
Data management in Distributed Shared Virtual
Worlds�

Tanguy Nedelec

Tanguy.Nedelec@imag.fr
LSR/IMAG,

University of Grenoble,
BP 72, 38402 Saint-Martin d’Hères, France.

Abstract

Research efforts in Virtual Worlds domain have been mainly devoted to
user interfaces, communication supports and consistency issues. To the best
of our knowledge, no works clearly focused on the global problem of manag-
ing virtual world’s data. The promise of future large persistent virtual worlds,
evolving during a long period of time and with large number of participants
makes the question of data management even more crucial. This paper intro-
duces the global problem of managing data in virtual worlds and reports our
research work in using data management services for virtual worlds platforms.

1 Introduction

Distributed shared virtual worlds are applications trying to provide to several users,
geographically dispersed, an immersion in a world with the illusion that it is locally
managed [18]. The user feels things as though he/she interacts in real-time with
the entities populating the virtual world. Usually, a particular entity, called avatar
represents the user itself in the virtual world. Trough this avatar, the user is able
to perceive the world (subjective views may be used) to interact with and also to
manipulate other entities of the world.

Research efforts in the Virtual Worlds application domain have been mainly de-
voted to user interfaces (input devices, graphic rendering), communication supports
(multicast groups, filtering ...) and consistency issues. All these works have lead
to mature technologies and their application in several contexts: video conferences,

�Part of the work has been done in the framework of the PING project N Æ IST-1999-11488



distributed military simulations [10], virtual shops, virtual museums, games [5, 19],
etc.

The development of Virtual World (VW) applications is currently facilitated by
the use of particular platforms [1, 21, 22] proposing appropriate network, system
or tools support (for example specific network protocols in Open Community plat-
form). Therefore, a developer would concentrate on coding virtual world logics.

However, data management functions have not been well addressed in current
Virtual World platforms [12]. Solutions proposed by these platforms for persistency
management are not really satisfactory (see section 2.3). The promise of future large
persistent virtual worlds, evolving during a long period of time and with a large
number of participants makes the question of data management even more crucial.
To the best of our knowledge, no works have clearly focused on the global problem
of managing virtual world’s data. Therefore, VW developers either choose to use a
standard Data Base Management System (DBMS) or to develop an ad hoc solution
based on flat files with some kind of serialisation.

DBMS are powerful systems offering a plethora of functionalities. Some of
them are not required for VW applications and even if unused they have impact
on the performance of the VW. For example, most DBMS offer a transactionnal
support that is clearly not needed in VW applications. Even if not explicitly used
in VW applications, its execution model is a transactionnal one and internal data
structures and tools for managing transactions are used.

On the other hand an ad hoc solution based on flat files and serialisation would
certainly1 lack of many useful features for data management. This solution only
provides a support for permanence. No main memory management, no support for
optimised access path with indexes and no fault tolerance are available.

The problem we are trying to tackle is how to provide a full data management
support to targeted VW applications without using a DBMS. This support has to be
adaptable in order to take advantage of the VW application characteristics and to
provide ad hoc solutions. It is also supposed to scale the targeted highly interactive
persistent massively multi-users VW.

To reach this goal, we propose to experiment a different alternative to data
management in VW. Our proposal adopts the service approach developed in the
NODS (Network Open Database Services) project [2]. This project aims at defin-
ing an open, adaptable architecture that can be extended and customised on a per-
application basis such as in [4]. DBMS functionalities and related tasks are un-
bundled into services (e.g. a query service, a persistence service) that can be used
by applications when needed. A particular attention is paid on the adaptability of
services.

My PhD work concentrates on the integration of a persistence service and a

1only certainly because nothing prevent from a brave developer that will develop all these feature
alone for its system.



replication service in VW platforms. Experiments are currently in progress in the
context of the PING IST project [11] that aims at developing an open and scalable
platform supporting large-scale real-time interactive networked applications over
the Internet.

The rest of this paper is organised as follows: Section 2 introduces data man-
agement in VW platforms and gives an overview of existing proposals. Section
3 introduces our approach for using data management services in VW platforms.
Finally, Section 4 gives the current status of our work and future work.

2 Data management in Virtual Worlds

This section first characterises data management in virtual worlds and then details
persistence and replication aspects.

2.1 Virtual Worlds

A distributed shared virtual world is a set of entities perceived and manipulated by
several participants geographically dispersed. Before further discussion on how to
manage data, it is necessary to determine the way data evolve and are accessed.

Behaviour of virtual world entities

The way an entity evolves is related to its behaviour. What is a behaviour in virtual
world. If we consider an entity as a collection of attributes, then its behaviour is
the ever-changing state of all those attributes over time. For example, an entity may
have an attribute called "location"; as the entity moves around, its location changes.
Behaviour of an entity could also be described as anything it does in response to
external/internal stimulations or changes in its environment.

For data management purpose, it is useful to divide entities into those whose
behaviour is deterministic and those whose behaviour is non-deterministic. Enti-
ties with non-deterministic behaviour are by nature unpredictable. Certainly human
beings but also any entity that has a glimmering of simulated intelligence are un-
predictable. An entity’s behaviour qualified as deterministic means that the state
of the entity is a function of time only. The deterministic intrinsic nature of an
entity may be compromised by interactions with other entities. Any entity that
responds to direct or indirect interactions with a non-deterministic entity is itself
non-deterministic (since its state is unpredictable, being the results of unpredictable
actions).

Entities behaviour can be further classified. Entities with deterministic be-
haviour can be "static" or "dynamic". For further details about the taxonomy of
entity behaviour see [20]. The state of an entity considered as static never changes;



the behaviour is of course deterministic. Unlike static entities, dynamic entities
(also referred as World physics) change over time. However, changes are easily
predictable, and are a function only of time and possibly a set of pre-defined be-
haviour parameter (think of hands of a clock, an animated waterfall, etc).

Further comments on the taxonomy is that with regard to physics laws and the
way human beings understand the world, there is only one category represented in
the "real world": entities with undeterministic behaviour. Nevertheless, simulating
a virtual world designed with exactly the same laws as the "real world"2 is not
possible even considering all processing ressources distributed all over the world.
We need deterministic entities to simulates a world.

Accessing data

The second characteristic that have to be pointed out is the way data is accessed
in virtual world applications. The way data is accessed is strongly related to the
relationship between entities. In a virtual world, an entity is not aware of all other
entities of the virtual world. An entity is aware of only a subset of the whole virtual
world population.

Perception and interaction capabilities are associated with entities. For exam-
ple, your vision field defines what you can see. Perception capabilities can be deter-
mined for each entity. Similarly, you are not able to touch everything you see. An
interaction area can be then also defined for each entity. Perception and interaction
capabilities of entities can be altered by other entities. For example, an opaque wall
affects your vision field.

Both, behaviours characteristics of entities and their perception and interaction
capabilities, provide lots of useful information that may be exploited for data man-
agement support. Next section introduces data management characteristics in vir-
tual worlds and shows how some characteristics of virtual world entities can be
taken into account.

2.2 Data management requirements

This section focuses on replication and persistence, two main characteristics of data
management. It also introduces an important feature of virtual worlds: interest
management.

Replication property

Distributed nature of the virtual worlds we are interested in, induces the question of
where data is located. Sharing a vision of a set of entities requires several processes

2Such a virtual world is conceivable as far as human knowledge approach some law potentially
ruling the universe.



to own at least a copy of the graphical representation of these entities with addi-
tional data like their position and rendering information. Replication is inherent to
the shared and distributed aspects of VW. Apart from perception needs, replication
techniques may be used for: fault tolerance, availability, and performance purposes.

Having several copies of the same data raises coherency issues. Modifications
upon copies and updates propagation have to comply some rules in order to provide
some level of coherency between copies.

Among the characteristics of VW applications, the types of behaviours of enti-
ties can be exploited to use different update propagation policies. Active replication,
with propagation of the methods to be executed is only possible if the behaviour of
the entity is deterministic. Passive replication, with propagation of the states up-
dates can be applied with all types of entities.

Most of existing virtual worlds systems rely on a master-slave replication model
[17] but do not precisely exhibit the respective roles of the master and the slaves.
Analysing the literature, it is also really hard to know what kind of information cir-
culates between replicas. For these reasons, we will concentrate on a vague notion:
integrity of entities and who is responsible for that. In virtual worlds, for each entity
there is a process responsible for its integrity. Such process is always able to provide
an up-to-date replica of an entity. The geographic distribution of participants in a
virtual world does not imply the distribution of the responsibility of entities. It is
then possible to have a centralised management of entities or a distributed one based
on some criteria (for example partitioning of the world). A second characteristic is
whether the distribution of responsibilities may change during the execution of the
VW application. A distribution of entities management is qualified as dynamic or
static regarding whether it may change or not during the VW execution.

Dead-reckoning techniques are original techniques used in the context of virtual
worlds application to relax coherency between copies. These techniques are based
on the prediction of the evolution of an entity on a process owning slave replicas
while a process owning a master replica performs the "real" evolution of the entity.
The master replica also executes the prediction algorithm in order to detect when
the prediction is too "far" from the "real" evolution. When the distance is greater
than a given amount, the master replica propagates updates to its slaves.

Persistence property

Lifetime of data entities in today programming environments can span over the ex-
ecution time of certain blocks of code. For many reasons, stemming mostly from
implementation and historical roots, lifetimes are classified into two categories. En-
tities outliving a single application execution are referred to as persistent entities.
Otherwise, they are referred to as transient ones.

In the context of shared VW, the persistence property can be attached to either
some world entities or to the virtual world itself. The persistence of a VW is the



ability for this world to survive and to evolve even after every player has left. Then,
the persistence of a virtual world is the consequence of the persistence of a large
number (if not all) entities of the VW. Persistence is easily associated, if not mis-
taken, with permanence. In the context of VW, perhaps more than in other contexts,
creation of copies on permanence support is a subset of tasks related to the support
of the persistence property.

To ensure persistence some information have to be copied from one memory
space to another. The source copy is first located in a memory space associated to
the process who created the entity. The destination where a copy will be created
may be either: a space in main memory associated to another process (may be on
another site) or a space on permanent support (independent from any process life-
cycle). Logging may also be used to store information related to updates of the
source copy and therefore contributes to provide persistence.

Persistence as the ability to make the world continue to evolve may be pro-
vided by some specific processes responsible of the evolution of some entities of
the world. In this case, the type of behaviour of entities is really important as it may
enable to support evolution in different manners. An entity with a deterministic be-
haviour can be stored to permanent support and its new state would be calculated
only when the entity has to be reactivated.

Interest management

Interest management can be used to reduce the amount of data manipulated by a
process. Using perception and interaction capabilities of an entity, interest manage-
ment allows to determine the set of entities that are relevant to this entity. Interest
management schemes [15] enable to calculate the appropriate subset of entities us-
ing interest expressions. An interest expression may also refer to several attributes
of the virtual world and/or entities. For example, geographic data allows to partition
the world in fixed areas. Interest expression may refer to any attribute of an entity
including its type (e.g.: “give me all the dogs within a 100 meters radius”).

2.3 Existing proposals

This section discusses some representatives approaches to data management in VW
platforms. We pay particular attention to the way some level of persistency is en-
sured and how the responsibility of entities is distributed. In most of the systems
overviewed, a clear distinction can be established between, on one side, static and
deterministic entities and, on the other side, dynamic and undeterministic entities.



Local storage of source data

The defintion of data manipulated is mixed with the code of processes to manipulate
data. In such case, the executable code contains the descrition of the world, called
source data, and ensure a primitive level of persistence of the world. In NPSNET IV
[14] and the Community Place infrastructure [13], this approach ensures persistence
of static entities. Other kind of entities, for example avatars, are not persistent but
are replicated and managed in a fixed distributed manner.

Centralised Management of data

In many VW systems, especially commercial games, management of entities is
centralised and sometimes dynamic for load balancing purpose. This leads to usual
advantages and drawbacks of centralised approaches: easier management of con-
sistency issues but potential bottlenecks. In the V-Worlds platform [21], Everquest
[5] and Asheron’s call [19] games, two levels of persistency are provided. Local
storage of world source data is used for static and deterministic entities. Storage on
centralised servers is used for dynamic and undeterministic entities like user avatars
and monsters. A weak level of evolution of the world description is provided by
updating from time to time local storages located at each player home. Blaxxun In-
teractive platform 5.1 [1] also falls in this category but with use of a DBMS (Oracle
or Microsoft SQL Server).

Persistent servers

Open community [22] and NetZ [16] systems use dynamic distributed management
of entities. They are able to migrate mastership of entities between sites in order
to support persistence. The destination of the migration is a persistent server which
keeps entities alive as long as itself is alive. This technique allows to provide persis-
tence for dynamic and non deterministic entities. Persistent servers do not support
the evolution of entities.

Distributed logging approach

Massive 3 [7] and Dive 3 [6] virtual worlds systems use some neutral processes
to keep track of activity in the virtual world region they are responsible for. Both
systems implement a dynamic distributed management of entities. Logs can then
be used to restart after a crash (Dive 3, but recovery is then quite long) or to redo
some actions (Massive 3). Once again this “advanced” support for persistence is
only used for dynamic and deterministic entities.



Hybrid solutions

NetEffect [3] and HP Living Space [8] systems implement hybrid solutions for dis-
tribution of entities responsibility. In these systems, a centralised main server is
responsible for the distribution of entities over a set of peer servers each of them
responsible of a region of the world. NetEffect uses a fixed distribution with no
persistence support. In HP Living Space, when a peer server with some master
copies disconnects, the responsibility of these copies (the mastership) are trans-
fered to other peer servers. This transfer is decided by the peer servers and provides
persistence to dynamic and non deterministic entities.

3 Data management services in a platform for Vir-
tual Worlds

We claim that existing systems lack several properties to support future long lived
persistent VW. As stated in Section 2.1, VW are defined by their content i.e., the
entities populating the world and the relationships between them. Existing systems
exploit these informations, in a hardwired way. Current systems offer several pre-
defined policies but do not allow the addition of new ones. Considering the type of
entities, the application programmer may want to have different update policies or
even plug a new update policy. Another example of lack of flexibility in existing
VW supports is the way persistence can be adapted to the world: adequate cache
management, types of indexes, types of storage (flat files, relational databases, ...).

Following the separation of concerns methodology [9], we propose to define
adaptable and flexible data management services: caching service, replication ser-
vice, logging service and persistence service. These services can be instantiated to
define managers as shown in figure 1.These managers provide functions to object
/ event management. Services are designed so as to allow to implement different
policies to do a specific task. Gray boxes / interfaces are the services we are working
on. White interfaces are required but are not developed by us.

We currently left coherency and consistency out of the scope of our work. Other
services are designed to be independent from these issues. For example, the repli-
cation service deals with how synchronisation is ensured between copies of a single
object. In the current prototype (for the PING platform), the replication service can
be used with different consistency policies dealing with when synchronisation will
be effective. These policies are implemented in the consistency control service, re-
sponsible for ordering of events according to some causal and real-time constraints.
The networking service provide both reliable and unreliable unicast and multicast
communication channels between nodes.

We provide an open persistence service, allowing to investigate how to “tune”
the persistence machinery to the particular requirements of VWs applications. Per-



sistence service is composed of several underlying components. A storage manager
provides means to manage data on stable storage. Index managers provide specific
index structures. A log manager provides atomic write operations, as well as recov-
ery capabilities. A cache manager provides in-memory management of persistent
data.

Our replication service allows to create and destroy replicas, and furthermore,
manages the replica synchronisation according to replica accesses. The replication
service is based on the logical object abstraction that groups together all the replicas
of the same application object. The application perceives only the logical object,
allowing so to manage the consistency of the replicas in a transparent way.

programming
Application

��������
��������
��������
��������

�����������
�����������
�����������
�����������

��������
��������
��������
��������

InterestManager EventRouter

PersistenceManager

Entities
replication Entities

persistence
Event

ordering

Event
routing Access

tracking

World
partitioning

Network
chanels

management

programmer

Consistency/concurrency Persistence management

Interest management

Network Management

Replication management

ReplicationManager

Object and Event Management

Application

Platform
programmer

ConsistencyManager

NetworkSystem

management

LogicalObjectManager

Logical Object management

ConcurrencyControl

Figure 1: Object manager components

We point out that the object management architecture given here is not limited
to a functional abstract view. Each service is implemented to preserve some level
of isolation from other components of the platform. Interactions between compo-
nents of the platform is made through well defined generic interfaces. For example,
the caching service exhibits four methods. In addition to this interface, two other
interfaces provide methods to tune and configure a cache manager.

One of our main objectives in the design of the object manager is to exploit when
possible, many applicative hints. The basic idea is to try to take advantage of the
application semantics to improve object management. In virtual world applications,



applicative hints are mainly provided by interest management. In the context of an
object manager, interest management is defined as a way to distinguish data relevant
for a given participant in the virtual worlds from the whole amount of data of the
virtual world. Our object manager relies on high level interest management scheme.
Interest management is defined as the ability to determine which entities are relevant
for a given entity. The object manager does not make any assumption on the interest
management policy used and it does not rely on any particular one, it only interacts
via the high level paradigm of "which entities is a given entity interest in". This
paradigm is used to:

� “drive” cache management, i.e. add, fix and unfix the relevant objects in the
cache,

� “drive” propagation of persistence property. This allow to make persist all
entities relevant to entities that have been explicitly made persistent,

� “drive” replication of objects and then to determine where it is necessary to
create which replica.

4 Current status and future work

An integrated implementation of the managers we presented is already running. The
replication service instance uses a master/slave protocol. The persistence service
currently manages local persistent instances. Entities can be made persistent if the
process owning their mastership is bound to a local persistence service instance.
Two instances of the caching service provide respectively main memory caching
for entities and memory pages. Last manager is an instance of the logging service.
Checkpointing / recover operations are not yet implemented. The whole platform is
coded in Java enabling to design virtual worlds applications in Java. The application
programmer describes the VW entities in files which are used to generate adequate
Java code in order to make these entities sharable among the VW. The application
programmer still need to code entity behaviour and the application logics. He may
also tune and configure persistence and replication service if default tuning and
configuration do not match to its needs.

Future work includes the addition of distribution within the support. We intend
to explore the construction of such a support using the existing replication service
and local persistence service. This may become an intermediate service, with its
own interface, including distribution of the service among servers and load balanc-
ing algorithms. Particular attention will be paid to both pure and hybrid peer to
peer approaches which may be the more appropriate to scale a large number of par-
ticipant sites. The integration of the persistence service with interest management
needs to be further explored. Also the ways to access data have to be refined to



provide the application programmer with methods closed to the most used access
patterns.

Acknowledgement

Special mention to all people involved in the definition of the platform: Luciano
Garcia-Banuelos, Stephane Drapeau and Phuong-Quynh DUONG for their respec-
tive contribution via their Ph.D project currently in progress: the persistence ser-
vice, the replication service and logging service (towards a fault tolerance service);
Claudia Roncancio and Christine Collet for their hard work in supporting my Ph.D
project.

References

[1] Blaxxun interactive, Elsenheimerst. 61-63, 80687 Munich, Germany. Virtual
Worlds Platform 5: product specification. version 5.1, 2001.

[2] Christine Collet. The nods project: Networked open database services. In
Proceedings of the International Symposium on Objects and Databases, pages
153–169, Sophia Antipolis, France, 2000. Springer Verlag.

[3] T. K. Das, G. Singhal, A. Mitchell, P. S. Kumar, and K. McGhee. Neteffect: A
network architecture for large scale multi-user virtual worlds. In ACM Press,
editor, Proceedings of the ACM Symposium on Virtual Reality Software and
Technology (VRST97), pages 157–164, New York, September 1997.

[4] K. R. Ditrich and A. Geppert. Component Database Systems. Morgan Kauf-
mann Publishers, 2001.

[5] Sony Online Entertainment. Everquest, 1999. http://www.everquest.com.

[6] E. Frecon and M. Stenius. Dive: A scalable network architecture for
distributed virtual environments. Distributed Systems Engineering Journal
(DSEJ), 5:91–100, 1998.

[7] C. Greenhalgh. Massive-3/hivek: Introduction. Technical report, Communi-
cations Research Group, June 1999.

[8] R. Hawkes and M. Wray. Livingspace: A living worlds implementation using
an event-based architecture. Technical report, HP Laboratories Bristol, Bristol,
October 1998.

[9] Walter Hürsch and Cristina Videira Lopes. Separation of concerns. Technical
Report NU-CCS-95-03, College of Computer Science, Northeastern Univer-
sity, Boston, Massachusetts, February 1995.



[10] IEEE Computer Society. HLA Interface Specification version 1.3, February
1998. IEEE 1516.1.

[11] IMAG-LSR and France Telecom R&D. Object and event management: First
specification. Technical report, PING Consortium, 2001.

[12] IMAG-LSR, France Telecom R&D, ENST, and Universisty of Reading. Per-
sistency, replication and real time consistency. Technical report, PING Con-
sortium, 2000.

[13] R. Lea, Y. Honda, K. Matsuda, and S. Matsuda. Community place: Architec-
ture and performance. In Proceedings of the VRML’97 conference, Monterey,
February 1997.

[14] M. R. Macedonia, M. J. Zyda, D. R. Pratt, P. T. Barham, and S. Zeswitz.
Npsnet: A network software architecture for large scale virtual environments.
Presence: Teleoperators and Virtual Environments, 3(4):265–287, Fall 1994.

[15] Katherine L. Morse. Interest management in large scale distributed simula-
tions. Technical report, Departement of Information and Computer Science,
University of California, Irvine, 1996.

[16] Quazal. NetZ 2.0: Technical Overview, November 2001.

[17] C. Roncancio, T. Nedelec, E. Perez-Cortes, and A. Gerodolle. Issues in the
design of large-scale shared networked worlds. In Proceedings of sixth Inter-
national workshop on groupware (CRIWG 2000), pages 158–161, Madeira,
Portugal, October 2000. IEEE Computer Society Press.

[18] S. K. Singhal and M. Zyda. Networked Virtual Environments Design and
Implementation. ACM Press, addison-wesley edition, July 1999.

[19] Turbine Entertainment Software. The turbine engine 2.0, 1999.
http://www.turbine-games.com/tech.htm.

[20] Lancaster University and ARMINES. Ping reactive programming framework
specification. Technical report, PING Consortium, 2001.

[21] M. Vellon, S. Drucker, K. Marple, and D. Mitchell. The architecture of a
distributed virtual worlds system. In Proceedings of the 4th USENIX Confer-
ence on Object-Oriented Technologies and Systems (COOTS), Santa Fe, New
Mexico, April 1998.

[22] R. C. Waters and D. B. Anderson. The java open community version 0.9
application program interface. Technical report, Mitsubishi Electric Research
Lab, February 1997.


