivation
5. Vulnerable population by income
6. Non-poor, non-vulnerable population

Social deprivation

7. Population with at least one social deprivation
8. Population with at least three social deprivations
9. Deprivation due to educational gap
10. Deprivation due to the lack of access to health services
11. Deprivation due to the lack of access to social security
12. Deprivation due to the lack of quality housing services
13. Deprivation due to the lack of access to basic housing services
14. Deprivation due to the lack of access to food

Well-being

15. Population with income less than the moderate poverty line
16. Population with income less than the extreme poverty line

Inequality

17. Gini coefficient
18. Income ratio

datasets. Total equivalised household income is an example of a variable that is available in the ENIGH

survey but not in the Census.

For the ENIGH survey more than 50% of municipalities are out-of-sample, making direct estimation

(using only the ENIGH data in a municipality) for these municipalities impossible. The challenge is

that in this case the target geography is determined by LGDS. As we will see later in this paper, having

too many areas that are out-of-sample makes the small area estimates heavily dependent on synthetic

estimation, which may introduce over-smoothing and hence bias. It is the responsibility of the method-

ologist to communicate to the user the implications of using a very disaggregated geography. Figure 3

on the right shows the sample size distribution for in-sample municipalities in EDOMEX with the white

areas corresponding to municipalities not present in the ENIGH survey. Additionally, Table 2 shows the

summary of the sample sizes for in-sample municipalities. The maximum sample size in a municipality

is 527 households, the minimum is 3 households and the median is 21 households per municipality. In

light of the very small sample sizes in some municipalities and the fact that there are many out-of-sample

municipalities we conclude that the use of small area estimation for understanding the spatial distribu-

tion of poverty and inequality in municipalities in EDOMEX is well justified. At this stage the user with

guidance from the methodologist needs to decide where there is a possibility to define a more aggregate

level of geography. In the case of Mexico this alternative geography may be offered by districts. Doing

so will increase the area-specific sample sizes and will considerably reduce the number of out-of-sample

areas.
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Table 2: Municipality sample sizes in the ENIGH survey and Census pilot data

Min. Q1. Median Mean Q3 Max.

Survey 3 17 21 47.4 42 527
Census 394 2759 6852 24820 16440 349100
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Figure 3: Geography and sample size distribution for municipalities in EDOMEX

3 Analysis/Adaptation

Having specified the user needs, the second stage in small area estimation involves the analysis of the

data and the adaptation of the methods. Before starting with the detailed description in this Section, it

is important to mention that in our view small area estimation should be governed by the principle of

parsimony. That is, the analyst should be looking to use the simplest possible methods that provide small

area estimates of acceptable precision. Section 3.1 presents a triplet of small area estimates described

in ESSnet SAE (2012). As we shall explain, these estimators can always be obtained as by-products of

the original sample survey estimation set-up without any additional modelling effort or skills. Ideally

these triplet of estimates should be provided by the user to the analyst as an input to the analysis and

adaption stage but this is hardly ever the case. The analyst will most likely need to extend the triplet of

estimates, by means of developing suitable models for small area estimation, both to improve the method

of estimation and to be able to handle more complicated target parameters. Section 3.2 and 3.3 use the

Mexico data to describe and illustrate the core activities of analysis and adaption including the relevant

issues of how to use a model for prediction, model building, model testing, diagnostic analysis and finally

adaptations of the model that are informed by the diagnostic analysis.

3.1 Initial triplet of estimates

The initial triplet of estimates for the small area parameter θk are the direct, synthetic and composite

estimates. The direct estimator, denoted by θ̂Directk , uses only the data from area k, so it is available

only for an in-sample area. For areas with small sample sizes we expect that the direct estimator will

have low precision. The synthetic estimator, denoted by θ̂Synthetick , uses the data from a broader area that
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includes area k and so it can be derived for any out-of-sample area as well. Use of a synthetic estimator

reduces uncertainty but at the cost of possibly introducing bias. Hence, The choice between a direct

and an indirect estimator is about bias-variance trade-off, a frequently occurring dilemma in statistical

inference. One approach to reconciling the possibly large bias of a synthetic estimator and the possibly

large variance of a direct estimator is to define a composite estimator, which is the linear combination of

the two. This defines the last estimator in the triplet of initial estimators given by

θ̂Compositek = αkθ̂
Direct
k + (1− αk)θ̂Synthetick , (2)

for some chosen coefficient αk ∈ [0, 1], where by definition αk = 0 for any out-of-sample area.

Generally speaking, one may distinguish between two situations of standard design-based sample

survey estimation. The first is when no auxiliary data are available and the estimation is based on the

design weights directly. For example, let θ̄k be the area population mean. The Horvitz-Thompson (HT)

estimator of the area population mean is

ˆ̄θDirectk =
1

Nk

nk∑
i=1

yik/πik, (3)

where πik is the corresponding sample inclusion probability (Horvitz and Thompson, 1952). Note, when

the population size for area k is unknown, Nk can be estimated by N̂k =
∑nk

i=1 1/πik. A synthetic

estimator of the mean ˆ̄θSynthetick is given similarly, based on the sub-sample from a broad area including

area k. The second situation is when auxiliary data are available and the estimation is based on the

calibration weights (Deville and Särndal, 1992), denoted by wik, for the corresponding unit i in area k.

In this case the direct estimator of the area population mean is defined by

ˆ̄θDirectk,cal =
1

Nk

nk∑
i=1

wikyik.

The derivation of wik typically involves estimating the regression coefficients, β̂, of a so-called assisting

linear model. A synthetic estimator θ̂Synthetick can thus be given by prediction using the same linear

assisting model and the broad area estimates of the regression coefficients, β̂. The approach is largely

the same with model-based prediction (Valliant et al., 2000). The direct estimator is derived under the

prediction model fitted to the within-area sub-sample, and the synthetic estimator that under the same

model fitted to a broad-area sub-sample or the entire sample.

There are several choices of αk for the composite estimator (2), including the James-Stein estimator

that uses a common α in all the areas, and the area-specific minimization of the MSE. An alternative

approach is to define αk as a function of the domain sample size such that for domains with larger sample

size a higher weight is given to the direct estimator. We refer to Rao and Molina (2015) for additional

details. It is worth noting that the composite estimator appears more intuitive for target parameters that

are linear statistics of the yik’s, like domain averages. Estimators of more complex statistics for example

percentiles of the domain-specific distribution function and non-linear indicators have recently attracted

some interest in the small area literature (Tzavidis et al., 2010; Alfons and Templ, 2013). Direct (and

likewise synthetic) estimates of non-linear indicators and corresponding estimates of the variance can

be produced by using package laeken in R (Alfons and Templ, 2013). However, a linear combination

e.g. of a direct estimate of the Gini coefficient and that from a broad area seems hardly an appropriate

‘composite’ estimate of the Gini coefficient. Regardless of how the initial triplet of estimates is produced,
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it provides useful input to the analysis and adaptation stages and possibly to the specification stage too.

The initial triplet estimates would certainly be more useful if some appropriate measure of the asso-

ciated uncertainty can be produced in addition. However, it can be challenging to obtain a stable estimate

of the potential bias of the synthetic and composite estimator, as we shall discuss below in Section 4.

This would require extra effort that may not always be possible as a by-product of the standard sample

survey estimation set-up. At the very minimum, the direct estimates need to be analyse and uncertainty

around direct estimates should be produced as this will offer an indication of the improvement required

for producing small area estimates. If the initial estimates do not provide SA statistics of acceptable

quality, then one approach is to revisit the specification stage and think of alternative geographies and

additional data. This is rarely the case as most organisations that produce SA statistics have predeter-

mined ideas about the target geographies. It is more common that based on the results from the initial set

of estimates the analyst will subsequently consider the use of more complex possibly model-dependent

SAE methods. In this case juxtaposing the direct, synthetic and composite estimates provide tangible

appreciation of the between-area variation of the target parameter, i.e. the heterogeneity across the areas,

as well as possibly the predictive power of the auxiliary variables already in use. Composite estimation

yields an indication of baseline performance upon which the model-based small area estimation must aim

to improve. This is obvious in the case of the widely used mixed-effects empirical best linear unbiased

predictor (Rao and Molina, 2015), which can be given in a composite form directly.

3.2 Use of models for small area estimation

Small area estimation is one of the few areas in survey sampling where the use of models is widely

accepted as necessary. Model-based methods assume a model for the population and sample data and

construct optimal predictors of the target parameters under the model. The term predictor instead of

estimator is conventionally used as, under the model, the target parameters are assumed to be random.

Here we describe how to use model to generate both linear and nonlinear small area estimates of interest.

In Section 3.3 we describe model building, diagnostic analysis and model adaptations in detail.

Users of small area statistics in Mexico are interested in the estimation of key income-related indi-

cators such as the Head Count Ratio (HCR) and the Gini coefficient. To this set we add average income,

which is also of interest for NSIs. Estimation of non-linear indicators such as the Gini coefficient re-

quires the use of unit-level survey data for the outcome variable and the covariates, and unit-level Census

micro-data for the covariates. In light of this, the starting point for model-based small area estimation

in this case is the unit-level nested error (random effects) regression model (Battese et al., 1988) and

in particular methodologies that allow for the estimates of both linear and non-linear indicators. Elbers

et al. (2003) propose a methodology that allows for the estimation both of linear and non-linear indi-

cators. The methodology is based on the use of a nested error regression model with cluster random

effects that is fitted by using survey data. The response variable, which is not available in the Census, is a

welfare variable, e.g. income or consumption. The explanatory variables, used for modelling the welfare

variable, are available both in the survey and in the Census datasets. After the model is fitted using the

survey data, the estimated model parameters are combined with Census micro-data to form unit-level

synthetic Census predictions of the welfare variable. The synthetic values of the welfare variable along-

side a defined poverty line are then used for estimating non-linear indicators for example, the HCR and

the Gini coefficient. Linear statistics can also be estimated by using the synthetically-generated welfare

predicted values. Please note that in the approach by Elbers et al. (2003) clusters may not coincide with

target domains.
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Molina and Rao (2010) propose a methodology that is similar in spirit to Elbers et al. (2003) but uses

Empirical Best Prediction (EBP). Under the EBP approach Census predictions of the welfare outcome

are generated by using the conditional predictive distribution of the out-of-sample data given the sample

data. The point of departure of the EBP method is the following unit-level nested error regression model,

yik = xTikβ + uk + εik, uk ∼ N(0, σ2u); εik ∼ N(0, σ2ε ), (4)

where uk denotes the domain random effect. Assuming normality for the unit-level error and the domain

random effects, the conditional distribution of the out-of-sample data given the sample data is also nor-

mal. In many applications linked survey and Census data are unavailable. The synthetic values of the

welfare variable for the entire area population (of size Nk) are then generated from the following model,

y∗ik = xTikβ + ũk + u∗k + ε∗ik, u
∗
k ∼ N(0, σ2u × (1− γk)); ε∗ik ∼ N(0, σ2ε ); γk =

σ2u

σ2u + σ2
ε
nk

, (5)

where ũk = E(uk|yk) is the conditional expectation of uk given the within-area sample data yk. In (5),

xTikβ + ũk is the conditional mean of yik in the population given the sample data, whereas u∗k + ε∗ik
that are generated from the above normal distributions create the conditional covariance structure of the

yik’s in the population. Implementation of (5) requires replacing the unknown quantities β, σu, σε, with

estimates and simulating L synthetic populations of the welfare outcome, y∗. With each vector of y∗

linear and non-linear indicators are computed in each domain k and the estimates are averaged over L.

A moderate number of Monte-Carlo simulations, for example, L = 50 or L = 100 should suffice. Note

also that the EBP approach includes small area estimation of domain averages using the unit-level model

(Battese et al., 1988) as a special case. Provided that clusters coincide with the target domains, for in-

sample areas Molina and Rao (2010) demonstrate the superior performance of the EBP approach when

compared to Elbers et al. (2003) methodology. Estimation for out-of-sample domains requires additional

discussion. For out-of-sample domains the predicted random effect is 0 and (5) becomes

y∗ik = xTikβ + u∗k + ε∗ik, u
∗
k ∼ N(0, σ2u); ε∗ik ∼ N(0, σ2ε ). (6)

When domains and clusters coincide, EBP point estimates for out-of-sample domains coincide with the

point estimates from the Elbers et al. (2003) methodology. It is straightforward to see that these are

regression synthetic estimates. For example, for domain averages, E(y∗ik) = x̄kβ̂ since E(ε∗ik) = 0 and

E(u∗k) = 0, which is the regression synthetic estimator with regression coefficients estimated under the

linear mixed model.

MSE estimation for model-based small area estimation will be discussed in some detail in Section

4.1. For now we notice that evaluation of the uncertainty both for in-sample and out-of-sample domains

is performed under the unit-level nested error regression model. We return to this point in Section 4.2

that discusses methods for analytic evaluation of SAE estimates.

3.3 Model building, residual diagnostics and transformations in practice

Before considering model-based estimation, some assessment of initial estimates produced with the Mex-

ico data is needed for motivating the use of more complex methods. In the case of Mexico the data

provider did not supply the initial triplet estimates we described in Section 3.1. Our analysis below repli-

cates such initial estimates in spirit. Figure 4 presents direct estimates and corresponding coefficients
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of variation (CVs) of average equivalised household income for the municipalities in EDOMEX using

the ENIGH survey data. These are produced by using the sae package in R (Molina and Marhuenda,

2015). In particular, we use the function direct, which incorporates the survey weights. The estimated

variances are approximated by assuming that the joint inclusion probabilities are the product of the first

order inclusion probabilities. It can be seen that, with the exception of few municipalities, the CVs are

clearly above usual publication thresholds of 20%-25%. Notice also that direct estimates can not be pro-

duced for the out-of-sample municipalities (white coloured areas). Hence, unless the user needs change,

we should explore the use of model-based methods.
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Figure 4: Direct estimates of average household equivalised income and corresponding CVs in
EDOMEX municipalities

The use of models aims to improve the precision of small area estimates by making optimal use of the

data available. Inference is under the model and the impact of potential model misspecification must be

carefully examined. Hence, model building, model diagnostics, sensitivity analysis and validation take

central stage in model-based small area estimation. There is no single approach to model building. Here

we describe some best practise guidelines one could follow, and illustrate these guidelines for estimating

income related indicators with the data from Mexico.

For producing model-based estimates the analyst needs to build the model that as we discussed in the

previous Section usually includes area random effects. However, before discussing the use of random

effects the most important part of the model, in our view, is the fixed effects one. Ideally, one should aim

to explain as much between-domain variation as possible by using the available covariates so that random

effects can potentially be avoided. There are a number of reasons for this. To name a few, random effects

complicate model testing, point and MSE estimation. Hence, if random effects can be avoided, it is best

to do so. An acceptable starting point for building the model is therefore to use a standard regression

model with uncorrelated errors. Alternatively, if one suspects that despite the inclusion of covariates

there is unexplained between-domain variability, the analyst can consider a marginal regression model

that allows for correlated errors without including area-specific effects,

yik = xTikβ + εik, εk ∼ N(0,Σ). (7)
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In (7) Σ can be specified to have the simplest possible correlation structure i.e. an exchangeable cor-

relation structure that corresponds to the commonly used unit-level nested-error regression model with

domain random intercepts. In order to decide whether to include a covariate in the fixed part of the model

one can use information criteria for example, the Akaike or the Bayesian Information Criteria (AIC, BIC)

computed either under the standard linear model with uncorrelated errors or as pointed out by Vaida and

Blanchard (2005) under the marginal model (7). In the case of the data from Mexico and following

the recommendation by the data provider (CONEVAL), y is defined by the total household per capita

income (ictpc) measured in Mexican pesos which is the current monetary and non-monetary income of

households adjusted by equivalent scales and economies of scales. Using the AIC and a standard linear

regression model (i.e. Σ = I) the following covariates that are available both in the survey and Census

data have been identified as good predictors of ictpc. Use of a marginal model with an exchangeable

correlation structure leads to the same set of covariates:

1. Percentage of employees older than 14 years in the household;
2. Highest degree of education completed by the head of household;
3. Social class of the household;
4. Percentage of income earners and employees in the household;
5. Total number of communication assets in the household;
6. Total number of goods in the household.

Our suggestion to start by building a model without explicit use of random effects is based on the

principle of parsimony. To investigate whether the use of a mixed effects model is necessary we next

fitted a linear model using generalized least squares (GLS) with an exchangeable correlation structure

which is equivalent to a mixed effects model with domain-specific random intercepts. In this way we

explored the plausibility of composite estimation at the same time. The class of GLS models contains the

standard linear model that assumes independent observations as a special case. Therefore, given a fixed

effects specification, the standard linear model is nested within the model with exchangeable correlation

structure and a likelihood-ratio test or information criteria may be used to decide if the model that allows

for within municipality correlation fits the data better. First, we compared the GLS with an exchange-

able correlation structure against a standard linear model when both models included only an intercept

term. This allows us to quantify the extend of the between domain variability. The improvement by

using an exchangeable correlation structure turned out to be significant. The AIC for the GLS with an

exchangeable correlation structure only is 54239 whereas the corresponding AIC for the standard linear

model is 54275. In the second step the GLS and standard linear regression models with the set of six

covariates identified above were compared against each other. Here the improvement by allowing for an

exchangeable correlation structure was marginal. The AIC suggests that the model with the exchange-

able correlation structure should be preferred (AIC for GLS with an exchangeable correlation structure:

53077 vs. AIC for the standard linear model: 53079). We may, therefore, expect that the use of a mixed

effects model will offer a benefit for SAE, albeit possibly small. On the one hand, a large number of

areas are out-of-sample and for these areas we must rely on regression synthetic estimation. On the other

hand, the covariates we decided to include in the model seem to explain a substantial part of the between

municipalities variability. In particular, the intra cluster correlation (ICC) for the intercept only mixed ef-

fects model is 5.4% and for the mixed effects model that includes the six significant predictors it reduces

to 1.5%. Although not used in the case study, model selection and testing procedures under the random

effects model have been proposed in the literature. Here we refer to the use of a conditional AIC criterion

(Vaida and Blanchard, 2005) that accounts for the prediction of random effects in selecting covariates to
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be included in the model. We further refer to a test for the inclusion of random effects proposed by Datta

et al. (2011). The authors show that if random effects are not needed and are removed from the model,

the precision of point and interval estimators is improved. Additional testing procedures are proposed by

El-Horbaty (2015) and reviewed by Pfeffermann (2013). The impact of including random effects is as-

sessed in Section 4.3.2 by comparing regression synthetic to EBP estimates. Based on the results in this

Section we should expect that EBP estimates will be somewhat more efficient than regression synthetic

estimates.

After the best possible set of covariates has been identified, the inclusion or not of random effects has

been decided and the model has been fitted, the next step in model selection utilises residual diagnostics

and assessment of the predictive power of the model. Despite the inclusion of a number of significant co-

variates, the model may have very low predictive power. The user must remember that SAE is concerned

with prediction and not with discovering associations and causal mechanisms between the explanatory

variables and the outcome. Hence, assessing the overall predictive power of the model is important.

One can use simple measures such as the coefficient of determination (R2) of the model without random

effects. Alternative, computer intensive methods such as cross-validation can be used. For residual diag-

nostics we propose the use of graphical diagnostics in the form of Q-Q plots of the residuals (unit-level

and domain-level) for checking the model assumptions and plots of standardised residuals against fitted

values for testing the assumptions of constant variance. If residual diagnostics indicate that the model

assumptions hold, the analyst can proceed to the production of point and MSE estimates. However, in

most real applications some adaptations to the model will be needed.

To illustrate the use of diagnostic analysis and model adaptation let us focus on the EBP method we

described in Section 3.2 which relies on the normality of the residual terms. Figure 5 shows Normal

probability plots of household-level and municipal-level residuals obtain by fitting model (4) using the

raw income data, the six covariates we identified above and including municipality-specific random

effects. As we should expect when using the raw income data, there are severe departures from normality.

This can be seen both from the shape of the Q-Q plots and from Table 3 where the skewness and kurtosis

of the two sets of residuals are clearly different from what the values we should expect under normality.
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Figure 5: Normal Q-Q plots for household residuals (left) and municipality residuals (right) obtained
from the model that uses raw income as the response variable

When residual diagnostics indicate that there are departures from normality, the analyst has several
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options. The first option is to use alternative parametric specifications that are more realistic. To name

two, in the case of income data possible distributions include the Pareto distribution and the Generalised

Beta distribution of the second kind (GB2). The complication with using alternative distributions is

that the analyst needs to develop new estimation and inference theory for every new application. For

income-related applications Graf et al. (2015) proposed an EBP methodology under the GB2 distribution.

However, the general complication remains. In addition, what if there are departures from this alternative

distribution? Alternative semi-parametric approaches to model-based small area estimation have also

been proposed (Weidenhammer et al., 2014). Use of semi-parametric methods also requires new theory

and additional training for the users. There is also a large body of literature on extensions of the nested-

error regression model to better handle real data challenges. Here we refer to outlier robust estimation

(Datta and Lahiri, 1995; Ghosh et al., 2008; Sinha and Rao, 2009; Chambers et al., 2014), models with

non-parametric instead of linear signal specification (Opsomer et al., 2008; Ugarte et al., 2009) and

models that extend the covariance structure of the model by allowing for spatially correlated domain

random effects (Pratesi and Salvati, 2009; Schmid et al., 2016) or for complex variance structures (Jiang

and Nguyen, 2012). An option- when diagnostic analysis shows departures from the model assumptions-

and one that is based on the principle of parsimony is to find a transformation of the data such that the

normality assumptions of the EBP are met. Doing so means that the analyst can keep using standard

estimation tools and software for small area estimation. The challenge in this case is in finding the

most appropriate transformation. This adds another layer of complexity in the model building process.

We now discuss the use of transformations in some detail as an example of adapting the model. This is

something we encourage prospective users to explore before opting for more complex model adaptations.

The applications in the papers by Elbers et al. (2003) and Molina and Rao (2010) considered the use

of a logarithmic transformation which is a reasonable one for income data. However, is a logarithmic

transformation the most appropriate one? Can alternative transformations offer better predictive power?

Rojas-Perilla et al. (2015) currently investigates the use of a wide range of transformations. For the

purposes of the case study with the data from Mexico in addition to the logarithmic transformation we

focus on the log-shift transformation and on power transformations (Box and Cox, 1964; Gurka et al.,

2006). Denoting by Tλ(yik) the transformed outcome, the log-shift transformation is defined by

Tλ(yik) = log(yik + λ). (8)

An empirical approach for choosing λ in (8) is to define a grid of values for λ, fit the nested error

regression model by using each of the transformed outcomes Tλ(yik) and select the transformation that

makes distribution of the residuals as close as possible to normal. This means select a transformation

that makes the skewness of the distribution of the residuals close to 0. Note, however, that here we deal

with two sets of residuals and to the best of our knowledge there is no formal approach to defining the

distance from normality. For the purposes of the application in this paper we focus on the household-level

residuals as these are the residuals where users detect problems with departures from normality more

commonly. An alternative approach and one we are currently investigating is to use a scaled version of

the log-shift transformation and the select the value of λ that maximizes the residual log-likelihood or

the log-likelihood under the model. The second type of transformations we explore are scaled power

transformations defined by

Tλ(yik) =

{
(yik+s)

λ−1
αλ−1λ

, λ 6= 0

α log(yik + s), λ = 0
, (9)
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for yik > −s and α is the geometric mean of yik. Conditional on α, the Jacobian of the transformation

is equal to 1. Using the scaling by the geometric mean allows for the use of the likelihood function

under the nested error regression model and as a results standard software for fitting this model with the

transformed data. A general algorithm for implementing the EBP method with power transformations is

as follows:

1. Define a parameter interval for λ;
2. Set λ to a value inside the interval;
3. Maximize the residual log-likelihood function with respect to the vector of model parameters con-

ditional on the fixed value of λ;
4. Repeat 3 and 4 until the value of λ that maximises the likelihood is found;
5. Apply the EBP method with the chosen value of λ.

Using the data from Mexico we apply the EBP method with three transformations for the outcome

namely, log, log-shift and scaled Box-Cox. Figure 6 on the right shows the graphical representation

of the maximization of the residual maximal log likelihood (REML) on a grid λ ∈ [−2; 2] for finding

the optimal λ in the case of the Box-Cox transformation. In this case the optimal λ is approximately

equal to 0.17. A similar graph on the left shows the shift parameter that minimises the skewness of the

household-level error term. The resulting parameter is approximately equal to 319.52. The question is
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Figure 6: Shift parameter for the log-shift transformation (left) and optimal λ for the Box-Cox transfor-
mation (right)

whether the use of the transformations identified above improve the diagnostic analysis and the predictive

power of the model. We start with comments on the Normal Q-Q plots (Figure 8) and the distribution

of the residuals in Table 3. For municipality random effects, all three transformations offer a good

approximation to normality (see also Table 3). The picture is different for household-level. In particular,

the household-level residual under the log model show severe departures from normality. The situation is

clearly improved when using the log-shift and power transformations (see also Table 3) with the log-shift

transformation leading to less extreme and more symmetrical tails than the other transformations.

In order to assess the assumption of homoscedasticity, we produce plots of the fitted values (x-axis)

against the standardised residuals (y-axis) obtained by fitting model (4) using the raw income data (left)

and the Box-Cox power transformation (right) in Figure 7. It can be observed that using transformations

helps to stabilise the variance of the residuals. The corresponding plots for the log and the log-shift

transformations look similar and they are available from the authors upon request.
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Figure 7: Standardized household residuals against fitted values without (left) and with Box-Cox trans-
formation (right) for income.
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Figure 8: Normal Q-Q plots for household residuals and municipality residuals under three transforma-
tions for income
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Table 3: Skewness and kurtosis for the random effects and error terms of the working models for EBP
with and without transformations

Household-level error term Random municipality effects

Transformation Skewness Kurtosis Skewness Kurtosis

Without 10.10 177.00 2.09 9.87
Log -2.71 26.50 -0.60 3.52

Log-shift 0.00 4.91 -0.24 3.03
Box-Cox -0.24 7.95 -0.12 3.00

The proportion of variability explained under each model is quantified by the coefficients of deter-

mination R2 summarized in Table 4. As pointed out before, using the raw values of income in the EBP

nested-error regression model provides clearly unsatisfactory normal Q-Q plots and a R2 equal to 31%.

The use of transformations improves the predictive power of the model with the log-shift and Box-Cox

transformations giving the best predictive power.

Based on the results from the diagnostics analysis above we conclude that two transformations

namely, log-shift with shift parameter λ = 319.52 and Box-Cox with λ = 0.17 provide the most promis-

ing predictive power and approximation to the model assumptions of the EBP method. The following

questions are raised at this stage. How important is the choice of transformation in small area estimation?

Does the improvement in the predictive power of the model and less severe departures from the model

assumptions translate to more precise small area estimates? Is the choice of transformation equally

important for parameters associated with the centre of the distribution and parameters associated with

tails of the distribution? We attempt to address these questions in Section 4 that presents an evaluation

framework for SAE. For now, we comment on Figures 9-11 that show maps of point estimates of average

income, Gini coefficients and HCR for municipalities in EDOMEX produced by the EBP approach using

different transformations.

Table 4: Coefficients of determination from different linear regression model

Transformation R2 λ

Without 0.31 -
Log 0.43 -

Log-shift 0.51 319.52
Box-Cox 0.49 0.17

The maps for average income, Gini coefficient and HCR clearly indicate regional differences. As

mentioned before, EDOMEX has 125 municipalities which by their geographic and demographic char-

acteristics are grouped into 16 districts (see Figure 3). The maps of the estimated income-based indicators

for all transformations suggest intra-regional differences of poverty and inequality within and between

the districts. Estimates of average income and HCR show that some of the wealthiest districts are concen-

trated in the central-east and northern zones of EDOMEX. The most unequal municipalities are located

in the central and south-west parts of EDOMEX. There are, however, some differences in the maps of

point estimates produced with different transformations. Estimates of average income appear to be less

affected by the choice of transformation. The same holds true to a large extend for estimates of HCR. On

the other hand, estimates of the Gini coefficient appear to be more sensitive to the choice of transforma-

tion. These results suggest that the user should be very careful with the choice of transformation as this

can have an impact on point estimation especially when interested in non-linear indicators that depend
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Figure 9: Map of municipal estimates of average income in EDOMEX using the EBP method under the
log, log-shift and Box-Cox transformations
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Figure 10: Map of municipal estimates of Gini coefficients in EDOMEX using the EBP method under
the log, log-shift and Box-Cox transformations
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Figure 11: Map of municipal estimates of HCR in EDOMEX using the EBP method under the log,
log-shift and Box-Cox transformations

on the entire distribution. The comments in this part refer only to point estimation. In the next Section

we provide a framework that allows for the estimation of the uncertainty around point estimates and for

method evaluation. We will therefore open this discussion again at the end of Section 4.
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4 Evaluation

The small area estimates are a set of numbers of identical definition and simultaneous interest. In what

sense can one set of estimates considered to be better than another? Is it enough that the underlying

model is the preferred one according to some model selection criterion? Given two sets of ‘optimal’

estimates, derived under two different models, is it meaningful to compare the respective MSEs to each

other directly? Is it enough that the average MSE of one set is better than the other? Should one rely on

the design- or model-based MSE? Are ensemble properties of the small area estimates such as the range

or ranks of the estimates relevant? These are all examples of questions, to which, in our opinion, there are

hardly any definite answers. A detailed discussion on evaluation is beyond the scope of this paper. Our

approach below is in Section 4.1 to describe some aspects of evaluation, which we believe are necessary

to be taken into consideration in any application. In Section 4.2 we highlight the importance of seeking a

common ground when comparing estimators under different models, which in our experience is a matter

that is often either misunderstood or overlooked. Some aspects of evaluation are illustrated with the data

from Mexico in Section 4.3.

4.1 Some general aspects of evaluation

Let θk be the generic target parameter of area k, for k = 1, ...,m. Let θ = {θ1, ..., θm} denote the

collection of them. Let θ̃k be the estimator of θk and θ̃ the collection of them. Here we assume that one

is interested in all elements of θ at the same time. In other words, one can not fix only on one particular

θk, or a few of them, and disregard how estimators perform in the rest of the areas.

Generally speaking, in small area estimation one may distinguish between the area-specific and

ensemble properties of θ̃. An ensemble characteristic of θ is defined by using all θk’s. For example,

let θ̄w =
∑m

k=1Nkθk/N be the population mean, where Nk is the population size in area k and N =∑m
k=1Nk, and let G =

∑m
k=1(θk − θ̄)2/(m − 1) be the dispersion (or empirical variance) of θ, where

θ̄ =
∑m

k=1 θk/m. Other examples include the range, the order statistics and the ranks of θ. The various

ensemble properties of θ̃ are important for purposes such as benchmarking, subgroup analysis, fund

allocation, evaluation and monitoring (see e.g. Ghosh, 1992; Shen and Louis, 1998). Although ensemble

characteristics have attracted some interest, area-specific prediction has been the focus in the majority

of applications. The most common area-specific uncertainty measure is MSE. Below we describe three

types of MSE in common use.

Denote by yk be the observed data in area k, for k = 1, ...,m. Let y = {y1, ..., ym} denote the

collection of them. Provided a population model of θ, the (unconditional) MSE is given byE[(θ̃k−θk)2],
where the expectation is over both θ and y. Prasad and Rao (1990) develop second-order accurate

analytic MSE estimator under the linear mixed model. Jackknife methods have been developed for

the same purpose under a wider range of models (Jiang et al., 2002; Lohr and Rao, 2009). Bootstrap

(most commonly parametric) is more generally applicable, especially if either the target parameter or the

performance measure is non-differentiable (Hall and Maiti, 2006; Pfeffermann and Correa, 2012). Using

bootstrap is particularly relevant for uncertainty estimation of indicators such as the Gini coefficient and

the HCR. For example, for the EBP method described in Section 3.2 unconditional MSE estimation

uses parametric bootstrap which proceeds as follows. Generate B bootstrap populations using the fitted

super-population model y∗ = Xβ̂+u∗+e∗. Compute the population value of the target parameter from

each bootstrap population, θ∗k. From each bootstrap population select a bootstrap sample and compute

bootstrap estimates of the target parameter, θ̃∗k, by using the same method as the one used with the
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original sample. Finally, compute the average of theB squared bootstrap errors -defined by the difference

between θ̃∗k and θ∗k- as an estimate of the unconditional MSE.

Booth and Hobert (1998) argue for the use of conditional MSE of prediction (CMSEP) in the case of

non-normal-theory mixed models including generalised linear mixed models. The CMSEP is given by

E[(θ̃k − θk)2|yk], where the corresponding within-area yk is held fixed. When all the model parameters

are known, the best predictor is θ̃k = E(θk|yk), and the only natural measure of its uncertainty is the

CMSEP that reduces to V (θk|yk). For a practical example, Zhang (2009) applies the CMSEP to estimates

of small area compositions subjected to informative missing data.

The third type of MSE we describe is the finite-population (FP) MSE given by E[(θ̃k − θk)
2|θ],

where only the observed data y are allowed to vary. The FP-MSE is often evaluated with respect to the

sampling design (Rivest and Belmonte, 2000). Chambers et al. (2011) develop an FP-MSE estimator

where the sampling distribution of y is specified with respect to different models in common use. The

fact that θ is held fixed means the FP-MSE is an uncertainty measure for the actual population from

which the sample is selected instead of over all possible populations from which the sample could have

been selected. This is a familiar interpretation that appeals to many users. However, because the FP-MSE

is a small-area parameter itself, unbiased estimation is unstable whether it is with respect to the sampling

design or model. Hence, one needs to treat the estimation of FP-MSE as a small area estimation problem

in its own right.

Interval estimation may be considered besides MSE estimation. Let Ck = (θ̃kL, θ̃kU ) be an interval

estimator of θk, where θ̃kL < θ̃kU . Let δk = 1 if θk ∈ Ck and 0 otherwise. Analogous to unconditional

MSE, the unconditional coverage of Ck is given by αk = E(δk) = P (θk ∈ Ck), where both θ and y

are allowed to vary. Similarly, one can speak about conditional coverage of Ck given by E(δk|yk), and

FP-coverage given byE(δk|θ). Again, any unbiasedCk can have rather erratic area-specific FP-coverage

compared to the nominal level of confidence. Zhang (2007) defines α =
∑m

k=1E(δk|θ)/m to be the FP

simultaneous coverage of the Ck’s, all aimed at the same nominal confidence level. For the population

from which the sample is selected, this gives the proportion of area parameters that are expected to be

covered by their interval estimates without specifying which areas these are. It is shown that, asm→∞,

α converges to the nominal level of the Ck’s, provided the underlying population model of θ is correct.

Up to this point, in this Section we described different measures of uncertainty. In addition to mea-

suring the uncertainty around θ̃, an analyst is more generally interested in method evaluation. An analyst

may be interested in comparing different point estimators, assessing how a MSE estimator performs

in reality when approximations are used in its derivation, or assessing how a small area estimator be-

haves under departures from the underlying model assumptions. In general there are three approaches to

method evaluation namely, model-based simulation, design-based simulation and analytic method eval-

uation. Model-based and design-based simulations are common in practice and an example of a design-

based simulation using the data from Mexico is presented in Section 4.3. Analytic method evaluation is a

very powerful tool but less common in practice. We recommend that whenever possible analysts should

also consider using analytic method evaluation. An example of this for comparing estimators under two

different models is presented in Section 4.2.

Conducting a design-based simulation study is very common in practice. Indeed, it is hard to imagine

that an NSI will produce any small area statistics on a regular basis without validating the FP performance

of the adopted method under realistic conditions. Typically, a census or similar population dataset is

fixed as the population from which samples are repeatedly taken. For each simulated sample, a given

estimation method is applied to obtain a replicate set of small area estimates. In particular, within a
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design-based simulation study different estimation methods or models can be directly compared to each

other in terms of their FP performances. We consider this to be a suitable approach for method evaluation,

which establishes how a method is expected to perform over repeated sampling from a finite population,

regardless of whether the underlying model is correct or not. Using the data from Mexico in Section

4.3.2 we provide a detailed description of how one can design and implement a design-based simulation

that mimics the design and characteristics of the survey data from Mexico.

Unlike in a design-based simulation study, where the different methods are subjected to the same

source of uncertainty and usually the population is not generated under a model, model-based method

evaluation generally requires the use of a model for generating a population. Model-based studies are

more common when researchers develop new methods and they are interested in evaluating the properties

of estimators (point and MSE) both when the model assumptions hold and under specific assumptions

about model misspecification (sensitivity analysis). The design of model-based studies requires careful

thinking about the choice of the evaluation model used for generating the population. An example

relevant to this paper is when using parametric bootstrap for MSE estimation under the EBP method.

The simulation of a bootstrap population will differ depending on whether the super-population model

we assume holds. There arises a question i.e. whether it is meaningful to compare the MSE of an

estimator θkA of θk derived under model MA to that of another estimator θkB of θk under model MB

directly. Notice that it is always possible to evaluate the MSE of θkA under model MB even though

the estimator is motivated and computed under model MA and vice versa. Since the MSE of θkA will

differ according to whether the evaluation model isMA or MB , there is a need to compare the estimators

within a common framework in order to avoid misleading comparisons. Model-based evaluation is not

the focus of this paper, the matter will be discussed more closely in Sections 4.2 and 4.3.

Before concluding this Section we must mention that in addition to the evaluation methods men-

tioned above i.e. uncertainty assessment and design, model-based and analytic method evaluation, there

are additional informal evaluation approaches that are of relevance to practitioners. A set of small area

estimates is expected to be numerically consistent and more efficient than unbiased direct estimates. One

can further compare the aggregated area estimates to the corresponding direct aggregate estimates for the

same purpose. If aggregated model-based (indirect) estimates are not consistent with aggregate direct

estimates, an analyst can use benchmarking techniques to achieve consistency. Benchmarking offers es-

timates with built-in consistency an attractive property for NSIs (see Pfeffermann, 2013, for a discussion

on benchmarking methods). Notice, however, that direct estimates can not necessarily be assumed to be

unbiased when it comes to ensemble characteristics of area parameters. For example, direct estimates

can generally be expected to over-estimate the dispersion of θ. Use of informal evaluation approaches

such as compatibility with external data, quantitative or qualitative, evaluation by subject-matter experts,

bias and goodness of fit diagnostics from the point of view of practitioners are described in Brown et al.

(2001).

4.2 Levelling the common ground for model-based evaluation

To illustrate the idea of levelling the common ground for evaluation, assume estimation of θk under a

fixed effects model, but allow in addition an associated mixed effects model of θk for evaluation. Let the
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two models be given by, respectively,

F : θk = µk

M : θk = µk + uk

where µk = µk(β) is the fixed effects predictor, such as e.g. µk = x̄kβ for small area means, and the

uk’s are IID random effects with E(uk) = 0 and V (uk) = σ2u. Table 5 below summarises how the MSE

of the synthetic estimator of θk varies according to whether the evaluation model is the fixed effects or

mixed effects model, with or without conditioning on the observed data.

Table 5: MSE of the synthetic estimator under a fixed and a mixed effects model

Evaluation Unconditional MSE Conditional MSE
BSE F 0 0

M σ2u E(u2k|yk)
EBSE F VF (µ̂k) EF [(µ̂0k − µk)2]

M σ2u + VM(µ̂k) E(u2k|yk) + EM[(µ̂0k − µk)2]− 2E(uk|yk)EM(µ̂0k − µk)

To start with, provided the parameter β is known, the best synthetic estimator (BSE) is simply µk.

Therefore, under model F , its MSE is 0, both conditionally and unconditionally. Meanwhile, under

modelM, we have θk − µk = uk. Therefore, the unconditional MSE of µk is σ2u, and it is E(u2k|yk)
conditionally. Notice that the conditional MSE is only applicable to an area that is present in the sample.

In any case, the MSE of µk is clearly larger under the mixed effects modelM both conditionally and

unconditionally. In practice, however, the parameter β needs to be estimated, yielding the empirical

BSE (EBSE) µ̂k = µk(β̂), where β̂ is the estimator of β. The unconditional MSE is then given by

EF [(µ̂k − µk)
2] = VF (µ̂k), where we assume EF (µ̂k) = µk, and the subscript indicates that the

expectation is calculated under model F . On the other hand, conditional on yk, EF [(θk − µ̂k)2|yk] =

EF [(µ̂0k−µk)2], where µ̂0k is the estimator of µk when yk is held fixed while the data from all the other

areas are allowed to vary.

Evaluated under modelM, unconditionally we have

EM[(θk − µ̂k)2] = EM[u2k + (µ̂k − µk)2 − 2uk(µ̂k − µk)] = σ2u + VM(µ̂k),

provided EM(µ̂k) = µk despite µ̂k is estimated under model F . On the other hand, conditionally

EM[(θk − µ̂k)2|yk] = EM[u2k + (µ̂k − µk)2 − 2uk(µ̂k − µk)|yk]

= E(u2k|yk) + EM[(µ̂0k − µk)2]− 2E(uk|yk)EM(µ̂0k − µk)

provided area k is present in the sample, since uk is independent of µ̂0k given yk. Moreover, notice

that EM[(µ̂0k − µk)
2] is different from EF [(µ̂0k − µk)

2]. Provided all the within-area sample sizes

remain bounded, as m → ∞, the leading terms are σ2u for the unconditional MSE and E(u2k|yk) for the

conditional MSE, respectively, which do not vanish asymptotically, such that the MSE of EBSE µ̂k is

larger under the mixed effects model both conditionally and unconditionally.

The previous discussion illustrates how the performance of an estimator varies according to the evalu-

ation model in general. To appreciate why this matters for method choice, simply compare the synthetic

estimator derived under model F to the best predictor (BP) derived under model M assuming all the
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model parameters are known. The CMSEP of the BP is V (uk|y) under model M, provided area k is

represented in the sample, and it is σ2u when the area is not represented in the sample. It is thus clear

that it does not make sense to compare the conditional or unconditional MSE of the BSE under model

F , which is 0 (Table 5), with the CMSEP of the BP under modelM, which is not 0. Instead, one can

compare the MSEs when both are evaluated under the same modelM, and see right away that the BP

has a smaller MSE as long as the area is present in the sample, whereas for an out-of-sample area the

MSE will be σ2u for both the BSE and the BP.

4.3 Illustrating aspects of SAE evaluation using the data from Mexico

In this Section we illustrate some of the aspects of SAE evaluation we discussed in Sections 4.1 and

4.2. In particular, using the results of model selection and diagnostics we described in Section 3.3, we

present results for the estimation of average household equivalised income, HCR and Gini coefficients

for municipalities with the original sample in EDOMEX. We then show how the analyst can prepare a

design-based simulation study that can be used for method evaluation. We discuss how the design-based

simulation results can guide the production of the final set of SAE estimates.

4.3.1 Analysis with the original sample

Table 6 presents summaries over municipalities of point, root MSE (RMSE) and CV estimates computed

using the original data supplied to us by CONEVAL. To start with, direct estimation is not considered

because survey data cover only part of the target geography and - as we discussed in Section 3.3 - direct

estimates have higher than acceptable estimated CVs. Results are presented separately for in-sample and

out-of-sample areas. For in-sample areas we produce estimates using four versions of the EBP method

i.e. with untransformed income and three transformations (Log, Log-shift and Box-Cox). For out-of-

sample areas we use the four above-mentioned versions of the EBP, which in this case corresponds to

synthetic estimation. MSE estimates are obtained by using the parametric bootstrap under the unit-level

mixed models (see Section 4.1) and different transformations. Note that synthetic estimates (point and

MSE) are produced under the mixed model (see discussion in Section 4.2).

Why have we decided to use the EBP method? This is because the model building and diagnostics

results in Section 3.3 showed that the inclusion of municipality mixed model provided a better fit to the

data. Why have we decided to use both the raw income and three different transformations? The model

diagnostic results in Section 3.3 showed that the best transformations are the log-shift and the Box-Cox.

Do these results, however, translate in estimates with better efficiency?

The results in Table 6 show that the EBP Log-shift and EBP Box-Cox produce small area estimates

that are clearly more efficient than the corresponding estimates produced with the untransformed income

model and more efficient than the Log income model. Hence, using the methods suggested by model

building and diagnostic analysis results in estimates with better efficiency. It is also clear that failing to

use transformations, when needed, has an impact on point estimation. The impact of transformations

on point estimation is less pronounced for indicators that relate to the centre of the income distribution

(average income) than for non-linear indicators such as the HCR and the Gini. However, even for aver-

age income failing to transform has a substantial effect on the efficiency of the estimates. These results

illustrate the importance of model diagnostics in SAE. A final comment about these results relates to

MSE estimation. MSE estimates are produced by computing the parametric bootstrap estimator with the

original sample. Parametric bootstrap relies on the belief that the model assumptions (after transforma-
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tion) are met. In reality there are always small departures from the model assumptions. One question is

whether small departures can have an impact on MSE estimation. The second question is whether the

impact of model misspecification on MSE estimation is different for linear and non-linear indicators. The

question becomes relevant when looking at the RMSE estimates for the Gini coefficient which are quite

small. Evaluating the properties of MSE estimation under model misspecification requires the design

of model-based or design-based simulations. This can be very computer intensive because a computer-

intensive method such as parametric bootstrap is implemented for a large number of Monte-Carlo runs.

We discussed this issue again in the next Section and we draw some preliminary conclusions of relevance

for the prospective analyst.

Table 6: One sample analysis. Summaries of point estimates, estimated RMSEs and CVs over munici-
palities in EDOMEX

58 In-sample municipalities

Indictor Mean Head Count Ratio Gini

Estimator Median Mean Median Mean Median Mean

Point Estimates EBP 2730 2875 0.380 0.374 0.949 1.020
EBP Log 2699 2927 0.363 0.354 0.477 0.481
EBP Log-shift 2600 2782 0.329 0.323 0.433 0.439
EBP Box-Cox 2617 2780 0.336 0.326 0.435 0.441

RMSE EBP 449.2 435.8 0.040 0.038 0.177 1.110
EBP Log 249.7 257.2 0.039 0.037 0.011 0.012
EBP Log-shift 202.3 207.0 0.036 0.035 0.010 0.010
EBP Box-Cox 185.2 186.2 0.034 0.032 0.010 0.010

CV EBP 0.163 0.171 0.104 0.104 0.187 0.570
EBP Log 0.095 0.091 0.108 0.108 0.024 0.024
EBP Log-shift 0.080 0.077 0.112 0.112 0.022 0.023
EBP Box-Cox 0.071 0.069 0.103 0.103 0.022 0.022

67 Out-of-sample municipalities

Point Estimates EBP 2042 2130 0.436 0.433 1.261 1.344
EBP Log 2244 2296 0.439 0.436 0.474 0.473
EBP Log-shift 2151 2196 0.409 0.410 0.432 0.433
EBP Box-Cox 2171 2216 0.409 0.410 0.440 0.445

RMSE EBP 523.4 518.6 0.048 0.048 0.400 8.102
EBP Log 256.1 256.3 0.050 0.049 0.013 0.013
EBP Log-shift 209.3 209.9 0.048 0.048 0.011 0.011
EBP Box-Cox 188.4 187.7 0.043 0.043 0.011 0.011

CV EBP 0.251 0.265 0.114 0.111 0.313 3.366
EBP Log 0.111 0.112 0.119 0.116 0.027 0.028
EBP Log-shift 0.095 0.096 0.122 0.120 0.025 0.026
EBP Box-Cox 0.085 0.085 0.110 0.108 0.025 0.026

4.3.2 Method evaluation using design-based simulation

In Section 4.3.1 above the MSE was calculated under the model estimated based on the ENIGH survey

data. How much are the results affected by the error of the model parameter estimate, assuming that the

model is correct? What if the model assumptions are not all correct? These natural questions suggest why

it is helpful to perform design-based method evaluation that does not depend on the model assumptions
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altogether. We now present an approach for designing a design-based simulation that involves repeated

sampling from a fixed population.

In a design-based simulation the first and possibly the most important step is deciding what fixed

population to use. In the Mexican Census we identified variable inglabpc - earned per capita income

from work which is highly correlated with the variable of interest ictpc that is only available in the survey

data. Variable inglabpc is not considered to provide income data of high quality and this is why SAE

using ictpc is needed. However, for the purposes of method evaluation we are interested in using a

variable that has similar distributional characteristics as the target variable and inglabpc can play this

role. A first reason as to why we decided not to include inglabpc as a covariate in our small area model

is because we wanted to use this variable for evaluation purposes. We further wanted to perform method

evaluation in a situation where the covariates available explain a moderate part of the variance. Table 7

presents summary statistics for variable inglabpc (used in the design-based simulation) and the variable

ictpc (used in the one sample analysis). As expected the distribution of both variables is similar and the

total per-capita income ictpc is higher compared to per-capita income from work inglabpc. In fact, if

anything, the Census variable inglabpc is even more skewed than the survey variable ictpc in Table 7,

which seems reassuring with respect to the robustness of the evaluation using the census variable. Our

design-based simulation will be based on repeated sampling from the Mexican Census micro-data and

modelling of proxy household income provided by inglabpc. Note that since the data for the design-based

simulation are coming from the Census, no model-based assumptions are being made.

Table 7: Summary statistics for the income variables

Min. 1st Qu. Median Mean 3rd Qu. Max.
inglabpc (Census) 0 1000 1700 2717 3000 100000
ictpc (survey) 0 1310 2142 3243 3518 98070

Table 8: Summary statistics over municipalities

Min. 1st Qu. Median Mean 3rd Qu. Max. NA
Population size 394 2759 6852 24820 16440 349100 -
Sample size 3 17 21 47.4 42 527 67

From the fixed population we independently drew T = 500 samples. The samples are selected by

using a single-stage stratified random sampling with strata defined by the 58 in-sample municipalities in

the ENIGH survey. The number of households in each in-sample municipality is the same as the number

of households in the ENIGH survey. This leads to a sample size of 2748 households with 58 in-sample

municipalities and 67 out-of-sample municipalities as is the case with the ENIGH survey. Summary

statistics of the sample and population sizes -over municipalities- are provided in Table 8.

Using each sample selected from the fixed population we compute estimates of average equivalised

household income from work, HCR and Gini coefficients using direct and indirect estimators. In particu-

lar, we use the direct (3), the EBP based on different transformations and regression synthetic estimators.

Indirect estimators are computed with a model that uses the same six covariates identified via model

building in Section 3.3. The R2 was on average -over repeated sampling- around 40 − 50%, which is

consistent with the results we obtained from one sample analysis.

The performance of these estimators is evaluated by computing the relative bias (RB) and root mean
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squared error (RMSE) given by

Relative Bias(θ̂k) =
1

T

T∑
t=1

θ̂tk − θtk
θtk

RMSE(θ̂k) =

√√√√ 1

T

T∑
t=1

(
θ̂tk − θtk

)2
,

where θ̂k is a generic notation to denote an estimator of the target parameter in municipality k, θk denotes

the true population parameter in municipality k and t is an index for repeated sampling with T = 500 in

this case. We further report CVs as a additional performance indicator.

Table 9 reports the results split by the 58 in-sample and the 67 out-of-sample municipalities. The

table presents mean and median values of RMSE, relative bias and CV over municipalities.

In line with the model diagnostics and the one sample analysis, the performance of the EBP estimates

without transformation is inferior to the EBP estimates with transformations (log-shift and Box-Cox) for

all indicators. The design-based simulation results confirm that transformations are necessary for im-

proved small area estimation. As expected, the direct estimator is less efficient than model-based estima-

tors, which justifies the use of indirect methods in this case. A closer look to the EBP-based results with

transformations shows that the EBP Log-shift and the EBP Box-Cox perform somewhat better compared

to the EBP Log in terms of bias and efficiency for all indicators. This indicates that the log-shift and the

Box-Cox transformations adapt better to the shape of the underlying distribution, which appears to be

consistent with the results we obtained from diagnostic analysis (Section 3.3). For in-sample areas we

note that the synthetic estimates are somewhat less efficient than the model-based estimates. Despite the

small between-area variability we obtain from the full model we used for estimation, including random

effects is recommended for the in-sample municipalities. The comparison between synthetic and EBP

estimates, however, highlights the importance of building a model that has good predictive power. Doing

so means that use of a synthetic estimator may not be that inefficient.

It is important to also evaluate the performance of MSE estimators. Formal evaluation requires using

parametric bootstrap with each of the 500 samples, which is very computer intensive and beyond the

scope of the present paper. An informal approach to evaluating the performance of parametric bootstrap

is by comparing the empirical FP RMSEs reported in Table 9 to the estimated unconditional RMSEs

reported in Table 6. Generally, it can be shown that, across all the areas, the mean (or median) of the

FP RMSE is often comparable to that of the unconditional RMSE provided the population model of the

small area parameters is correct. This seems to be case for estimates of average income and HCR but not

for the Gini Coefficient where we see that the estimated unconditional RMSEs are much smaller than the

empirical FP RMSEs. We conjecture that even small departures from the model assumptions can have an

adverse effect on MSE estimation of non-linear indicators computation of which depends on the entire

target distribution. We are currently investigating the use of non-parametric methods for MSE estimation

with non-linear indicators. The preceding analysis shows that practitioners must be particularly careful

when using parametric methods and should always employ design-based method evaluation.

5 An update on SAE software

In this Section we provide a update on the availability of SAE software. Although from an applied point

of view many NSIs have a preference for software such as SAS, most of the recent developments in SAE
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Table 9: Performance of predictors over municipalities in design-based simulations

58 In-sample municipalities

Indictor Mean Head Count Ratio Gini

Estimator Median Mean Median Mean Median Mean

RMSE EBP 180.2 236.3 0.095 0.091 0.497 0.538
EBP Log 187.5 229.5 0.049 0.051 0.026 0.031
EBP Log-shift 156.6 225.1 0.038 0.045 0.022 0.028
EBP Box-Cox 171.7 227.5 0.045 0.049 0.025 0.029
EBP Syn 188.2 257.6 0.093 0.091 0.486 0.554
EBP Log Syn 160.7 256.2 0.054 0.062 0.026 0.031
EBP Log-shift Syn 159.4 266.0 0.041 0.054 0.022 0.028
EBP Box-Cox Syn 168.5 263.2 0.051 0.059 0.025 0.029
Direct 543.6 631.1 0.097 0.102 0.083 0.093

RB [%] EBP 2.39 3.93 34.77 30.40 109.6 116.8
EBP Log 2.96 2.52 12.54 11.85 3.89 3.16
EBP Log-shift 0.93 0.95 6.49 5.57 0.08 -0.34
EBP Box-Cox 1.98 1.66 11.18 10.06 2.32 1.45
EBP Syn 2.79 4.68 34.45 30.74 110.1 114.9
EBP Log Syn 1.84 2.98 16.65 13.89 3.89 3.16
EBP Log-shift Syn 0.80 1.52 9.59 7.13 0.10 -0.42
EBP Box-Cox Syn 1.41 2.22 14.67 11.90 2.35 1.45
Direct -0.13 -0.32 -0.35 -0.27 -7.92 -10.21

CV EBP 0.082 0.098 0.262 0.254 0.534 0.512
EBP Log 0.078 0.096 0.145 0.158 0.058 0.066
EBP Log-shift 0.073 0.093 0.123 0.141 0.048 0.062
EBP Box-Cox 0.076 0.095 0.137 0.152 0.056 0.063
EBP Syn 0.088 0.106 0.260 0.254 0.530 0.530
EBP Log Syn 0.072 0.105 0.174 0.184 0.058 0.066
EBP Log-shift Syn 0.078 0.109 0.144 0.166 0.049 0.062
EBP Box-Cox Syn 0.074 0.107 0.161 0.179 0.055 0.063
Direct 0.239 0.274 0.291 0.362 0.203 0.246

67 Out-of-sample municipalities

RMSE EBP 210.6 224.4 0.073 0.079 0.846 109.3
EBP Log 216.3 234.5 0.061 0.069 0.032 0.034
EBP Log-shift 200.7 222.9 0.062 0.075 0.031 0.032
EBP Box-Cox 212.6 229.7 0.060 0.070 0.032 0.033

RB [%] EBP 11.28 10.46 -0.69 2.98 152.6 1236.0
EBP Log 12.43 13.96 -5.27 -2.83 2.25 2.16
EBP Log-shift 11.19 12.83 -9.86 -7.69 -0.21 -0.26
EBP Box-Cox 11.91 13.49 -6.60 -4.24 1.09 1.23

CV EBP 0.109 0.123 0.179 0.187 0.693 4.045
EBP Log 0.112 0.128 0.146 0.167 0.071 0.074
EBP Log-shift 0.107 0.123 0.166 0.189 0.068 0.071
EBP Box-Cox 0.110 0.126 0.154 0.172 0.071 0.072

are implemented in the open-source software R (R Core Team, 2015) via R packages.

A comprehensive review of relevant software is included in the CRAN task view on Official Statistics

and Survey Methodology (Templ, 2015) with specific categories on Complex Survey Designs, Small

Area Estimation and Microsimulations. In particular, the section on Complex Survey Designs includes
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packages, like survey (Lumley, 2004, 2012) and sampling (Tillè and Matei, 2012) that can be used for

point and variance estimation of direct estimators of means, totals, ratios, and quantiles under complex

survey designs. Package laeken by Alfons and Templ (2013) provides functions for the estimation of

different poverty and inequality indicators such as the at-risk of poverty-rate, Gini coefficient and quintile

share ratio. The sae package by Molina and Marhuenda (2015) can be used for computing synthetic

and composite estimators and for implementing SAE with unit level and area (Fay-Herriot) models that

allow for complex correlations structures. The package also includes code for implementing the EBP

approach of Molina and Rao (2010) we discussed in Section 3.2. An alternative code in R for computing

EBP estimates that also includes an option for using the transformations discussed in the present paper,

visualization and export of the results to Excel is proposed by Kreutzmann (2016). Collections of R
functions for implementing a wide range of SAE methods are available in the documentations of National

and European funded research projects. Here we refer to the BIAS project (BIAS, 2005) which includes

code for the unit-level EBLUP and spatial EBLUP with correlated random effects (Pratesi and Salvati,

2009). The SAMPLE project (SAMPLE, 2007) also provides a very wide range of code for implementing

parametric, semi-parametric and outlier-robust small area estimation and allows for models with spatial

and temporal correlations. Small area estimation from a Bayesian perspective is provided, among others,

in the packages hbsae (Boonstra, 2012) and BayesSAE (Shi and Zhang, 2013). It is also important to

mention two packages namely, simPop (Meindl et al., 2016) and saeSim (Warnholz and Schmid, 2016)

that support the prospective user in the setup of design- or model-based simulations that enable method

evaluation at the evaluation stage.

In addition to software written in R, alternative SAE software is also available. The World Bank pro-

vides an open-source software for poverty estimation called PovMap (The World Bank, 2013). PovMap
implements the small area estimation procedure developed in Elbers et al. (2003) and is stand-alone soft-

ware solution. The European funded project EURAREA (2001) delivered additional code in SAS that

allows for the computation of direct and indirect small area methods. For additional details and examples

in SAS we refer the prospective to Mukhopadhyay and McDowell (2011). Finally, all methods discussed

in the paper are implemented by computationally efficient algorithms using R. The codes are available

from the authors upon request.

6 Conclusion

In this paper we propose a general framework for the production of SA statistics and attempt to illustrate

the SAE process in practice. As part of this framework we have touched upon four inter-related topics

namely, specification of the problem, model selection and testing and finally method evaluation. While

much can be said for each of these four areas, it is the interplay between them that provides the key

to the successful application of SAE methods. There are no clear-cut ways of trading between them

in a formal manner and mastering a balance between these four stages is in many ways the wisdom

of applied statistics, which holds true also for SAE. The illustrations we have included in this paper

offer some practical ways of keeping this balance. Our empirical illustrations show that specifying a

sensible geography and defining targets of estimation that are supported by the data available are the

first important steps for successful SAE. Careful model building using the principle of parsimony, model

diagnostics and model adaptations are also very crucial steps for improving estimation without the need

for additional data sources. Finally, having access to uncertainty measures of good quality and designing

method evaluation studies are of paramount importance for reassuring the users especially if interest is
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in using the estimates for official purposes for example, in the design of policy interventions. SAE is

of course a large research area and hence it is not possible to capture all of its aspects in a single paper.

Production of SA statistics with discrete outcomes and use of area level models are not covered although

the proposed framework can still be applied in most cases.

Nevertheless there are questions that remain unresolved and which feel we should raise at this stage.

Within the context of sample surveys there exists currently an apparent contrast between the prevalent

preference for design-based approaches to statistics at the higher levels of aggregation and model-based

approaches at the lower levels. This seems to imply that at some intermediate level of aggregation the

choice between the two approaches may be somewhat blurred. Where are these intermediate levels of

aggregation? Is it possible to develop a coherent framework for the different levels in the aggregation

hierarchy? Should benchmarking towards aggregate-level estimates of acceptable quality actively drive

the development of SAE methods or should benchmarking, as often it is, remain a side issue that one

only pays attention to at the last stage of estimation?

Both area-specific and ensemble properties of a set of small area estimates are undoubtedly of inter-

est. This is a distinctive feature of SA statistics in comparison to the national estimate that is a single

number. Small area estimation is a simultaneous rather than a point estimation problem. Multi-purpose

(multiple-goal) SAE aims to provide a compromise in a theoretical manner. However, the usefulness

of such an approach can only be explored together with the users if the solution is to have an impact

in practice. Can users ever be ready or willing to accept multiple sets of estimates, each optimal for a

particular purpose? How can one avoid or limit the misuses of a particular set of estimates in practice?

For now we leave these questions open hoping that they will inform future discussions.
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