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1 Introduction

1.1 Development of the mouse embryo

Mouse embryonic development takes 19 days on average. It begins with a single
cell, namely the fertilized egg, or zygote. The zygote undergoes cleavage divisions
to form blastomeres. At the 8-cell stage, the embryo has developed into a morula,
and its cells start to compact, polarize, and form a blastocyst. Implantation of
the blastocyst occurs around embryonic day 4.5 (E4.5), and by this stage, two
distinct cell populations can be discriminated: the outer trophoblast cells and
the inner cell mass (ICM). The latter comprises two cell layers, namely the hy-
poblast, also known as the primitive endoderm, and the epiblast. The embryo
proper is formed exclusively from descendants of the epiblast. At the onset of
the gastrulation process, the epiblast consists of approximately 800 cells [Snow
and Bennett, 1978|. Gastrulation in the mouse embryo begins around E6.5 when
the primitive streak at the future posterior end of the embryo arises. Cells from
the continuous epiblast layer detach from their neighboring cells by a process
known as epithelial-to-mesenchymal transition. Thus, the cells become motile
and individually migrate through the streak [Burdsal et al., 1993]. One part of
the ingressing cells constitutes an intermediate layer of embryonic mesoderm be-
tween the epiblast and the underlying hypoblast, while the other part gradually
replaces the hypoblast cells, thereby forming the embryonic endoderm. As a re-
sult of gastrulation, the embryo becomes a trilaminar entity, with an outer layer
of ectoderm, an intermediate mesoderm, and an inner layer of endoderm. In the
mouse, the germ layers are initially arranged in an inverse manner with the ecto-
derm facing the inside and the endoderm facing the outer aspect of the U-shaped
egg cylinder. Around E8.5, this inversion is reverted by the complex process of
turning. The onset of organogenesis coincides with turning. During this phase,
the germ layers begin to assemble the organ and tissue rudiments. Also, several
transient structures emerge, e.g., the notochord, the branchial arches, and the
somites. They ultimately contribute to the generation of functional organs or

tissues in the adult. Distinct cell types derive from the different germ layers. The
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nervous system, the epidermal cells of the skin, and most of the skeletal and con-
nective tissue of the head, for example, arise from the ectoderm. The mesoderm
is subdivided into various clusters that are organized in longitudinal stripes. The
axial mesoderm along the midline of the embryo is flanked by paraxial mesoderm
on both sides. The latter condenses to form somites, from which the axial skele-
ton, the connective tissue of the skin, and most muscles in the body are generated.
The urogenital system is formed by the intermediate mesoderm, while the lateral
plate mesoderm gives rise to tissues such as bones and cartilages of the limbs,
the heart, and the vascular system. The endoderm, on the other hand, mainly
generates the digestive tract including the liver and pancreas as well as the inner
linings of the lungs. The end of organogenesis marks the beginning of the fetal
period during which the organs grow and mature until gestation has reached full

term. Figure 1.1 summarizes the most critical events during mouse development.

Preimplantation dev Postimplantation development
AT
do d25 d4.5 dé.5 d8s.s 14.5 19.5
S : i s srnocmas s
implantation gastrulation

ST 4 organogenesls
fertilization ~compaction

ETE 1. 5998 3

turnmg

foetal growth and development

Figure 1.1 Overview of mouse development
Mouse embryonic development takes approximately 19 days. The pre- and
postimplantation phases are indicated above the time line, critical events and
processes are indicated below the time line. Modified after [Hedrich and Bullock,
2004]
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1.2 Development of the mouse kidney

The kidney has been a classical model of organogenesis for over 50 years. Its
development is characterized by three consecutive stages: the pronephros, the
mesonephros, and the metanephros. While the former two are only transient
structures, the latter persists as the functional kidney. The nephric duct arises
from intermediate mesoderm around ES8.0 of early mouse development. As it
extends caudally, it induces the sequential formation of tubules in the adjacent
mesenchyme. By the time the rudimentary pronephric tubules degenerate, a new
array of tubules appears, namely the mesonephric tubules. In mice and rats, the
mesonephros never functions as a working kidney. The nephric duct continues
to elongate posteriorly, and by E10.5, the ureteric bud becomes evident at its
medial aspect. The definitive kidney, the metanephros, is formed by two types
of intermediate mesoderm: the ureteric bud and its surrounding metanephric
mesenchyme (Figure 1.2 A). These two tissues reciprocally induce each other
during this process. While the mesenchyme promotes growth and branching of
the ureteric bud, the bud induces the conversion of metanephric mesenchyme into
epithelium. Epithelial aggregates at the tips of the branching buds then transform
into renal vesicles. The vesicles elongate into characteristic S-shaped bodies. The
distal part of those bodies fuses with its inducing ureteric bud tip to generate
a continuous lumen, and their proximal part is invaded by endothelial precursor
cells (Figure 1.2 B). As development proceeds, mature nephrons are formed by
both types of cells. Endothelial cells constitute capillary loops, whereas epithelial
cells differentiate into podocytes, i.e., visceral epithelial cells, parietal epithelial
cells lining the Bowman’s capsule, and the tubular components (the proximal
tubule, the loop of Henle, and the distal tubule). The distal tubules connect to
the collecting duct, which are derived from the ureteric bud (Figure 1.2 C). To
generate a mature kidney, this process is reiterated as newly forming branches of
the ureteric bud induce the formation of new nephrons in the periphery of the
developing organ, namely in the nephrogenic zone. In the mouse, nephrogenesis
continues for about one week after birth [Davies and Bard, 1996]. The adult
kidney is composed of two major compartments: the peripheral cortex and the
central medulla. The collecting ducts reach from the cortex through the medullary
region into the papilla, where they drain into the ureter. The nephrons, on the

other hand, are located only in the cortical region (Figure 1.2 D).
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Figure 1.2 Schematic of kidney development

A. Cross section of an E11.5 mouse embryonic kidney at induction. Mesenchyme
(blue) condenses around the two branches of the ureteric bud (UB, red). B. The
renal vesicle (RV) undergoes segmentation to form the nephron, which consists
of the glomerulus (G), the proximal tubule (P), the loop of Henle (not shown),
and the distale tubule (D). The latter connects to the ureteric bud, which itself
transforms into the collecting ducts. C. A mature nephron with capillary loops
(red) inside the glomerulus and the glomerular basement membrane (green)
between podocytes (blue) and the capillaries. The distal segment of the nephron
(light blue) connects to the collecting duct (red). D. Cross section of a mature
kidney. Nephrons are located in the cortex (unshaded), whereas collecting ducts
extend into the medulla (green) and medullary papilla (pink). Modified after
[Quaggin and Kreidberg, 2008]

1.3 Glomeruli at a glance

The nephrons are the basic functional units of the kidney. Each nephron com-
prises a renal corpuscle and a renal tubule. The renal corpuscle consists of a
glomerulus and a surrounding Bowman’s capsule. In the corpuscle, blood plasma
is filtered to produce the primary urine. Blood enters the glomeruli through ar-
teries that branch inside the organ to form capillary tufts, i.e., tiny looping blood
vessels. The glomerular filtration barrier, which separates the blood stream from
the urinary space, is composed of three distinct layers: the endothelial cells, the
glomerular basement membrane, and the podocyte cells (Figure 1.3 A). The in-
nermost layer of endothelial cells displays a specialized, fenestrated morphology.
Podocytes, on the other hand, are highly modified epithelial cells that terminate
in foot processes. The basal aspects of these processes intertwine on the surface
of the glomerular basement membrane, thereby forming cell-cell junctions known
as slit diaphragms. Thus, slit-like openings are found on both sides of the in-
tervening basement membrane, which is composed of the fused basal laminae of
the other two layers (Figure 1.3 B). The glomerular filtration barrier functions

both as a size- and a charge-selective filter. The capillary pores allow passage
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of all plasma components but not blood cells, while the basement membrane re-
tains all but the smallest proteins. In addition, other macromolecular anions,
i.e., most plasma proteins, are repelled by the negatively charged glycoproteins
of the basement membrane. Ultimately, the thin membranes constituting the slit

diaphragms between adjacent foot processes can block the passage of proteins.

fenestrated .
endothelium
-
capillary lumen . urinary space

Figure 1.3 Schematic of a mature glomerulus and the glomerular filtration barrier

A. The four major cell types in the glomerulus are the parietal epithelial cells
(gray) lining the Bowman's capsule (BC), podocytes (P, blue), mesangial cells
(M, yellow), and endothelial cells (E, red) of the capillary loops (C). Modi-
fied after [Quaggin and Kreidberg, 2008] B. The glomerular filtration barrier
is composed of three layers: the fenestrated endothelial cells, the glomerular
basement membrane, and the slit diaphragms between adjacent foot processes
of the podocytes. Arrow indicates filtration direction from the capillary lumen
to the urinary space.

Proteins that are ‘trapped’ in the filtration membrane are degraded by mesan-
gial cells. Mesangial cells are mostly found at the stalk of the capillary tuft.
These cells are a specialized type of smooth muscle cells, which are involved in
maintaining the structure of the glomerular tuft as well as in the response of the
glomerular vasculature to various physical stimuli [Schlondorff, 1987 [Yamanaka,
1988]. Once the primary urine is produced, some substances including glucose and
electrolytes are reabsorbed, whereas others like urea and creatinine are secreted
while passing through the different parts of the renal tubular system, namely the
proximal tubule, the loop of Henle, and the distal tubule. By the time the urine
reaches the collecting duct, it is usually dilute. Therefore, water is reabsorbed in

this part, and concentrated urine is excreted.



6 1 Introduction

1.4 The Slit genes

The Slit gene was first described in Drosophila in 1988 [Rothberg et al., 1988],
and only a decade later, three vertebrate homologs were identified [Itoh et al.,
1998] [Holmes et al., 1998] [Nakayama et al., 1998] [Yuan et al., 1999]. The ver-
tebrate Slit proteins are large secreted molecules consisting of a signal peptide,
four leucine-rich repeat (LRR) regions, nine epidermal growth factor (EGF) re-
peats, which are interrupted by a laminin G domain, and a cysteine-rich carboxy-
terminus [Brose et al., 1999]. It has been demonstrated that the Slit proteins
signal through the roundabout (Robo) receptor family of proteins [Kidd et al.,
1999].

The Slit/Robo system has been studied most extensively in the context of
axon guidance. In the developing vertebrate spinal cord, all three Slit genes
are expressed in the floor plate at the ventral midline, while three of the four
transmembrane Robo receptors, namely Robol, Robo2, and Rig-1 (Robo3), are
expressed on the surface of neuronal axons [Yuan et al., 1999| [Holmes et al.,
1998] [Brose et al., 1999] [Erskine et al., 2000]. Growing axons either remain
on one side of the spinal cord to project ipsilaterally or cross the midline and
project contralaterally. The decision to cross or not to cross is largely governed
by Slits and their Robo receptors. Crossing, i.e., commissural axons initially
express Robol and are thereby repelled from the midline by the Slit proteins
(Figure 1.4 A). Rig-1, a divergent member of the Robo family, transiently blocks
Robol function. Thus, the axons are no longer sensitive to the repulsive signal
of the Slits and enter the midline (Figure 1.4 B). Robol function is reactivated
only after crossing of the midline, which allows the Slits to force the axons out
of the midline and prevent them from recrossing (Figure 1.4 C) [Long et al.,
2004] [Sabatier et al., 2004] [Mambetisaeva et al., 2005]. This repulsive signal
is mediated by slit/robo GTPase-activating proteins (srGAPs), which ultimately
leads to a decreased cytoskeletal actin polymerization, causing the cells to migrate

away from areas of high Slit concentration [Wong et al., 2001].
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Figure 1.4 Slit/Robo system of regulating midline crossing of axons
A. Growing axons initially express Robol and are thus prevented from crossing
the floor plate at the ventral midline of the nervous system by Slit. B. Rig-1
expression then blocks Robol function, allowing the axons to enter the midline.
C. After crossing the floor plate, Robol is reexpressed, forcing the axons away
from the midline by the repellent function of Slit. Adapted from [Gilbert, 2006]

In Slit1- and Slit2-single- as well as in Slit1/Slit2-double-mutant mice, no ob-
vious defects are observed in commissural axon guidance within the develop-
ing spinal cord despite severe abnormalities in the formation of several major
forebrain tracts [Bagri et al., 2002| [Plump et al., 2002]. This observation was
attributed to the fact that expression of Slit3 in the floor plate of the spinal
cord possibly compensated the loss of the other two Slit proteins, while its ex-
pression in the affected forebrain regions was reported to be weak or absent.
Slit1/Slit2 /Slit3-triple mutants confirmed this assumption. In these mice, the
commissural axons appear highly disorganized and defasciculated at the floor
plate [Long et al., 2004|. Slit2- as well as combined Slit1/Slit2-deficient animals
show early postnatal lethality, whereas Slitl-mutant mice seem grossly normal
[Plump et al., 2002]. Conversely, Slit3-deficiency results in partial embryonic
lethality. The surviving mutants display various defects, including diaphragmatic
herniation as well as heart and kidney defects |Liu et al., 2003].

In addition to the well-characterized role of Slit proteins in axon repulsion, a
growing body of evidence shows that they also regulate the migration of various
other cell types, e.g., muscle precursor cells [Kramer et al., 2001| and chemotactic
leukocytes [Wu et al., 2001].

Although first discovered and described as mediators of axon guidance, Slit
genes have a more widespread role during development and are involved in the
formation of several organs, namely the lung and the kidney. The mammalian
lung develops through complex interactions between endoderm and surround-

ing mesenchyme with the differentiation of the developing epithelial respiratory
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tube being determined by the regional specificity of the mesenchyme. Expression
of Slit2 and Slit3 in conjunction with Robol and RoboZ2 in specific subsets of
embryonic and fetal lung mesenchyme implicates a function during pulmonary
development [Anselmo et al., 2003] [Greenberg et al., 2004|. In the kidney, ex-
pression of all three members of the Slit family of proteins has been described in
confined regions of the developing metanephric mesenchyme and ureteric bud tree
[Piper et al., 2000] [Stuart et al., 2003]. In Slit2-deficient embryos, several defects
are observed during kidney formation. By E18.5, the mutants display grossly di-
lated collecting ducts and ureters. In addition, the site where new nephrons are
generated is no longer restricted to the nephrogenic zone. Instead, nephrogenesis
is also observed in the medullary region. To analyze the nature of these abnormal-
ities, embryos were examined at the onset of renal development. In E11.5 mutant
embryos, supernumerary ureteric buds had emerged from the nephric duct. By
E14.5, most of these buds had invaded the metanephric mesenchyme, thereby
inducing the formation of additional kidneys. These defects were attributed to
inappropriate maintenance of glial cell line-derived neurotrophic factor (Gdnf)
expression. Its expression is normally restricted to the posterior nephrogenic
mesenchyme where it induces the formation of a single ureteric bud |[Hellmich
et al., 1996] [Suvanto et al., 1996]. In the Slit2 mutants, however, its expression
domain is extended into the anterior nephrogenic mesenchyme, causing the above
described defects |Grieshammer et al., 2004].

During the recent years, studies have accumulated that suggest a role for the
human Slit genes in tumorigenesis. SLIT?2 is known to be silenced by promoter
hypermethylation in lung, breast, and colorectal cancer, and its ectopic reexpres-
sion in the respective cancer cell lines suppressed their ability to form colonies
[Dallol et al., 2002] [Dallol et al., 2003]. Epigenetic inactivation of SLIT1, SLIT2,
and SLIT3 was also shown to be an early event during progression of cervical
cancer [Narayan et al., 2006]. Decreased SLITZ2 expression has been reported in
human esophageal squamous cell carcinomas. This study implicated a SLITZ2-
mediated regulation of apoptosis and cell cycle progression via downregulation
of molecules involved in both processes [Kim et al., 2008|. Other experiments
demonstrated inhibition of glioma cell invasiveness by SLIT2 through attenua-

tion of cell migration [Yiin et al., 2009].
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1.5 The Slit-like 2 gene

The murine Slit-like 2 gene (SIit]2; GenBank accession AJ458938) was first iden-
tified in 2002. It is located on the forward strand of chromosome 16 at band A1l
and spans over 10,805 bp. The locus consists of two exons which are interrupted
by a large intronic sequence of 8,033 bp. The smaller first exon of 189 bp encodes
the 5’ untranslated region (5’ UTR) along with the first 9 bp of the larger second
exon (2,583 bp). The 3’ UTR is encoded by 552 bp of the second exon (Fig-
ure 1.5 A). The open reading frame (ORF) on exon 2 translates into a protein
of 673 amino acids (aa) with a calculated molecular weight of 72 kDa. Slitl2 is a
highly conserved gene. Orthologs have been identified in numerous other species,
including rat (Rattus norvegicus), zebrafish (Danio rerio), chicken (Gallus gallus),
and man (Homo sapiens). Alignment of the mouse Slitl2 full length sequence re-
veals an overall identity of more than 95% and 83% at the amino acid level with
the rat and the human homolog, respectively. The Slitl2 protein is a typical
single-pass type I transmembrane protein. Its extracellular amino-terminus con-
tains a putative hydrophobic signal peptide, one leucine-rich repeat (LRR) region
comprising ten leucine-rich repeats flanked by an amino- and a carboxy-terminal
LRR motif, one epidermal growth factor (EGF) repeat, and a fibronectin type III
(FNIII) domain. These motifs are followed by a highly hydrophobic stretch of
amino acids predicting a transmembrane domain (TM). The short intracellular
carboxy-terminus of approximately 80 aa shows no similarity to any known se-
quences (Figure 1.5 B). The combination of LRR regions and EGF domains is
conserved within the Slit family of proteins. Based on this shared feature, Slitl2
was designated its name. In contrast to the secreted Slit proteins, however, Slitl2
is a transmembrane protein as was confirmed by immunofluorescence microscopy
(Figure 1.5 C).
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Figure 1.5 The murine S/it/2 gene and Slitl2 protein

A. The Slitl2 locus consists of two exons. The S/it/2 open reading frame (ORF)
is located entirely on exon 2. B. The Slitl2 protein consists of an amino-terminal
signal peptide (N), a leucine-rich repeat region (LRR), an epidermal growth fac-
tor repeat (EGF), a fibronectin type Il domain (FNIII), a transmembrane domain
(TM), and a short intracellular carboxy-terminus (C). C. Hemagglutinin-tagged
Slitl2 (Slitl2-HA, arrows) can be localized to the cell membrane of HEK293T
cells by fluorescence microscopy using an anti-HA antibody (left). Correspond-
ing bright field image (right). (Image courtesy of Dr. Heinrich Schrewe)

So far, only two reports have been puplished on Slit-like 2. The first report
describes the zebrafish slitl2 gene encoding for a protein of 688 aa with a calcu-
lated molecular weight of 75.5 kDa. Analysis of the protein structure predicted
an amino-terminal signal peptide, LRR and EGF repeats, i.e., a Slit domain,
and a cripto growth factor domain. Interestingly, no transmembrane domain was
found. Whole-mount in situ hybridization on zebrafish embryos revealed expres-
sion in midline structures of the central nervous system as well as in the vascular
system, suggesting that slitl2 might be essential during their development [Chen
et al., 2005].

The second report introduces the human homolog of the Slit-like 2 gene, which
is known as vasorin (VASN). It encodes a protein of 673 aa and shares all the
features of the murine protein. Immunofluorescence analysis corroborated its
transmembrane localization, and Northern blot analysis detected strong expres-
sion in the aorta and moderate expression in the kidney and placenta. In situ hy-
bridization demonstrated vasorin expression in interstitial cells of the kidney and
in arterial vascular smooth muscle cells (VSMCs). When in culture, VSMCs con-

vert from a contractile, differentiated into a synthetic, dedifferentiated phenotype,
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and semiquantitative reverse transcription (RT)-PCR showed that VASN was sig-
nificantly downregulated in cultured VSMCs. Furthermore, surface plasmon res-
onance analysis revealed specific and significant binding of transforming growth
factor-g1 (TGF-£1) to vasorin’s extracellular domain. In vitro functional anal-
yses performed on vasorin-expressing cells demonstrated inhibition of TGF-31
downstream signaling. This effect was abrogated by concomitant stimulation
with a constitutively active TGF-31 receptor, suggesting that VASN inhibits
TGF-[-signaling at the extracellular and/or cell surface level. In vivo functions
of vasorin were investigated using a rat arterial balloon-injury model. Following
mechanical vascular injury, vasorin expression was downregulated, while TGF-31
expression was found to be upregulated. This upregulation is known to promote
vessel repair by formation of neointima. Adenovirus-mediated restoration of va-
sorin expression significantly reduced neointimal formation, and this inhibitory
effect was attributed to a modulation of TGF-$1 downstream signaling in the
vessel wall [Ikeda et al., 2004].

1.6 TGF-81 in development and disease

Transforming growth factor-g1 (TGF-51) is one of over 30 structurally related
members of the TGF-3 superfamily of proteins. In addition to the eponymous
TGF-f family, the superfamily includes the bone morphogenetic proteins (BMPs),
the inhibin/activin family, and numerous other proteins, e.g., growth and differ-
entiation factors (GDFs) and glial cell line-derived neurotrophic factor (GDNF).
Three different TGF-f isoforms have been identified in mammals (TGF-31, 2, and
3). TGF-4 is synthesized as a precursor which is cleaved intracellularly to form a
disulfide-bonded dimer. The mature TGF-/3 peptide at the carboxy-terminus re-
mains associated to the amino-terminal TGF-£ latency-associated protein (LAP)
prodomain via non-covalent bonds. While this so-called small latent complex
(SLC) is secreted very slowly, covalent binding to latent TGF-3 binding pro-
teins (LTBPs) enhances the secretion of TGF- in a large latent complex (LLC)
(Figure 1.6 A). LTBPs rapidly deposit latent TGF- in the extracellular matrix,
and activation of TGF-3 requires its cleavage from the LAP prodomain. Vari-
ous mechanisms, including proteolysis and acidic microenvironment conditions,
have been proposed to mediate this activation in vivo (reviewed in [Saharinen
et al., 1999]). Upon activation, TGF-{ initiates signaling by interacting with two

pairs of receptor serine/threonine kinases known as type I and type II receptors.
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Binding of TGF-/ to the type II receptors induces complex formation with and
subsequent phosphorylation of the type I receptors. The activated type I recep-
tors, in turn, transduce the signal intracellularly. TGF-3 type III receptors (e.g.,
betaglycan or endoglin) function as coreceptors for some ligand-receptor inter-
actions, thereby modulating TGF-g signaling. The best understood intracellular
downstream signaling pathway involves phosphorylation of the receptor-activated
Smad proteins (Smad2, Smad3). Upon phosphorylation, these molecules form a
complex with the common mediator Smad (Smad4) and translocate to the nucleus
to regulate transcription of target genes (Figure 1.6 B) (reviewed in [Massague
and Gomis, 2006).

A
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Figure 1.6 Schematic of the TGF-3 latent complex and TGF-/ signaling

A. The mature TGF-3 dimer (green) remains associated to the amino-terminal
TGF-£ latency-associated protein (LAP) prodomain in the small latent complex
(SLC). It is secreted as large latent complex (LLC) in conjunction with latent
TGF-$ binding proteins (LTBP), which deposit it in the extracellular matrix
(ECM). Adapted from [Saharinen et al., 1999] B. The released TGF-3 dimer
binds to the type Il receptors (TSRII), which induces complex formation and
phosphorylation of the type | receptors (TSRI), leading to phosphorylation of
the receptor-activated Smads (Smad2/Smad3). These form a complex with the
common mediator Smad (Smad4) and translocate to the nucleus to regulate
transcription of target genes. Adapted from [Gilbert, 2006]
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TGF-3 regulates a myriad of different and often diverse cellular processes. It
is, for example, known to induce cell cycle arrest in mouse primary embryonic
fibroblasts [Datto et al., 1999], while it promotes proliferation of fibroblasts iso-
lated from adult tissue |[Dkhissi et al., 1999 [Strutz et al., 2001] [Pelaia et al.,
2007]. It also induces transformation of these cells into spindle-shaped myofi-
broblasts. This process is associated with a reorganization of the cytoskeleton
and an upregulation of a-smooth muscle actin (a-SMA). Myofibroblasts appear
to be essential in the production of extracellular matrix in vivo and are found in
fibrotic disease conditions [Kuhn and McDonald, 1991] [Qi et al., 2006]. Over-
expression of TGF- leads to severe lung fibrosis [Sime et al., 1997| [Lee et al.,
2001], and attenuation of TGF-3-signaling has been shown to prevent skin, lung,
and liver fibrosis [McCormick et al., 1999] [George et al., 1999], underscoring the
therapeutic potential of this pathway.

TGF-( also exerts paradoxical functions in cancer. It acts as tumor suppressor
in the premalignant state by repressing growth-promoting transcription factors
and activating cell cycle inhibitors in epithelial cell lines [Moses et al., 1991]
[Datto et al., 1995| [Reynisdottir et al., 1995]. During cancer development, how-
ever, tumors producing high levels of TGF-G may evade immune surveillance
by exploiting its potent immunosuppressive effects [Torre-Amione et al., 1990]
[Gorelik and Flavell, 2001|. Furthermore, TGF-{3 induces epithelial-mesenchymal
transition of cancer cells, whereby the cells acquire motility and invasive proper-
ties needed for dissemination [Oft et al., 2002| [Janda et al., 2002].

Transforming growth factor-41 (Tgfbl)-deficiency in mice leads to intrauterine
lethality of over 50% caused by defective hematopoiesis and vasculogenesis of ex-
traembryonic tissues [Dickson et al., 1995|. Live-born mutant pups are initially
indistinguishable from their wild-type littermates. Approximately two weeks af-
ter birth, however, the mutants develop a severe wasting syndrome and die due
to massive inflammatory infiltration of multiple organs including the heart, lung,
liver, and brain [Shull et al., 1992] [Kulkarni et al., 1993|. Blood samples revealed
a significant increase in monocytes and immature neutrophils in the mutant ani-
mals [Shull et al., 1992|, and expression of both class I and class II major histo-
compatibility complex (MHC) molecules was found to be elevated in the affected
organs prior to inflammatory cell infiltration, suggesting altered antigen presen-
tation as underlying cause for the multifocal inflammatory disease |Geiser et al.,
1993]. This inappropriate immune response commences with leukocyte adhesion

to venous endothelial walls followed by tissue infiltration |[Kulkarni et al., 1995].



14 1 Introduction

The autoimmune nature of the inflammatory reaction observed in Tgfbl mutants
was demonstrated by increased levels of circulating autoantibodies and immune
complex deposition in renal glomeruli [Yaswen et al., 1996]. These lesions are
absent in Tgfbl /MHC II double-deficient animals, corroborating the assumption
that autoimmunity in the Tgfbl-deficient mice is indeed provoked by abnormal
antigen presentation [Letterio et al., 1996]. Analyses on lymphoid organs of Tgfb1
mutants showed that T and B lymphocyte development is evidently unaffected
during embryogenesis, whereas symptomatic animals display a reduction in im-
mature T and B cells with a concomitant increase in mature lymphocytes [Christ
et al., 1994] [Kulkarni et al., 1995] [Boivin et al., 1995].

Equally, overexpression of TGF-(1 in transgenic mice causes a variety of lesions.
Aberrant expression in hepatocytes induces liver fibrosis via increased production
of collagen I. In addition, extrahepatic defects including glomerulosclerosis and
renal fibrosis, arteritis, and myocarditis are observed due to elevated serum levels
of TGF-f1 [Sanderson et al., 1995] [Kopp et al., 1996]. Excess TGF-/1 has also
been reported to perturb normal tissue homeostasis in the central nervous system
[Wyss-Coray et al., 1995] [Galbreath et al., 1995|, the skin [Fowlis et al., 1996],
and the mammary gland [Silberstein et al., 1992].

1.7 Objectives

The high degree of sequence similarity between the human and the mouse or-
thologs of the Slit-like 2 protein suggests an evolutionary conserved function in
these two species. Thus, elucidating the function of Slit-like 2 (SIitl2) in the
mouse might help to understand human development and disease. This thesis
aimed at providing first information about the function of the murine SIitI2 pro-
tein. Therefore, a detailed expression pattern was compiled by describing endoge-
nous Slitl2 expression as well as reporter gene expression in SlitI2-LacZ knock-in
and Slit]2-Venus transgenic mice. In addition, SlitI2-deficient mice were gener-
ated and extensively characterized. With the comprehensive results presented

here, this thesis has laid the groundwork for future studies.
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2 Materials and methods

2.1 Mouse strains and animal husbandry

The mouse strains used for this study were all purchased from the Harlan Lab-
oratories (Harlan Winkelmann GmbH, Borchen, Germany). The outbred strain
CD-1® was derived from Swiss-Webster mice at the beginning of the 20" cen-
tury, from which a stock was established at the Institute for Cancer Research
(ICR), Philadelphia, PA (USA). Offspring were transferred to the Charles River
Breeding Laboratories, Wilmington, MA (USA). The Harlan Sprague Dawley,
Inc. (Hsd) obtained a breeding stock from the Charles River Breeding Laborato-
ries (Hsd:ICR(CD-1®)). The outbred NMRI strain was derived from Swiss mice
and established at the US Naval Medical Research Institute (NMRI). They were
obtained by the Federal Research Institute for Virus Diseases of Animals in T1ibin-
gen (Germany) in 1955 and went to the Central Institute for Laboratory Breeding,
Hannover (Germany) in 1958, from where Harlan UK obtained a stock in 1994
(HsdHan:NMRI). The strain 129 was originally derived from a cross of coat color
stocks and a chinchilla stock at the beginning of the 20*" century. A stock was
obtained by the Harlan Laboratories from the Jackson Laboratory, Bar Harbor,
ME (USA). The Harlan inbred strain represents a substrain of 129. ‘S’ refers to
the origin from a congenic strain made by outcrossing the steel mutation, the
number following the letter distinguishes the different 129 parental strains within
the lineage, and ‘Sv’ indicates the name of the Stevens lab (129S52/SvHsd). The
strain CH7BL is the most widely used inbred strain. It was generated in 1921,
and strain 6 (C57BL/6) was separated from strain 10. The C57BL/6 strain was
obtained from the Jackson Laboratory (J) by Harlan UK, formerly OLAC (Ola),
and later went to Harlan Netherlands. The strain purchased from Harlan Sprague
Dawley, Inc. is therefore referred to as C57BL/6JOlaHsd.

The mice were housed under specific pathogen free (SPF) conditions at the
animal facility of the Max Planck Institute for Molecular Genetics, Berlin, Ger-
many. They were kept on a 12 h/12 h light/dark cycle at 22 °C with a relative
humidity of 55£10%. A pelleted, irradiated diet (ssniff M-Z®, Soest, Germany)
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containing 22% raw protein, 4.5% raw fat, 3.9% raw fiber, and 6.8% raw ashes
and distilled water were provided ad libitum. All experimental work was ap-
proved by the Berlin State Office for Safety at Work, Health Protection and
Technical Safety (Landesamt fiir Arbeitsschutz, Gesundheitsschutz und technis-
che Sicherheit, LAGetSi; now Berlin State Office of Health and Social Affairs,
LAGeSo) under the project number G 0248/03 (now G 0368/08) with a special
amendment for the generation of genetically modified mice for the analysis of
the function of Slitl2. All experiments were carried out in accordance with the
German Animal Welfare Act (Tierschutzgesetz, TSchG).

2.2 Generation of Slit|I2-mutant mouse lines

2.2.1 Constructs

2.2.1.1 Slitl2 knock-out plasmid

The plasmid used for the generation of the Slit]2floxed-neo gllele was provided
by Dr. Heinrich Schrewe (Institute for Medical Genetics, Charité University
Medicine, Berlin, Germany). It is described in more detail under subsection 3.2.1.
Prior to electroporation into ES cells, 40 ug of the plasmid were linearized o/n
at 37°C with 4 pl Nrul (12 U/ul; Promega) and 15 ul Buffer B (Roche) in a
total volume of 150 ul. In order to purify the linearized plasmid DNA the next
day, it was subjected to phenol/chloroform extraction as follows: 1 vol. of 1:1
phenol:chloroform solution was added, and the contents were mixed. The sample
was transferred to a Phase Lock Gel Heavy™ tube (Eppendorf) and centrifuged
at 16,100 x g for 1 min. The upper phase was transferred to a standard tube,
and the plasmid DNA was precipitated by adding 0.1 vol. 3 M sodium acetate
pH 5.2 and 2.5 vol. cold 100% EtOH. The sample was incubated at -70 °C for
10 min before centrifugation at 16,100 x g for 10 min at 4 °C. The supernatant
was removed, 200 ul cold 70% EtOH were added, and the sample was briefly
vortexed before centrifuging it again as above. The supernatant was removed,
the pellet was air-dried in a laminar flow hood and dissolved in 20 ul PBS. 1 ul
was taken off to verify the linearization on a 1% (w/v) agarose gel as described
under subsection 2.2.5. The remaining sample was stored at -20 °C until further

use.
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2.2.1.2 Slitl2-LacZ knock-in plasmid

The plasmid used for the generation of the Slit[2kacZneo

allele was generated by
Manuela Scholze (Institute for Medical Genetics, Charité University Medicine,
Berlin, Germany) and is described in more detail under subsubsection 3.1.2.1. It

was linearized, extracted, and precipitated as above (subsubsection 2.2.1.1).

2.2.1.3 Generation of the Slit/2-Venus BAC construct by recombineering

All procedures for recombineering followed the protocols provided by the National

Cancer Institute (NCI-Frederick) described at http://recombineering.nciferf.gov/.

Introduction of the Slit/l2 BAC clone into SW105 cells For the generation
of the Slitl2-Venus construct, a bacterial artificial chromosome (BAC) clone was
selected that contained the complete Slitl2 locus flanked by approximately 115 kb
and 80 kb of its native genomic environment at its 5’ and 3’ end, respectively
(NCBI Clone ID RPCI-23-224H7). This 205 kb-long fragment had been isolated
from female C57BL/6J mouse genomic DNA and was cloned into the pBACe3.6
vector (GenBank accession U80929), which confers chloramphenicol resistance.
The BAC clone was isolated from E. coli DH10B cells and electroporated into
SW105 bacteria by Manuela Scholze (Institute for Medical Genetics, Charité
University Medicine, Berlin, Germany). This bacterial strain contains a defective
A prophage inserted into the bacterial genome which encodes the recombination
proteins, namely exo, bet, and gam. exo is a 5’-3’ exonuclease that creates single-
stranded overhangs on introduced linear DNA i.e., the targeting construct, bet
protects these overhangs, and gam prevents degradation of linear DNA. Their
expression is driven by a promoter that is repressed by a temperature-sensitive
repressor at 32 °C and derepressed at 42 °C. After a brief heat-shock at 42 °C,
a sufficient amount of recombination proteins is produced. Linear DNA with
sufficient homology in the 5 and 3’ ends to a target DNA molecule already
present in the bacteria can be introduced into heat-shocked and electrocompetent
bacteria using electroporation. The introduced DNA is modified by exo and bet
and undergoes homologous recombination with the target molecule [Warming
et al., 2005].
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Generation of the BAC targeting fragment A plasmid harboring the Venus
coding sequence, which encodes a variant of the yellow fluorescent protein (YFP)
with enhanced maturation and brightness |[Rekas et al., 2002|, in addition to an
FRT-flanked neomycin (neo) selection cassette was used as template for the gen-
eration of the BAC targeting fragment. The neo gene is expressed both from
a prokaryotic promoter (EMT7) and a eukaryotic promoter (phosphoglycerate ki-
nase, PGK). This plasmid was a modified version of the PL451 plasmid [Liu
et al., 2003]. Chimeric primers were designed that allowed for amplification of
the Venus-neo insert along with Slit/2 homology arms on both ends. The primers
each comprised a 69 bp-long sequence homologous to Slitl2 at their 5" end and a
shorter sequence homologous to the template plasmid at their 3’ end (Table 2.1).
The homology regions of the forward and the reverse primer corresponded to the
3’ region of the Slitl2 intronic sequence and the 5’ region of exon 2, respectively.
The primers were ordered from MWG and adjusted to a final concentration of
10 uM with ddH5O prior to use.

Primer Sequence (5’—3)

Forward CTTCTCTGGCTTCCTGATGTGTCTGCCCTCAGCCCTGACTCATA
AGCTCTTTGCTCTTAGGGACAGAAGcecaccatggtgagecaagggeg

Reverse CCCTGTACTCCAGACCCCAGGAGCACCAGAAGCAACAACAGGAG
AGGTGGCAGGCAGCTCCTGGAGTGCgttatattatgtacctgactgatg

Table 2.1 Chimeric primers for amplification of the Venus-neo targeting fragment
Capital letters represent homology regions to Slit/2, small letters represent ho-
mology regions to the template plasmid.

The chimeric Venus-neo fragment with a total fragment size of 2,737 bp was am-
plified with the Expand Long Template PCR System (Roche). A 50 ul reaction
was set up as follows: 5 ul 10x-concentrated Expand Long Template Buffer 2,
2.5 pl ANTPs (10 mM), 1.5 ul forward primer (10 pM), 1.5 ul reverse primer
(10 uM), 0.75 pl Expand Long Template Enzyme Mix, 37.75 ul ddH20, 1 pl tem-
plate plasmid (50 ng/ul). The reaction was performed according to the following
program on an MJ Research PTC-200 Thermal Cycler:
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Step Temperature Time
1. Initial denaturation 94°C 2 min
2. Denaturation 94°C 30 sec
3. Annealing 60°C 30 sec
4. Elongation 68 °C 3 min
go to step 2. 34 times
5. Final elongation 68°C 7 min
6. Cooling 15°C 0

Table 2.2 PCR program for generation of the BAC targeting fragment

The PCR reaction was purified using the QIAquick PCR Purification Kit (Qi-
agen) according the manufacturer’s instructions. Briefly, 250 ul Buffer PB were
added to the PCR sample and mixed. The sample was applied to the membrane
of a QIAquick spin column in a collection tube and was centrifuged at 16,100 x g
for 1 min at RT. The flow-through was discarded, 750 pl Buffer PE were added,
and the column was spun down as above. The flow-through was discarded, and
the column again centrifuged for 1 min to remove residual wash buffer. The col-
umn was placed in a clean tube, and 50 ul ddH5O were pipetted onto the center
of the QIAquick membrane. After 1 min, the purified PCR reaction was eluted
by spinning the column for 1 min at 16,100 x g. It was then treated with Dpnl.
This enzyme cleaves DNA at methylated sites only. Thus, the template plasmid
— but not the PCR product — is digested in order to prevent transformation of the
template plasmid later. 3 ul Dpnl (10 U/ul; Roche), 6 ul Buffer A (Roche), and
1 pl ddH50 were added to the 50 ul elution volume. The reaction was incubated
o/n at 37 °C. The next day, the PCR product was extracted using the QIAquick
Gel Extraction Kit (Qiagen). Therefore, the 2.8 kb PCR fragment band was
excised from a 1% (w/v) agarose gel under UV light following electrophoresis.
The gel slice was put in a standard tube, and 3 vol. Buffer QG were added. The
gel slice was dissolved for 10 min at 50 °C. 1 vol. isopropanol was added to the
sample before mixing it. The sample was applied to a QIAquick column, washed,
and eluted in 50 pl ddH,O as above. The purified PCR product was stored at
-20 °C until further use.
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Recombineering SW105 bacteria harboring the Slit]2 BAC clone were grown
o/n at 30°C in 5 ml selective LB medium (1% Bacto™ Tryptone, BD; 0.5%
Bacto™ Yeast Extract, BD; 0.5% NaCl; 25 ug/ml chloramphenicol). After a
15 min heat-shock at 42 °C to induce production of the recombination proteins
(exo, bet, and gam), the bacterial suspension was centrifuged at 3,000 x g for
10 min at 0 °C in prechilled 15 ml tubes. The pellet was resuspended in 888 ul ice-
cold ddH50O, transferred to a 1.5 ml tube and again centrifuged at 16,100 x g for
20 sec at 0 °C. The supernatant was removed, and the pellet again resuspended
in 888 ul ice-cold ddH50 and centrifuged. This process was repeated three times
before finally dissolving the pellet in 50 ul ice-cold ddH5O. The bacterial sus-
pension was pipetted onto the bottom of an electroporation cuvette (0.1 cm gap;
Bio-Rad), and 10 ul purified PCR fragment were added. (As negative control,
one sample without heat-induction was included). The electroporation was per-
formed with a GenePulser (Bio-Rad) using 1.75 kV, 25 pF, and 200 €. 1 ml
prewarmed LB medium was immediately added to the cuvette. The bacteria
were transferred to a 1.5 ml tube and incubated at 32°C for 1 h. After this
recovery phase, 300 ul were plated on chloramphenicol (Cam; 25 ug/ml)- and
kanamycin (Kan; 30 pug/ml)-containing LB agar plates (3.2% LB agar, Invitro-
gen) in order to select for clones that had successfully undergone recombineering.
The plates were incubated o/n at 32 °C.

Identification of the targeted Slit/2-Venus BAC After two days, colonies
were picked and grown o/n at 32°C in 5 ml selective LB medium (Cam/Kan).
The next day, the BAC DNA was isolated from the bacteria as follows: 2 ml of
each o/n culture were centrifuged at 16,100 x g for 3 min at RT. The supernatant
was discarded, and the bacterial pellet was carefully dissolved in 250 pl Buffer P1
(Qiagen). 250 pl Buffer P2 (Qiagen) were added, and the content was mixed by
inverting the tube a few times. The bacteria were allowed to lyse for 5 min at
RT. The reaction was neutralized by the addition of 350 ul Buffer N3 (Qiagen),
and the content was mixed by inverting the tube. The mixture was spun down at
16,100 x g for 10 min at 20 °C. The supernatant was transferred into a new tube,
and the DNA was precipitated by the addition of 0.7 vol. 100% isopropanol. The
solution was mixed by invertion and centrifuged at 16,100 x g for 30 min at 10 °C.
The supernatant was discarded, and the pellet was washed with 150 ul 70% EtOH.
After a final centrifugation at 16,100 x g for 15 min at 10 °C, the pellet was
quickly air-dried, and the isolated BAC DNA was dissolved in 20 ul TE buffer.
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To verify that the isolated DNA was BAC DNA, 5 ul of each sample were digested
o/n at 37 °Cin a 20 ul reaction (2 pl 10x Buffer B (Roche), 1 ul BamHT (10 U/pul;
Promega), 12 pl ddH50). The digestion pattern was analyzed on a 1% (w/v)
agarose gel. The clone showing the correct BAC digestion pattern with multiple
large bands without any template plasmid contamination was analyzed further by
various PCRs to confirm that the entire Venus-neo insert had correctly integrated
into the Slitl2 locus. Therefore, primer pairs spanning over different fragment
junctions were used. Pimers 326 and 327 were external primers on the original
BAC clone to confirm site-directed targeting of the fragment. The standard
PCR mix (Table 2.5) and standard PCR program (Table 2.6) with an annealing
temperature of 60 °C and an elongation time of up to 3 min were used with several
combinations of forward/reverse primers (Table 2.3). All primer sequences are
listed on page 145. Following the PCR, 5 ul of each reaction were analyzed on a
1.5% (w/v) agarose gel. In addition, the PCR products were sequenced with the

respective primers at MWG to verify the results.

Primer pair Fragment junction Fragment size
326/277 Slitl2 intron/Venus ORF 222 bp
278/292 Venus ORF /neo ORF 300 bp
274/327 neo ORF/Slitl2 exon 2 323 bp
326/292 Slitl12 intron/neo ORF 1,078 bp
278/327 Venus ORF/Slit]2 exon 2 2,015 bp

Table 2.3 Primer pairs used for the verification of correct integration of the Venus-neo
fragment into the Slit/2 locus of the BAC clone (ORF: open reading frame)

Large-scale isolation of the Slit/2-Venus BAC After confirmation of the cor-
rect sequences, Slitl12-Venus BAC-containing SW105 cells were grown o/n at 30 °C
in 100 ml selective LB medium (Cam/Kan). The next day, the BAC DNA was
isolated using the NucleoBond® BAC 100 Maxi Kit (Clontech) according to the
manufacturer’s instructions. The bacterial cells were harvested by centrifugation
at 3,100 x g for 15 min at 4 °C. The pellet was carefully resuspended in 24 ml
Buffer S1 (with RNase A), and 24 ml Buffer S2 were added to the suspension,

which was then mixed by inverting the tube a few times. The mixture was in-
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cubated for 3 min at RT before adding 24 ml Buffer S3. The mixture was again
inverted a few times and then incubated on ice for 5 min. The lysate was cleared
by centrifuging the suspension at high speed for 15 min at 4 °C. Meanwhile, a
NucleoBond® Folded Filter was placed in a funnel and prewetted with a few
drops of Buffer N2. After centrifugation, the lysate was carefully decanted onto
the filter, and the flow-through was collected. The cleared lysate was loaded onto
a preequilibrated NucleoBond® BAC 100 column, and the column was allowed to
empty by gravity flow. The flow-through was reloaded before washing the column
twice with 18 ml Buffer N3. The BAC DNA was eluted with 15 ml preheated
(50 °C) Buffer N5. The DNA was precipitated by addition of 11 ml isopropanol.
The mixture was centrifuged at 3,100 x g for 30 min at 4 °C, the supernatant
was discarded, and 5 ml ice-cold 70% EtOH were added to the pellet. It was
again centrifuged at 3,100 x g for 5 min at 4 °C. The supernatant was care-
fully removed, and the pellet was allowed to air-dry for 10 min. The pellet was
then dissolved in 50 pl TE buffer. The final concentration was measured using a

NanoPhotometer™ (Implen).

Linearization of the SlitI2-Venus BAC The BAC DNA was digested with
PI-Scel prior to electroporation into embryonic stem (ES) cells. This enzyme
is a so-called homing endonuclease with long, not stringently-defined recognition
sequences. Thus, single base changes do not abolish its cleavage capacity. It recog-
nizes a sequence in the pBACe3.6 vector backbone, thereby linearizing the Slitl2-
Venus BAC. 10 ug BAC DNA, 20 ul PI-Scel (1 U/ul; NEB), 20 pul 10x Buffer
(NEB), 10 pl 100x BSA (Promega) were adjusted to a final volume of 200 ul
with ddH5O. The reaction was incubated o/n at 37 °C. 100 ng of BAC DNA were
analyzed on a 1% (w/v) agarose gel to verify linearization. Prior to preciptiation
of the linearized BAC, proteins were removed by phenol/chloroform extraction.
Therefore, 1 vol. phenol:chloroform (1:1) solution was added, and the suspension
briefly vortexed before incubating it for 10 min at RT. The reaction was loaded
onto Phase Lock Gel Heavy™ tubes (Eppendorf) and centrifuged at 16,100 x g
for 1 min. The aqueous upper phase was transferred to a new tube, and the DNA
was precipitated by adding 0.1 vol. 3 M sodium acetate pH 5.2 and 2.5 vol. cold
100% EtOH. The reaction was centrifuged at 16,100 x g for 10 min at 10 °C, and
the pellet was washed with cold 70% EtOH. The sample was again spun down as
above, and the pellet was resuspended in 25 pl PBS after it had been air-dried

and stored at 4 °C until further use.
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2.2.2 Generation of ES cell lines

All experimental procedures were based on the protocols described in [Nagy,
2003].

Electroporation The procedures were performed under sterile conditions in a
laminar flow hood (HERAsafe®; Heraeus). 2-5 x 105 ES cells were seeded onto
a monolayer of mitotically inactivated primary embryonic fibroblasts, i.e., feeder
cells (3 x 10%/plate), in a gelatin-coated 10 cm cell culture dish (Corning®) and
incubated at 37 °C in a humified 5% CO, incubator (HERAcell 150; Heraeus).
The cells were grown in ES cell medium composed of Dulbecco’s Modified Ea-
gle’s Medium (DMEM containing 4,500 mg/ml glucose, without sodium pyruvate;
Sigma-Aldrich), 15% (v/v) ES cell-qualified, heat-inactivated fetal bovine serum
(FBS; Gibco), 2 mM L-glutamine (Sigma-Aldrich), 50 U/ml penicillin (Sigma-
Aldrich), 50 pug/ml streptomycin (Sigma-Aldrich), 1% 100x non-essential amino
acids (Sigma-Aldrich), 0.1 mM S-mercaptoethanol (Sigma-Aldrich), 1% 100x nu-
cleosides (Sigma-Aldrich). 1000 U/ml murine leukemia inhibitory factor (LIF;
Chemicon) were added to keep the ES cells in an undifferentiated state. The
medium was exchanged daily until round colonies were visible. Before trypsiniza-
tion, the ES cells were grown in fresh medium for at least 2 h. The medium was
aspirated, and the cells were carefully washed twice with cell-culture grade D-PBS
(Lonza). 1 ml trypsin/EDTA solution (Gibco) was added, and the cells were in-
cubated at 37 °C for 10 min in order to disrupt cell-cell contacts. The enzyme was
inactivated by the addition of 2 ml ES cell medium before pipetting vigorously
up and down to produce a single cell suspension. The cell density was deter-
mined with a hemocytometer (Neubauer; Roth), and the cells were collected by
centrifugation for 5 min at 200 x g. 2-5 x 10% ES cells were then resuspended in
800 ul D-PBS and transferred to an electropration cuvette (0.4 cm gap; Bio-Rad).
The respective linearized DNA (Slit]2 knock-out plasmid; Slitl2-LacZ knock-in
plasmid; SlitI2-Venus BAC) was added and mixed with the ES cells. The cells
were electroporated with a GenePulser (Bio-Rad) using 240 V and 500 uF. Af-
ter electroporation, the cell suspension was immediately transferred to a 15 ml
tube containing 10 ml ES cell medium, the cells were collected by centrifugation
as above, and the pellet was resuspended in 10 ml ES cell medium. The cells
were seeded on a monolayer of neomycin-resistant feeder cells (1 x 10°/plate) in
6 cm cell culture dishes and incubated at 37 °C in ES cell medium. Selection for

clones that had integrated the respective DNA fragment was started 36 h after
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electroporation with selection medium (ES cell medium containing 350 pug/ml
G418 Sulfate; Gibco). The medium was exchanged daily until ES cell colonies

became visible (approximately 1 week after electroporation).

Picking Fresh ES cell medium was added to the cells 3-4 h prior to picking. The
cells were washed twice with D-PBS before covering the colonies with a layer of
fresh D-PBS. Individual colonies were picked using disposable 10 ul pipette tips
under a stereo microscope (MZ8; Leica) and transferred to the wells of a round-
bottomed 96-well plate (Corning®) filled with 50 pl cold trypsin/EDTA solution.
After all colonies had been picked, the 96-well plate was placed in the 37°C
incubator for 10 min. 100 pl ES cell medium were added per well to inactivate
the trypsin. The colonies were disaggregated with a multipipette and transferred
to the wells of a gelatinized, flat-bottomed 96-well plate (Corning®) containing a
monolayer of feeder cells (1 x 10° feeder cells/plate) and grown in regular ES cell

medium. The next day, the medium was replaced by selection medium.

Splitting and freezing After the cells had been grown in selection medium
for 2 days, they were washed twice with D-PBS before incubating them at
37°C with 70 pl trypsin/EDTA for 10 min. The trypsinization was stopped
by adding 140 pl bicarbonate-free DMEM (Sigma-Aldrich) supplemented with
10 mM HEPES (Sigma-Aldrich) and 20% FBS (v/v). The cells in the so-called
‘DNA Original Plate’ were disaggregated, and 70 pl of the 210 ul were transferred
to the wells of a round-bottomed 96-well plate (Corning®) containing 70 ul 2x-
concentrated ES cell freezing medium (bicarbonate-free DMEM (Sigma-Aldrich),
10 mM HEPES, 20% FBS, 20% DMSO). The contents of this so-called ‘Master
Plate’ were mixed well by pipetting. Another 70 pul of the remaining 140 ul cell
suspension were transferred to the wells of a gelatinized, flat-bottomed 96-well
plate (Corning®) containing 200 ul ES cell medium (‘DNA Replica Plate’), and
the contents were again mixed. The ‘Master Plate’ was sealed, placed inside a
styrofoam box, and frozen at -80 °C. 200 ul ES cell medium were added to the
remaining 70 pl cell suspension in the ‘DNA Original Plate” and the contents were
mixed. The cells in the ‘DNA Original Plate’ and the ‘DNA Replica Plate’ were
grown to confluency at 37 °C. DNA was isolated and subsequently used for analy-
sis by Southern blot or by PCR (subsubsection 2.2.3.1 and subsubsection 2.2.3.2).

Transient expression of Cre recombinase Cre recombinase, an enzyme pro-

duced by the bacteriophage P1I, is not present in mammalian cells. It mediates
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DNA recombination at 34 bp long sequences, called loxP, thereby excising the
DNA sequence flanked by these sites. In order to excise loxP-flanked, i.e., floxed,
sequences in ES cells harboring a Slit]2floxedneo gllele to produce a Slit12foxed or
a Slit]12" allele, these cells were electroporated with a plasmid carrying the
Cre recombinase coding sequence under control of the CMV-IE enhancer/-actin
promoter (pTurbo-Cre; kindly provided by Timothy Ley, M.D., The Washington
University, St. Louis, MO, USA). 10 ug of the Turbo-Cre plasmid were precip-
itated with 0.1 vol. 3 M sodium acetate pH 5.2 and 2.5 vol. cold 100% EtOH.
The contents were mixed and incubated at -80 °C for 10 min before spinning the
reaction down at 16,100 x g for 10 min at 4 °C. The supernatant was removed,
200 pl cold 70% EtOH were added, and the reaction was again spun down as
above. The supernatant was removed, the pellet was allowed to air-dry in a lam-
inar flow hood and diluted in 10 pl PBS before adding it to 5 x 106 Slit[2floxed-neo
allele-carrying ES cells. The subsequent procedures of electroporation, picking,
splitting and freezing, and Southern blot analysis followed the basic protocols as
described under subsection 2.2.2 and subsubsection 2.2.3.1. Of note, the cells were
plated at very low densities following electroporation with the Turbo-Cre plas-
mid (1000/500/200 cells), and selection was no longer performed as Cre-mediated
recombination potentially led to the excision of the neomycin selection cassette

conferring resistance to the G418 selection drug.

2.2.3 Screening of ES cell clones

2.2.3.1 Southern blot analysis

Isolation of DNA Southern blot analysis was performed in order to identify
ES cell clones that had successfully generated a Slit]2floxed-neo  Gjjg]ofloxed = oy
Slit12l allele. Tt followed the protocol described in [Ramirez-Solis et al., 1993).
ES cells were grown to confluency in the wells of a 96-well plate (in the so-called
‘DNA Original Plate” and the ‘DNA Replica Plate’ (subsection 2.2.2) in a humid-
ified incubator at 37 °C and 5% CO, (HERAcell 150; Heraeus). The cells were
carefully washed twice with D-PBS and 50 pl prewarmed lysis buffer (10 mM
Tris-HCI pH 7.5, 10 mM EDTA pH 8.0, 10 mM NaCl, 0.5% sacrosyl) containing
1 mg/ml proteinase K (Roche) were added per well. The plate was placed inside
a humified chamber and incubated o/n at 60 °C. The next day, 100 ul ice-cold
75 mM NaCl/100% EtOH were added without mixing. The plate was allowed to

stand on the bench for 30 min to precipitate the DNA as a filamentous network
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on the bottom of the wells. The plate was then carefully inverted to discard the
solution, and excess liquid was blotted on a paper towel. The wells were rinsed
3 times by addition of 200 ul 70% EtOH. After the final wash, the precipitated
DNA was allowed to dry on the bench. The ‘DNA Replica Plate’ was sealed
and stored at -20 °C. The ‘DNA Original Plate’ was used for restricition enzyme

digestion.

Digestion and gel electrophoresis A restriction digest mix was prepared con-
taining 1 U/pl HindIIl (Promega), 1x Buffer B (Roche), 1 mM spermidine
(Promega), 100 pug/ml BSA (Promega), 100 pug/ml RNase A (Promega). The
mix was prewarmed to 37 °C, and 30 ul were added to each well without mix-
ing. The reaction was incubated at 37 °C for 2-4 h in a humified chamber before
mixing the content of the wells. The 37 °C incubation was continued o/n in a
humified chamber. The next day, 6 ul 6x gel loading buffer were added to each
well, and the DNA was electrophoretically separated in a 0.7% TBE agarose gel
in 1x TBE electrophoresis buffer for 12-18 h at 30 V. The next day, the gel was
documented with the GelDoc™ 2000 system (Bio-Rad).

Blotting After electrophoretic size separation, the gel was pretreated in order to
facilitate transfer of large DNA fragments. First, the DNA was partially depuri-
nated by soaking the gel twice in 0.25 N HCI for 10 min. The gel was washed in
ddH5O for 5 min before denaturing the DNA by placing the gel in a bath of 0.5 N
NaOH on a moving platform for 40 min at RT. The DNA was then blotted o/n
onto a preequilibrated nylon Zeta-Probe® GT membrane (Bio-Rad) by capillary
transfer. The DNA was UV-crosslinked to the membrane using 5000 xJ/cm?
radiation (Stratalinker 2400; Stratagene). The membrane was washed twice in
2x-concentrated SSC pH 7.0 and either air-dried and stored at -20 °C in a sealed
plastic bag or directly hybridized.

Probe labeling For the generation of the radioactively labeled 5’ and 3’ exter-
nal probes, 25 ng of the respective template DNA fragments (694 bp and 485 bp,
respectively) were diluted in 45 ul TE buffer and denatured for 3 min at 95 °C.
After the sample was cooled down on ice for 2 min, it was added to a reac-
tion tube containing a dried mix of dATP, dGTP, dTTP, Klenow enzyme, and
random primers (Rediprime™ II Random Prime Labelling System; Amersham),
and the components were mixed. All following procedures were performed in an

isotope laboratory facility according to the manufacturer’s instructions. 5 ul of
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[a-32P]dCTP (Redivue™; Amersham) with a specific activity of 3000 Ci/mmol
were added, and the mixture was incubated for 10 min at 37 °C to allow for the
labeling reaction catalyzed by the Klenow fragment of the DNA polymerase I.
The radioactive sample was pipetted onto the Sephadex™ gel matrix of an equi-
librated NICK™ column (Amersham) to separate the labeled probe from unin-
corporated radioactive nucleotides via gravity flow. 400 ul TE buffer were added,
and the elution was discarded. Again, 400 ul TE buffer were added, and the pu-
rified sample was collected in a new tube. The labeled DNA probe was denatured
for 3 min at 95 °C, briefly put on ice, and added to the hybridization buffer (see
below).

Hybridization The DNA-blotted membrane was prehybridized in a glass bot-
tle with 5 ml prewarmed ExpressHyb™ Hybridization Solution (Clontech) for
30 min in a hybridization oven (Hybaid Shake’n’Stack; Thermo Scientific) at 68 °C
with constant rotation. After prehybridization, the denatured, labeled probe was
added to the solution, and the membrane was hybridized o/n at 60 °C with con-
stant rotation. The next day, the membrane was washed in 2x-concentrated SSC
pH 7.0 for 5 min rocking at RT, in preheated 2x SSC/1% SDS for 30 min at
60 °C (the membrane was turned over after 15 min), and — if higher stringency
was required — in 0.1x SSC/0.1% SDS for up to 30 min. A rinse in 0.1x SSC at
RT followed before sealing the membrane inside a plastic bag. The radioactively
labeled DNA was then detected by autoradiography using conventional X-ray
films (BioMax MS, Kodak).

2.2.3.2 PCR screening

Both the Slitl2-LacZ and the SlitI2-Venus ES cell clones were screened via PCR.
The isolation of the DNA followed the same protocol as described above (sub-
subsection 2.2.3.1).

SlitI2-LacZ ES cell clones The clones carrying a Slit]2Fa°%n¢ gllele were iden-
tified using the Expand Long Template PCR System (Roche) according to the
protocol of the European Conditional Mouse Mutagenesis Program (EUCOMM,;
http://www.eucomm.org). Each reaction mix contained 2 pl forward primer
(3 uM), 2 pl reverse primer (3 pM), 0.75 pl ANTPs (10 mM), 0.15 pl 100%
DMSO, 0.75 ul MgCly (25 mM), 1.0 ul trehalose (1 M), 1.5 ul 10x-concentrated
Expand Long Template Buffer 2, 0.1 ul Expand Long Template Enzyme Mix,
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6 4l DNA and 0.75 pul ddH50. The primer combinations for the 5" and the 3’ end
were 637/274 and 388/639, respectively. All primer sequences are listed on page
145. The PCR was run in a sealed 96-well PCR plate (ThermoFast® 96, non-
skirted; Thermo Scientific) on a Mastercycler ep gradient S (Eppendorf) using
the program listed in Table 2.4. Following the PCR reaction, 5 ul ddHyO were
added to each well, and 10 ul were taken off to verify the correct amplification
on a 1% (w/v) agarose gel as described under subsection 2.2.5. The expected

fragment size was 2.9 kb and 3.7 kb for the 5" and the 3’ end, respectively.

Step Temperature Time
1. Initial denaturation 94°C 2 min
2. Denaturation 93°C 15 sec
3. Annealing 70°C 30 sec
4. Elongation 68 °C 6 min
go to step 2. 9 times
reduce annealing temperature 1°C per step
5. Denaturation 93°C 15 sec
6. Annealing 60°C 30 sec
7. Elongation 68 °C 6 min
go to step 5. 24 times
increase elongation time 20 sec per step
8. Final elongation 68 °C 7 min
8. Cooling 15°C 00

Table 2.4 PCR program for screening of Slit/2-LacZ ES cell clones

SlitI2-Venus ES cell clones 1In addition to the above described internal PCRs
(Table 2.3), two PCRs were conducted to confirm integration of the entire SIitI2-
Venus BAC transgene. Therefore, primer pairs spanning the pBACe3.6 vector—
Slitl2 BAC junctions were selected. The PCR mix and the PCR program followed
the standard protocols described in Table 2.5 and Table 2.6 using an annealing

temperature of 60 °C. The primer combinations for the 5> and the 3’ and were



2 Materials and methods 29

408/410 and 407/409, respectively. All primer sequences are listed on page 145.
10 pul of each reaction were subsequently analyzed by gel electrophoresis as de-

scribed under subsection 2.2.5.

2.2.4 Generation of mouse lines

After identification of the clones that had undergone successful recombination
or had successfully integrated the BAC genome, the respective ‘Master Plate’
was retrieved from the -80 °C freezer and placed in a 37 °C incubator to allow
for thawing of the cells. The cells from the wells corresponding to the correct
clones were each transferred to 15 ml tubes containing 5 ml ES cell medium and
spun down at 200 x g for 5 min. The supernatant was carefully aspirated, the
pellet resuspended in ES cell medium, and the cells were plated on a monolayer
of feeder cells. The cells were grown in ES cell medium at 37 °C for propaga-
tion. They were subsequently used for the generation of mutant mouse lines via
morula injection (SlitI2-floxed), the ES cell-morula aggregation technique (SIitl2-
null, Slit12-Venus), or the ES cell-tetraploid embryo aggregation technique (SIitl2-
floxed-neo, SlitI2-LacZ-neo). These procedures were performed by Karol Macura
and Ingo Voigt (Max Planck Institute for Molecular Genetics, Berlin, Germany)
and followed the protocols described in [Nagy, 2003]. For the morula injection,
the laser system XYclone (Hamilton Thorne) was used. Embryos from C57BL /6
mice were used for the morula injection, while for all other procedures, CD-1®

embryos were employed.

2.2.5 Genotyping of mice

Isolation of DNA Genomic DNA was isolated according to the protocol de-
scribed in [Laird et al., 1991] as follows. Tail biopsies of 0.5-1 cm were incubated
o/n at 56 °C with gentle agitation in 0.5 ml lysis buffer (200 mM NaCl, 100 mM
Tris-HCI pH 8.5, 5 mM EDTA, 0.2% SDS) with 150 ug/ml proteinase K (Roche).
The lysates were centrifuged for 10 min at 16,100 x g, and the supernatants were
poured into new tubes containing 0.5 ml isopropanol. The samples were mixed
until the DNA was completely precipitated, the precipitates were fished out using
disposable tips and transferred to new tubes containing 0.5 ml TE buffer. The

DNA was dissolved for several hours at 37 °C under agitation and stored at 4 °C.
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Polymerase chain reaction (PCR) For PCR analysis of the above obtained
DNA, a reaction mix was prepared on ice. The master mix contained PCR buffer
(200 mM Tris pH 8.4, 500 mM KCl), MgCly, ANTP mix (dATP, dCTP, dGTP,
dTTP), Taqg DNA polymerase (all from Invitrogen), and primers. All primers
were ordered from MWG and adjusted to a final concentration of 20 pmol with
ddH5O prior to use. A list of all primer sequences can be found on page 145. 1 ul
of genomic DNA was used as template in a 50 ul reaction (Table 2.5). A negative
control without template was included in each run. For the SlitI2-floxed-neo and
the SlitI2-null mouse strain, a 3-primer PCR was performed using the primer
combinations 326,/327/274 and 442/326/110, respectively. Therefore, 0.5 ul of
the respective third primer (20 uM) was added to reaction mix. The volume was
subtracted from the amount of added ddH5O.

Components of Master Mix Volume Final concentration

10x PCR buffer w/o MgCly 5.0 ul 1x
MgCls, 50 mM 1.5 pl 1.5 mM
dNTP mix, 10 mM each 1.0 pl 200 uM each
Forward primer, 20 M 0.5 ul 0.2 uM
Reverse primer, 20 pyM 0.5 ul 0.2 uM
Taq DNA polymerase, 5U/ul 0.5 ul 0.05 U/ul
ddH-0 40.0 pl

Volume of Master Mix 49.0 pul

DNA template 1.0 pl

Final volume 50.0 ul

Table 2.5 Standard PCR mix

A standard PCR program with repeated cycles of denaturation, annealing,
and elongation was run on an MJ Research PTC-200 Thermal Cycler using the
parameters listed in Table 2.6. The annealing temperature was adjusted for each
primer pair. The elongation time was chosen according to the expected fragment

size. Details on primer pairs, detected alleles, annealing temperature (T,), and
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amplified fragment size of the different PCRs for the various mouse strains are

listed in Table 2.7. All primer sequences are listed on page 145.

Step Temperature Time
1. Initial denaturation 94°C 4 min
2. Denaturation 94°C 30 sec
3. Annealing 50-62.5 °C 30 sec
4. Elongation 72°C 30 sec
go to step 2. 34 times
5. Final elongation 72°C 7 min
6. Cooling 15°C 0

Table 2.6 Standard PCR program

Mouse strain Primer pair Detected allele T, Fragment
Slit12-floxed-neo 326/274 Slit]2floxed-neo 60.0 °C 186 bp
326,327 Slit[2wild-type 62.5°C 293 bp
SlitI2-floxed 109/110 Slit[2floxed 60.0°C 153 bp
109/110 Slit[2wild-type 60.0°C 107 bp
Slit12-null 326,110 Slit12mu! 62.5°C 146 bp
442/110 Slit12wild-type 62.5°C 348 bp
Slit12-LacZ 379,380 Slit12lacZ 60.0°C 429 bp
Slit]2-Venus 326/277 Venus transgene 60.0 °C 222 bp

Table 2.7 Overview of genotyping PCRs

Agarose gel electrophoresis The PCR products were subsequently analyzed
on a 2% (w/v) agarose gel. UltraPure™ agarose (Invitrogen) was mixed with
the appropriate volume of 1x TAE buffer in a glass beaker, microwaved until

dissolved, and cooled to about 60 °C. Ethidium bromide was added at a concen-
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tration of 0.2 ug/ml, and the solution was well swirled before pouring it into
a gel tray holding a comb. The comb was removed after solidification of the
gel, and the tray was placed in a gel chamber (PerfectBlue Gel System; Peqlab)
filled with 1x TAE electrophoresis buffer. The first well was loaded with marker
(GeneRuler™ 100bp Plus DNA Ladder (Fermentas) or 1 Kb Plus DNA Ladder
(Invitrogen)). 2 ul 6x gel loading buffer were added to 10 ul of PCR mix before
loading the samples. Following electrophoretic size separation, the PCR products
were visualized under transilluminescent UV light (A=302 nm) and documented
using the GelDoc™ 2000 system (Bio-Rad).

2.2.6 Generation of mouse primary embryonic fibroblasts

The procedure followed the basic protocol described in [Abbondanzo et al., 1993].
Timed-pregnant mice were euthanized via cervical dislocation. The uterus was
removed, and the embryos (stage E14.5) were individually dissected in cold PBS.
The head was removed and used for genotyping according to the protocol de-
scribed in subsection 2.2.5. For each embryo, the visceral organs were removed,
and the carcass was washed twice in PBS. It was minced into 2-3 mm? tissue
pieces with a pair of fine forceps. The pieces were transferred to standard tubes
containing 1 ml trypsin/EDTA solution (Gibco). The tissue was digested for
5 min at 37 °C, briefly vortexed, and again incubated for 25 min at 37 °C. The
sample was briefly vortexed before pipetting vigorously up and down to pro-
duce a single cell suspension. 5 ml feeder cell medium (Dulbecco’s Modified Ea-
gle’s Medium containing 4,500 mg/ml glucose, without sodium pyruvate (Sigma-
Aldrich), 10% (v/v) FBS, 2 mM L-glutamine (Sigma-Aldrich), 50 U/ml penicillin
(Sigma-Aldrich), 50 pug/ml streptomycin (Sigma-Aldrich)) were added, and the
cells were again disaggregated by pipetting up and down before adding another
5 ml feeder cell medium. The cells of each embryo were plated on a 10 cm
cell culture dish and incubated in a humidified incubator at 37 °C and 5% CO,
(HERAcell 150; Heraeus).
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2.3 Molecular and cellular biology

2.3.1 Northern blot analysis

Isolation of RNA Total RNA was isolated from whole embryos and adult tis-
sues using the RNeasy Mini or Midi Kit (Qiagen) according to the manufacturer’s
instructions. All volumes were adjusted accordingly. Briefly, fresh tissue was ho-
mogenized in RLT Buffer with a T8 Ultra-Turrax® disperser (IKA-Werke) and
centrifuged at full speed for 3 min. The supernatant was transferred into a new
tube, and 1 vol. 70% EtOH was added to the lysate, and the contents were mixed
by pipetting. The sample was transferred to an RNeasy column placed in a col-
lection tube and centrifuged, and the flow-through was discarded. RW1 Buffer
was added, and the column was again spun down. An on-column DNase diges-
tion step was performed: RNase-free DNase I was mixed with RDD Buffer and
pipetted onto the spin column membrane, which was then incubated on the bench-
top for 15 min. RW1 Buffer was added, and the column was centrifuged. The
flow-through was discarded. The membrane was washed twice with RPE Buffer
before eluting the RNA with RNase-free H,O into a new collection tube. The

RNA concentration was measured using a NanoPhotometer™ (Implen).

Gel electrophoresis 10 ug of the above purified RNA of each sample were
precipitated as follows. 4 ul 10 M ammonium acetate, 0.4 pl glycogen, and 50 1
ice-cold 100% EtOH were added per 11 pul initial volume and well mixed. The
samples were incubated at -20 C for several hours before spinning them down at
16,100 x g for 30 min at 4 °C. The supernatant was removed, and 200 ul ice-cold
70% EtOH were added. The supernatant was again removed, and the pellets were
allowed to air-dry. The subsequent electrophoretic size separation was performed
according to the protocol described in [Fourney et al., 1988|. The pellets were
dissolved in 5 ul sample dissolving solution (25 mM EDTA/0.1% SDS), and 25 ul
freshly prepared electrophoresis sample buffer (750 ul deionized formamide, 150 pl
10x-concentrated MOPS buffer, 240 ul 37% formaldehyde, 100 ul RNase-free
H,0, 100 ul glycerol, 80 ul 10% (w/v) bromophenol blue (Sigma-Aldrich)) were
added before incubating the samples at 65°C for 15 min. Finally, 1 ul 0.1%
ethidium bromide was added, the samples thoroughly mixed and stored on ice. A
denaturing formaldehyde gel was prepared as follows: per 100 ml of the gel, 1.5 g
UltraPure™ agarose (Invitrogen) were dissolved in 87 ml RNase-free HyO in a
microwave oven and cooled to about 50 °C before adding 10 ml 10x MOPS buffer.
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In a fume hood, 5.1 ml 37% formaldehyde were mixed with the solution, which was
then carefully poured in an RNase-free gel tray holding a comb. After solidifation
of the gel, the samples were loaded into the wells. The first well was loaded with
5 pl 0.24-9.5 kb RNA Ladder (Invitrogen). The RNA was electrophoretically
separated for 18 h at 20 V in a fume hood. The next day, the gel was documented
using the GelDoc™ 2000 system (Bio-Rad).

Blotting After electrophoretic size separation, the gel was washed twice in
10x SSC pH 5.0 for 20 min at RT with gentle shaking. The RNA was blot-
ted o/n onto a preequilibrated positively charged nylon membrane (GeneScreen
Plus™ Hybridization Transfer Membrane; PerkinElmer) by capillary transfer.
The RNA was UV-crosslinked to the membrane using 5000 pJ/cm? radiation
(Stratalinker 2400; Stratagene) and either air-dried and stored at -20°C in a
sealed plastic bag or directly hybridized.

Probe labeling and hybridization Both the probe labeling and the hybridiza-
tion procedures were identical to that of the Southern blot analysis (subsubsec-
tion 2.2.3.1). For the Northern blot analysis, specific probes to detect Slitl2 or
Gapdh RNA expression were generated from the respective DNA templates, and

RNase-free solutions were used at all times.

2.3.2 cDNA microarray analysis

The Illumina® TotalPrep™ RNA Amplification Kit (Ambion) was used for gener-
ating biotinylated, amplified cRNA for hybridization on Illumina Sentrix® arrays.

All steps were performed according to the manufacturer’s instructions.

First strand cDNA synthesis DNase-digested total RNA was prepared with
the RNeasy Mini or Midi Kit (Qiagen) as described under subsection 2.3.1. For
a single reaction, 500 ng RNA were diluted in a total volume of 11 ul RNase-free
H-O in a sterile, RNase-free tube. For each sample, a Reverse Transcription Mas-
ter Mix was assembled at RT as follows: 1 ul T7 Oligo (dT) Primer, 2 ul 10x First
Strand Buffer, 4 ul ANTP Mix, 1 pul RNase Inhibitor, and 1 ul ArrayScript were
mixed well, and 9 pul of the Master Mix were transferred to each RNA sample.
The samples were thoroughly mixed by pipetting, briefly centrifuged to collect
the reaction at the bottom of the tube, and placed in a 42 °C incubator for 2 h.

After the incubation, the tubes were immediately put on ice.
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Second strand cDNA synthesis 80 pul Second Strand Master Mix was prepared
on ice (63 pl RNase-free H,O, 10 pul 10x Second Strand Buffer, 4 ul ANTP Mix,
2 pl DNA Polymerase, 1 ul RNase H) and transferred to each sample. The
contents were mixed well, briefly centrifuged and incubated at 16 °C for 2 h.

After the incubation, the tubes were immediately placed on ice.

cDNA purification 250 pl ¢cDNA Binding Buffer were added to each sample,
the samples were mixed, and the reaction was pipetted onto the center of the
cDNA Filter Cartridge. The cartridges were centrifuged at 10,000 x g for 1 min
at RT. The flow-through was discarded, and 500 pul Wash Buffer were applied to
each cartridge before centrifuging them again as above. The flow-through was
discarded, and the cartridges were again spun to remove trace amounts of buffer.
The cartridges were placed in a cDNA Elution Tube, and 10 pl preheated (55 °C)
RNase-free H,O were applied to the center of the filter. After a 2-min incubation
at RT, the cartridges were again spun. Additional 9 ul preheated RNase-free HyO
were pipetted onto the filter, and the cartridges were centrifuged at 10,000 x g
for 2 min at RT. The eluted, purified cDNA samples were either stored at -20 °C

or directly used to proceed with the protocol.

cRNA transcription The IVT Master Mix was prepared at RT (2.5 ul T7
10x Reaction Buffer, 2.5 ul T7 Enzyme Mix, 2.5 ul Biotin-NTP Mix), and 7.5 ul
IVT Master Mix were added to each purified cDNA sample. The samples were
thoroughly mixed by pipetting, briefly centrifuged to collect the reaction at the
bottom of the tube, and placed in a 37 °C incubator for 14 h. The reaction was
stopped by the addition of 75 ul RNase-free HyO.

cRNA purification 350 ul cRNA Binding Buffer and 250 pl 100% EtOH were
added to each sample. The contents were mixed by pipetting and directly trans-
ferred onto the center of a cRNA Filter Cartridge. The cartridges were centrifuged
at 10,000 x g for 1 min at RT, and the flow-through was discarded. 650 ul Wash
Buffer were applied to each cartridge, which were again spun as above. The
flow-through was discarded, and the cartridges again centrifuged to remove trace
amounts of buffer. The cartridges were placed in cRNA Collection Tubes, and
70 ul preheated (55 °C) RNase-free H,O were applied to the center of the filter.
After a 2-min incubation at RT, the purified cRNA was eluted by spinning the
cartridges at 10,000 x g for 2 min at RT. The cRNA concentration was measured
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using a NanoPhotometer™ (Implen), and the cRNA quality was assessed on a

1% (w/v) agarose gel.

Hybridization To assess genome-wide expression profiles, 750 ng purified cRNA
in a total volume of 5 ul RNase-free H,O were provided for each sample. The
samples were hybridized to MouseRef-8 Expression BeadChips (Illumina) and
scanned on the Illumina BeadArray Reader. All these procedures were performed
by Pamela Kepper (Service Department, Max Planck Institute for Molecular

Genetics, Berlin, Germany) according to the manufacturer’s instructions.

Data analysis Scaling and quantile normalization was applied to the raw data
from the Illumina Bead Array Reader to generate dendrograms and lists of dereg-
ulated genes. Adjusted P-values were calculated using the method of Benjamini
and Hochberg [Benjamini and Hochberg, 1995]. These procedures were performed
by Dr. Martin Werber (Max Planck Institute for Molecular Genetics, Berlin, Ger-
many) using the beadarray package from the open source software Bioconductor
(http://www.bioconductor.org/). Functional annotation clustering of the gener-
ated lists of genes was performed with the online available DAVID Bioinformatics
Database tool (http://david.abce.nciferf.gov/) using the predefined high classifi-

cation stringency.

2.3.3 Quantitative real-time PCR

Selection of primers Selected results from the cDNA microarray analysis were
confirmed by quantitative real-time PCR. Therefore, primers were selected us-
ing the online software ‘Primer3’ (http://frodo.wi.mit.edu/primer3/input.htm).
They were designed to anneal to the mRNA sequence in two different exons span-
ning over an intron to allow differentiation between the amplified cDNA and PCR
products derived from potential contaminating genomic DNA. All primers were
ordered from MWG and adjusted to a final concentration of 20 M with ddH,O
prior to use. Table 2.8 lists all genes with the respective primer pair. A list of all

primer sequences can be found on page 145.
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Gene Primer pair (5°/3’) Product size
Bmp4 779/780 119 bp
Ctgf 787/788 100 bp
Flt1 795,796 119 bp
Aregl 801,/802 109 bp
Timpl 805/806 111 bp
Tnfrsfl2a 809/810 107 bp
Gapdh Gapdh5’/Gapdh3’ 202 bp

Table 2.8 Primer pairs used for quantitative real-time PCR

Reverse transcription (RT)-PCR The SuperScript™ III First-Strand Syn-
thesis System for RT-PCR from Invitrogen was used for reverse transcription of
RNA into ¢cDNA. The isolation of RNA is described under subsection 2.3.1. The
same samples as used for the microarray analysis served as templates in this as-
say. Therefore, 8 ug RNA were diluted in a total volume of 8 ul DECP-H,0. 1 ul
random hexamers and 1 gl ANTP mix (10 mM) were added per reaction, and the
samples were incubated at 65 °C for 5 min before placing them on ice for 1 min.
A reaction mixture was prepared containing 2 ul 10x RT Buffer, 4 ul MgCl,
(25 mM), 2 pl 0.1 M DTT, 1 ul RNaseOUT per sample. It was added to the
RNA mixture and incubated at 25 °C for 2 min. 1 ul SuperScript™ III (50 U /ul)
reverse transcriptase was added, and the samples were incubated successively at
25 °C for 10 min, at 42 °C for 50 min, and at 70 °C for 15 min. The reactions
were cooled on ice before adding 1 ul RNase H to each tube and incubating them
for 20 min at 37 °C. The cDNA samples were stored at -20 °C until further use.

Quantitative real-time PCR Quantitative real-time PCR was performed with
the above yielded cDNA using the Power SYBR® Green PCR Master Mix (Ap-
plied Biosystems). This mix contains polymerase, dNTPs, buffer, and SYBR®
Green I Dye, which binds to double-stranded DNA. Thus, the fluorescent signal
reflects the amount of double-stranded PCR. product that is generated during the
reaction. For each reaction, a mixture of 10 ul Power SYBR® Green PCR Mas-
ter Mix, 0.5 pl forward primer (20 M), 0.5 ul reverse primer (20 pM), and 7 ul
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DECP-H,0 were transferred to the wells of a MicroAmp® Fast Optical 96-Well
Reaction Plate (Applied Biosystems) before adding 2 ul of 1:20 diluted ¢cDNA
sample. Each sample was run in technical triplicates. Negative controls without
cDNA were included in each run. The reaction was run on a StepOne™ Real-
Time PCR System according to the program listed below (Table 2.9). The results
were analyzed using the StepOnePlus™ Software v2.0.2. The housekeeping gene

Gapdh was used as internal control for normalization of each cDNA sample.

Step Temperature Time
1. Initial denaturation 95°C 10 min
2. Denaturation 95°C 15 sec
3. Elongation 60 °C 30 sec
go to step 2. 39 times
4. Melt curve 95°C 15 sec
60 °C 15 sec
95°C 15 sec
6. Cooling 30°C 0

Table 2.9 Quantitative real-time PCR program

2.3.4 Western blot analysis

Isolation of proteins from cells The cell lysis buffer was freshly prepared before
use by dissolving one protease inhibitor cocktail tablet (Complete Mini, Roche)
in 10 ml cell lysis buffer (10 mM Tris-HCI pH 8.0, 2.5 mM MgCls, 5 mM EGTA
pH 8.0, 0.5% Triton X-100). The solution was thoroughly mixed and put on
ice. Mouse primary embryonic fibroblasts (subsection 2.2.6), that were grown
on 10 cm culture dishes to approximately 90% confluency, were carefully washed
twice with PBS before adding 750 ul cell lysis buffer. The dishes were put on ice,
and the cells were washed off, transferred into a 1.5 ml tube, briefly vortexed,
and incubated on ice for 20 min to allow for lysis of the cells. The protein lysates
were centrifuged at 1,500 x g for 10 min at 4 °C. The supernatant was collected,

snap frozen on dry ice, and stored at -80 °C until further use.
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Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
The proteins were separated via sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE) using the XCell SureLock™ Mini-Cell system (Invitro-
gen). Therefore, the above obtained protein lysates were thawed on ice. 15 ul
protein lysate were mixed with 5 pl 4x NuPAGE® LDS Sample Buffer (Invit-
rogen), and the proteins were denatured at 70 °C for 10 min, then put on ice.
Precast NuPAGE® 4-12% Bis-Tris gels were placed in the Mini Cell, and the
system was filled with 1x NuPAGE® MOPS SDS Running Buffer (Invitrogen).
The denatured protein samples were loaded into the wells. SeeBlue® Plus2 Pre-
Stained Standard (Invitrogen) served as protein molecular weight marker. The

proteins were electrophoretically separated for 1 h at 200 V.

Blotting and detection of proteins The proteins were blotted onto a polyvinyli-
dene fluoride (PVDF) membrane (Immobilon-P; Millipore) using the Mini Trans-
Blot™ cell system (Bio-Rad). Prior to use, the membrane was permeabilized in
100% MetOH for 2 min and rinsed with transfer buffer (192 mM glycine, 25 mM
Tris). The proteins were blotted in transfer buffer for 1 h at 100 V. The protein
transfer was verified by immersing the membrane in Ponceau S Staining Solution
(Sigma-Aldrich) for 5 min. After the proteins had been visualized, the membrane
was rapidly immersed in 0.1 M NaOH before rinsing it with ddH,O for 2-3 min.
The membrane was then blocked o/n at 4 °C in TBST containing 5% milk powder
(Fluka). The next day, the membrane was washed once with TBST for 15 min at
RT before incubating it with a-Slitl2 antibody (1:2,000) in 1% milk/TBST for 2 h
at RT. The membrane was again washed 3x in TBST and then incubated with
a 1:10,000 dilution of horseradish peroxidase (hrp)-coupled secondary antibody
(ECL Rabbit IgG, hrp-coupled, NA943; Amersham) in 1% milk/TBST for 1 h
at RT. Five washes in TBST and one wash in TBS, each 15 min at RT, followed.
The ECL™ Advance Western Blotting Detection Kit and Hyperfilm-ECL films

(Amersham) were used for radiographic detection.
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2.3.5 Flow cytometric analysis

Preparation of single cell suspensions Mice were euthanized via cervical dis-
location. The thymus and the spleen were dissociated in 1 ml 0.5% (w/v) BSA
(Sigma-Aldrich) in PBS by forcing the respective tissue through the mesh of a
commercial stainless-steel sieve using the plunger of a syringe. Bone marrow
cells were harvested by flushing the cavities of femur and tibia with 1 ml 0.5%
BSA/PBS. The cell supsensions were centrifuged at 500 x g for 5 min at 4 °C be-
fore resuspending the pellets in 500 pl red blood cell (RBC) lysis buffer (155 mM
NH,CI (Sigma-Aldrich), 0.13 mM EDTA, 10 mM KHCOj; (Roth)). After an incu-
bation for 5 min at RT, lysis was stopped by adding 500 ul 0.5% BSA/PBS. The
cells were pelleted as above and filtered through MACS® Pre-Separation Filters
(Miltenyi Biotec) in a total volume of 1 ml 0.5% BSA/PBS. The cell suspension
were again spun down as above. The cells from the spleen, the bone marrow,
and the thymus were resuspended in 500 ul, 300 ul, and 150 ul 0.5% BSA /PBS,
respectively. To evaluate total cell numbers, 10 ul were diluted with 90 ul trypan
blue solution (Sigma-Aldrich), which stains dead cells blue. Live, unstained cells

were then counted using a hemocytometer (Neubauer; Roth).

Antibody incubation and flow cytometric analysis 10 pl cell suspension
were pipetted into the wells of a conical-bottomed 96-well plate (Corning®), and
fluorochrome-labeled antibodies were added in a predefined combination at 1 ul
aliquots. The antibodies were diluted in 0.5% BSA/PBS prior to use. The cells
were incubated for 15 min at 4 °C in the dark to allow coupling of the antibodies.
200 11 0.5% BSA /PBS were added to each well, the plate was centrifuged at 500 x
g for 3 min, and the pellets were diluted in 250 ul 0.5% BSA/PBS. Table 2.10
lists all antibodies with their respective clone name, fluorochrome label, dilution
factor, and supplier. For each sample, 50,000-100,000 cells were counted with a
FACSCalibur™ Flow Cytometer (BD Biosciences) and the collected data were
subsequently analyzed using the FlowJo 7.2.5 software (Tree Star).
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Specificity = Clone Label Dilution Supplier
CDh4 RM4-5 PerCP 1:400 BD Biosciences
CD8a 53-6.7 PE 1:200 BD Biosciences
CD69 H1.2F3 FITC 1:200 BD Biosciences
TCRgG H57-597 APC 1:200 BD Biosciences
CD21 B3/B4 PE 1:200 DRFZ Berlin
CD23 7G6 Cyb 1:800 DRF7Z Berlin
IgMb AF6-78 Alexad88 1:50 DRFZ Berlin
B220 RA3.6B2  Cy5 1:800 DRFZ Berlin

Table 2.10 Antibodies used for flow cytometric analysis
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2.4 Histology

2.4.1 Standard staining procedures

Specimen preparation Mice were euthanized via cervical dislocation. Tissues
were harvested under sterile conditions and fixed o/n at 4°C in 10% neutral
buffered formalin solution (Sigma-Aldrich). The next day, the samples were
washed twice with PBS before manually processing them through a graded ethanol
series: 30%, 50%, 70% EtOH, each for 15 min at 4 °C. The subsequent steps of
dehydration and paraffin infiltration were performed automatically in a MICROM
STP 120 processor (MICROM) according to the following program:

Solution Time Agitation
80% EtOH 120 min 2
96% EtOH 120 min 2
100% EtOH 60 min 2
100% EtOH 60 min 2
100% EtOH 60 min 2
100% Xylene 90 min 2
100% Xylene 90 min 1

100% Paraffin 120 min 1
100% Paraffin 120 min 1

Table 2.11 MICROM STP 120 program

The specimens were embedded in metal molds with paraffin (Histowax; Leica)
using an EC 350-1 embedding station (MICROM) and placed onto the cooling
plate until the paraffin block was solidified. 5 pm-thick sections were cut on a
rotary microtome (HM 355 S; MICROM), transferred onto adhesion microscope
slides (SuperFrost®; Menzel), and dried o/n at 37 °C. All slides were stored in a

desiccated slide box at 4 °C until further use.
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2.4.1.1 Hematoxylin and Eosin (H&E) staining

Formalin-fixed, paraffin-embedded sections were deparaffinized in xylene (2x for
8 min) and rehydrated (100% EtOH, 2x for 5 min; 90% EtOH, 80% EtOH,
ddH,0, each 1x for 5 min). The samples were stained with Mayer’s Hematoxylin
Solution (Sigma-Aldrich) for 3 min, washed under running tap water for 15 min,
dipped in 0.25% HCI/EtOH for 3 sec followed by a 5-min incubation in tap water,
stained with alcoholic Eosin Y Solution (Sigma-Aldrich) for 5 min, and briefly
washed in ddH5O for 30 sec. The sections were then dehydrated (dip into 90%
EtOH, 100% EtOH 2x for 5 min, xylene 1x for 5-10 min), immediately mounted
in Entellan® (Merck), and covered with glass cover slips (Roth).

2.4.1.2 Periodic acid-Schiff (PAS) staining

The PAS staining was used to detect polysaccharides, which stain magenta-purple
with this method. The sections were deparaffinized and rehydrated as above (sub-
subsection 2.4.1.1). The PAS staining kit from Merck was used for the subsequent
staining procedure. The samples were placed in 0.5% periodic acid solution for
5 min, washed under running tap water for 3 min, rinsed in ddH,O, and incubated
in Schiff’s reagent for 15 min. The slides were again washed under running tap
water for 3 min and rinsed in ddH,O before staining the specimens in Mayer’s
Hematoxylin Solution for 2 min. Excess staining solution was washed off under
running tap water for 3 min. The sections were then dehydrated and mounted as

above.

2.4.1.3 Masson's trichrome staining

The Masson’s trichrome staining was employed to detect collagen, which stains
blue with this method. Accustain® Trichrome Stains (Sigma-Aldrich) were used
for this staining procedure. The sections were deparaffinized and rehydrated
as above (subsubsection 2.4.1.1) and incubated in preheated Bouin’s solution
(Sigma-Aldrich) at 56 °C for 15 min. Excess Bouin’s solution was washed off
under running tap water. The tissue was stained in Weigert’s Iron Hematoxylin
Working Solution (1:1 Reagent A:Reagent B; Sigma-Aldrich) for 5 min at RT be-
fore washing the sections for 5 min under running tap water and rinsing them in
ddH50O. The slides were stained in Biebrich Scarlet-Acid Fuchsin for 5 min, rinsed
in ddH,O, and placed in Phosphotungstic/Phosphomolybdic Acid Working Solu-
tion (1:1:2 Phosphotungstic Solution:Phosphomolybdic Solution:H,0O) for 5 min
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followed by a 5-min incubation in Aniline Blue Solution. The slides were rinsed
in ddH5O and incubated for 3 min in 1% acetic acid solution. The sections were

then dehydrated and mounted as above.

Imaging Tissue sections were photographed with an AxioStar plus microscope
(Zeiss) and a DFC320 camera (Leica) using the FireCam V3.0 software (Leica).

2.4.2 Whole-mount in situ hybridization

The procedures for the whole-mount in situ hybridization followed the online
available protocols of the Molecular Anatomy of the Mouse Embryo Project
(mamep) of the Max Planck Institute for Molecular Genetics (Berlin, Germany;

http://mamep.molgen.mpg.de/). For all steps, RNase-free solutions were used.

Fixation of mouse embryos Timed-pregnant mice were euthanized via cervical
dislocation. The uterus was removed, and the embryos were dissected in cold
PBS and fixed o/n at 4 °C in 4% PFA /PBS solution on a roller mixer. The next
day, the fixative was removed by two washes with cold PBS for 10 min, and the
embryos were dehydrated through a graded methanol series (25% MetOH/PBS,
50% MetOH/PBS, 75% MetOH/PBS, 1x for 10 min each, 100% MetOH 2x
for 10 min). All steps were performed at 4 °C on a roller mixer with precooled
solutions. The fixed embryos were stored in 100% MetOH at -20 °C until further

use.

Processing of mouse embryos The desired number of fixed embryos of one
stage were pooled. If not stated otherwise, all subsequent steps comprised a
10-min incubation at 4 °C on a roller mixer. The embryos were rehydrated (1x
75% MetOH/PBST, 1x 50% MetOH/PBST, 1x 25% MetOH/PBST, 2x PBST),
bleached in a 6% HyO4/PBST solution (10 min for E8.5, 20 min for E9.5, 30 min
for E10.5, 45 min for E11.5), and washed 3x in PBST. The specimens were
digested with 10 pg/ml proteinase K/PBST (7 min for E8.5, 10 min for E9.5,
13 min for E10.5, 17 min for E11.5) in order to allow for better penetration
of the probe later. The digestion process was stopped by an incubation with
2 mg/ml glycine/PBST solution followed by two washes with PBST. The em-
bryos were refixed in 0.2% glutaraldehyde/4% PFA/PBST for 30 min at RT
while rolling, washed twice with PBST at RT, and preincubated with hybridiza-
tion solution (50% formamide, 5x SSC pH 5.0, 1% SDS, 0.05 ug/ml yeast RNA



2 Materials and methods 45

(Sigma-Aldrich), 0.05 ug/ml heparin (Sigma-Aldrich), in RNase-free HyO) for
15 min at RT. The solution was exchanged with fresh hybridization solution,
and the embryos were prehybridized for 2 h at 68 °C in order to reduce unspe-
cific background staining. Prehybridized embryos were either directly used for

hybridization or stored at -20 °C in hybridization solution.

Preparation of the Slit/2-specific probe The SlitI2-specific probe was pre-
pared using the pKS-Slitl2 plasmid provided by Dr. Heinrich Schrewe (Institute
for Medical Genetics, Charité University Medicine, Berlin, Germany). This plas-
mid harbors a 1.8 kb-long fragment of the Slitl2 cDNA sequence introduced into
the vector pBluescript II KS (Stratagene) with an EcoRI at the 5’ end and an
Xhol site at the 3’ end. The 5’ and the 3’ end of the insert are flanked by T3 and
T7 RNA polymerase promoters, respectively. These promoters allow for tran-
scription of downstream cloned DNA by the corresponding RNA polymerase. At
first, the plasmid was linearized. Therefore, 3 pug plasmid were digested for 3 h
at 37 °C with 2 ul EcoRI (12 U/ul; Roche) in a 50 pl reaction mix containing 1x
SuRE/Cut Buffer H (Roche). Following the incubation, 16 pl 10 M ammonium
acetate and 160 ul ice-cold 100% EtOH were added, the sample was mixed and
spun down at 16,100 x g for 30 min at 4 °C. The supernatant was discarded, 200 pl
ice-cold 70% EtOH added, and the pellet was again spun down at 16,100 x g for
15 min at 4 °C. The supernatant was taken off, and the precipitated plasmid was
air-dried in a fume hood before dissolving it in 38.5 ul RNase-free HyO. An in
vitro transcription mix was set up as follows: 38.5 ul linearized plasmid, 6 pl 10 x
transcription buffer (Roche), 6 ul ACG nucleotide mix (each 4 mM; Roche), 1.5 ul
digoxigenin-UTP (dig-UTP) mix (4 mM, Roche), 3 ] DTT (200 mM), 2 ul RNase
inhibitor (40 U/ul; Peqlab), and 3 ul T7 RNA polymerase (20 U/ul; Roche) were
mixed and incubated for 2.5 h at 37 °C. Following the incubation, the template
DNA was digested with 6 ul RNase-free DNase I (10 U/ul; Roche) for 15 min at
37°C. The probe RNA was precipitated by adding 2.4 pul glycogen, 24 pul 10 M
ammonium acetate, and 300 ul ice-cold 100% EtOH before spinning it down at
16,100 x g for 30 min at 4 °C. The supernatant was removed, 300 ul ice-cold
70% EtOH added, the pellet again centrifuged at 16,100 x g for 15 min at 4 °C.
The pellet was air-dried in a fume hood and dissolved in 60 pl hydrolysis buffer
(40 mM NaHCOg3, 75 mM NayCOs; pH 10.2) in order to reduce the probe size
to allow better penetration of the embryonic tissues. The reaction was incubated

for 4 min at 60 °C, and the RNA pellet was again precipitated as above but with-
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out the addition of glycogen. The final pellet was dissolved in 50 ul RNase-free
H50. 3 ul were taken off for documentation on a 1% (w/v) agarose gel, and the

remaining 47 pul were stored at -20 °C.

Hybridization The required number of wells from a 12-well plate (Corning®)
were filled with 2 ml preheated hybridization solution (68 °C). A clean netwell
(15 mm diameter, 74 pm mesh; Corning®) was placed in each well, and the
prehybridized embryos were sorted into the wells. The embryos were prewarmed
to 68 °C for 30 min. Meanwhile, a fresh 12-well plate with 2 ml hybridization
solution containing 23.5 ul of hydrolyzed probe per well was prepared. The probes
were denatured at 80 °C for 10 min by placing the plate inside a sealed plastic
box in a hot water bath. Right after denaturation, the netwells with the embryos
were transferred to the plate containing the probes. The plate was placed inside
a humid plastic box and incubated o/n in an oven with rocking function (BFED
053; Binder) at 68 °C for hybridization of the probe to its complementary mRNA.

Antibody incubation The netwells were transferred back to a 12-well plate
filled with pure hybridization solution and incubated at 68 °C for 30 min. The
netwells were transferred into a netwell reagent tray (Corning®) and washed
twice at 68 °C for 30 min with approximately 90 ml of preheated Solution 1 (50%
formamide, 5x SSC pH 5.0, 1% SDS) followed by two washes for 30 min and two
washes for 60 min at 68 °C with Solution 3T (50% formamide, 2x SSC pH 5.0,
0.1% Tween-20) inside a humified box. The box was removed from the oven, and
the embryos were washed three times with TBST for 15 min at RT. During the
washing procedure, the antibody solution was prepared as follows: 6 ml TBST
were mixed with a pinch of embryo powder (for preparation of the embryo powder:
see below) and heat-inactivated for 30 min at 70 °C in a waterbath. After cooling
the solution on ice, 60 pl heat-inactivated lamb serum (Gibco) and 12.5 ul of
a-dig-AP antibody (Roche) were added, and the solution was incubated at 4 °C
for at least 1 h rolling in the dark in order to preabsorb the antibody. The
solution was spun down at 1,500 x g for 10 min at 4 °C, and the supernatant
was transferred into a tube containing 19 ml 1% lamb serum/TBST and mixed
well. The antibody solution was stored at 4 °C in the dark until use. Following
the last washing steps, the embryos were blocked in a fresh 12-well plate filled
with 2 ml 10% lamb serum/TBST per well for 2-3 h at RT. The embryos were
then transferred to a fresh 12-well plate containing 2 ml antibody solution per

well and incubated o/n rocking at 4 °C in the dark. The next day, the embryos
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were washed twice for 15 min, twice for 30 min, and at least six times for 1 h at
RT in the dark with approximately 90 ml TBST. To reduce background staining,
the specimens were incubated o/n at 4 °C in TBST in the dark.

Staining The next day, the embryos were washed four times at RT for 15 min
with 90 ml freshly prepared NTMT (100 mM Tris-HCI pH 9.5, 100 mM NaCl,
50 mM MgCly, 0.1% Tween-20). Meanwhile, the staining solution was prepared.
Therefore, 112.5 pl NBT (75 pl/pg; Roth) and 87.5 pl BCIP (50 ug/ul; Roth)
were added to 25 ml ice-cold NTMT. The solution was filter-sterilized using a
0.45 pm syringe filter (Schleicher&Schuell) before filling 2 ml of it into the wells of
a fresh 12-well plate. The embryos were then transferred into the staining solution
and incubated rocking in the dark at RT. The staining intensity was monitored
periodically under a binocular. Once an appropriate staining was obtained, the
reaction was stopped by washing the embryos once in NTT (100 mM Tris-HCI
pH 9.5, 100 mM NaCl, 0.1% Tween-20) and several times in PBST at RT. The
stained embryos were postfixed in 4% PFA /PBST and stored in the dark at 4 °C.

Imaging Whole-mount specimens were photographed with a SteREO Discov-
ery.V12 microscope (Zeiss) and an AxioCam Color camera (Zeiss) using the Ax-

ioVision 4.6 software (Zeiss).

Preparation of mouse embryo powder Approximately 25 mouse embryos of
the stages E12.5-E14.5 were homogenized in a minimum volume of ice-cold PBS
using a tissue homogenizer (T8 Ultra-Turrax®; IKA-Werke). 4 vol. ice-cold ace-
tone were added, the solution was mixed and incubated on ice for 30 min. The
solution was then centrifuged at 10,000 x g for 10 min at 4 °C, the supernatant
was removed, and the pellet washed with ice-cold acetone and again spun down.
The pellet was spread out and ground into a fine powder on a sheet of filter paper.

The powder was air-dried and stored at 4 °C.
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2.4.3 X-gal staining

The X-gal staining procedure followed the basic protocol described in [Nagy,
2003].

2.4.3.1 Whole-mount specimens

Staining Mice were euthanized via cervical dislocation. Embryos were dissected
in cold PBS and immediately transferred into ice-cold 4% PFA /PBS as were tissue
specimens. The samples were fixed for 1 h at 4 °C, rinsed three times with rinse
buffer (5 mM EGTA, 0.01% deoxycholate, 0.02% NP40, 2 mM MgCl,, in PBS)
for 15 min at RT. Meanwhile, the staining buffer was prepared containing 5 mM
potassium ferricyanide (Merck), 5 mM potassium ferrocyanide (Merck), 5 mM
EGTA, 0.01% deoxycholate, 0.02% NP40, 2 mM MgCl, in PBS. X-gal (40 mg/ml
in dimethylformamide) was added to a final concentration of 1 mg/ml, and the
solution was filtered using a Steritop™ filter (Millipore). The specimens were
then incubated in staining buffer at 37 °C in the dark until an appropriate staining
was obtained. After staining, the specimens were washed three times for 5 min
at RT and postfixed o/n in 4% PFA/PBS at 4 °C. They were either stored as
whole-mounts in 4% PFA /PBST at 4 °C or further processed for sectioning.

Paraffin-embedding and sectioning The next day, excess fixative was removed
by two washes with PBS before manually processing them through a graded
ethanol series: 30%, 50%, 70% EtOH, each for 15 min at 4 °C. The specimens
were then automatically infiltrated by paraffin, embedded in metal molds, and
sectioned on a rotary microtome. The detailed protocol for these procedures is
described above (subsection 2.4.1). The sections were counterstained in eosin for
1 min (Eosin Y Solution; Sigma-Aldrich), briefly dipped in ddH,O, dehydrated
(dip into 90% EtOH, 100% EtOH 2x for 5 min, xylene 1x for 5-10 min), imme-
diately mounted in Entellan® (Merck), and covered with glass cover slips (Roth).

2.4.3.2 Cryo sections

Cryo embedding and sectioning Since penetration of the staining substrate
was insufficient in embryos older than E11.5, they were first embedded, sectioned,
and then stained. Embryos were dissected in cold PBS and directly embedded
in plastic molds (Peel-A-Way®; Polysciences) with Tissue-Tek® OCT compound
(Ted Pella) after removing excess PBS by blotting it on a paper towel. The
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specimens were placed in the center of the mold filled with freezing compound
and frozen on a metal block cooled with dry ice and EtOH. This method — as
opposed to paraffin embedding — preserved the (3-galactosidase enzyme activity.
Frozen blocks were stored at -20 °C until sectioning. 14-20 pm-thick sections
were cut on a cryotome (CryoStar HM 560 M; MICROM) and transferred onto
adhesion microscope slides (SuperFrost®; Menzel). The sections were dried on a
30 °C heating plate for 30 min and stored at -20 °C in a sealed, desiccated plastic

box.

Staining After storage, the slides were allowed to warm to RT inside the sealed
box. The sections were postfixed on ice in 1% PFA /PBS for 10 min before quickly
rinsing and then washing them on ice in cold 2 mM MgCly/PBS for 10 min on
a shaker. After two washes with cold rinse buffer (subsubsection 2.4.3.1) for
10 min, the slides were incubated o/n in the dark at 37 °C in staining buffer
(subsubsection 2.4.3.1). The next day, the sections were washed three times in
2 mM MgCl, /PBS for 5 min at RT, rinsed in ddH5O for 5 min, counterstained,
dehydrated, and mounted as above (subsubsection 2.4.3.1).

2.4.3.3 Bone sections

In order to cut and stain bone specimens, the tissue had to be decalcified. There-
fore, the surrounding soft tissue was removed, and the bones were decalcified
in OSTEOSOFT® solution (Merck) o/n rolling at RT. The next day, the bones
were incubated in Tissue-Tek® OCT compound (Ted Pella) for 1 h at 4°C be-
fore embedding them in molds filled with freezing compound on a metal block
cooled with dry ice and EtOH. 8 um-thick sections were cut and stained as above
(subsubsection 2.4.3.2).

Imaging Whole-mount specimens and tissue sections were photographed as de-

scribed under subsection 2.4.2 and subsection 2.4.1, respectively.

2.4.4 Immunohistochemistry

For this assay, formalin-fixed, paraffin-embedded tissue sections were used (sub-
section 2.4.1). They were deparaffinized in xylene (3x for 5 min) and rehydrated
(100% EtOH, 2x for 5 min; 90% EtOH, 80% EtOH, ddH,O, each once for 5 min).
The slides were then incubated in 1% H,0O, for 10 min at RT in order to quench

endogenous peroxidase activity. The sections were washed three times for 5 min
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in PBS before unmasking the epitopes. Therefore, the slides were boiled in a
glass beaker for 20 min containing a buffer with either moderately acidic pH
(pH 6.0, 10 mM sodium citrate; pH adjusted with 1 M citric acid) or basic pH
(pH 9.0, 10 mM Tris, 1.25 mM EDTA). After this heat-induced antigen retrieval,
the glass beaker was placed in an ice bucket, and the buffer was cooled down to
approximately 40 °C. The slides were washed 3x for 5 min in PBS and blocked
o/n at 4 °C with 2.5% horse serum (ImmPRESS™ REAGENT kit; Vector Lab-
oratories). The next day, the sections were incubated with the primary antibody
diluted in 2.5% horse serum for 2 h at RT inside a humified chamber. Uncou-
pled antibody was removed by five washes in PBS for 5 min. The sections were
then incubated with ImmPRESS™ reagent for 60 min at RT; depending on the
species that the primary antibody was raised in, this was either the anti-mouse Ig
or the anti-rabbit Ig reagent. These reagents contain micropolymers of a very ac-
tive peroxidase coupled to affinity purified secondary antibodies. The slides were
washed three times for 3 min in PBS and incubated for 15 min at RT in peroxidase
substrate solution (Vector® NovaRED™; Vector Laboratories). The slides were
rinsed in tap water at RT for 5 min before counterstaining them for 5 sec in hema-
toxylin (Mayer’s Hematoxylin Solution; Sigma-Aldrich). The sections were again
rinsed in tap water for 5 min, dehydrated (dip into 90% EtOH, 100% EtOH 2x
for 5 min, xylene once for 5-10 min), immediately mounted in Entellan® (Merck)
and covered with glass cover slips (Roth). Table 2.12 lists all primary antibodies
with their respective dilutions, the pH of the buffer used for antigen retrieval,

and the InmPRESS™ secondary antibody reagent.

1° Antibody Supplier Dilution Retrieval ImmPRESS™
a-GFP (11 814 460 001) Roche 1:100 pH 9.0 a-mouse
a-GFP (A111222) Invitrogen 1:100 pH 6.0 a-rabbit
a-Desmin (ab8470) abcam 1:100 pH 9.0 a-mouse
a-PECAM-1 (sc-1506) Santa Cruz 1:100 pH 6.0 a-rabbit
a-WT1 (M3561) Dako 1:50 pH 9.0 a-mouse

Table 2.12 Antibodies used for immunohistochemistry

Imaging Tissue sections were photographed as described under subsection 2.4.1.
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2.4.5 Immunocytochemistry

Mouse primary embryonic fibroblasts (subsection 2.2.6) were grown to confluency
in a 10 cm cell culture dish containing gelatin-coated round glass cover slips
(12 mm; Roth). The cover slips were carefully transferred into the wells of a
24-well plate (Corning®) and washed twice with PBS. The cells were fixed with
4% PFA/PBS at RT for 15 min. Following two washes with PBS, the cells were
permeabilized with 0.5% Triton X-100/PBS for 5 min at RT. The cells were again
washed twice with PBS and blocked with DMEM (Lonza) supplemented with 10%
fetal calf serum (FCS; Invitrogen) for 30 min at RT. The cells were then incubated
with the primary antibody (a-Slit12, diluted 1:200 in DMEM/10% FCS) for 1 h at
RT. After two washes with PBS, incubation with the secondary antibody (Cy3-
conjugated a-rabbit, 711-166-152; Jackson ImmunoResearch) diluted 1:10,000 in
DMEM/10% FCS for 1 h at RT followed. The cells were again washed twice
with PBS, and the nuclei stained with 0.2 pg/ml DAPI (Sigma-Aldrich) in PBS
for 2 min at RT before a final wash with PBS. The cover slips were mounted
upside down onto microscope slides (SuperFrost®; Menzel) using Immu-Mount™

mounting media (Thermo Scientific) and stored in the dark.

Imaging The cells were photographed using an Observer.Z1 microscope (Zeiss)
and the AxioVision 4.6 software (Zeiss).

2.4.6 Electron microscopy

The procedures for the electron microscopy study were performed by Beatrix
Fauler (Max Planck Institute for Molecular Genetics, Berlin, Germany). Briefly,
fresh kidney samples were prefixed for 1.5 h in 2% PFA /2% glutaraldehyde in
50 mM sodium cacodylate buffer (SERVA) and postfixed o/n in 2.5% glutaralde-
hyde/50 mM sodium cocodylate buffer at 4 °C. The samples were washed several
times in sodium cacodylate buffer before incubating them for 2 h in 0.5% osmium
tetroxide/50 mM sodium cacodylate buffer. The specimens were washed several
times in ddH,O and incubated in 0.1% tannic acid/100 mM HEPES buffer for
1 h at RT. The samples were again washed in ddH50O and incubated in 2% uranyl
acetate for 1.5 h at RT. They were dehydrated in a graded ethanol series, then
processed via propylene oxide into resin (Low Viscosity ‘Spurr’ Kit; Ted Pella),
and polymerized at 60 °C for 3 days. Ultrathin sections (70 nm) were cut and

mounted on electron microscopic grids. The sections were counterstained with
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uranyl acetate and lead citrate. The samples were examined and photographed

with a FEI 120 kV Tecnai transmission electron microscope.

2.4.7 Skeleton staining

The procedure followed the protocol described in [Kessel et al., 1990]. Mice were
euthanized by CO, inhalation. The skin and all visceral organs were removed
before fixing the carcasses for four days in 100% EtOH at RT on a roller mixer.
They were incubated in 100% acetone for three days, rinsed in water, and incu-
bated in staining solution (1 vol. 0.3% Alcian Blue 8 GX (Sigma-Aldrich) in 70%
EtOH, 1 vol. 0.1% Alizarin Red S (Sigma-Aldrich) in 95% EtOH, 1 vol. 100%
acetic acid, 17 vol. 100% EtOH) for 10 days on a roller mixer. Excess soft tissue
was removed by incubation with Clearing Solution (20% glycerol, 1% KOH). For
storage, the specimens were transferred into 50%, 80%, and finally 100% glycerol.

2.4.8 Micro-computed tomography

Micro-computed tomography (uCT) was performed by Dr. Marco Eijken (Eras-
mus Medical Center, Rotterdam, The Netherlands). Bone samples of 25-day-old
male mice were collected and fixed in 2% PFA/PBS. Surrounding soft tissue
was removed, and the specimens were scanned using the SkyScan 1072 microto-
mograph scanner (SkyScan, Kontich, Belgium). Three-dimensional images were
reconstructed with a 3D data analysis software (CTAnalyzer; SkyScan, Kontich,
Belgium).

2.5 Evaluation of clinical laboratory parameters

2.5.1 Blood parameters

All samples were collected via exsanguination by puncture of the retroorbital

sinus after anesthetizing the animals with isoflurane (Baxter).

2.5.1.1 Complete blood count

Blood was collected in standard 1.0 ml EDTA collection tubes (KABE). All
parameters were evaluated at the Institut fiir Veterindrmedizinische Diagnostik
(Berlin, Germany) using the Sysmex XT-2000iV hematology analyzer by com-

bined laser-based flow cytometry and impedance technology.
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2.5.1.2 Serum urea and serum calcium

The samples were allowed to clot at RT. The serum was collected after centrifuga-
tion at 100 x g for 15 min at 4 °C. All parameters were evaluated at the Institut
fiir Veterindrmedizinische Diagnostik (Berlin, Germany) using the cobas ¢ 501

module of the cobas® 6000 analyzer series (Roche).

2.5.1.3 Serum corticosterone

Corticosterone was measured with an enzyme-linked immunosorbent assay (Cor-
ticosterone ELISA Kit, RE52211; IBL). The samples were allowed to clot at RT.
The serum was collected after centrifugation at 100 x g for 15 min at 4 °C and
stored at -20 °C until further use. For the ELISA assay, 1 part Enzyme Conju-
gate (250x ) was mixed with 250 parts Enzyme Diluent. The samples were diluted
1:10 with Standard 0 solution. 20 ul of each standard and samples were dispensed
in technical triplicates into the plate wells coated with anti-Corticosterone anti-
body. 200 pl Enzyme Conjugate were added to each well. The contents were
thoroughly mixed on a plate shaker for 10 sec before incubating the plate for
1 h at RT. The content of the wells was removed by inverting the plate, and the
wells were washed three times with diluted Wash Solution (1:40 dilution with
ddH50). 100 ul Substrate Solution were dispensed into each well, and the plate
was incubated for 15 min at RT. The enzymatic reaction was stopped by adding
50 pl Stop Solution per well. The optical density (OD) was read at 450 nm within
10 min using a GloMax® luminometer (Promega). A standard curve was gener-
ated based on a 4-parameter logistic curve fit using the online available program
‘enuplot’ (http://www.gnuplot.info/), and sample concentrations were calculated
thereof.

2.5.1.4 Serum vitamin D

The samples were allowed to clot at RT. The serum was collected after centrifu-
gation at 100 x g for 15 min and stored at -20 °C. 1,25-dihydroxycholecalciferol
levels were evaluated at the Erasmus Medical Center (Rotterdam, The Nether-
lands) using the Gamma-B 1,25-dihydroxyvitamin D RIA (IDS, Boldon, UK)
according to the manufacturer’s instructions. Cross-reactivity with the inactive

precursor, 25-hydroxvitamin D, is 0.001% for this test.
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2.5.1.5 Serum albumin

The samples were allowed to clot at RT. The serum was collected after centrifuga-
tion at 2,000 x g for 10 min at 4 °C and stored at -20 °C until further use. Serum
albumin values were evaluated with the competitive AssayMax Mouse Albumin
ELISA Kit (Assaypro; EMA2201-1). All standard dilutions were prepared ac-
cording to the manufacturer’s instructions, and the samples were diluted 1:8,000
with MIX Diluent before transferring 25 ul of standards and samples — all in
technical duplicates — into the wells of the coated Mouse Albumin Microplate.
25 pl Biotinylated Mouse Albumin Antibody were immediately added to each
well. The plate was incubated for 1 h at RT, and the wells were washed five
times with 200 ul Wash Buffer. 50 ul Streptavidin-Peroxidase Conjugate were
pipetted into each well, and the plate was again incubated for 30 min at RT.
The wells were washed as above before adding 50 ul Chromogen Substrate per
well, and the plate was incubated for 8 min at RT. 50 ul Stop Solution were
added per well, and the optical density (OD) was immediately read at 450 nm
using a GloMax® luminometer (Promega). A standard curve was generated based
on a 4-parameter logistic curve fit using the online available program ‘gnuplot’

(http://www.gnuplot.info/), and sample concentrations were calculated thereof.

2.5.2 Urinary parameters

2.5.2.1 SDS-PAGE urinalysis

Urinary proteins were detected by SDS-PAGE and subsequent staining with
PageBlue™ Protein Staining Solution (Fermentas). Urine was collected by re-
straining the mouse with one hand and gently pressing the thumb of the other
hand against the lower abdomen. 2 ul urine were diluted in 13 pl buffer (10 mM
Tris-HCI pH 8.0, 2.5 mM MgCly, 5 mM EGTA pH 8.0). 5 ul 4x NuPAGE®
LDS Sample Buffer (Invitrogen) were added, and the proteins were denatured for
10 min at 70 °C, then put on ice. The samples were loaded into the wells of a
precast NuPAGE® 10% Bis-Tris gel and electrophoretically separated as above
(subsection 2.3.4). Residual SDS was removed by rinsing the gel in ddH5O. The
proteins were visualized by incubating the gel in PageBlue™ Protein Staining
Solution (Fermentas) for 1 h at RT on a shaker. Excess staining solution was

removed by washing the gel o/n at RT in ddH50 on a shaker.
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2.5.2.2 Urinary calcium

Urine was collected in a tube by gently pressing one thumb against the abdomen.
The collected sample was centrifuged at 800 x g for 5 min and stored at -20 °C
until further use. Urinary calcium was measured using the QuantiChrom Calcium
Assay Kit™ (DICA-500; Gentaur). Standard dilutions were prepared according
to the manufacturer’s instructions. 5 ul diluted standards and 5 pl undiluted
urine — all in technical duplicates — were transferred into the wells of a clear-
bottomed 96-well plate (ELISA microplate; Greiner). 200 pl working reagent
(1:1 Reagent A:Reagent B) were added to each well, and the plate was incubated
for 3 min at RT. The optical density (OD) was immediately read at 600 nm using
a GloMax® luminometer (Promega). A standard curve was prepared using a

linear regression curve fit, and sample concentrations were calculated thereof.

2.5.2.3 Urinary creatinine

Urinary creatinine values were evaluated with the Parameter™ kit (R&D Sys-
tems) according to the manufacturer’s instructions. Briefly, standard dilutions
were prepared as instructed, and 50 ul of each standard and each sample (di-
luted 1:10 with ddH,O) — all in technical duplicates — were pipetted into the
wells of a clear-bottomed 96-well plate (ELISA microplate; Greiner). 100 pl of
Alkaline Picrate Solution were added, and the plate was incubated for 30 min at
RT. The optical density (OD) was read at 450 nm using a GloMax® luminometer
(Promega). A standard curve was generated based on a 4-parameter logistic curve
fit using the online available program ‘gnuplot’ (http://www.gnuplot.info/), and

sample concentrations were calculated thereof.

2.5.2.4 Urinary albumin

Urinary albumin values were evaluated with the AssayMax Mouse Albumin ELISA
Kit (Assaypro; EMA3201-1). All standard dilutions were prepared according to
the manufacturer’s instructions, and the samples were diluted 1:100 with MIX
Diluent before transferring 50 ul of standards and samples — all in technical du-
plicates — into the wells of the coated Mouse Albumin Microplate. The plate was
sealed and incubated for 2 h at RT. The wells were washed five times with 200 pl
Wash Buffer, and 50 ul Biotinylated Mouse Albumin Antibody were added to

each well. All subsequent procedures are described under subsubsection 2.5.1.5.
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Statistics Data are represented as median +IQR (interquartile range). The
non-parametric Mann—-Whitney U test, also known as Wilcoxon rank-sum test,
was used to determine the two-tailed level of significance (P-value) between sam-
ples from wild-type and knock-out, i.e., SlitI2-deficient mice with the online avail-
able program utest (http://elegans.swmed.edu/ leon/stats/utest.html). P-values

of < 0.05 were considered statistically significant.

2.6 General buffers, solutions, and chemicals

General buffers and solutions

Name Composition

Gel loading buffer, 6x 1x TAE, 60 mM EDTA pH 8.0, 50% glycerol,
0.1% bromophenol blue

MOPS buffer, 10x 200 mM MOPS, 50 mM sodium acetate, 10 mM EDTA

PBS(T) 137 mM NaCl, 2.7 mM KCI, 10 mM NasHPOy4, 1.8 mM KHsPOy,
(0.1% Tween-20)

SSC, 20x 300 mM trisodium citrate dihydrate, 3 M NaCl,
pH adjusted with 1 M citric acid

TAE, 50x 2 M Tris, 950 mM acetic acid, 62.5 mM EDTA

TBE, 50x 4.5 M Tris, 4.5 M boric acid, 125 mM EDTA

TBS(T) 140 mM NaCl, 2.7 mM KCI, 25 mM Tris-HCI pH 7.5,
(0.1% Tween-20)

TE 10 mM Tris-HCI pH 8.0, 1 mM EDTA pH 8.0

Tris-HCl 1 M Tris, pH adjusted with HCI (37%)

Table 2.13 General buffers and solutions

General chemicals

Name Supplier
Acetic acid (100%) Merck
Acetone Merck
Ammonium acetate Merck

Boric acid Merck
Chloramphenicol Sigma-Aldrich
Chloroform Roth

Citric acid Merck

DMSO Sigma-Aldrich

DTT Sigma-Aldrich
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EDTA

EGTA

Ethanol
Ethidium bromide (10%)
Formaldehyde (37%)
Formalin (10%)
Formamide
Glutaraldehyde
Glycerol
Glycine
Glycogen

HCI (37%)
HEPES

H205 (30%)
Isopropanol
Kanamycin
KCl

KOH
Methanol
MgCls

MOPS

NaCl
NayHPO4
NaOH

Phenol

SDS

Sodium acetate
Tris

Trisodium citrate dihydrate

Triton X-100
Tween-20
X-gal

Xylene

Sigma-Aldrich
Roth

Merck

Roth

Fluka
Sigma-Aldrich
Merck
Sigma-Aldrich
Merck

Merck

Peqlab

Merck
Sigma-Aldrich
Roth

Merck
Sigma-Aldrich
Sigma-Aldrich
Merck

Merck

Roth
Sigma-Aldrich
Merck
Sigma-Alrich
Merck

Roth

Fluka
Sigma-Aldrich
Sigma-Aldrich
Merck
Sigma-Aldrich
Sigma-Aldrich
Roth

Roth

Table 2.14 General chemicals
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3.1 Slitl2 expression pattern

Three different strategies were pursued in order to describe a detailed temporospa-
tial expression pattern of Slitl2 during various stages of pre- and postnatal devel-
opment of the mouse. First, endogenous gene expression was assessed. Therefore,
Slit]2 RNA was detected both by Northern blot analysis and whole-mount in situ
hybridization (WISH). In addition, an antibody was generated to detect endoge-
nous Slitl2 protein by immunocytochemistry. Secondly, a Slitl2-LacZ knock-in
reporter mouse strain was produced to visualize Slitl2 expression domains via
(-galactosidase activity. Thirdly, SlitI2-Venus transgenic mice harboring a mod-
ified bacterial artificial chromosome (BAC) construct were generated. In these
mice, Slitl2 expression is mirrored by the expression of Venus, a variant of the

yellow fluorescent protein (YFP).

3.1.1 Endogenous Slitl2 expression

3.1.1.1 RNA expression

Northern blot analysis The Northern blot technique is used to study the RNA
expression pattern of a particular gene and allows for comparison of expression
levels between different developmental stages or tissues. To analyze endogenous
Slitl2 expression, total RNA was isolated from wild-type embryos and various
adult tissues. 10 ug RNA were precipitated, electrophoretically separated on a
denaturing formaldehyde gel, and blotted onto a nylon membrane. RNA was de-
tected by hybridization with a SlitI2-specific probe binding to its 3’ untranslated
region (3" UTR). To control and correct sample variability, the same membranes
were subsequently hybridized with a probe specifically detecting the RNA of a
housekeeping gene, namely glyceraldehyde-3-phosphate dehydrogenase (Gapdh).

Endogenous Slit]2 RNA expression was detected as early as embryonic day 8.5
(E8.5). Its expression gradually increased during the following stages of embry-

onic development (E9.5 to E13.5) and remained at high levels also during fetal
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stages of development (E14.5 and E15.5) (Figure 3.1 A). Strong expression was

detected in placental tissue as well as in adult testis. Lung, uterus, and kidney

displayed moderate expression of SlitI2 RNA. Weak expression could be observed

in heart, liver, and spleen tissue, while Slit]I2 RNA was virtually absent in brain,

thymus, and muscle tissue (Figure 3.1 B).
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Figure 3.1 Northern blot analysis of Slit/2 expression of embryonic stages and adult tissues

A. Northern blot of 10 ug of total RNA prepared from whole mouse embryos at
different stages of embryonic development (E8.5 to E15.5). B. Northern blot of
10 pug of total RNA prepared from various indicated adult mouse tissues. Slit/2
RNA was detected as a single band at ~3.2 kb (top). The same membranes
were hybridized with a probe detecting Gapdh RNA expression as loading control
(bottom).
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Whole-mount in situ hybridization Whole-mount in situ hybridization (WISH)
enables direct visualization of the expression pattern of a gene of interest within
embryos. This technique is based on the formation of stable hybrids between an
mRNA strand and a complementary, digoxigenin-labeled probe and the subse-
quent indirect detection of these hybrids. Owing to low penetration efficiency of
the probe through the skin, this procedure is only suitable for embryos staged
E11.5 and younger.

For in situ analysis of endogenous Slitl2 expression, wild-type embryos were
incubated with a digoxigenin-labeled SlitI2-specific probe. The labeled hybrids
were detected with an alkaline phosphatase (AP)-coupled anti-digoxigenin an-
tibody, and binding of the antibody was visualized via an AP-catalyzed color
reaction. An early E8.5 embryo revealed staining of the head mesenchyme, the
lateral mesoderm, and the neural tube at the midline, while the cranial neural
folds, the developing heart, and the somites were clearly devoid of staining (Fig-
ure 3.2 A). By E9.0, additional expression became evident in the developing first
branchial arch mesenchyme and in the roof plate of the neural tube (Figure 3.2 B).
At E9.5 and E10.0, the emerging forelimb buds were clearly demarcated by SlitI2
expression. Besides, the floor plate of the developing midbrain displayed expres-
sion as did the developing gut including the septum transversum, the lining of the
coelomic cavity, and, as already observed in earlier stages, the head mesenchyme
and the branchial arches revealed staining (Figure 3.2 C and D). By E10.5 and
E11.0, the hindlimb buds in addition to the forelimb buds showed strong staining.
Consistent with earlier stages, the head mesenchyme and the mesenchyme of the
branchial arches exhibited Slitl2 expression, whereas the neural epithelium, the
developing heart, and the somites appeared unstained (Figure 3.2 E). By E11.0,
Slitl2 expression in the precartilaginous sclerotomic condensations became evi-
dent along both sides of the neural tube (Figure 3.2 F). The strong staining of the
otic pit, which was observed from E10.0 onwards, was attributed to accumulation

of unbound probe and therefore considered background.
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E9.5

E8.5

E10.0 E10.5 E11.0

Figure 3.2 Slitl2 whole-mount in situ hybridization from embryonic day 8.5 (E8.5) to E11.0
A. E8.5 (right: frontal view)
B. E9.0
C. E9.5
D. E10.0
E. E10.5
F. E11.0 (right: dorsal view)
ba, branchial arch;
fl, forelimb bud;
fp, floor plate;
gt, gut;
hl, hindlimb bud;
hm, head mesenchyme;
ht, heart;

Im, lateral mesoderm;

nf, neural fold;

nt, neural tube;

op, otic pit;

rp, roof plate;

sc, sclerotomic condensation;
SO, somite;

st, septum transversum
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3.1.1.2 Protein expression

To analyze endogenous Slitl2 protein expression, a polyclonal antibody was gen-
erated by Pineda Antibody Service (Berlin, Germany). An epitope of 14 amino
acids (aa) corresponding to the murine Slitl2 carboxy-terminal sequence (aa 660-
673 corresponding to aa sequence GPSLQGVLPAKHYI) was selected. Based on
the presence of several positively charged amino acids, antibodies directed against
this epitope were predicted to have a high binding capacity. Rabbits were immu-
nized with the peptide, and sera were collected 130 days later. The antibody was
affinity-purified by the supplier prior to delivery.

To determine the intracellular localization of the Slitl2 protein, mouse primary
embryonic fibroblasts (MEFs) were generated from wild-type and heterozygous
Slit12*/~ embryos. In addition, MEFs generated from homozygous Slitl2~/~ em-
bryos were included in this assay as a negative control. All three cell lines were
subjected to immunocytochemical analysis using the «-Slitl2 antibody. Bind-
ing of the antibody was detected by a fluorochrome-labeled secondary antibody.
Fluorescence microscopy identified Slitl2 protein scattered over the entire cell
surface in the wild-type and heterozygous Slit]12*/~ cell lines. However, due to
non-specific binding of the antibody, faint signal could also be observed in cells

lacking Slitl2 expression, i.e., in MEFs derived from a Slit]2~/~ embryo, when

applying the same exposure conditions (Figure 3.3).

Figure 3.3 Immunocytochemical analysis of Slitl2 protein expression

Wild-type (left) and heterozygous Slit/2*/~ (middle) mouse primary embryonic
fibroblasts (MEFs) were subjected to immunocytochemical analysis using the
polyclonal a-Slitl2 antibody. Slitl2 protein was detected over the entire cell sur-
face in both cell lines (red). Nuclei were stained with DAPI (blue). Homozygous
Slitl2=/= MEFs served as negative control. Due to non-specific binding of the
antibody, faint signal was also observed in these cells when applying the same
exposure conditions (right). (Scale bar: 20 ym)
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3.1.2 Slitl2-LacZ expression

3.1.2.1 Generation of SlitI2-LacZ mice

For a more detailed analysis of Slitl2 expression domains, a SlitI2-LacZ knock-in
reporter mouse strain was generated. The bacterial LacZ gene encodes (-galac-
tosidase. This enzyme cleaves the colorless substrate X-gal, thereby yielding
galactose and 5-bromo-4-chloro-3-hydroxyindole, which subsequently oxidizes to
form an insoluble blue precipitate. The construct used for targeting the Slitl2
locus in G4 embryonic stem (ES) cells [George et al., 2007] comprised a loxP-
flanked neomycin (neo) selection cassette in the Slit]2 intronic sequence just up-
stream of the splice acceptor (SA) site and a LacZ open reading frame (ORF)
with a nuclear localization signal (LacZ-NLS) (Figure 3.4 A). The Slitl2 cod-
ing sequence had been replaced by the LacZ open reading frame, thus placing
the bacterial gene under transcriptional control of the endogenous Slitl2 regu-
latory elements after successful knock-in into the locus. Neo-resistant ES cell
colonies were selected after electroporation, and successful targeting was assessed
by long-range PCRs using primer pairs spanning the insertion sites on both the
5 and the 3’ end of the targeting vector (Figure 3.4 B). After confirmation of
correct integration of the construct into the SlitI2 locus, mice were generated
via the ES cell-tetraploid embryo aggregation technique. Using this strategy,
mice can be generated that are completely ES cell-derived [Nagy, 2003]. Of 104
retransferred embryos, 16 heterozygous founder animals carrying a Slit]2kacZneo
allele were born. They were mated with homozygous CMV-Cre mice. In these
mice, the expression of Cre recombinase is driven by the cytomegalovirus (CMV)
promoter, and the enzyme is therefore constitutively expressed in all cells. Cre
recombinase catalyzes site-specific excision of DNA between loxP sites. Crossing
of Slit12kacZmeo/+ founders with CMV-Cre mice thus led to excision of the neo
selection cassette in the generated progeny, thereby preventing any possible dele-
terious effect on LacZ expression (Figure 3.4 A). Heterozygous Slit12-2°%/* mice
were identified via a LacZ-specific PCR (Figure 3.4 C) and subsequently used for
matings with wild-type NMRI mice to produce further heterozygous offspring in

which Slitl2 expression was reflected by LacZ expression.
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Figure 3.4 Generation of Slit/l2-LacZ mice

A. Targeting scheme showing the S/it/2 wild-type allele and the targeting vec-
tor. The Slit/2-a¢%-m¢° 3lele was generated by homologous recombination. The
SlitI2t3<Z allele was derived by Cre-mediated recombination. (SA: splice accep-
tor) B. Correct integration into the Slit/2 locus was confirmed by long range
PCRs using primer pairs spanning the targeting vector—S/it/2 locus junctions
on both sides. Forward and reverse primers are indicated above and below the
scheme, respectively. C. Heterozygous Slit/2t3°Z/* mice were identified by a
LacZ-specific PCR using the primer pair 379/380. Ethidium bromide-stained
gel showing the PCR results for three heterozygous (het; left) and one wild-type
mouse (wt; right).

3.1.2.2 Slitl2-LacZ expression at embryonic stages

To assess LacZ expression during mouse embryonic development, freshly dissected
embryos were prefixed and incubated with X-gal staining solution at 37 °C until an

appropriate staining intensity was obtained. Wild-type littermates did not reveal
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any background staining with this protocol. Following the staining procedure,
embryos from embryonic day 9.5 (E9.5) to E11.5 were postfixed and embedded
in paraffin for subsequent sectioning. Due to insufficient penetration of the sub-
strate, embryos from stage E12.0 onwards were embedded and frozen in Tissue-
Tek® OCT compound (Ted Pella). Cryosections were obtained and incubated
overnight with X-gal staining solution at 37 °C. All sections were counterstained
with eosin before mounting.

oLacZ/+ whole-mount

(-Galactosidase activity was detected in heterozygous Slitl
embryos already by E8.0. Weak expression was observed throughout the head
mesenchyme. Stronger expression was evident in the lateral mesoderm and the
caudal extremity of the embryo including the extraembryonic stalk of the al-
lantois. Strong reporter expression was also seen in the developing hindbrain,
while the neural folds were devoid of staining. Also, the somites as well as yet
unsegmented paraxial mesoderm did not show expression (Figure 3.5 A).

At E8.5, expression was detected in several structures of the developing nervous
system, namely the floor plate of the midbrain, rhombomeres 3 and 5, and the
midline of the neural tube. Again, the lateral mesoderm and the caudal extremity
of the embryo showed clear (-galactosidase activity. In addition, the mesenchyme
of the developing first branchial arch exhibited staining (Figure 3.5 B).

By E9.5, the mouse embryo has completed the process of turning. 3-Galacto-
sidase expression at this stage was maintained in the floor plate and rhombomeres
3 and 5, while the remainder of the neural ectoderm showed no (-galactosidase
activity. In addition, the mesenchyme of the branchial arches, the developing gut
including the septum transversum, as well as the emerging forelimb buds, the
lining of the coelomic cavities, and the ventral midline of the caudal extremity
displayed expression (Figure 3.5 C).

The [-galactosidase signal became increasingly stronger with the advance-
ment of embryonic development. Whole-mount specimens at E10.5 revealed
widespread expression throughout the head and trunk mesenchyme. Expression
in the floor plate was maintained and could now also be observed in the roof
plate. The branchial arches and both the forelimb and emerging hindlimb buds
showed intense staining, while the developing heart seemed devoid of signal. Here,
faint staining was only detected in its overlying surface ectoderm, the staining
of which was indeed evident throughout the whole embryo. A median sagittal
section confirmed expression in the floor plate and, in addition, revealed staining
of the notochord (Figure 3.5 D).
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At E11.5, the overall expression pattern of whole-mount specimens basically
corresponded to that of the previous stage. However, marked changes were ob-
served in the developing axial skeleton. Condensations of precartilaginous sclero-
tomic material were clearly evidenced by X-gal staining and were thereby readily
distinguishable from intervening, unstained dorsal root ganglia. Moreover, ex-
pression in the developing ear pinna first became visible at this stage. Cross
sections revealed staining of the coelom lining as well as the mesothelial lining
of the hepatic primordium. The embryonic liver parenchyma itself, though, ap-
peared clear of 3-galactosidase signal at this stage of development (Figure 3.5 E).

From E12.5 to E15.5, the X-gal whole-mount staining patterns of heterozygous
Slitl2-LacZ mice resembled each other. Digits of both the forelimbs and the
hindlimbs became apparent and were intensely stained as were other parts of the
developing skeletal system including the skull, the vertebral bodies, and the long
bones of the limbs (Figure 3.6 A-D).

Sagittal sections of early E12.5 embryos again displayed strong staining of both
the visceral and parietal mesothelial linings. Also, the derivatives of the inter-
mediate mesoderm were discernable at this stage. Faint expression was observed
in the mesonephric tissue, which was thereby clearly demarcated from the even
weaker stained metanephric blastema at its caudal tip and the unstained gonadal
ridge at its medial aspect. The mesonephric duct, on the other hand, exhibited
strong (-galactosidase signal (Figure 3.6 A).

As development progressed, expression in the developing urogenital system
could be further specified given that at around E13.0, the sex of an embryo
can be determined solely based on histological analysis. The cross section of
an E13.5 male embryo revealed a striped staining pattern characteristic of the
testicular cords. The continuous differentiation of the metanephros also became
obvious at this stage. The developing kidneys showed faint blue spots indicative
of metanephric blastema cells forming nephrogenic vesicles (Figure 3.6 B).

The staining patterns of sagittal sections at E14.5 and E15.5 were very sim-
ilar and are thus described synoptically. The most prominent 3-galactosidase
signal was again observed throughout the developing skeletal system. Interest-
ingly, the nuclei pulposi of the intervertebral discs showed comparatively faint
staining. The laryngeal cartilages as well as the cartilaginous tracheal rings, on
the other hand, exhibited strong staining. Intense signal was also detected in
arterial vessel walls, mainly the dorsal aorta. The developing lung exhibited a

‘patchy’ expression pattern due to stained mesenchymal interstitium but rather
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unstained developing airway epithelium. In the esophagus, expression was re-
stricted to the submucosal layer. This expression pattern was also observed in
the intestine. Starting at E14.5, a defined cortical and medullary region could be
distinguished in the kidneys, and faint (-galactosidase expression was indicated
in first primitive glomeruli. By E15.5, numerous intensely stained glomeruli were
visible. Virtually no signal was detected in the parenchyma of various other de-
veloping organs, namely the thymus, adrenal glands, and the liver. As already
observed at younger stages, X-gal staining was detected in all visceral and parietal
mesothelial linings of the body (Figure 3.6 C-D).

Figure 3.6 Slit/2-LacZ expression pattern from embryonic day 8.0 (E8.0) to E11.5
A. E8.0 B. E8.5 (left: dorsal view) C. E9.5
D. E10.5 (middle: dorsal view) E. E11.5
al, allantois;
ba, branchial arch;
ep, ear pinna;
fl, forelimb bud;
fp, floor plate;
gt, gut;
hb, hindbrain;
hl, hindlimb bud;

Im, lateral mesoderm;

nc, notochord;

nt, neural tube;

rh, rhombomere;

rp, roof plate;

sc, sclerotomic condensation;
st, septum transversum

Figure 3.7 Slitl2-LacZ expression pattern from embryonic day 12.5 (E12.5) to E15.5
A. E12.5 (middle: dorsal view) B. E13.5
C. E14.5 (middle: ventral view) D. E15.5
da, dorsal aorta;
es, esophagus;
gm, glomerulus;
gr, gonadal ridge;

Ic, laryngeal cartilages;
lu, lung;

md, mesonephric duct;
mn, mesonephros;

mt, metanephros;

sm, stomach;

tc, testicular cord
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3.1.2.3 Slitl2-LacZ expression at adult stage

To evaluate Slitl2 expression domains at the adult stage, organs from 10-week-
old Slitl2-LacZ mice were incubated with X-gal staining solution at 37 °C until
an appropriate staining had developed. The organs were postfixed and paraffin-
embedded, and the obtained sections were counterstained with eosin before mount-
ing. Bone was decalcified with OSTEOSOFT® solution (Merck) prior to embed-
ding with Tissue-Tek® OCT compound (Ted Pella). Cryo-sections were stained
overnight at 37°C and counterstained as above. For all tissues, accordingly
treated wild-type samples did not reveal any background staining.

The kidney displayed a very distinct staining pattern already at macroscopic
view. Most prominent were the intensely stained glomeruli throughout the corti-
cal region. The arterioles as well as the interlobular arteries were also marked by
reporter gene expression. In the renal medulla, the fine vasa recta were evident.
In addition, the renal pelvis showed strong (3-galactosidase activity (Figure 3.7 A
and B). Microscopic examination of tissue sections revealed strong panglomerular
(-galactosidase expression. However, at closer inspection, some nuclei, presum-
ably of podocytes, seemed darkly stained, while others appeared rather unstained.
Thus, with regard to the nuclear localization signal of the employed bacterial LacZ
gene, diffusion of excess blue precipitate seemed to have caused the panglomerular

expression pattern (Figure 3.7 C).

A

Figure 3.7 SlitI2-LacZ expression in the adult kidney

A. Cross section of a Slit/2-LacZ adult kidney showing strong (3-galactosidase
activity in the cortical region and in the renal pelvis. Dashed square indi-
cates magnified region in B. B. Higher magnification revealed staining of the
glomeruli, arterioles, and interlobular arteries in the cortex. Dashed square ex-
emplifies magnified region in C. C. Microscopic view showed intense glomerular
(3-galactosidase activity. Arrow exemplifies darkly stained nucleus, arrowhead
exemplifies unstained nucleus. (Magnification 100x)
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In the cerebral cortex, the external granular cell layer exhibited intense staining
(Figure 3.8 A), while in the cerebellum, -galactosidase activity was only detected
in the vessels (Figure 3.8 B). The airway epithelium throughout the lung exhibited
staining as did the mesothelial cells lining the organ, namely the visceral pleura
(Figure 3.8 C). A cross section of the descending aorta revealed strong expression
in vascular smooth muscle cells (VSMCs). This staining was also evident in the
adjacent vein, albeit less prominent due to the decreased thickness of the VSMC
layer in this blood vessel type (Figure 3.8 D). Vessels in all organs examined
were identifiable by staining of the VSMCs. In fact, they were the only cells that
exhibited intense staining within the thymus and the liver (Figure 3.8 E and F).
In the latter, the mesothelial cells of the organ capsule showed [-galactosidase
activity, which was also the case for the spleen. Here, the vessels including the
central arterioles of the white pulp regions displayed strong staining. Faint signal
was observed throughout the splenic red pulp due to its extensive vascular tissue
(Figure 3.8 G). The exocrine pancreas was devoid of [-galactosidase expression,
while weak expression was seen in the islets of Langerhans (Figure 3.8 H). In the
duodenum, the submucosal layer showed weak staining (Figure 3.8 I). Osteocytes,
osteoblasts, osteoclasts, and chondrocytes were all clearly positive for reporter
gene expression in the bone, whereas the cells of the bone marrow did not exhibit

any staining (Figure 3.8 J).
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Figure 3.8 Slit/2-LacZ expression in adult organs
A. Cerebral cortex (Magnification 10x);
B. Cerebellum (Magnification 10x);
C. Lung (Magnification 20x);
D. Aorta; asterisk indicates vein lumen (Magnification 10x);
E. Thymus (Magnification 10x);
F. Liver (Magnification 20x);
G. Spleen; dashed circle demarcates white pulp region (Magnification 20x);
H. Pancreas; dashed circle demarcates islet of Langerhans (Magnification 10x);
I. Duodenum; dashed lines demarcate villus (Magnification 20x);
J. Femur; asterisk indicates growth plate (Magnification 5x);
Arrows indicate vessels in all images.
For detailed description, see subsubsection 3.1.2.3.
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3.1.3 SlitI2-Venus expression

3.1.3.1 Generation of Slit/I2-Venus mice

Slit]2-Venus transgenic mice were generated via bacterial artificial chromosome
(BAC) recombineering. Recombineering stands for recombination-mediated ge-
netic engineering and is a powerful tool for site-specific modification of BAC
DNA [Copeland et al., 2001]. Using a BAC containing the endogenous SlitI2
locus (NCBI Clone ID RPCI-23-224H7) provided two advantages. First, BACs
can harbor large inserts. Thus, the selected BAC most likely contained all as yet
unidentified regulatory elements required for normal Slitl2 expression as it con-
tained the Slitl2 locus flanked by approximately 115 kb and 80 kb of its native
genomic environment on the 5’ and the 3’ end, respectively. Secondly, its large size
also overcame the problems of positional effects associated with random integra-
tion of transgenes into the genome. The unmodified, circular BAC with its vector
backbone pBACe3.6 was introduced into recombineering-competent SW105 bac-
teria [Warming et al., 2005]. For the generation of the targeting fragment, a
modified version of the PL451 plasmid was used [Liu et al., 2003|. In addition to
the FRT-flanked neomycin (neo) selection cassette, it contained the Venus open
reading frame (ORF) encoding a variant of the yellow fluorescent protein (YFP)
with enhanced maturation and brightness |Rekas et al., 2002]. The Venus-neo
fragment was PCR~amplified using chimeric primers that added Slit]2 homology
regions on both ends of the product. Thus, after successful targeting, the Venus
gene together with the neo selection cassette would be introduced upstream of the
Slit]2 coding sequence and, as a result, Venus expression would be under control
of the endogenous Slitl2 regulatory sequences, thereby mirroring Slitl2 expression
(Figure 3.9 A). The targeting fragment was electroporated into SW105 bacteria
harboring the unmodified Slit]2 BAC, kanamycin-resistant colonies were selected,
and successful recombination was confirmed by various PCRs with primer pairs
designed to span the different intergenic junctions (Figure 3.9 B and C). The
modified BAC was then isolated from the bacteria and linearized with PI-Scel,
which recognizes a sequence in the pBACe3.6 vector backbone. It was introduced
into G4 embryonic stem (ES) cells [George et al., 2007| via electroporation, and
neo-resistant ES cell colonies, that had integrated the modified BAC randomly
into their genome, were selected and subsequently used for the production of
Slit12-Venus transgenic mice via the ES cell-morula aggregation technique [Nagy,

2003]. Ten transgenic mice were born out of 120 retransferred embryos. Inte-
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gration of the entire modified BAC into the mouse genome was confirmed by
PCR using primer pairs flanking the pBACe3.6 vector—-BAC junctions on both
ends (Figure 3.9 B and D). Transgenic mice were identified by PCR and used for
matings with wild-type NMRI mice to produce further offspring in which Slitl2

expression was reflected by Venus expression.

exon 1 exon 2

—-+—1 A f—ire0 B/~ sliti2 wild-type BAC
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= 4'_4' targeting fragment
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T

Figure 3.9 Generation of Slit/2-Venus transgenic mice

A. Targeting scheme showing the S/it/2 wild-type BAC and the Venus-neo tar-
geting fragment with S/it/2 homology arms on both ends. The Slit/2-Venus
BAC was generated by recombineering. B. PCR screening scheme. Forward
and reverse primers are indicated above and below the S/it/l2-Venus BAC, re-
spectively. C. Ethidium bromide-stained gel showing PCR results using primer
pairs spanning over different fragment junctions. Primer combinations are indi-
cated above each lane. D. Integration of the entire BAC genome was confirmed
by PCRs using primer pairs spanning over the vector—BAC junctions on both
ends. Primer combinations are indicated above each lane.
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3.1.3.2 Venus expression in SlitI2-Venus embryos

Venus expression could be directly visualized by fluorescence microscopy in Slitl2-
Venus embryos due to the protein’s autofluorescence. Even though the signal was
very faint initially, transgenic embryos could be identified with this method and
thereby be distinguished from wild-type littermates. Venus expression could be
attributed to the developing skeletal system as early as E12.5. As development
proceeded, the signal intensity in the bone-forming tissue increased. By E14.5,
the Venus expression pattern distinctly resembled the 3-galactosidase expression
pattern observed in SlitI2-LacZ heterozygous embryos (Figure 3.6). This ap-
proach demonstrated that Venus expression in Slitl2-Venus transgenic mice is
driven by Slitl2 regulatory elements and that SlitI2-Venus mice can therefore be

considered a Slitl2 reporter mouse strain.

E12.5 E13.5 E14.5

Figure 3.10 Venus expression in Slit/2-Venus embryos
Expression of Venus was visualized by fluorescence microscopy. In compari-
son to a wild-type littermate (left), a Slit/2-Venus transgenic embryo showed
Venus expression at E12.5 when applying the same exposure conditions (right).
Increased Venus expression was observed with proceeding development (E13.5-
E14.5) and was predominantely detected in the developing skeletal system.

3.1.3.3 Venus expression in adult Slit/l2-Venus kidneys

In order to evaluate the expression of Venus in adult SlitI2-Venus kidneys, formalin-
fixed, paraffin-embedded tissue sections were subjected to immunohistochemical
analysis. Venus was detected using two different anti-green fluorescent protein
(a-GFP) antibodies able to recognize also mutant forms of the protein. Coupling

of the primary antibody was assessed by incubation with peroxidase-coupled sec-
ondary antibodies (ImmPRESS™ REAGENT kit; Vector Laboratories) and sub-
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sequent detection with NovaRED™ substrate (Vector Laboratories). All sections
were counterstained with hematoxylin prior to mounting.

Both antibodies rendered a similar staining pattern for Venus expression in the
glomeruli. Compared to the glomerular marker analysis using a-WT1, a-Desmin,
and a-PECAM-1 antibodies (subsubsection 3.3.2.2), mainly podocytes seemed
to be detected by the a-GFP antibodies. Similar to what was observed for the
expression of (-galactosidase in Slitl2-LacZ kidneys, some cells in the glomeruli
— presumably mesangial cells — were unstained (Figure 3.11 A and B). Marked
Venus expression could also be seen in the vascular smooth muscle cell layer
(Figure 3.11 B), a finding consistent with the Slitl2-LacZ expression analysis
(subsubsection 3.1.2.3).
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Figure 3.11 Immunohistochemical analysis of Venus expression in Slit/2-Venus kidneys
A. Venus expression in the glomerulus detected by a polyclonal anti-green fluo-
rescent protein (a-GFP) antibody. (Magnification 100x) B. Venus expression
detected by a monoclonal a-GFP antibody (left: glomerulus, right: arterial
vessel; magnification 100x). Asterisks exemplify stained cells, dashed circles
exemplify unstained cells in the glomeruli.
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3.2 Generation of Slit/I2-mutant mice

Slit]2-mutant mice were generated via classical gene targeting by the use of em-
bryonic stem (ES) cells. This technique was pioneered by Mario R. Capecchi,
Sir Martin J. Evans, and Oliver Smithies, for which they were awarded the 2007
Nobel Prize in Medicine. The method is based on homologous recombination be-
tween a targeting vector and an endogenous gene, thereby replacing the wild-type

sequence with its modified version.

3.2.1 Gene targeting of the mouse Slit/2 locus

The plasmid used for targeting the mouse Slitl2 locus harbored a 10.5 kb-long
construct inserted into the pBluescript IT SK vector (Stratagene). The insert
contained a loxP-flanked, i.e., floxed neomycin (neo) selection cassette in the
intronic sequence of Slitl2 68 bp upstream of the ATG start codon, thereby leaving
the splice acceptor site upstream of exon 2 intact. In addition, a third loxP site
was introduced 96 bp downstream of the TAG stop codon in the 3’ untranslated
region (UTR). This modified version of the SlitI2 coding exon 2 was flanked by a
3 kb- and a 3.6 kb-long 5’ and 3’ arm of homology, respectively (Figure 3.12 A).
The construct was linearized with Nrul and electroporated into G4 ES cells. Neo-
resistant ES cell colonies were selected, and clones that had successfully undergone
homologous recombination to generate a SlitI2foxedneo allele were identified by
Southern blotting using HindIII-digested genomic DNA. As an additional HindIII
site was introduced just downstream of the third loxP site, the digestion pattern
allowed for discrimination between the wild-type and the mutated allele. Six
out of 192 clones analyzed showed the correct targeting event with both external
probes: while the wild-type allele rendered a 12 kb band for both probes, the
Slit]2flexed-neo gllele produced a 9.3 kb band for the 5’ probe and a 4.2 kb band
for the 3’ probe (Figure 3.12 B and C).

Cre-mediated recombination was performed on one of the Slit]2foxedneo gjele-

2floxed allele, in which the neo

carrying clones in order to create a conditional Slitl
cassette had been excised, and a SIit]2™" allele, in which both the neo cassette
and the coding sequence of Slit]2 had been deleted (Figure 3.12 A). For transient
expression of the Cre recombinase, a plasmid containing the Cre open reading
frame under control of the phosphoglycerate kinase (PGK) promoter was elec-
troporated into SlitI2fexedneo/+ ES cells to catalyze site-specific excision of DNA

between the loxP sites. Following Cre treatment, the ES cells were plated at
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low density, and the derived clones were again analyzed by Southern blotting
of HindIll-digested DNA. Of 96 clones, three had undergone correct excision to
generate a conditional SIitI21°%¢d allele and one to generate a Slit12""! allele. The
5’ probe now revealed a 7.7 kb and a 5.5 kb fragment for the SIitI2%*°? and the
Slit12m! allele, respectively. The 3’ probe showed a 4.2 kb band for both mutated
alleles (Figure 3.12 B and C).

H H
I intron I . .
— ; A Sliti2 wild-type allele
5' probe ,/' // ‘.‘ ‘I‘ \\\ 3’ probe
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l Cre recombination
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Figure 3.12 Targeting of the Slit/2 locus

A. Targeting scheme showing the Slit/2 wild-type allele and the targeting vec-
tor. The Slit/2floxed-neo jllele was generated by homologous recombination.
Subsequent Cre recombination produced a conditional Slit/2flo<ed allele and a
Slit/2"" allele. The introduction of an additional Hindlll site (H) allowed
for discrimination of the different alleles via Southern blot analysis using ex-
ternal 5’ and 3' probes. B. Southern blot analysis of Hindlll-digested ge-
nomic DNA from wild-type (1), heterozygous Slit/2flexed-neo/+ (2)  heterozy-
gous Slit2flxed/+ (3), and heterozygous Slit/l2™"/* (4) ES cells using the
external 5’ probe. C. Southern blot analysis of Hindlll-digested genomic DNA
using the external 3’ probe. (Lanes 1-4 as in B)
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The three different heterozygous ES cell lines (Slit12exedneo/+ - Gjjt]ofloxed/+ and
Slit12m/+) were propagated and used for the production of Slit]2-mutant mouse
lines. The ES cells employed for these experiments were male F1 hybrid cells
of maternal 12956/SvEvTac (129) and paternal C57BL/6Ncr (B6) background
(G4 ES cells) |George et al., 2007]. These cells give rise to agouti offspring
since the 129 agouti coat color is dominant over the B6 black coat color. Since
embryos from white CD1 or black C57BL /6 mice served as hosts, it was possible
to estimate the contribution of the ES cells to the derived animals by their coat

color.

3.2.2 Generation of SlitI?-floxed-neo mice

It has been shown previously that inclusion of a neo cassette in the intronic se-
quence of a gene can produce a so-called hypomorphic allele. This effect was
induced by cryptic splice sites within the neo coding region causing a reduction
in the amount of functional gene expression due to aberrant splicing [Meyers
et al., 1998|. To assess whether the neo cassette, which was inserted primarily
as a selection marker for the targeted allele, led to impairment of Slitl2 gene
function, Slitl2-floxed-neo mice were generated by ES cell-tetraploid embryo ag-
gregation [Nagy, 2003]. One agouti founder was born from 34 embryos that had
been retransferred into recipient females. It was mated with C57BL/6 females to
establish heterozygous F1 mice, which were then intercrossed to produce homozy-
gous F2 progeny. The genotype of all animals was identified by PCR using primer
pairs that allowed for discrimination between the wild-type and the modified allele
(Figure 3.13 A and B). All further offspring were derived by mating homozygous
F2 animals. In these mice, no obvious hypomorphic effect could be observed.
The animals were phenotypically indistinguishable from wild-type mice, fertile,
and had a normal life span without showing any symptoms of disease, indicating
that insertion of the neo cassette didn’t affect Slitl2 gene function, at least not

to a critical extent.
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Figure 3.13 Genotyping of Slit/2-floxed-neo mice
A. PCR scheme used for discrimination of the Slitl2 wild-type and the
Slit/2floxed-neo gllele.  Forward and reverse primers are indicated above and
below, respectively. B. Ethidium bromide-stained gel showing the PCR results
of a wild-type (wt), a heterozygous Sljt/2floxed-neo/+ (het), and a homozygous
S/it/2floxed—neo/f/oxed—neo (hom) mouse.

3.2.3 Generation of conditional SlitI2-floxed mice

The Slitl2-floxed strain was produced via the morula injection technique using
C57BL/6 host embryos. Here, chimeric mice are generated as both the donor ES
cells and the host morula cells can contribute to the developing embryo proper.
All seven founders that were born from 60 retransfers were agouti-colored males,
indicating that they were almost fully ES cell-derived. They were mated with
C57BL/6 females. Heterozygous Slitl2-floxed offspring were identified by PCR
and intercrossed in order to derive homozygous F2 progeny (Figure 3.14 A and B).
These animals were then interbred to establish a homozygous Slit]2-floxed mouse
line. In the genome of homozygous SlitI2-floxed mice, the Slitl2 coding region is
flanked by loxP sites, i.e., floxed on both alleles. Previous studies have demon-
strated that the presence of a loxP site within the intronic sequence of a gene
does not interfere with its expression [Meyers et al., 1998]. Thus, while being a
functional wild-type, the SlitI2°%¢d allele allowed for in vivo excision of the floxed
region when mating these animals with mice expressing Cre recombinase. The
capacity to delete the floxed gene in vivo was confirmed by crossing Slit/2-floxed
mice with homozygous CMV-Cre transgenic mice [Schwenk et al., 1995]. In this
mouse strain, the expression of Cre recombinase is driven by the cytomegalovirus
(CMV) promoter, thus causing ubiquitous deletion of floxed DNA segments. To
derive conditional Slitl2-deficient mice, homozygous SlitI2-floxed mutants were

first crossed with CMV-Cre deleter mice to excise the Slit]2 coding region on one
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allele. The derived animals carrying only one intact Slitl2 allele and one copy of
the CMV-Cre transgene were then mated with homozygous SlitI2-floxed mice to
produce offspring in which the coding sequence of Slit]2 had been deleted on both
alleles. These conditional Slitl2 knock-out mice recapitulated the phenotype of
homozygous SlitI2-null mice that were produced by the classical, non-conditional
strategy (see below). This approach demonstrated that the conditional knock-out
system is highly efficient in SlitI2-floxed mice and that it provides a useful tool
for tissue-specific knock-out of Slit]2 when crossing these mice with a strain that

expresses the Cre recombinase under a promoter specific for the respective tissue.
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Figure 3.14 Genotyping of Slit/2-floxed mice
A. PCR scheme used for discrimination of the S/it/2 wild-type and the
Slit/2flexed 3llele.  Forward and reverse primers are indicated above and be-
low, respectively. B. Ethidium bromide-stained gel showing the PCR results
of a wild-type (wt), a heterozygous Slit/2floxed/+ (het), and a homozygous
Slit[2floxed/floxed (hom) mouse.
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3.2.4 Generation of SlitI2-null mice

Slit12-null founder animals were generated with ES cells heterozygous for the
Slit12!! allele using the morula aggregation technique [Nagy, 2003]. 42 retransfers
yielded eleven SlitI2-null founders including one white, one chimeric, and six
agouti males and one female of each coat color. C57BL/6 females were then
mated with the agouti-colored male founders. They were chosen based on the
assumption that the contribution of ES cells to their tissues was highest among
all founder animals and thus were most likely to give germline transmission.
Derived heterozygous SlitI2-null animals were phenotypically normal and were
used for subsequent matings to generate SlitI2-deficient mice. The genotype of all
mice was assessed by PCR using primer combinations that allowed for distinction
between the wild-type and the mutated allele (Figure 3.15 A and B).
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Figure 3.15 Genotyping of Slit/2-null mice
A. PCR scheme used for discrimination of the Slit/2 wild-type and the Sit/2"/
allele. Forward and reverse primers are indicated above and below, respectively.
B. Ethidium bromide-stained gel showing the PCR results of a wild-type (wt),
a heterozygous Slit/2"!/+ (het), and a homozygous Slit/2""/7“!l (hom) mouse.
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3.3 Phenotypic analysis of Slit/2-deficient mice

3.3.1 General characteristics

To elucidate the effect of a total loss of Slitl2 gene function, heterozygous SlitI2-
null mice were intercrossed. These matings yielded wild-type Slit]2*/* heterozy-
gous Slit]12+/~, and homozygous Slitl2~/~ offspring at the expected Mendelian
ratio (26%, 50%, and 24%, respectively; n=>530). To ascertain that SlitI2 expres-
sion was indeed eliminated in SIit]2~/~ animals, total RNA from adult mouse
kidneys and protein lysates from mouse primary embryonic fibroblast (MEF)
cells of heterozygous and homozygous SlitI2-null mice were analyzed by North-
ern and Western blotting, respectively, using the same probe and antibody as
described before (subsubsection 3.1.1.1 and subsubsection 3.1.1.2). Neither Slit]2
RNA nor Slitl2 protein was detected in the homozygous mutants, confirming the

complete inactivation of the gene (Figure 3.16 A and B).
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Figure 3.16 Verification of Slit/2 gene inactivation
A. Northern blot analysis demonstrating the absence of Slit/2 RNA expression
in a homozygous Slit/2~/~ compared to a heterozygous Slit/2*/~ adult mouse
kidney (left). Ethidium bromide-stained gel showing rRNA bands as loading
control (right). B. Western blot analysis confirming the absence of Slitl2
protein in homozygous Slit/2~/~ mouse primary embryonic fibroblasts (MEFs)
compared to heterozygous Slit/2t/~ MEFs.
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The Slitl2 knock-out mutants appeared normal at birth and were phenotypically
indistinguishable from their littermates. Two weeks postnatally, however, the
null mutants already exhibited mild growth retardation. The average weight of
Slit]2~/~ mice was decreased to approximately 90% of that of their wild-type
littermates. By the age of three weeks, the average weight of Slit]2-deficient mice
was down to approximately 80%, with some animals weighing as little as 50% of
the controls (Figure 3.17).
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Figure 3.17 Growth retardation in S/it/2-deficient mice
Statistical analysis revealed impaired growth in Slit/2-deficient mice in compar-
ison to their wild-type littermates. Error bars indicate & SD. Numbers above
error bars represent numbers of animals in the respective group.

Starting as early as two weeks after birth, all SlitI2-deficient animals developed
a severe, eventually lethal illness. The typical external features of a moribund
Slit]2~/~ mouse — apart from its reduced size — included a marked generalized
edema, smaller external ears, and a more round snout. Prior to death, null

mutants presented lethargic, emaciated, with a hunched posture and a ruffied fur
(Figure 3.18).
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Figure 3.18 Phenotype of Slit/2-deficient mice
Moribund S/it/2-deficient mice showed a reduced size (left), severe generalized
edema, smaller external ears, and a more round snout (right) in comparison to
wild-type littermates.

The onset of wasting was clustered around weaning at postnatal day 21, and
Slit12-deficient mice died by the age of 26 days on average (n=31), ranging from
16 to 41 days (Figure 3.19).
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Figure 3.19 Mortality rate in Slit/2-deficient mice
Death in Slit/2-deficient mice (n=31) was clustered around weaning at post-
natal day 21. Only three mutant mice lived longer than 35 days. No mutant
mouse survived after postnatal day 41.

Necropsy of moribund SlitI12-deficient mice revealed severe subcutaneous edema,
hydrothorax, and ascites. The most striking finding in all moribund mice were
disproportionally small thymi and spleens. These organs were mostly less than
half the size of that of wild-type littermates, and the spleens consistently dis-
played an extreme pale color. The mean thymic and splenic weight of moribund
mutants was decreased to 0.08% and 0.1% of their body weight, respectively, while
accounting for 0.5% and 0.4% of total body weight in control littermates (n=5).
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In addition, lymph nodes were also found to be decreased in size. Moreover, the

kidneys were consistently of ischemic appearance (Figure 3.20).

Figure 3.20 Comparison of thymus, spleen, lymph node, and kidney
A. Atrophic thymus (Scale bar: 2 mm) B. Atrophic, pale spleen (Scale
bar: 2 mm) C. Atrophic iliac lymph node (Scale bar: 1 mm) D. Pale kid-
ney (Scale bar: 2 mm); all pictures show organs of a moribund Slit/2-deficient
mouse (right) in comparison to those organs from a wild-type littermate (left).

3.3.2 Kidney phenotype of Slit/2-deficient mice

3.3.2.1 Histological examination

To analyze the nature of histological changes in Slit]2-mutant mice, tissue sections
were obtained from formalin-fixed, paraffin-embedded organs and subjected to
hematoxylin and eosin (H&E) staining. Microscopic examination of kidneys from
moribund Slit]2~/~ mice revealed multiple proteinaceous casts that were dispersed
throughout the cortex as well as the medulla. These casts mainly originated
from the tubular system and caused their obstruction and subsequent dilation
(Figure 3.21 A). In addition, hyaline droplet formation was observed in epithelial
cells of as yet undilated proximal tubules due to substantial resorption of proteins
(Figure 3.21 B). The pathological changes also affected the glomeruli. The gradual
degeneration of the glomerular morphology was initially evidenced by capillary
ectasia and intracytoplasmic vacuole formation. More severely damaged glomeruli

exhibited a complete atrophy of the capillary tuft (Figure 3.21 C).
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wild-type knock-out knock-out

Figure 3.21 Kidney histopathology of Slit/2-deficient mice; H&E staining
A. Overview; arrows indicate proteinaceous casts in renal tubular system (mag-
nification 10x). B. Higher magnification revealed hyaline droplets in proxi-
mal tubular cells (Magnification 100x). C. Higher magnification of glomeruli
showed ectatic capillaries (asterisks), intracytoplasmic vacuoles (arrow), and
atrophic capillary tufts (bottom right) (Magnification 100x).
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To evaluate whether the absence of Slit/2 function led to excess formation of
connective tissue, sections were stained with periodic acid-Schiff (PAS) and Mas-
son’s trichrome to detect such possible deposits. Polysaccharides, neutral mu-
copolysaccharides, and basement membrane constituents stain purple-magenta
in PAS staining, while collagen stains blue in Masson’s trichrome staining. These
staining methods are used to detect fibrotic or glomerulosclerotic lesions that are
related to renal disease conditions. In the kidneys of moribund SlitI2-deficient
mice, only tubular proteinaceous casts showed the respective characteristic stain-

ing, while the renal tissue itself was devoid of such deposits. (Figure 3.22 A-B).

A

wild-type knock-out

PAS

Masson’s

Figure 3.22 Kidney histopathology of Slit/2-deficient mice
Periodic acid-Schiff (PAS) and Masson's trichrome staining
A. Overview (left and middle; magnification 20x); higher magnification of
a glomerulus (right; magnification 100x); only tubular proteinaceous casts
showed magenta color characteristic of PAS staining (arrows). B. Overview
(left and middle; magnification 20x); higher magnification of a glomerulus
(right; magnification 100x); only tubular proteinaceous casts showed blue
color characteristic of Masson's trichrome staining (arrows).
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Kidney sections of newborn Slit]2 null mutants did not yet reveal any of the
above described pathological changes and were indistinguishable from that of
wild-type littermates. The age at which signs of histological anomalies first be-
came apparent was variable. Some of the mutants analyzed at postnatal day 10
already showed some minor alterations. By the age of two weeks, all examined
Slitl2~/~ kidneys displayed initial lesions. The progression of these changes at
this stage, however, differed among the specimens analyzed. The severity — as
estimated by the number and size of dilated tubules — progressed with age, and
kidneys of moribund SlitI2-deficient mice consistently showed severe anomalies

including numerous dilated tubules and atrophic glomerular tufts.

3.3.2.2 Immunohistochemical examination

The glomerulus is composed of four major cell types: endothelial cells of the
capillary loop, mesangial cells that mechanically support the capillary wall, pari-
etal epithelial cells lining the Bowman’s capsule, and visceral epithelial cells, i.e.,
podocytes which coat the glomerular capillary tuft. The different cells can be dis-
criminated by immunohistochemical staining using marker antibodies that specifi-
cally detect one cell type. Anti-Wilms’ tumor antibody (a-WT1) labels podocytes
and parietal epithelial cells, whereas anti-Desmin antibody (a-Desmin) is specific
for mesangial cells. Endothelial cells are stained by anti-platelet/endothelial cell
adhesion molecule antibody (a-PECAM-1) (Figure 3.23 A).

To assess the glomerular structure in SIit]2~/~ kidneys, tissue sections were
stained with all three antibodies. The organization of unaffected glomeruli in
mutant kidneys was similar to that of control animals. All components were
uniformly labeled with the respective markers and showed a normal structure
(Figure 3.23 B and C). In affected glomeruli displaying ectatic capillaries and
intracytoplasmic vacuoles, all major cell types could still be detected despite the

disorganized morphology (Figure 3.23 D).
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Figure 3.23 Glomerular marker analysis

A. Schematic view; podocytes (P) and parietal epithelial cells (gray) lining the
Bowman's capsule (BC) are labeled by a-Wilms' tumor (WT1) antibody (left).
Mesangial cells (M) are labeled by a-Desmin antibody (middle). Fenestrated
endothelial cells (E) of the capillary loops (C) are labeled by a-PECAM-1

antibody (right).

Modified after [Quaggin and Kreidberg, 2008] B. Stain-

ing pattern with the respective antibodies in wild-type glomeruli C. Staining
pattern with the respective antibodies in unaffected glomeruli of Slit/2~/~ kid-
neys D. Staining pattern with the respective antibodies in affected glomeruli
of Slit/2~/~ kidneys (Magnification 100x in panels B-D)
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3.3.2.3 Transmission electron microscopic examination

In order to evaluate ultrastructural changes within affected mutant glomeruli, kid-
neys of Slitl2-deficient mice were subjected to transmission electron microscopic
(TEM) examination. At low magnification, wild-type and unaffected mutant
glomeruli showed a normal structure with capillaries, podocytes, and mesangial
cells distinguishable within the Bowman’s capsule. Initial changes, however, could
be evidenced by the presence of multiple erythrocytes within ectatic capillaries
of the mutant glomeruli. In contrast, affected glomeruli of SlitI2-deficient mice
revealed marked changes already at low magnification. The entire glomeruli were
abundantly filled with mostly electron-dense material. This equally involved the
capillary lumen as well as the Bowman’s space (Figure 3.24 A). At higher magni-
fication, wild-type glomeruli displayed a regular structure of the glomerular base-
ment membrane (GBM) and a normal podocyte architecture with well-defined
foot processes. Slit-like openings on both sides of the GBM were apparent: fenes-
trated endothelial cells on the one side and filtration slits between adjacent foot
processes on the other. In affected glomeruli of Slitl2-deficient animals, however,
massive podocyte foot process effacement could be observed. In fact, most of the
foot processes had fused to form a dense layer on top of the GBM, resulting in a

complete loss of slit diaphragms (Figure 3.24 B).
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wild-type knock-out

Figure 3.24 Transmission electron microscopic (TEM) examination of kidneys

A. Low magnification; wild-type and unaffected glomeruli of Slit/2-deficient
mice showed a comparable structure (left and middle, respectively), while af-
fected glomeruli of Slit/2-deficient mice were abundantly filled with mostly
electron-dense material (right). BC, Bowman's capsule; E, erythrocyte; M,
mesangial cell; P, podocyte (Scale bar: 3500 nm) B. High magnification; wild-
type glomerulus showing fenestrated endothelium and podocyte foot processes
(left); affected glomeruli of Slit/2-deficient mice displayed massive podocyte
foot process effacement (middle and right). GBM, glomerular basement mem-
brane; arrows indicate foot processes; arrowheads indicate fenestrated endothe-
lium; dashed lines indicate foot process effacement. (Scale bar: 500 nm)
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3.3.2.4 SDS-PAGE urinalysis

Glomerular diseases are known to be associated with protein leakage into the
urine. In the healthy kidney, the glomerular basement membrane functions as
a size-selective filtration barrier that retains albumin and other plasma proteins
in the circulation. To evaluate to what extent the compromised integrity of the
Slit]2=/~ glomeruli affected protein permeability, the amount of urinary proteins
at various stages of postnatal development was visualized by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and subsequent staining
with PageBlue™ Protein Staining Solution (Fermentas). One week after birth, a
faint protein band of approximately 55 kDa was detected in all samples analyzed
irrespective of the genotype (Figure 3.25 A). At postnatal day 10, this band was
no longer apparent in most cases. It only persisted in some, but not all, null
mutants and was already more pronounced in a subset of these. Two weeks after
birth, this assay revealed several protein bands for all Slit]2~/~ mice, whereas
all lanes of control animals were virtually devoid of such bands (Figure 3.25 B).
Thus, by this stage, it was already possible to discriminate null mutants from wild-
type or heterozygous littermates solely based on this analysis. The amount and
composition of urinary protein, mainly consisting of albumin, further increased,

reaching extremely high levels in moribund Slit12-deficient mice (Figure 3.25 C).

A B C BSA (ug)
* % * % * % 255 10 20
—— !
97 kDa -
64 kDa - ia‘ e——
51 kDa - —
39 kDa -

Figure 3.25 Progressive proteinuria in Slit/2-deficient mice
A. SDS-PAGE urinalysis revealed no difference between Slit/2-deficient mice
(*) and control mice at postnatal day 7. B. By postnatal day 14, the samples
from Slit/2-deficient mice (*) showed varying amounts of protein. No bands
were detected in the urine of control mice. C. Massive proteinuria, mainly
consisting of albumin, was observed in moribund Slit/2-deficient mice (*) at
postnatal day 25. Albumin standards (BSA) were loaded as control.
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3.3.2.5 Biochemical parameters of kidney function

Urinary albumin/creatinine ratio To estimate the glomerular filtration rate
(GFR) and to compensate for variations in urine concentration when assessing
urinary protein excretion in randomly collected samples, urinary creatinine and
albumin levels were evaluated using commercially available kits (Parameter™
(R&D Systems) and AssayMax Mouse Albumin ELISA Kit (Assaypro), respec-
tively). Creatinine is a metabolic waste product of creatine phosphate in the
muscle. It is mainly excreted by glomerular filtration without being reabsorbed
along the tubular system and is usually produced at rather constant rates de-
pending on the body muscle mass. It therefore provides a rough estimate of the
glomerular filtration rate in randomly collected urine samples.

The median creatinine concentration in 17- to 24-day-old SlitI2-deficient mice
(n=14) was decreased to less than 50% in comparison to that of their wild-type
littermates (n=14), corresponding to 10.50 mg/dl and 21.30 mg/dl, respectively
(Figure 3.26 A). The median albumin concentration, on the other hand, deter-
mined in the same samples that were used for the creatinine assay, exceeded the
control level by far. In fact, despite a 100-fold dilution, the levels of the Slitl2
mutants were above the detection limit of the test, i.e., above the highest stan-
dard, and could therefore not be evaluated exactly due to saturation of the test.
Thus, while the median urinary albumin concentration for the wild-type controls
was 9.86 pg/ml, the level in the SlitI2-deficient mice exceeded 40 ug/ml (Fig-
ure 3.26 B). Accordingly, the urinary albumin/creatinine concentration in the
mutants could not be calculated precisely. Nonetheless, an increase of more than
5.6-fold in comparison to the wild-type controls (61.79 ug/mg) could be stated
for the Slit12-deficient mice (Figure 3.26 C).
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Figure 3.26 Urinary albumin/creatinine ratio

A. The median urinary creatinine concentration in Slit/2-deficient mice was
decreased to less than 50% of that of wild-type controls. B. The median urinary
albumin concentration was increased more than 4-fold in Slit/2-deficient mice
in comparison to wild-type controls. C. The median urinary albumin/creatinine
ratio was increased more than 5.6-fold in Slit/2-deficient mice in comparison
to wild-type controls (n=14). Error bars indicate £IQR. ** P-value of < 0.01;
horizontal line in B and C indicates that detection limit was exceeded for the
albumin test.

Serum albumin In order to evaluate to what extent serum albumin was affected
by proteinuria in Slitl2-deficient mice, serum albumin levels were measured via a
competitive sandwich enzyme immunoassay (AssayMax Mouse Albumin ELISA
Kit; Assaypro). Severe hypalbuminemia was detected in 23-day-old null mutants
(n=8). Their median serum albumin level was decreased to approximately 33% of
that of the wild-type controls (n=8), accounting for 8.02 mg/ml and 24.19 mg/ml,
respectively (Figure 3.27).

Serum albumin (mg/ml)
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Figure 3.27 Serum albumin concentration
The median serum albumin concentration in S/it/2-deficient mice was decreased
to approximately 33% of that of the controls (n=8). Error bars indicate £IQR.
*** P_value of < 0.001



3 Results 97

Serum urea Due to a reduced filtration rate, glomerular diseases interfere with
the clearance of metabolic waste products, thus they begin to build up in the
circulation. Urea originates from protein catabolism and is eliminated from the
body via the kidney under healthy conditions. Elevated serum urea levels there-
fore indicate the presence of renal insufficiency. Serum urea concentrations of 19-
to 23-day-old Slit]2~/~ mice (n=8) and control littermates (n=8) were evaluated
with an automated blood analyzer. The median level was increased more than

2-fold in the SlitI2-deficient animals in comparison to the controls, corresponding
to 97.00 mg/dl and 47.50 mg/dl, respectively (Figure 3.28).
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Figure 3.28 Serum urea concentration
The median serum urea concentration was increased over 2-fold in Slit/2-
deficient mice compared to control littermates (n=8). Error bars indi-
cate =IQR. ** P-value of < 0.01



08 3 Results

3.3.3 Bone phenotype of Slit/2-deficient mice

3.3.3.1 Skeleton staining

The analysis in Slitl2-LacZ as well as in SlitI2-Venus mice revealed strong re-
porter gene expression in the developing skeletal system from embryonic day 12.5
onwards, and this expression persisted to the adult stage (subsection 3.1.2 and
subsection 3.1.3). This, in conjunction with the consistently smaller stature of
Slitl12-deficient mice, prompted a more detailed analysis of the skeletal system in
these animals. Therefore, bone and cartilage tissue was stained with alizarin red
and alcian blue, respectively. Whole-mount specimens showed a proportionately
reduced size yet normal overall anatomy of Slit]2~/~ skeletons in comparison to
that of wild-type littermates (Figure 3.29).

Figure 3.29 Comparison of skeletons
Bones and cartilage of 21-day-old mice were stained with alizarin red and
alcian blue, respectively. The skeleton of the Slit/2-deficient mouse (bottom)
showed a reduced size but normal overall anatomy in comparison to a wild-type
littermate.

3.3.3.2 Micro-computed tomography

Under physiological conditions, bone formation and bone resorption are two
tightly coupled processes. In a growing skeleton, mineralized bone formation
exceeds bone resorption, whereas in the mature bones of a healthy young adult,
bone loss and bone formation are equivalent, thereby preserving the structural
integrity of the bone. Reduced bone formation or excessive bone resorption thus

induce net loss of bone mass and increase the risk of bone fractures.
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The above listed findings strongly suggested an altered bone metabolism in
Slit12-deficient mice. Initial micro-computed tomography (uCT) scans of femurs
collected from 25-day-old male SlitI2-null mice further substantiated this pre-
sumption. In comparison to an age- and gender-matched wild-type femur, less
trabecular bone was detected in the epi- and metaphyseal region of the homozy-
gous Slit12~/~ bone (Figure 3.30 A). In addition, the three-dimensional (3D)
reconstructions revealed anomalies of the shaft region, i.e., the diaphysis. The

mutant bone clearly exhibited a thinner cortex as well as a reduced diameter
(Figure 3.30 B).

Figure 3.30 3D reconstruction of micro-computed tomography (uCT) of femurs
A. Cross section of proximal femur showing less trabecular bone (orange) and
a thinner cortex (arrow) in the Slit/2-deficient mouse (right) in comparison to
that of an age- and gender-matched wild-type mouse (left). B. Cross section
of diaphysis showing reduced diameter and thinner cortical bone in the Slit/2
mutant (right) in comparison to the wild-type control (left). (Image courtesy
of Dr. Marco Eijken)
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3.3.3.3 Biochemical parameters of calcium homeostasis

Bones largely consist of an inorganic component, namely hydroxyapatite crys-
tals, which themselves are composed of phosphate and calcium. Almost all body
calcium is stored in the bones. Serum calcium only represents about 1% of total
body calcium and exists in two forms, namely ionized and unionized, protein-
bound calcium. The serum calcium level is usually maintained within a very
narrow range and is adjusted via a hormonal control loop. If serum calcium
levels drop, parathormone (PTH) is released from the parathyroid glands. PTH
exerts multiple functions to restore calcium homeostasis in the blood. It activates
osteoclasts, thereby causing the release of calcium from the bones, and increases
calcium reabsorption in the kidneys. It also indirectly enhances calcium absorp-
tion in the intestine by stimulating the activation of vitamin D in the kidneys,

which is required for intestinal calcium uptake.

Serum calcium levels The results from the micro-computed tomography indi-
cated a disturbed calcium metabolism in Slitl2-deficient mice. Indeed, the median
ionized serum calcium level — evaluated by an automated blood analyzer — was
significantly decreased in 19- to 23-day-old mutant mice (n=5), corresponding
to 1.83 mmol/l as opposed to 2.78 mmol/l in the control animals (n=5) (Fig-
ure 3.31 A).

Urinary calcium levels In order to assess whether serum calcium levels were
decreased due to excessive urinary loss owing to the observed kidney defects in
Slit12-deficient mice, urinary calcium levels were determined using the commer-
cially available Quantichrom Calcium Assay Kit (Gentaur). The median urinary
calcium level in 20- to 26-day-old null mutants was decreased to approximately
24% of that of the wild-type controls, reaching only 5.76 mg/dl (n=12) compared
to 23.71 mg/dl (n=12), respectively (Figure 3.31 B).
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Figure 3.31 Serum and urinary calcium concentrations
A. The median serum calcium concentration in Slit/2-deficient mice was de-
creased to approximately 65% of that of the controls (n=5). B. The median
urinary calcium concentration in Slit/2-deficient mice was decreased to about
24% of that of the wild-type controls (n=12). Error bars indicate £IQR.
* P-value of < 0.05 ** P-value of < 0.01

Serum vitamin D Both the serum and the urinary calcium levels were found to
be decreased in SlitI2-deficient mice. As bioactive vitamin D, i.e., 1,25-dihydroxy-
cholecalciferol, is needed for efficient intestinal absorption of dietary calcium, its
serum levels were measured using a commercially available radioimmunoassay kit
(Gamma-B 1,25-Dihydroxy Vitamin D RIA Kit; IDS, Boldon, UK). In 24- to
26-day-old SlitI2-deficient mice, the median serum level of active vitamin D was
decreased to 17% of that of the wild-type controls, accounting for 43.00 pmol/1
(n=9) and 243.00 pmol/l (n=9), respectively (Figure 3.32).
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Figure 3.32 Serum vitamin D concentration
The median serum concentration of bioactive vitamin D (1,25-
dihydroxcholecalciferol) in Slit/2-deficient mice was decreased to about
17% of that of the wild-type controls (n=9). Error bars indicate £IQR.
*** P_value of < 0.001
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3.3.4 Thymus and spleen phenotype of Slit/2-deficient mice

3.3.4.1 Histological examination

At dissection, all moribund SlitI2-deficient mice exhibited disproportionally small
thymi and spleens (Figure 3.20). Histological examination of tissue sections
stained with hematoxylin and eosin (H&E) revealed hypocellularity of both or-
gans from terminally ill SlitI2-deficient mice.

In wild-type thymi, the cortical and medullary regions were readily distinguish-
able after H&E staining. The peripheral cortex harbors a large number of im-
mature T cells and therefore stains darker than the less densly populated central
medulla. In contrast, thymi of moribund SlitI2-deficient mice revealed an in-
verse staining pattern with a lighter stained cortical region, indicating a marked
depletion of lymphocytes in this area (Figure 3.33 A).

The spleens of wild-type control animals showed a normal parenchymal archi-
tecture with its two major compartments, namely the red pulp and the white
pulp. The red pulp is predominantely composed of blood-filled sinuses, whereas
the white pulp is formed by lymphoid tissue. The white pulp regions are located
around central arterioles and comprise both T- and B-cell rich areas. These
darkly stained regions of concentrated lymphocytes were evenly distributed and
clearly recognizable in control organs but appeared extremely disorganized in the
spleens of moribund SIit12~/~ mice (Figure 3.33 B).

A B

wild-type | | knock-out | | wild-type | | knock-out

Figure 3.33 Thymus and spleen histopathology of Slit/2-deficient mice; H&E staining
A. The cortical region (asterisks) was largely depleted in the thymus of a mori-
bund Slit/2-deficient mouse (right; magnification 20x) in comparison to that
of a wild-type control animal (left; magnification 5x). B. Spleen of a moribund
SlitI2-deficient mouse (right; magnification 20x) showing a disrupted tissue
organization in comparison to that of a wild-type mouse (left; magnification
5x). Dashed circle exemplifies white pulp region.
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3.3.4.2 Complete blood counts

To assess whether the alterations observed in the histology of the lymphoid or-
gans of moribund SlitI2-deficient mice were also reflected in the composition of
the peripheral blood, samples were collected by puncture of the retroorbital sinus.
Complete blood counts of 22- to 23-day-old mice showed a normal red blood cell
(RBC) count in Slit]2~/~ mice (n=7) in comparison to their wild-type littermates
(n=7). The total white blood cell (WBC) counts, however, were dramatically dif-
ferent. The blood of wild-type mice contained approximately 8,000 leukocytes/ ul
on average as opposed to only 1,400 cells/ul in the moribund mutants. The dif-
ferential WBC count displayed the changes in more detail. In wild-type samples,
lymphocytes constituted by far the largest fraction of all leukocytes (87%), fol-
lowed by neutrophils (10%). Monocytes, basophils, and eosinophils were virtually
absent. In contrast, neutrophils and lymphocytes accounted for 43% and 36% of
all white blood cells in SIitl2~/~ mice, respectively. Also, the basophilic and
eosinophilic fractions were relatively elevated, with the latter in fact exceeding
that of wild-type samples in absolute numbers despite the strongly reduced total
WBC count in the mutants (Table 3.1). Moreover, the mean number of throm-
bocytes was increased in SlitI2-deficient mice (987 x 103 /pul) in comparison to the
wild-type controls (659 x 10%/pul).

RBC WBC differential WBC count (cells/ul)

(1x105/ul) (1x10%/ul) lymphocytes neutrophils monocytes basophils eosinophils

wild-type  6.98 8.09 7065 794 103 118 6
(n=7) 87% 10% 1% 2% 0%
knock-out  7.01 1.40 952 363 44 13 28
(n=7) 43% 36% % 3% 11%

Table 3.1 Blood counts of wild-type and Slit/2-deficient mice
(RBC: red blood cells; WBC: white blood cells)

3.3.4.3 Flow cytometry

In order to study the onset and nature of the decreased lymphocyte counts in
Slit12-deficient mice, isolated lymphocytes were subjected to flow cytometric anal-

ysis. For this method, cells of interest are incubated with fluorochrome-labeled
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marker antibodies before analyzing them with a flow cytometer. This machine
detects how cells scatter incident laser light and emit fluorescence of specific wave-
lengths corresponding to the fluorochrome labels of the coupled antibodies. Thus,
subpopulations of cells expressing defined combinations of marker proteins can
be identified.

Two 19-day-old SIitI2~/~ mice without apparent atrophy of spleen and thymus
and two 24-day-old mutants with marked reduction in splenic and thymic size
were each analyzed in conjunction with two wild-type littermates. Thymocytes,
splenocytes, and bone marrow cells were harvested and stained with a combina-
tion of fluorochrome-labeled antibodies that allowed for discrimination of various
cell subpopulations of the respective tissue. The fluorescent signals were analyzed
with a FACSCalibur™ Flow Cytometer (BD Biosciences), and the collected data
were processed with the FlowJo software (Tree Star).

In addition, total thymic and splenic cell numbers in the 24-day-old mice were
evaluated using a conventional hemocytometer. The mean total thymocyte num-
ber in the wild-type and the knock-out mice was 138 x 10° and 2.3 x 10°, respec-
tively. The mean total splenic cell number showed an equally high difference,
accounting for 44 x 10% and 0.7 x 10° in the wild-type and the SIitI2~/~ mice,
respectively. This corresponded to a reduction of more than 98% in total cell
numbers for both organs in the mutant mice in comparison to the wild-type

controls.

T lymphocytes T-cell development occurs in the thymus. Lymphoid progen-
itors migrate from the bone marrow to the thymus where they complete their
maturation. During this process, thymocytes pass through a series of distinct
stages which are classified according to the expression of various cell surface
markers including the coreceptors CD4 and CDS. T-cell precursors are initially
negative for both markers (CD4~/CD8™ T cells), then express both simultane-
ously (CD4"/CD8*" T cells), while mature T cells either express CD4 or CDS8
(CD4™ or CD8" T cells). The CD4%/CD8* subpopulation usually constitutes
the vast majority of all thymocytes as was the case for the wild-type and the
19-day-old Slit]2~/~ mice. In these animals, more than 76% of all thymocytes
expressed both markers. In the 24-day-old SlitI2-deficient mice, however, this
subpopulation was almost completely absent, accounting for only 4% of all cells
in the representative sample (Figure 3.34 A).

Early in T-cell development, two distinct lineages are formed which express
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different types of T-cell receptors (TCR). In the majority of T lymphocytes, this
receptor is composed of an a- and a [-glycoprotein chain. CD41/CD8" cells
initially lack TCR expression. As they mature into CD4" or CD8" T cells,
TCR expression is increased stepwise from intermediate to high levels. During
this development, the cells transiently express the early activation marker CD69.
In general, the major part of CD4%/CD8" T cells is characterized by low to
intermediate TCR expression levels and does not yet express CD69. Over 65%
of total thymocytes belonged to this subpopulation in the wild-type as well as
the unaffected SlitI2-deficient thymi. In contrast, this population was largely
depleted in the 24-day-old moribund Slit]12~/~ mice, comprising less than 8% in
the representative sample (Figure 3.34 B).
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Figure 3.34 Flow cytometric analysis of T cells; representative data
A. CD4"/CD8" T cells (upper right quadrant) were largely depleted in
24-day-old Slit/2-deficient mice (P24; right) in comparison to wild-type (left)
and 19-day-old Slit/2-deficient mice (P19; middle). B. The CD69~ /TCR/int
subpopulation of CD4"/CD8" T cells (inset) was largely absent in 24-day-old
Slitl2-deficient mice (right) in comparison to wild-type (left) and 19-day-old
Slit/2-deficient mice (middle). Numbers represent percentage of total cells.
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B lymphocytes B-cell development begins in the fetal liver and continues in
the bone marrow throughout adult life. B220 is one of the first identifiable B-cell
lineage markers. It is continuously expressed from the pro-B-cell stage onwards.
At the subsequent pre-B-cell stage, the cells start to express a pre-B-cell receptor
which is composed of intact heavy chains and surrogate light chains. At this
phase, the receptor is mainly expressed intracellularly, thus it can not yet be
detected on the cell surface by fluorochrome-labeled antibodies. Once complete
immunoglobulin (IgM) receptor molecules appear at the cell surface, the cells are
defined as immature B lymphocytes. The flow cytometric profiles of the wild-type
and 19-day-old Slitl2-mutant mice exhibited both pro-/pre-B as well as imma-
ture B cells in the bone marrow, while in the older mutants, the pro-/pre-B-cell
subpopulation was almost completely absent, constituting less than 2% in the
representative sample. (Figure 3.35 A).

Immature B cells leave the bone marrow to complete their development in
peripheral lymphoid tissues. The cells undergo further differentiation and now
express surface IgD in addition to IgM molecules. Mature B lymphocytes can be
subdivided based on the expression of two cell surface markers, namely CD21 and
CD23. Follicular B cells from the splenic white pulp regions are characterized by
high expression levels of both proteins. They could be clearly demarcated as a
distinct population in the control animals but were reduced by more than 50% in

the representative sample of the 24-day-old SlitI2-mutant mice (Figure 3.35 B).
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Figure 3.35 Flow cytometric analysis of B cells; representative data

A. In the bone marrow, the pro-/pre-B-cell subpopulation (B220"/IgM~, in-
set) was almost completely absent in 24-day-old Slit/2-deficient mice (P24;
right) in comparison to wild-type (left) and 19-day-old Slit/2-deficient mice
(P19; middle). B. In the spleen, follicular B cells (CD21"*/CD23", upper
right quadrant) were largely depleted in 24-day-old Slit/2-deficient mice (right)
in comparison to wild-type (left) and 19-day-old S/it/2-deficient mice (middle).
Numbers represent percentage of total cells.
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3.3.4.4 Serum corticosterone

It has been reported that elevated levels of corticosterone can cause apoptosis
of lymphocytes. Indeed, both the B- and the T-cell lineage are known to be
affected by this stress-related hormone [Barone et al., 1993] [Laakko and Fraker,
2002]. The release of this hormone is governed by the hypothalamic-pituitary-
adrenal (HPA) axis. The paraventricular nucleus of the hypothalamus secretes
cortico-tropin-releasing hormone (CRH) which stimulates the release of adreno-
corticotropic hormone (ACTH) from the anterior lobe of the pituitary gland.
ACTH, in turn, acts on the adrenal cortices by inducing the production of gluco-
corticoid hormones, which is mainly corticosterone in rodents. The levels of this
hormone show a circadian rhythm and rise instantaneously in response to stress.

To minimize these influences when assessing corticosterone levels in 25-day-old
Slitl2-null mice, all animals were put in individual cages the afternoon before
blood sampling the next morning. No longer than three minutes passed between
first handling the cage and collecting the sample. Serum corticosterone levels were
then measured using a commercially available corticosterone ELISA kit (IBL).
The median corticosterone level in the SlitI2-deficient animals was 214.32 ng/ml
(n=>5), while reaching only 9.98 ng/ml in the wild-type controls (n=>5). This

corresponded to an increase of more than 21-fold in the mutant mice (Figure 3.36).
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Figure 3.36 Serum corticosterone concentration
The median serum corticosterone concentration in Slit/2-deficient mice was
increased 21-fold in comparison to the wild-type controls (n=5). Error bars
indicate +IQR. * P-value of < 0.05
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3.4 Gene expression profiling

3.4.1 cDNA microarray analysis

To identify and characterize gene expression changes associated with Slit/2 inac-
tivation, genome-wide expression patterns in tissues from SIitI2~/~ and wild-type
littermates were compared by cDNA microarray analysis. This method involves
the isolation of RNA from a tissue of interest, which is converted into a fluo-
rescently labeled cRNA target. It is then hybridized to probe DNA, i.e., short
sequences corresponding to specific genes, that have been attached, in a known
configuration, onto microscopic spots. Binding of the target to its complementary
probe is quantified by detection of the fluorescent label, reflecting the relative
abundance of a particular sequence in the sample. Comparison of hybridiza-
tion patterns from different samples thus allows identification of differentially
expressed genes.

For this study, total RNA was extracted from thymi and spleens of 22- to
23-day-old Slitl2-deficient mice and from kidneys of 15-day-old Slitl2-deficient
mice and their wild-type littermates to produce biotinylated cRNA, which was
then hybridized to Illumina MouseRef-8 BeadChips. All tissues were analyzed in
biological quadruplicates, i.e., the data of four mutant and four wild-type samples

were combined.

3.4.1.1 Cluster analysis dendrograms

After normalization of the data, they were clustered to depict the average linkage
between the different samples of a respective tissue. If one was to expect great
overall differences in gene expression between the wild-type and the knock-out
samples, the biological replicates should cluster together as was the case for the
thymus samples analyzed. Here, they formed two distinct groups in which the four
wild-type and the four SIit]2~/~ replicates were highly similar among themselves
but as a group only distantly related to the other one (Figure 3.37 A). The same
analysis for the spleen samples revealed that the expression pattern of one of
the four knock-out replicates was more similar to the wild-type replicates, which
nevertheless were most similar among themselves (Figure 3.37 B). For the kidney
samples, however, no clear distinction was apparent between control and knock-
out samples. Two Slit]2~/~ replicates each clustered together in pairs with one

forming a group with three linked wild-type samples and the other pair showing an
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expression pattern more similar to the remaining control replicate (Figure 3.37 C).
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Figure 3.37 Cluster analysis dendrograms of cDNA microarray analyses
A. Thymus microarray B. Spleen microarray C. Kidney microarray

Dendrograms depict average linkage between the different replicates of Slit/2-
deficient mice (KO) and wild-type littermates (wt).

g

3.4.1.2 Deregulated genes

Relative gene expression values in knock-out compared to wild-type samples were
calculated from the cDNA microarray experiments applying quantile normaliza-
tion and an adjusted P-value according to the method of Benjamini and Hochberg
[Benjamini and Hochberg, 1995|. The number of significantly deregulated genes
in the Slit]2~/~ tissues were determined based on different thresholds. For the
spleen and the kidney microarray data, an adjusted P-value of < 0.01 was used as
initial cut-off. For the analysis of the thymus microarray data, a more stringent
adjusted P-value of < 0.001 was applied given that a vast amount of genes was
still classified as deregulated using this cut-off. The gene lists were then sorted
according to the fold change in the knock-out relative to the control samples. In
the SlitI2-deficient thymi, a great number of genes was detected that were either
up- or downregulated at least 2-fold. After gradual increase of the threshold to
5-fold, 37 and 51 genes were still rated as up- and downregulated, respectively.
When applying the 2-fold threshold for the spleen samples, 78 genes were de-
tected as upregulated and 101 genes as downregulated in the knock outs. Using
a 5-fold cut-off, both groups were narrowed down to only two genes, with Slitl2
being one of the two downregulated genes. Compared to these two tissues, the
Slitl12-deficient kidneys showed considerably less deregulated genes relative to the
control group. Only 17 genes in total met the criterion of being upregulated

more than 2-fold. Merely two genes remained when increasing the threshold to



3 Results 111

more than 5-fold. Interestingly, only a single gene was significantly downregu-
lated in the SIit12~/~ kidneys, namely Slitl2 itself. Table 3.2 lists the number of
deregulated genes when applying different fold-change thresholds.

Tissue adj.P-value Fold change upregulated downregulated

thymus < 0.001 > 2 743 493
>3 262 185
>4 87 85
>5 37 51
spleen < 0.01 > 2 78 101
10 18
>4 6 6
>5 2 2
kidney < 0.01 > 2 17 1
> 7 1
> 4 1
>5 2 1

Table 3.2 Numbers of significantly deregulated genes from cDNA mircoarray analyses

When collating the data for SIitI2 from the three cDNA microarray experiments,
marked variations in the degree of deregulation became apparent. Even though
the adjusted P-value was < 0.001 in all tissues, it was comparatively high in the
thymus microarray. This difference was also reflected in the fold change. Slitl2
was only downregulated approximately 1.5-fold in the thymus, while showing a
fold change of 5.2 in the mutant spleens. The extent of deregulation was even

more pronounced in the knock-out kidneys. Here, Slit]2 was downregulated more
than 24-fold (Table 3.3).
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Tissue adj.P-value Fold change

thymus 0.000737 1.5
spleen 0.000006 5.2
kidney 0.000001 24.1

Table 3.3 Degree of Slit/2 deregulation from cDNA microarray analyses

3.4.1.3 Functional annotation clustering

To understand the biological meaning of the gene lists generated by the DNA
microarray experiments, they were analyzed with the online available DAVID
(Database for Annotation, Visualization, and Integrated Discovery) tool. Genes
with a fold change of > 5 in the thymus microarray and of > 2 in the spleen
microarray were used in this analysis. For the kidney microarray, all upregulated
genes (n=19) with an adjusted P-value of < 0.01 were incorporated, including
two genes with a fold change of only 1.8, namely Trib3 (tribbles homolog 3)
and Areg (amphiregulin). The lists were individually uploaded and subsequently
analyzed with the functional annotation clustering module using the predefined
high classification stringency. Annotation clusters with an enrichment score of
> 3 along with an adjusted enrichment P-value (Benjamini) of < 0.05 were rated
as relevant groups.

In the Slitl2-deficient thymi, the upregulated genes clustering according to the
predefined classification were associated with the terms ‘secreted” and ‘extracel-
lular space’, while the downregulated genes constituting significant clusters were
related to ‘M phase’, ‘cytoskeleton’, ‘non-membrane bound organelle’, ‘micro-
tubule’, and ‘nucleus’. When annotating the 78 genes upregulated more than
2-fold in the Slitl2~/~ spleens, no significant clusters were formed. The down-
regulated genes in this tissue were associated with similar terms as in the mu-
tant thymi. Most of the 101 genes were classified as ‘intracellular’; followed by
‘metabolic process’ and ‘mitosis’. In the knock-out kidneys, two relevant clusters
were defined despite the limited number of significantly deregulated genes. Four
of the 19 genes were linked to ‘MHC class II antigen processing and presentation’,
while five other genes were related to ‘inflammatory response’. A list of all genes

along with their annotated functional terms can be found from page 146 onwards.
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3.4.2 Quantitative real-time PCR

To validate the results obtained from the ¢cDNA microarray experiments, the ex-
pression levels of selected deregulated genes, namely Bmp4 (bone morphogenetic
protein 4), Ctgf (connective tissue growth factor), and FIt1 (FMS-like tyrosine
kinase 1) from the spleen microarray and Areg (amphiregulin), Timpl (tissue
inhibitor of metalloproteinase 1), and Tnfrsfl2a (tumor necrosis factor recep-
tor superfamily, member 12a) from the kidney microarray, were reassessed by
quantitative real-time PCR. The same RNA samples that had been used for the
microarray assays served as template for this experiment. The RNA was first
transcribed into cDNA using the SuperScript™ III First-Strand Synthesis Sys-
tem for RT-PCR (Invitrogen). Quantitative real-time PCR was performed with
the Power SYBR® Green PCR Master Mix (Applied Biosystems), and the results
were analyzed with the StepOnePlus™ Software. The housekeeping gene Gapdh
(glyceraldehyde-3-phosphate dehydrogenase) was used for normalization of each
sample. The results of three biological wild-type and knock-out samples, each
run in technical triplicates, were combined to calculate relative quantity of gene
expression in the SIit]2~/~ tissues in comparison to the wild-type control group.
The expression levels of all six selected genes were assayed in both the spleen and
the kidney RNA samples.

In the Slit]2~/~ spleen samples, all three genes that had been classified as upreg-
ulated in the spleen microarray (Bmp4, Ctgf, Flt1) showed increased expression
levels in comparison to the control group, with Ctgf upregulated approximately
5-fold and Bmp4 as well as FIt1 upregulated more than 2-fold. Two of the three
genes that had been selected due to deregulation in the kidney microarray, namely
Timpl and Tnfrsfl2a, also exhibited upregulation in the Slit]2 knock-out spleens
when assessed by quantitative real-time PCR. This increase, however, was rather
moderate in both cases, not exceeding the 2-fold threshold. Expression of the
remaining gene, Areg, was neither detected in the wild-type nor in the knock-out
spleen samples. In contrast, none of the three genes selected from the spleen
microarray displayed upregulation the SIitl2~/~ kidney samples in comparison
to the controls. Here, Areg showed the most pronounced increase of more than
6-fold, followed by Timpl (> 5-fold) and Thfrsfl12a (> 2.5-fold).
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Figure 3.38 Quantitative real-time PCR

A. Relative quantity (RQ) of mRNA expression of the indicated genes rela-
tive to mRNA expression of the housekeeping gene Gapdh in wild-type and
SlitI2-deficient spleens. B. Relative quantity (RQ) of mRNA expression of the
indicated genes relative to mRNA expression of the housekeeping gene Gapdh
in wild-type and Slit/2-deficient kidneys. Columns represent mean of three
biological replicates. Error bars indicate £SD (standard deviation). * P-value
of < 0.05 ** P-value of < 0.01 (according to t-test with unequal variances)
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4 Discussion

Expression pattern of Slit/2 suggests multiple roles

This study provides a first extensive description of the Slit-like 2 (Slitl2) expres-
sion pattern in the mouse. Various strategies were adopted in order to obtain
a comprehensive picture. An initial Northern blot analysis demonstrated Slitl2
expression from early developmental through to adult stages and prompted a
more detailed analysis. Expression of SlitI2 at midgestation stages of mouse em-
bryogenesis was verified by whole-mount in situ hybridization (WISH), a strat-
egy, with which defined expression domains could first be identified. In order
to evaluate endogenous Slitl2 expression not only on the RNA, but also on the
protein level, a rabbit polyclonal antibody was generated against its carboxy-
terminal sequence. The affinity-purified anti-Slitl2 (a-Slitl2) antibody was able
to discriminate between heterozygous Slit]2*/~ and homozygous Slit]2~/~ mouse
primary embryonic fibroblast (MEF) cell lines in a Western blot assay conducted
on lysates derived from these cells, thereby confirming the absence of Slitl2 pro-
tein in SlitI2-deficient cells. However, despite its predicted high binding capacity,
it failed to render unambiguous results when employing it for immunocytochem-
ical analysis of the subcellular localization of Slitl2 protein in MEF cells. Here,
background staining could also be observed in SlitI2-deficient MEFs due to non-
specific binding of the antibody.

To circumvent the limitations associated with studying endogenous Slitl2 ex-
pression, two diverse approaches were chosen for the generation of two different
reporter strains, namely SlitI2-LacZ knock-in and SlitI2-Venus transgenic mice.
The SlitI2-LacZ strain was successfully employed to provide a comprehensive
temporospatial expression pattern. This analysis not only confirmed the results
from the WISH experiment, but also allowed for a more precise description down
to a single-cell level. Ultimately, the expression of Venus, a variant of the yellow
fluorescent protein (YFP) [Rekas et al., 2002|, in Slit]2-Venus transgenic mice re-
flected and thus further corroborated the previous findings. Moreover, this strain
allowed for localization of reporter gene expression in SlitlI2-Venus transgenic

kidneys. YFP and its variants are common reporter proteins, and well-working
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antibodies are available for their detection, which provides an elegant way to
evade the lack of a good a-Slitl2 antibody. In addition, transgene expression in
Slitl2-Venus mice will serve as a useful tool for the isolation of Venus-positive
cells from tissues of interest via fluorescence-activated cell sorting (FACS) for
subsequent in vitro functional studies.

Taken together, all three approaches yielded consistent, therefore reliable re-
sults. The expression analyses presented in this work already suggested several
roles for Slitl2 in the development and/or homeostasis of various mouse tissues
with prominent expression (e.g., the skeletal system, the lung, and the kidney),
part of which were indeed confirmed by the phenotypic description of Slitl2-
deficient mice. Of note, Slitl2 expression was also observed in the floor plate of
the spinal cord, a structure involved in the guidance of axons, a well-characterized

function of the eponymous Slit proteins.

Renal failure causes early death of SlitI2-deficient mice

For the second part of this study, SlitI2-deficient mice were generated via target-
ing of the SlitI2 locus in murine embryonic stem (ES) cells. Subsequent deletion
of the modified, loxP-flanked conditional gene was achieved both in vitro via
transient expression of Cre recombinase in targeted ES cells and in vivo by cross-
ing homozygous SlitI2-floxed mice with Cre recombinase-expressing transgenic
mice. The two adopted approaches ultimately provoked the same phenotype in
the derived Slit]2-deficient mice.

The detailed analysis of the mutant phenotype was conducted on offspring from
matings of heterozygous SlitI2-null mice. These matings yielded homozygous
Slit12=/~ pups at the expected Mendelian ratio, demonstrating that complete ab-
sence of Slit]2 gene function does not cause embryonic lethality. However, while
heterozygous Slit]2"/~ mice were normal in size, viable, and fertile, homozygous
null mutants failed to thrive to adulthood and succumbed to a progressive illness
by the age of 3-4 weeks on average. The variations observed in the penetrance of
the phenotype were possibly due to the mixed genetic background of the Slit12-null
mouse strain. Postmortem dissection revealed pale kidneys in moribund Sliti2-
deficient mice, and histological examination confirmed multiple abnormalities.
Severe glomerular lesions including ectatic capillaries, intracytoplasmic vacuoles,
and atrophic capillary tufts were evident by light microscopy. Ultrastructural
evaluation demonstrated the disruption of the glomerular filtration barrier with

severe podocyte effacement within affected glomeruli, and SDS-PAGE urinaly-
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sis as well as a sharply increased urinary albumin/creatinine ratio in moribund
Slit]2 null mutants confirmed massive proteinuria, a pathognomonic symptom for
a defective glomerular filtration barrier. Due to excess protein leakage into the
primary urine, hyaline droplet nephropathy of proximal tubular epithelial cells
as well as widespread tubular protein deposits throughout the cortical and the
medullary regions of the kidney were observed. Nephrotic syndrome in Slitl2-
deficient mice after onset of wasting was further evidenced by severe hypalbu-
minemia. The decreased oncotic pressure caused severe subcutaneous edema,
hydrothorax, and ascites. Moreover, uremia in the null mutants verified the kid-
ney’s inability to perform its physiological functions.

Expression analysis of Slitl2-LacZ knock-in mice revealed (-galactosidase ac-
tivity in metanephric blastema cells already at the onset of nephrogenesis. Strong
glomerular expression — mainly in podocytes — persisted throughout development
and was also confirmed by immunohistochemical analysis of adult SlitI2-Venus
transgenic kidneys. Collectively, these data indicated that the primary pathogenic
lesions responsible for the early death of SlitI2-deficient mice occurred in the
glomeruli.

The glomerulus is a highly specialized structure, and it is well known that not
only proper development is essential for its function, but that it also requires
maintenance throughout life in order to prevent serious disease conditions [Quag-
gin and Kreidberg, 2008|. For example, vascular endothelial growth factor A
(VEGF-A), a major regulator of angiogenesis, is produced in large amounts in
developing podocytes during fetal development, and its production continues in
fully differentiated podocytes. As heterozygous and homozygous Vegfa-mutant
mice die early during embryogenesis prior to the onset of kidney development,
mice were generated with podocyte-specific alterations. While complete ablation
of Vegfa gene function in these cells results in perinatal lethality with glomeruli de-
void of endothelial cells, mice heterozygous for Vegfa in podocytes show a normal
glomerular histology at birth and only develop end-stage renal failure character-
ized by necrotic endothelial cells and podocytes effacement by 9-12 weeks of age.
These experiments not only demonstrated a dosage sensitivity for VEGF-A, but
also emphasized its requirement for maintenance of glomerular integrity. More-
over, they confirmed the paradigm that a crosstalk between podocytes and en-
dothelial cells in the mature glomerulus is essential for preservation of its function
[Eremina et al., 2003|.

It has not yet been elucidated whether the glomerular lesions in SlitI2-deficient
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mice reflect developmental abnormalities that are not obvious but nevertheless
induce pathological changes, or whether Slit]2 regulates the expression of genes
that are required to maintain a normal glomerular structure postnatally. While
the early developmental expression of Slit]2 argues in favor of the former theory,
it is also conceivable to assume the latter. Molecular marker analysis suggested
that the glomerular structure and composition in SlitI2 null mutants is initially
similar to that of wild-type glomeruli. All four major cells types, namely parietal
epithelial cells, podocytes, mesangial cells, and endothelial cells were detected
and displayed a regular arrangement in unaffected glomeruli. In support of this
was the observation that the characteristic histological lesions and the associated
pathophysiological effects were absent in newborn SlitI2-deficient mice. Thus,
expression of Slit]2 in podocytes might be essential to sustain glomerular integrity
by interacting with glomerular endothelial cells, thereby preventing atrophy of the
capillary tuft.

The essential role of podocytes in maintaining an intact glomerular filtration
barrier has been demonstrated by a wide variety of studies involving genetic ma-
nipulations of podocyte-specific genes. Podocin, i.e., nephrosis 2 (Neph2) is a
prominent representative, which is exclusively expressed in podocytes within the
kidney [Roselli et al., 2002|. Similar to what was observed in Slit]2-deficient mice,
podocin-deficient mice are indistinguishable from their wild-type littermates at
birth, display postnatal growth retardation, and die within the first five weeks of
life. In Neph2~/~ mice, however, proteinuria is already present at birth. Kidney
development appears grossly normal in these mice, but podocyte foot processes
can only be detected occasionally already at embryonic day 16.5. Postnatally, the
disease progresses rapidly, causing end-stage renal failure characterized by diffuse
mesangial sclerosis (DMS) due to massive accumulation of extracellular matrix
proteins [Roselli et al., 2004]. Interestingly, mutations of podocin in humans
are associated with the development of focal and segmental glomerulosclerosis
(FSGS), in which only a subpopulation of glomeruli exhibit segmental sclerotic
lesions [Boute et al., 2000]. In humans, diffuse mesangial sclerosis is mainly seen
in patients with mutations of another podocyte-specific gene, namely Wilms’
tumor 1 (WT1) |Jeanpierre et al., 1998|, which are related to diseases such as
Denys-Drash syndrome and Frasier syndrome. The critical role of Wt1 for the de-
velopment of the kidney has been demonstrated in Wt1-deficient mice. Complete
ablation of Wt1 gene function causes embryonic lethality due to failure of kid-

ney and gonad development [Kreidberg et al., 1993], while heterozyous Wt1+/~
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mice develop adult-onset mesangial sclerosis [Guo et al., 2002]. In order to elu-
cidate the role of Slit]2 in podocyte function, homozygous SlitI2-floxed mice will
be crossed with transgenic mice expressing Cre recombinase under control of the
human podocin (NPHS2) promoter (a kind gift from Dr. Marcus Méller, RWTH
Aachen, Germany; [Moeller et al., 2003]). These matings will yield offspring
with podocyte-specific excision of the conditional Slitl2 gene. This strategy will
clarify whether podocyte damage is the primary, eventually lethal defect in Slit]2-
deficient mice.

Ikeda et al. have shown that the human homolog of Slitl2, vasorin (VASN),
can bind TGF-f1 in vitro and attenuate its effect in vivo [Ikeda et al., 2004|. It
is therefore reasonable to believe that Slit]2 has similar functions in the mouse,
even more so when considering the high sequence similarity of over 80% between
the two homologous proteins. However, several observations argue against this
theory. First, during embryonic development and in the adult mouse, Tgfbl is
not expressed within glomeruli but only in the tubular system [Thompson et al.,
1989] [Pelton et al., 1991]. Secondly, if one was to adopt the model suggested by
Ikeda et al., Slit]2 would block TGF-/1 signaling at the extracellular and/or cell
surface level. Consequently, SlitI2-deficiency in mice would lead to an increase in
TGF-£1 downstream signaling. In transgenic mice expressing Tgfbl exclusively
in the liver under control of the murine albumin (Alb) promoter, elevated serum
levels of the transgene have been reported to cause glomerulosclerosis and inter-
stitial fibrosis due to accumulation of extracellular matrix protein [Kopp et al.,
1996]. Yet, such deposits were neither detected by periodic-acid Schiff (PAS) nor
by Masson’s trichrome staining in the kidneys of moribund Slit/2 null mutants.
Conversely, if Slit]2 served as coreceptor for TGF-(1, thus transducing its signal,
ablation of Slitl2 gene function would reduce or even abolish TGF-31 activity in
the affected cell types. Tgfbl-deficient mice die approximately three weeks after
birth due to massive inflammation of multiple organs, including the kidney [Shull
et al., 1992|. Prior to inflammatory cell infiltration, expression of major histo-
compatibility complex (MHC) class I and class II molecules is elevated in Tgfbl
null mutants [Geiser et al., 1993]. ¢DNA microarray analysis indeed revealed
a significant upregulation of MHC class II molecules in SlitI2-deficient kidneys,
but inflammatory infiltrates were never detected in the organs of moribund Slitl2
mutants. The absence of such infiltrates was to be expected with regard to the
results from the blood count and flow cytometric analysis, which demonstrated

a strongly reduced total number of leukocytes with predominant depletion of
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lymphocytes in the Slit]2 mutants. At the same time, this observation made an
inflammatory process as fatal event — as seen in the Tgfbl-deficient mice — rather
unlikely. Presumably, an underlying primary pathogenic mechanism triggered an
inflammatory response, thereby inducing the expression of several chemokines,
which, in turn, induced the expression of MHC class II molecules in the Slitl2-
deficient kidneys (see page 152). Cytokine-mediated upregulation of MHC class 11
expression has, in fact, been reported previously for glomerular mesangial cells
and renal tubular epithelial cells [Martin et al., 1989] [Banu et al., 2002]. It has
to be taken into account in this context that whole tissue samples rather than
microdissected glomeruli were used for the isolation of RNA for the microarray
experiment. Thus, if the primary pathogenic lesions do occur in the glomeruli, the
genetic alterations directly linked to the inactivation of Slit]2 might be masked
by those provoked by the inflammatory response mechanisms. Nonetheless, the
results derived from the microarray analysis were verified by the detected high
degree of Slitl2 downregulation in the mutant kidneys.

Interestingly, the gene showing the highest degree of upregulation in SlitI2-
deficient kidneys, namely Haverl (hepatitis A virus cellular receptor 1), is also
known as kidney injury molecule 1 (Kim1). It has been reported that this type 1
membrane protein is upregulated in proliferating and dedifferentiated tubular
cells after renal ischemia [Kuehn et al., 2002]. This condition was reflected by the
pale appearance of the SlitI2-deficient kidneys at dissection. Moreover, expression
of Timpl (tissue inhibitor of metalloproteinase 1) was found to be upregulated.
Overexpression of this gene has previously been linked to renal hypoxic conditions
[Norman et al., 1999]. Based on the observation that Slit]2 shows strong expres-
sion in vascular smooth muscle cells (VSMCs), it is tempting to speculate that
a decreased perfusion rate is responsible for initiating the renal damages. Tkeda
et al. have shown that neointimal formation after vascular injury was accom-
panied by decreased levels of vasorin expression [Ikeda et al., 2004]. Therefore,
ablation of Slit/2 gene function might induce phenotypic modulation of quiescent
VSMCs, and, as a result, induce excess neointimal formation, thereby causing

tissue hypoxia via obliteration of the renal microvasculature.
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The bone phenotype could be primary or secondary

Growth retardation is another prominent feature of SlitI2-deficient mice. It was
evident as early as two weeks after birth and became increasingly more pro-
nounced until the time of death of the mutants. The overall anatomy of Slitl2-
deficient skeletons seemed unaltered, but micro-computed tomography (uCT)
scans of long bones from Slit]2 null mutants and age- and gender-matched con-
trol mice revealed abnormalities of the bone structure. Reduced cortical as well
as trabecular bone indicated that inactivation of Slit]2 gene function has a major
effect on normal bone architecture.

An impaired bone metabolism is a common side effect of renal insufficiency as
was, for example, also observed in mice lacking the transcription factor AP-273
[Moser et al., 2003]. Indeed, numerous data suggest that the skeletal abnormal-
ities of SlitI2-mutant mice are caused by kidney failure. First of all, the serum
calcium level is usually maintained within a very narrow range to ensure nor-
mal neuromuscular conduction and metabolic functions. Serum calcium levels in
SlitI2-deficient mice, however, were markedly decreased in comparison to wild-
type control animals, hinting at an imbalanced hormonal control mechanism.
Vitamin D, which is responsible for calcium absorption in the small intestine, is
converted to its bioactive form, 1,25-dihydroxycholecalciferol, in the kidney by the
enzyme 1-a-hydroxylase. Impaired renal function entails reduced enzyme activ-
ity, leading to decreased activation of vitamin D. Evaluation of serum vitamin D
levels revealed a strong reduction of its active form in Slit/2-deficient mice, which
is consistent with renal insufficiency in these animals. Inadequate activation of
vitamin D was also reflected by decreased urinary calcium levels in SlitI2-deficient
mice, demonstrating that the reduced serum calcium levels were not induced by
excess urinary excretion but rather by insufficient intestinal absorption.

Besides vitamin D, the hormonal control loop also involves parathormone (PTH),
which is produced by the parathyroid glands. It is, in fact, the most important
hormone in controlling calcium homeostasis in the blood. Its release is triggered
by lowered serum calcium levels and it exerts multiple functions to revert blood
calcium levels back to normal. It stimulates calcium release from the bones
via osteoclast activation, it enhances calcium reabsorption in the kidney, and
indirectly increases its absorption by intestinal mucosal cells via stimulation of
vitamin D activation. Even though serum PTH levels could not yet be measured
in SIit]2 null mutants due to technical restraints, amphiregulin (Areg) was found

to be upregulated in Slit]2-mutant kidneys. The expression of this gene is known
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to be induced by high levels of PTH [Qin et al., 2005]. It is therefore easily
conceivable that excess levels of PTH are released in the Slit]2 null mutants in
order to restore a normal blood calcium concentration, a condition known as
secondary hyperparathyroidism.

However, the marked expression of Slitl2 in the murine skeletal system suggests
not only a prominent role during embryonic development and adult bone home-
ostasis, but also a direct involvement of SlitI2-deficiency in the observed defects
independent of any other detrimental effect. For instance, bone morphogenetic
proteins (BMPs) of the TGF-3 superfamily are also expressed in the developing
skeletal system [Ducy and Karsenty, 2000|, and homozygous deletion of Bmp3,
for example, results in bone defects. While Bmp3-deficient mouse embryos and
newborns do not yet reveal any abnormalities, femurs collected from 5-week-old
mutants display an increased trabecular bone density [Daluiski et al., 2001].

The absence of Slitl2 gene function could directly interfere with a balanced
osteoblast and/or osteoclast activity. Recent findings support this assumption.
P1INP (procollagen type I amino-terminal propeptide), a marker for osteoblast ac-
tivity, and TRAP (tartrate-resistant acid phosphatase), a marker for osteoclast
activity, were both found to be highly downregulated in the serum of Slitl2-
deficient mice in comparison to wild-type control animals (Dr. Marco Eijken,
Erasmus Medical Center, Rotterdam, The Netherlands; personal communica-
tion). This is in contrast to renal insufficiency associated with high levels of
PTH, which usually leads to high bone turnover with increased expression of
both markers [Fukagawa et al., 2002|, and therefore argues against a secondary
bone phenotype in SlitI2-deficient mice.

Postnatal growth retardation has also been reported for Tgfbl-deficient mice
[Kulkarni et al., 1995]. Histomorphometric analyses on long bones of ~3.5-week-
old Tgfb1~/~ mice revealed a significant reduction of both the growth plate width
and the longitudinal growth rate in comparison to heterozygous and wild-type
controls |Geiser et al., 1998|. It has been shown that active TGF-1 is released
during bone resorption and induces the migration of bone mesenchymal stem cells
(BMSCs) in vitro. This process was demonstrated to be mediated by the Smad
downstream signaling pathway. In order to determine the role of TGF-{1-induced
BMSC migration during bone remodeling in the adult mouse in vivo, Tgfbl~/~
mice were crossed with immunodeficient Rag2~/~ mice to prevent early death
of the Tgfbl mutants due to autoimmune disease. 3-month-old double-deficient

mice exhibited a significant loss of trabecular bone volume and thickness with
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significantly less osteoblasts dispersed on the bone surface. Collectively, these
observations indicated a role for TGF-(1 in coupling bone resorption with bone
formation in the adult mouse |[Tang et al., 2009]. With regard to the findings
obtained from the yCT analysis of Slit]2-deficient bones and a potential involve-
ment of Slit]2 in TGF-/ signaling, these results further suggest a direct role for

Slitl2 in bone development and/or homeostasis.

The spleen and thymus phenotype is secondary

The most striking finding at necropsy of all moribund SlitI2-deficient mice was
the dramatic atrophy of two major lymphoid organs, namely the spleen and the
thymus. Histological analysis revealed a marked disruption of the physiological
tissue organization, and flow cytometric analysis further substantiated this ob-
servation. Flow cytometry showed a sharp reduction in the total cell number of
the affected organs with a predominant depletion of both the B and T cell pre-
cursor pool. The depletion of lymphocytes can be induced by high serum levels
of corticosterone and is known to be a common finding in severely stressed or
terminally ill mice |[Barone et al., 1993| |Laakko and Fraker, 2002]. Therefore,
serum corticosterone levels were measured in moribund Slitl2 null mutants and
were found to be elevated more than 25-fold in comparison to that of wild-type
littermates. The marked overall difference in global gene expression compared to
wild-type controls could be explained in this context with regard to an almost
complete absence of certain cell subpopulations in the respective tissues of SlitI2-
deficient animals. This loss of actively dividing cells was additionally reflected by
the terms derived from the functional annotation clustering analysis (see page 146
onwards). The detected degree of Slit]2 downregulation in the spleen and espe-
cially in the thymus was extremely moderate compared to that of SlitI2-deficient
kidneys, arguing for a more indirect involvement of SlitI2-deficiency in the gen-
esis of these alterations. This assumption was further corroborated by the fact
that the abnormalities in thymic and splenic tissue organization were not ob-
served prior to the onset of overt illness in Slitl2 null mutants. Conclusively,
the collected data suggested that the thymic and splenic atrophy in moribund
Slitl12-deficient mice can be attributed to the sharp increase of the stress-related
hormone corticosterone and consequently be considered a secondary phenotype.

Interestingly, the atrophy of spleen and thymus was also observed in mice de-
ficient for latent transforming growth factor binding protein 3 (Ltbp3), a protein

associated with TGF-/ signaling. These defects were also shown to be caused by
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elevated serum levels of corticosterone and could be reversed by administration
of aminoglutethimide (AMG), an inhibitor of steroid synthesis. This treatment,
however, did not avert death of an as yet unidentified cause in the severely af-
fected Ltbp3-deficient mice, which succumb at an age similar to that of the Slitl2
null mutants [Chen et al., 2003]. Administration of this drug could therefore fur-
ther clarify whether elevated corticosterone levels are indeed responsible for the

splenic and thymic atrophy in SlitI2-deficient mice.

Conclusion

The data presented in this thesis demonstrate that SlitI2-deficiency in mice causes
early death due to renal failure. Future studies will have to analyze the exact
nature of the glomerular lesions. Conditional Slit]2 mice will be crossed with
NPHS2-Cre mice for podocyte-specific deletion of the gene. Previous attempts
to colocalize reporter protein in the kidneys of transgenic SlitI2-Venus mice with
glomerular marker proteins will be repeated. Future experiments will have to
decipher whether the bone phenotype in SlitI2-deficient mice is a primary defect or
whether it is secondary due to kidney insufficiency. Therefore, rescue experiments
will be conducted by replacement therapy with vitamin D or by feeding a high
calcium diet [Dardenne et al., 2004]. Furthermore, Venus-expressing cells will be
isolated from SlitI2-Venus mice on a SlitI2-mutant and wild-type background for
subsequent in vitro functional analyses in order to elucidate the affected signaling

pathway in SlitI2-deficient mice.
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5 Summary

The murine Slit-like 2 (SIit]2) gene was first identified in 2002, and so far, no
reports have been published on it. This thesis aimed at answering two basic
questions when first analyzing the function of a gene: a) Where is the gene
expressed? and b) What happens if the gene function is abolished?

A comprehensive temporospatial expression pattern was provided by describing
not only endogenous Slitl2 expression, but also reporter gene expression in Slitl2-
LacZ knock-in and in Slit]2-Venus transgenic mice. All three approaches rendered
consistent results and revealed widespread expression from early developmental
stages onwards. Prominent expression was observed in the developing as well as
the adult skeletal system. Likewise, vascular smooth muscle cells and glomeruli
exhibited strong expression throughout all stages of development. Moderate ex-
pression was, for example, seen in the adult lung epithelium and pancreatic islets
of Langerhans. Collectively, the findings from the expression analysis indicated
important roles for Slitl2 in the mouse.

Non-redundant functions of Slitl2 could indeed be demonstrated by the gener-
ation of Slitl2-deficient mice via classical gene targeting in embryonic stem cells.
SlitI2-mutant mice are phenotypically indistinguishable from their wild-type lit-
termates at birth but develop a progressive illness and succumb to renal failure
by 3-4 weeks of age. Prenatal kidney development appears unimpaired, and de-
fects only emerge after birth. Renal insufficiency in these mice is characterized
by severe glomerular lesions with massive podocyte effacement, capillary ecta-
sia or even complete atrophy of the capillary tufts. SlitI2-deficient mice develop
nephrotic syndrome with massive proteinuria and severe hypalbuminemia, which
ultimately causes hyaline droplet nephropathy as well as subcutaneous edema,
hydrothorax, and ascites. In addition, moribund null mutants are uremic, which
further reflects renal failure in these animals.

Despite the fact that kidney failure inevitably entails a perturbed bone metabo-
lism, the decreased bone density in conjunction with a low bone turnover in Sliti2-
deficient mice could also be a direct cause of the gene inactivation with regard
to the distinct expression of Slitl2 in the skeletal system already at embryonic

stages. The marked splenic and thymic atrophy in moribund SlitI2-deficient mice,
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on the other hand, could be attributed to increased serum levels of corticosterone
and are therefore considered to be secondary effects.

This thesis has laid the groundwork for future studies which will have to address
the exact mechanism of the glomerular defects of the SlitI2 mutants and elucidate
the underlying signaling pathway. With millions of people affected with kidney
disease, this mouse model may serve as a valuable tool for in vivo studies and for

testing potential therapeutic modalities.
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6 Zusammenfassung

Analyse des Expressionsmusters und Knock-out Phdnotyps
des Gens Slit-like 2 (Slitl2) in der Maus

Das Gen Slit-like 2 (SIit]2) der Maus wurde erstmals im Jahr 2002 identifiziert.
Bis dato gibt es noch keine Veroffentlichungen diesbeziiglich. Mit der vorliegenden
Arbeit sollten zwei grundlegende Fragen geklart werden, die im Zusammenhang
mit einem neu identifizierten Gen auftreten: a) Wo ist das Gen exprimiert? und
b) Was passiert, wenn das Gen ausgeschaltet wird?

Die Analyse des Expressionsmusters erfolgte anhand der Beschreibung sowohl
der endogenen Slit]2 Expression, als auch der Reportergenexpression in SlitI2-
LacZ knock-in und Slitl2-Venus-transgenen Méusen. Alle drei Herangehensweisen
lieferten iibereinstimmende Ergebnisse und zeigten verbreitete SlitI2-Expression
bereits in frithen Phasen der Embryonalentwicklung. Besonders ausgepragte Ex-
pression wurde sowohl im sich entwickelnden wie auch im erwachsenen Skelett
beobachtet. Gleichermafen zeigten glatte Gefafsmuskelzellen sowie Glomeruli
starke Expression in allen Stadien der Entwicklung. Méafkige Expression wurde
u.a. in den Lungenepithelzellen und den Langerhansschen Inselzellen des Pankreas
der adulten Maus festgestellt. Insgesamt liefsen die Ergebnisse der Expressions-
analyse bereits eine wichtige Rolle fiir das Gen in der Maus vermuten.

Essentielle Funktionen des Gens Slitl2 konnten durch die Erzeugung Slitl2-
defizienter Méuse mit Hilfe der Inaktivierung des Gens in embryonalen Stamm-
zellen nachgewiesen werden. Anfénglich sind die Mausmutanten nicht von ihren
Wildtyp-Wurfgeschwistern zu unterscheiden, erkranken aber zunehmend und ster-
ben schlieflich an Nierenversagen im Alter von 3-4 Wochen. Die prénatale Nieren-
entwicklung scheint nicht beeintriachtig zu sein, treten doch die Schidigungen
erst nachgeburtlich auf. Die Niereninsuffizienz dieser Tiere wird durch schwere
Léasionen der Glomeruli ausgelost, welche durch Verschmelzung der Podozyten-
Fufsfortsidtze und Kapillarektasie bis hin zur Atrophie des Kapillarknéuels gekenn-

zeichnet sind. Slitl2-defiziente Mause entwickeln ein nephrotisches Syndrom mit
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massiver Proteinurie und hochgradiger Hypalbuminédmie. Fine hyalintropfige
Speicherungsnephrose sowie subkutane Odeme, Hydrothorax und Ascites sind die
Folge. Das Nierenversagen zeigt sich zudem in Form einer ausgepragten Urdmie.

Niereninsuffizienz zieht unausweichlich eine Beeintriachtigung des Knochenstoft-
wechsels nach sich. Dennoch konnte es sich bei der reduzierten Knochendichte
der Slitl2-defizienten Tieren, die mit einem reduzierten Knochenumsatz verge-
sellschaftet ist, auch um eine direkte Auswirkung der Geninaktivierung handeln,
beriicksichtigt man die starke Expression von Slit]2 in den Knochen schon ab em-
bryonalen Phasen der Entwicklung. Im Gegensatz dazu stellen die ausgepragte
Atrophie von Milz und Thymus bei moribunden SlitI2-defizienten Mausen mog-
licherweise einen Sekundéreffekt dar, ausgelost durch erhohte Corticosteronwerte
im Serum.

Diese Arbeit hat die Grundlagen fiir zukiinftige Untersuchungen geschaffen,
die sich mit dem genauen Mechanismus der glomeruldren Lésionen befassen und
den zugrunde liegenden Signaltransduktionsweg identifizieren sollten. Weltweit
sind Millionen von Menschen von Nierenerkrankungen betroffen. SlitI2-defiziente
Mause konnten somit als wertvolles Tiermodell fiir in vivo-Studien und zur FEr-

forschung neuer Therapieanséitze dienen.
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GCTTTCAGTCACCACCCTCC
AGATGAGACCCAGCCCAGAG
TGGGAAGACAATAGCAGGCATGC
GACACGCTGAACTTGTGGCCG
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ATGTGGAATGTGTGCGAGGCCAG
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CACTGTGTCAGGTGGCACGTCTCG
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CAGTTTACCCGCTCTGCTAC
GACATTTAGGTGACACTATAG
TAATACGACTCACTATAAGGG
CAGAGGCAGGCGAATTTCTA
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TGTCGAAGCCTCCTTCTTTC
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GACCTCGACAAGTGCATGG
GGCCACAGTAGCCTGAAGTG
TCAAGAAGGTGGTGAAGCAG
ACCACCCTGTTGCTGTAGCC
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Lists of cDNA microarray results

Upregulated genes in Slit/I2-deficient thymi

List of genes that were upregulated in Slit/2-deficient thymi in comparison to
wild-type controls with an adjusted P-value of < 0.001 and a fold change of > 5.
Annotated terms were derived from functional annotation clustering using the on-
line available DAVID Bioinformatics Database (http://david.abce.nciferf.gov/).
(1) Secreted

(2) Extracellular space

Annotated terms

Gene symbol Fold change adj.P-value 1 2
Gpx3 18.07 3.16E-008 X X
8430408G22Rik 14.31 4.64E-006

9930017A07Rik 12.43 1.12E-007

Serpina3dn 11.73 7.04E-04 X X
BC011468 11.10 7.98E-007

Spink3 9.64 1.48E-006 X X
Lox 8.94 9.24E-007 X X
Ednl 8.86 1.48E-006

Igfbpb 8.27 1.02E-005

Eppkl 8.07 3.89E-006

Ctgf 7.58 2.06E-006 X X
Gpr83 6.60 2.11E-006 X
Krt1-14 6.55 2.66E-006

Foxql 6.28 1.67E-006

A2bpl 6.24 2.71E-006

Zfp312 6.00 4.96E-006

Cyp2ab 5.87 2.66E-006

Slfn1 5.84 1.48E-006

Krt1-23 5.78 5.06E-006

Sftpd 5.75 2.86E-005 X be
Ccl21a 5.72 6.00E-006

Rgs4 5.55 2.95E-005

Ccl21b 5.49 1.02E-005 X X
Mglap 5.46 1.24E-04

Rptn 5.39 1.72E-006 X

Ltbp2 5.36 3.14E-007

Guca2b 5.30 1.53E-005 X X
Crp 5.24 7.57TE-006 X X
Cyp2f2 5.22 3.76E-006 b
Nuprl 5.20 1.72E-007

Hspbl 5.19 3.38E-006

Pdk4 5.15 3.80E-005

Cldnl1 5.13 4.01E-006

Vwf 5.12 6.86E-006 X X
I7r 5.08 8.89E-006

Fscnl 5.05 1.56E-006

1190003J15Rik 5.01 1.72E-007
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Downregulated genes in Slit/2-deficient thymi

List of genes that were downregulated in SlitI2-deficient thymi in comparison to
wild-type controls with an adjusted P-value of < 0.001 and a fold change of > 5.
Annotated terms were derived from functional annotation clustering using the on-
line available DAVID Bioinformatics Database (http://david.abce.nciferf.gov/).

(1) M phase

(2) Cytoskeleton

(3) Non-membrane bound organelle

(4) Microtubule

(5) Nucleus

Annotated terms

Gene symbol Fold change adj.P-value 1 2 3 4 5

Agpll 17.00 1.10E-005

Ppplrlc 15.32 5.53E-006

Dntt 12.65 1.12E-007

Mnsl 9.80 1.05E-005 X X X X
0710001E13Rik 9.77 4.07E-006

Cdc20 9.70 2.99E-005 X

Birch 9.58 1.20E-005 X X X X X
Top2a 8.39 9.19E-005 X X
Rrm2 8.07 1.78 E-005

Lyt-2 7.78 1.78E-006

Cdca7 7.74 1.43E-005 X
Pplilr 7.64 1.08E-04

Chrna9 7.54 4.70E-005

2810417H13Rik 7.47 6.81E-005

Ragl 7.36 2.77E-006 X
Cdc2a 7.08 3.15E-005 X X X X X
Hist1h2ah 7.05 3.84E-04 X X
Bublb 6.89 2.24E-005

E212 6.82 1.48E-006 X
Rorc 6.76 1.25E-005 X
Cdca3 6.72 2.30E-005 X

Ccnbl 6.69 2.42E-006 X X
G22pl 6.62 4.65E-006

Plk1 6.30 1.21E-005 X X X X
2410030K01Rik 6.18 2.02E-005

BC028975 6.16 1.17E-006

Brrnl 6.14 2.34E-005

Ap3sl 6.13 1.42E-006

Nusapl 6.01 2.56E-006 X X X X X
Sh2dla 5.95 2.39E-006

2610318C08Rik 5.94 1.43E-005

1700022C02Rik 5.88 3.07E-006

6720460F02Rik 5.83 5.53E-006

Anln 5.83 4.90E-006 X X X X
2610318N02Rik 5.79 3.35E-006

Mki67 5.76 5.86E-006 X X X
Stk6 5.73 7.76E-006

P2rx1 5.65 1.44E-005

1110007A06Rik 5.62 4.65E-006
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Annotated terms

Gene symbol Fold change adj.P-value 1 2 3 4 5
Uhrfl 5.35 2.81E-006 X
Sgol2 5.35 1.45E-005 X X
AT449441 5.33 4.75E-006

Kif2c 5.32 5.41E-006 X X X X
Tubel 5.26 3.75E-006 X X X
3000004CO01Rik 5.18 1.05E-005 X X X
Clspn 5.17 4.14E-006 X X
Cd8b 5.17 9.24E-007

2510015F01Rik 5.15 2.97E-006

Kif22 5.12 3.24E-006 X X X X
Hist1h3b 5.07 8.28E-006

Kif4 5.06 1.66E-005 X X X X

Upregulated genes in SlitI2-deficient spleens

List of genes that were upregulated in Slitl2-deficient spleens in comparison to
wild-type controls with an adjusted P-value of < 0.01 and a fold change of > 2. No
annotated terms were derived from functional annotation clustering using the on-
line available DAVID Bioinformatics Database (http://david.abce.nciferf.gov/).

Gene symbol Fold change adj.P-value

Pdk4 5.37 5.33E-03
Ednl 5.28 1.66E-03
Mglap 4.82 4.44E-03
Gpx3 4.43 4.48E-03
Fkbpb 4.07 4.48E-03
Lox 4.00 6.73E-03
Ctgf 3.89 4.48E-03
1300002F 13Rik 3.68 9.49E-03
Cygb 3.08 2.99E-03
Fosl2 3.03 5.59E-03
Fbln2 2.88 9.89E-03
Pexlla 2.82 2.99E-03
Ptpn8 2.77 6.38E-03
Lims2 2.75 8.77E-03
Map3k6 2.74 8.01E-03
Dkk3 2.72 5.34E-03
Cdknlc 2.70 4.48E-03
Hmox1 2.68 4.04E-03
Cdi14 2.68 7.05E-03
Pkp4 2.67 5.34E-03
Grasp 2.65 5.33E-03
Itih3 2.61 7.31E-03
Sema3f 2.59 8.66E-03
Sultlal 2.57 8.51E-03
Thsdl 2.54 8.51E-03
1500004A08Rik 2.53 8.15E-03

Gata2 2.48 8.23E-03
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Gene symbol Fold change adj.P-value
CRG-L1 2.45 9.64E-03
Cyp26bl 2.45 4.04E-03
Sox17 2.45 3.84E-03
Pald 2.40 9.87E-03
BC011468 2.38 7.31E-03
Plat 2.36 4.64E-03
Fbxo32 2.35 6.90E-03
Rapgefb 2.35 6.90E-03
Fegr3 2.32 4.44E-03
Esaml1 2.29 9.71E-03
Centa2 2.28 4.64E-03
Pdlim4 2.27 5.97E-03
Flt1 2.27 4.44E-03
Aebpl 2.26 5.97E-03
Neurl 2.25 7.36E-03
Sema6b 2.25 5.11E-03
Cirbp 2.25 3.84E-03
BC004728 2.22 3.84E-03
Mmp14 2.21 8.77E-03
M11ra2 2.21 8.78E-03
Epn2 2.20 3.84E-03
Nfic 2.19 4.64E-03
Itm2¢ 2.16 3.84E-03
Cdknla 2.15 7.97E-03
Rgsl 2.14 4.64E-03
Gas6 2.14 5.33E-03
Ferl3 2.13 5.59E-03
I1lral 2.12 6.93E-03
Lzts2 2.12 9.11E-03
Rora 2.11 6.76E-03
Mcam 2.11 9.87E-03
Ror2 2.09 7.44E-03
Pla2g7 2.09 5.09E-03
Ng23 2.08 6.99E-03
Ccl9 2.08 5.16E-03
Hapl 2.07 8.77E-03
Tef 2.07 5.11E-03
Scarf2 2.07 5.33E-03
Slc6a8 2.06 6.03E-03
Ankrd2 2.06 7.05E-03
4930486L24Rik 2.06 8.78E-03
Sgk 2.05 5.37E-03
B930041F14Rik 2.05 4.64E-03
AA960558 2.03 8.81E-03
Gstml 2.03 8.01E-03
Bmf 2.03 4.64E-03
Amotll 2.02 5.97E-03
Adam15 2.02 9.71E-03
Hmgcs2 2.02 7.20E-03
Pld1 2.02 5.70E-03
Bmp4 2.01 6.90E-03
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Downregulated genes in SlitI2-deficient spleens

List of genes that were downregulated in SlitI2-deficient spleens in comparison to
wild-type controls with an adjusted P-value of < 0.01 and a fold change of > 2.
Annotated terms were derived from functional annotation clustering using the on-
line available DAVID Bioinformatics Database (http://david.abce.nciferf.gov/).

(1) Intracellular

(2) Metabolic process

(3) Mitosis

Annotated terms

Gene symbol Fold change adj.P-value 1 2 3
Pdip 6.76 8.77E-03

Slitl2 5.23 6.44E-06

Rrm2 4.45 8.91E-03 X X
Uros 4.44 8.45E-03 X
Kntcl 4.04 6.20E-03 X X
1190007F08Rik 4.02 7.06E-03

Ccnel 3.91 5.06E-03 X X
Cdc6 3.66 7.77E-03 X X X
Arrbl 3.53 8.72E-03 X

Fignll 3.53 6.52E-03

Ptdss2 3.45 9.87E-03 X X
Clspn 3.39 6.90E-03 X X
Sec1412 3.24 3.84E-03 X X
Stk6 3.13 8.97E-03

Tpx2 3.12 7.31E-03 X

Rad54l1 3.11 4.75E-03 X X
1110007C05Rik 3.09 5.37E-03

Mcm?2 3.02 5.37E-03 X X
Solt 2.99 5.93E-03

Uhrfl 2.97 5.11E-03 X X
Ccrn4l 2.94 9.12E-03

Tcf19 2.90 5.16E-03 X X
Mcm10 2.90 5.59E-03 X X
Hist1h2bm 2.88 9.20E-03 X X
Ifrd2 2.84 8.01E-03

E2f1 2.84 8.44E-03 X X
Rgs12 2.84 4.64E-03

Pftkm 2.83 9.42E-03 b X
Chtf18 2.81 3.84E-03

Ric4 2.77 5.34E-03 X X
Rrml 2.77 8.31E-03 X X
Dusp8 2.74 8.39E-03 X X
Mcmb 2.73 6.87E-03 X X
2810418N01Rik 2.71 7.07E-03

Ubadcl 2.69 6.35E-03

Chafla 2.69 4.64E-03 X X
AI256775 2.66 4.64E-03

2610318C0O8Rik 2.64 7.72E-03

Hist1h3i 2.60 9.32E-03 X X
Recqld 2.57 5.33E-03 X X

Ligl 2.56 4.44E-03 X X



151

Annotated terms

Gene symbol Fold change adj.P-value 1 2 3
Minppl 2.56 8.35E-03 X

Cldn13 2.55 8.39E-03

Chaflb 2.54 8.77E-03 be X
Ammecrl 2.53 6.99E-03

Psmec3ip 2.51 6.74E-03 X
Arhgdig 2.49 9.64E-03 X
4930547N16Rik 2.49 6.99E-03 b

Dutp 2.48 3.84E-03

Mcem7 2.48 7.97E-03 be X
Cenph 2.48 3.84E-03 X X
Peytlb 2.46 8.35E-03 X X
Scoc 2.44 4.44E-03

1110025F24Rik 2.42 7.04E-03

Cdcab 2.40 8.01E-03 be b
Mcm3 2.39 6.75E-03 X X
Xkh 2.39 8.57E-03

Calmbpl 2.38 7.00E-03

Siah1b 2.38 8.53E-03 b X
Hist2h3b 2.37 8.51E-03

Foxm1 2.35 5.16E-03 be X
Fenl 2.33 7.04E-03 X X
Pbk 2.33 4.48E-03 X
2410004L22Rik 2.33 2.99E-03

Orc6l 2.32 9.32E-03 be X
Mcm4 2.29 4.48E-03 be X
Pole3 2.27 7.07E-03 X

Hrbl 2.26 3.84E-03

Sqle 2.24 9.87E-03 X x
Mthfd2 2.23 7.04E-03 be b
4430402011Rik 2.22 4.48E-03

E130016E03Rik 2.21 4.44E-03 b X
LOC432879 2.19 6.03E-03

Traf4 2.19 4.44E-03 X
2600005003Rik 2.18 2.99E-03

Fancd2 2.18 7.46E-03 X X
6330503K22Rik 2.16 9.58E-03 be
2810027019Rik 2.16 7.72E-03

Tmem14c 2.16 4.44E-03 X
2610019103Rik 2.15 6.87E-03

2610510J17Rik 2.15 7.04E-03

5830426105Rik 2.14 5.09E-03

2700029MO9Rik 2.13 5.11E-03

Cdc25a 2.12 4.48E-03 X X X
Hist1hla 2.12 5.34E-03 X X
4930542G03Rik 2.12 6.48E-03

Incenp 2.11 9.04E-03 X X
Plk4 2.08 6.07E-03 X
1110004B13Rik 2.07 4.44E-03

BC028450 2.07 9.94E-03

Rpa3 2.05 8.23E-03 X X
Mylpf 2.05 8.39E-03 be
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Annotated terms

Gene symbol Fold change adj.P-value 1 2 3
4930430F08Rik 2.05 6.90E-03

Bripl 2.04 4.44E-03 X X
F730047E07Rik 2.04 4.44E-03

Cdca2 2.03 7.20E-03 be X
Sfrs7 2.02 4.64E-03 X X
A430005L14Rik 2.02 4.44E-03

Nme3 2.00 4.48E-03 X

Csda 2.00 5.09E-03 be X
2600001J17Rik 2.00 8.01E-03

Upregulated genes in SlitI2-deficient kidneys

List of genes that were upregulated in SlitI2-deficient kidneys in comparison to
wild-type controls with an adjusted P-value of < 0.01 and a fold change of > 1.86.
Annotated terms were derived from functional annotation clustering using the on-
line available DAVID Bioinformatics Database (http://david.abce.nciferf.gov/).

(1) MHC class II antigen presentation

(2) Inflammatory response

Annotated terms

Gene symbol  Fold change adj.P-value 1 2
Haverl 13.38 9.84E-06

C3 10.84 1.96E-03 X
Cxcll 4.72 6.91E-04 X
Cclb 4.40 5.08E-04 X
Krt20 3.55 3.14E-03

Timpl 3.29 3.44E-03

Abpl 3.08 5.08E-04

H2-Aa 2.89 9.13E-03 X

H2-Ebl 2.86 2.76E-03 X
LOC641240 2.75 6.49E-04

H2-Abl 2.70 5.08E-04 X

Cd74 2.69 3.04E-03 X X
Egr2 2.59 5.08E-04

Cxcl10 2.57 1.55E-03 X
Socs3 2.44 1.96E-03

Tir2 2.40 1.55E-03 x
Tnfrsfl2a 2.32 2.67E-03

Trib3 1.88 9.13E-03

Areg 1.87 5.65E-03
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