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Abstract. We address the problem of how to cover a set of required
points by a small number of azis—parallel ellipses that avoid a second set
of forbidden points. We study geometric properties of such covers and
present an efficient randomized approximation algorithm for the cover
construction. This question is motivated by a special pattern recogni-
tion task where one has to identify ellipse-shaped protein spots in two—
dimensional electrophoresis images.
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1 Introduction and the application background

In this paper we develop an efficient randomized approximation algorithm for
the following problem:

The general ellipse covering problem. Given a set F' of n forbidden points and a
set R of m required points, find a set E = {E}, ... , Ey,} of axis-parallel ellipses,
of minimal cardinality kg, such that their union UE := UgcgE covers R and
strictly respects F, i.e., R C int(UE) and F Nint(UE) = @. Thus UE has to
fully contain R in its interior and may contain no points from F' except on its
boundary.

Figure 1 shows a set of 43 required points (black) and 24 forbidden points
(white) forming a subset of the grid, and a cover by four ellipses. We challenge
the reader to find a cover with only three ellipses.

* Supported by DFG grant AL 253/4-3.



Fig. 1. An instance of the ellipse covering problem

Motivation. This problem stems from a pattern recognition task in proteomics,
which is a rapidly growing field within molecular biology. In proteomics two—
dimensional gel electrophoresis (2DE) is a well known and widely used technique
to separate the protein components of a probe. A 2DE gel is the product of two
separations performed sequentially in acrylamide gel media: isoelectric focusing
as the first dimension and a separation by molecular size as the second dimension.
A two-dimensional pattern of spots each representing a protein is the result
of that process. Eventually, spots are made visible by staining or radiographic
methods. By analyzing series of such 2DE images one hopes to identify those
proteins that change their expression (size, intensity) and reflect/cause certain
biochemical and biomedical conditions of an organism, see [15]. The first step
of the gel analysis, the so-called spot detection, is the algorithmic problem to
compute for a given digital gel image all its protein spots. See Figure 2 for an
example. Ideally, in a gel image each spot has the shape of an axis—parallel
ellipse, which is a widely accepted modeling assumption, see, e.g., [2,7].
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Fig. 2. Part of a gel image and spots computed



At first sight spot detection seems to be a pure image processing problem.
Usually, one starts with standard techniques like smoothing, segmentation, and
background extraction. The resulting image regions correspond ideally to single
spots. However, spots that are very close to each other can partially merge
(their elliptic shapes overlap) and form rather complicated regions as depicted
in Figure 3.

Fig. 3. Twin spots, streaks and complex region

Since in such situations the overlapping spots are often oversaturated (black)
the standard image processing methods do not help. In order to solve this prob-
lem some heuristics have been implemented in several software packages. But
even then, the really complex regions are usually left to be subdivided by the
user. Our approach is the first attempt to model and solve this problem by means
of computational geometry in the following form: Cover a given planar region R
by the union of a minimal number of axis—parallel ellipses. As in many applied
research problems there are some additional restrictions on the solution com-
ing from the application background. In [6] we have considered an application
specific model of the problem as well as several algorithms for this setting.

Related results. From the theoretical point of view the optimization problem of
covering a shape with ellipses (with small Hausdorff distance) is closely related
to the problem of exactly covering a shape with rectangles, which was shown to
be NP-complete [5]. It is also related to the problem of covering a shape with
strips [1], and to the range covering problem in a hypergraph [3]. Thus, in the
general setting there is not much hope for finding a polynomial time algorithm.
Consequently, we are looking for approximation algorithms.

To make use of the powerful machinery of geometric approximation algo-
rithms the region R will be represented by two sets of points F' and R, where R
is a sample of required points to be covered (inside R) and F' is a set, of forbidden
points (outside R). One can obtain these sets walking along the boundary of R
and choosing points inside and outside within a small distance. This approach
somehow mimics the general practice of experts who are looking for ellipses ap-
proximating long parts of the boundary of R. The advantage that both sets are
of small cardinality has to be paid for by the fact that the computed cover could
have some hole in the interior of the region. To avoid this one also can choose



R as the set of all grid points in R (from an appropriately dense grid). Then, of
course, the cardinality m of R can be quadratic in n, the size of F.

Overview. The naive approach to the general ellipse covering problem would
apply the greedy algorithm for the set covering problem [9] to a set S of ellipses,
which contains a cover of optimal size kg. It is easy to see that there is such a
set S of size O((n +m)*). This yields an approximation factor of O(logm).

Our alternative approach to solve the problem affects both sides of the greedy
solution. Firstly, we substitute S by a smaller set C of so-called canonical objects.
In Section 2 we create such a set C and show that it contains a cover that is
optimal up to a constant factor. We prove subsequently in Section 3 that the size
of C is only O(n?) and we describe how to construct it efficiently. The second
idea, specified in Section 4, is to adapt the machinery of geometric set cover
approximations [10, 14, 4, 3] to select a O(ko log ko) cover from C. Making use of
augmented partition trees, we present an efficient implementation which runs in
expected time O(n? + n3/?ko + mko + /mk?), where O denotes a variant of the
O-notation which subsumes polylogarithmic factors. We conclude with applying
the results to the original gel analysis problem.

Convention: Whenever we speak about ellipses and parabolas, we actually mean
azis-parallel ellipses and parabolas.

2 Canonical covers

As a first step we show that each ellipse in an optimal cover can be covered by
at most four canonical objects, each of which is defined by at most four points
of F and contains no point of F' in its interior. Consequently there exists a cover
that uses only canonical objects whose cardinality is at most four times larger
than the size of an optimal cover with arbitrary axis-parallel ellipses.

Ideally, we would like the canonical objects to be axis-parallel ellipses that
each have at least four points of F' on their boundary. However, in general F’
might be in such a position that additionally we have to consider halfplanes and
axis-parallel parabolas, which are degenerate cases of axis-parallel ellipses.

Definition 1. We call an azis-parallel ellipse, an azxis-parallel parabola, or a
halfplane F-empty if it does not contain any point of F in its interior. We call
it an i-point ellipse (or parabola or halfplane) if it is F-empty and additionally
contains at least i points of F' on its boundary. An i-point ellipse will be called
canonical if it is the only F-empty ellipse with these i points on its boundary.

All 2-point halfplanes and 3-point parabolas are canonical in this sense. In
general, four points uniquely determine an ellipse, but not all 4-point ellipses are
canonical, as four points at the corners of a square show.



Reduction to canonical objects. The basic idea of the reduction is the following:
we pick an axis-parallel ellipse Fy in an optimal cover; by definition Ej is F-
empty. Now essentially we blow up Ey to Ej) until it hits a point in F'; we continue
this process until we have enough points on the boundary of Ej. During the
blow-up we maintain the property that Ef is F-empty and that it contains Ey.
However, in order to maintain this containment property we will have to cover
Ey not by a single ellipse but by up to four ellipses which are derived from Ej.

Lemma 1. Let E be an F-empty ellipse. Then there exist Ey, Ey such that
E C Ey U E;, where Ey, E> are either 3-point ellipses or 2-point halfplanes.

Proof. We describe a 4-step process that transforms E appropriately: First, scale
the plane so that F is a circle. If £ does not touch F, increase its radius until
a point in F' is hit. If E touches only one point p of F, blow it up from p, i.e.,
move the midpoint m of E away from p on the ray that emanates in m towards
p, and increase the radius of E so that it keeps touching p, until it either hits a
second point, q of F' or degenerates to a halfplane. If E becomes a halfplane and
still touches only one point of F', rotate two copies Ey, F; of E around p in op-
posite directions, until they both hit a second point; in that case we are finished.
Otherwise, if E touches only two points :

of F', move the centers mg and m; of two
copies Ey and E; of E on the bisector
of p and ¢ into both directions and keep
touching p and ¢. Continue until each
circle either hits a third point of F' or
degenerates to a halfplane. O

Lemma 2. Let E be a 3-point ellipse. Then there exist E1, E> that have the
same three points of F' on their boundary, such that E C Ey U Ey, where Ey, Eo
is either a 3-point parabola or a canonical 4-point ellipse.

Proof. Assume that E = {(z,y) € R? | g(z,y) := az® + by> + cx + dy + e < 0}
with @ + b = 1 is not already a canonical ellipse. Then there is a one-parameter
family of F-empty ellipses with the same three points as E on their boundary.
Let E# E' = {(z,y) € R? | ¢'(z,y) := a'2®> + b'y? + 'z + d'y + €' < 0} with
a' +b =1 be such an ellipse. Note that a,b > 0, a/,b’ > 0, since E and E’
are ellipses, and (a,b) # (a',b"), since E and E' are not homothetic. Thus we
can assume wlog. that a > a’ and b < b'. Let E(z) := {(z,y) € R? | g.(x,y) :=
(1 - 2)g(@,y) + 29’ (z,y) < O},

Now, since (A — p)g(z,y) = Agu(z,y) — pga(z,y), we have E C E(X) U E(p)
for all p <0 < A If we let A grow from zero until at Ag either ay := a+ A(a' —a)
becomes zero, or a fourth point of F' is hit by E()\g); in the first case, By := E()\g)
is a 3-point parabola, whereas in the second case F is a canonical 4-point ellipse.
By shrinking p from zero until ug in a similar way we get Fs := E(uo) which is
also a 3-point parabola or a canonical 4-point ellipse. a

Corollary 1. An F-empty ellipse E can be covered by at most four regions which
are either 2-point halfplanes, 3-point parabolas, or canonical 4-point ellipses.



Definition 2. Let E*, Hy, P1, and E] denote the set of all F-empty ellipses,
the set of all 2-point halfplanes, the set of all 3-point parabolas, and the set of
all canonical 4-point ellipses respectively. We call C := EZ U P;‘ U Hy the set
of all canonical objects for (R, F). A subset E C C with R C int(UE) and
FNint(UE) = 0 will be called o C-cover for (R, F).

Corollary 2. If there is a ET-cover for (R, F) of size k, then there exists a
C-cover for (R, F) of size at most 4k.

The Delaunay circles of F' constitute an F-empty cover of the convex hull
of F. This can easily be made into an ET-cover for (R, F) of size O(n), so we
can conclude that kg < min(m,2n). However, an optimal ellipse cover can be
considerably smaller than an optimal circle cover — up to a factor of 2(n).
Therefore these circles cannot be used as canonical objects.

3 Constructing the canonical objects

We show that there are only O(n?) canonical objects, and give an algorithm to
construct them all within the same time bound.

4-point ellipses. First we will see how we can construct all 4-point ellipses, and
give a quadratic bound on their number by using dynamic Voronoi diagrams.

Lemma 3. Ef has size O(n?) and can be computed in O(n?) time.

Proof. Consider the linear map that maps a point (z,y) € R? to (z,ty) for a
parameter t € R. An F-empty ellipse with width w and height h is, for ¢t := w/h,
mapped to an F(t)-empty disk of radius w, where F(t) := {(z,ty) | (z,y) € F}.
So the vertices of the Voronoi diagram of the point set F'(t) correspond to F(t)-
empty disks, that have 3 points of F(t) on their boundary (3-point disks), which
in turn correspond to F-empty 3-point ellipses y-scaled by 1/t. Let us con-
sider the dynamic Voronoi diagram, i.e., the Voronoi diagram for varying ¢ > 0.
Vertices of degree four in this dynamic Voronoi diagram correspond to 4-point
disks, which in turn correspond to 4-point ellipses. This dynamic Voronoi dia-
gram can be considered as the lower envelope of the trivariate distance func-
tions fy(z,y,t) := (z — pe)® + (y — tpy)? for p = (pz,py) € F. Observe that
fo(m,y,t) = hy(z, ty, t?) + 2* + y? with hy(u,v,w) = —2p,u — 2pyv +p§w +p2,
such that the vertices of the lower envelope of the n hyperplanes h, in R* corre-
spond to the vertices of the lower envelope of the original f,,. The lower envelope
of n hyperplanes in R* has complexity O(n?) (see, e.g., [13]), so there are indeed
only O(n?) F-empty 4-point ellipses. This lower envelope can also be computed
within the same time bounds. O

This bound is tight in the worst case as two sets of points (each of size n/2)
on the z- and y-axis demonstrate.



3-point parabolas. Next we prove that the number of 3-point parabolas is only
linear and describe how to compute them in O(nlogn) time.

Lemma 4. P has size O(n) and can be computed in O(nlogn) time.

Proof. Let us argue wlog. that the number of parabolas with a wvertical axis is
O(n). To this end, we map all the points p = (z,y) € F to p' = (z,y,2?);
this corresponds to lifting F' to the parabolic cylinder ¢ given by the equation
z = x2. Note that every vertical axis-parallel parabola P is the projection of the
intersection curve of ¢ with an appropriate (unique) plane hp. Moreover a point
p is contained in P iff p’ is below hp.

This implies that a plane hp that corresponds to an F-empty axis-parallel
parabola P has to lie completely below the lower convex hull of F’. Moreover,
a plane that corresponds to a 3-point parabola has to touch this hull in at least
three non-collinear points from F'; therefore it corresponds to (i.e., contains) a
facet of that hull. This shows that there are indeed only O(n) such parabolas
and we can compute them all in O(nlogn) time by constructing convex hulls in
three dimensions. O

2-point halfplanes. The 2-point halfplanes correspond to the edges of the convex
hull of F. Thus there are only linearly many such halfplanes and they can be
computed in O(nlogn) time. This proves:

Lemma 5. Hy has size O(n) and can be computed in O(nlogn) time.

4 The covering algorithm

We describe a randomized algorithm that computes a C-cover for (R, F) which
consists of O(kg log ko) canonical objects. The technique was developed in [10, 14,
4,3]. For clarity of exposition we will assume that C does not contain parabolas
or halfplanes. Below we show how to modify our algorithm to handle these
objects as well. The algorithm proceeds in rounds; it works as follows (c is a
suitable constant that will be specified in the proof of Lemma 6):

Algorithm 1.

Input: (R, F)and k > 0.

Output: A C-cover E for (R, F') of size |E| < cklogk, if k > ko.

1. Initially set w(E) =1 for all E € C.

2. Start a new round by picking a random sample E of size cklogk from C
according to the weight distribution w.

3. If E is a cover, halt.

4. Take a point ¢ € R which is not covered by E, and determine the set V' =
{Ee€C|qeFE}.

5. If w(V') < w(C)/2k this round is declared to be successful and the weight of
all E € V is doubled.

6. Goto Step 2.



Lemma 6. If k > ko then

1. the probability that a round is successful is at least 1/2 and
2. the number of successful rounds is at most 4kglog(n?/ko) < 8klogn.

Proof. 1. Let € := 1/2k and consider the range space S = (F,C). This range
space clearly has finite VC-dimension. For the appropriate choice of ¢, c.f. [8,
11], a random sample E of size cklogk from C is an e-net for S wrt. the weight
function w with probability at least 1/2. Thus for any X C C with w(X) >
ew(C) it follows that EN X # (. Now if E is indeed an e-net, we can conclude
that w(V') < ew(C), since ENV =0, so the round is successful.

2. In each successful round the total weight w(C) increases by a factor of
at most (1 + €) < ef < 23/4 < 23/4k0_ Thus, after s successful rounds w(C) <
n223s/4k0_ Let Eq be an optimal C-cover. Since Eq covers R, clearly EqNV # 0,
so in each successful round the weight of at least one E € Eg is doubled. Now
if dg denotes the number of times that the weight of E € Eg has been doubled
after s successful rounds, then ), p dg > s, and we can conclude w(Eg) =

Y per, 277 > ko25/%0  where the last inequality follows with Jensen’s inequality.
Since w(Ep) < w(C) we finally get s < 4kolog(n?/ko). O

If k£ > ko we can view a single round of algorithm 1 as a Bernoulli experiment
with success probability at least 1/2. Thus we can apply a suitable Chernoff
bound and conclude that the probability that the total number of rounds exceeds
8k log(n) by a factor of ¢ is O(27).

Now counsider the following algorithm (call it Algorithm 2): Given k and 6 > 0,
we run algorithm 1 for up to 8k log(n)log(1/d) rounds. If we do not find a cover
of size at most cklogk within that number of rounds, we halt. This constitutes
a randomized approximation algorithm for the decision problem variant of the
minimal cover problem with a one-sided error:

Theorem 1. Given k and § > 0, algorithm 2 terminates after 8k log(n) log(1/6)
rounds, and if k > ko it returns a cover of size at most cklogk with probability
at least 1 — 4.

Since the value of kg is not know in general, we have to perform an exponential
search for it: To this end, we run algorithm 2 for £ = 1,2,4,8,... until it finds a
cover (call this procedure Algorithm 3). We get a cover of size at most 2ckg log ko
if the algorithm is successful in the [log ko ]-th step of the exponential search. The
total runtime of the exponential search procedure is dominated by the runtime
of the last step.

Theorem 2. For any 6 > 0 algorithm 3 computes after O(kolog(n) log(1/6))
rounds a cover of size at most 2cko log ko with probability at least 1 — 6.

4.1 Implementation

It remains to devise efficient means and data structures to maintain the weights
of the objects in C such that they allow efficient sampling according to w. More-
over we have to specify how to check whether a candidate sample E constitutes
a cover.



Random sampling. Each of the O(n?) ellipses E € C is specified by four real
parameters and can be written in the following form:

E={(x,y) e R | g(z,y) :==a(@® —y’)+bx+cy+d+y> <0}, (1)

where 0 < @ < 1 and b,¢,d € R. The ellipse E contains a point p = (z,y) iff
g(z,y) < 0. If we map E to the point pg := (a,b,c,d) € R* and the point p to
the hyperplane h, := {(4,B,C,D) € R* | A(z®> —y?)+ Bz +Cy + D + 4> =0}
then E contains p iff pg is below hy,.

We identify each ellipse E € C with the point pg. Let C' be the set of
these points. In order to efficiently pick an ellipse at random and to main-
tain the weights efficiently we store C' in a partition tree data structure: The
partition tree of [12] for these O(n?) points can be constructed in O(n?logn)
time, O(n?) space, and allows halfspace range queries to be answered in time
O(n?/? log®™) n). The first level of the tree stores a simplicial partition of size
O(n?/?), where each simplex represents n'/? points. Recursively, a simplex rep-
resenting r points stores a simplicial partition of size O(r3/?). The height of the
tree is O(loglogn). In this tree data structure the points themselves are stored
only at the leaves. For our purposes we add the weight information for the points
to the tree as follows: We store at each node a factor, initially set to one. The
weight for an ellipse (in a leaf) is the product of the factors on the path from
the leaf to the root.

Now suppose an uncovered point ¢ € R is given, for which we need to double
the weights of all ellipses in C that contain ¢. To this end we have to double the
weights of all points in C' that lie below h,. This can be done using the halfspace
range query algorithm of [12] which touches all simplices in the partition, and
then goes recursively into those simplices that are cut by h,. When touching
all simplices in a level, we simply have to double the factors of those simplices
that are completely below h,. So the doubling of the weights can be done in
O(n3/210g°M n) time.

In order to efficiently pick an ellipse at random from the tree we have to add
additional information to each node: In every inner node v we store the sum
s, of all weights in the subtree rooted at s,, divided by all factors on the path
from v (not including v) to the root. Note that we can initialize all s, easily in
a bottom-up manner. To each child of v, which corresponds to a simplex in the
simplicial partition that v represents, we associate an interval on the real positive
line whose length equals the weight of the simplex divided by all factors on the
path from v (not including v) to the root, such that all intervals of all children
together form a partition of the interval [0, s,]. We store this partition in v as a
sorted list. This allows us to go to a random branch in O(logn) time. During a
weight doubling step we can maintain these interval partitions at asymptotically
no extra cost since during a query we touch the children of each node that we
visit in the recursion anyway. In order to pick an ellipse at random we find a
random path from the root to the leaf which requires O(lognloglogn) time.

Verifying the cover. Now we need to check if E covers R. We first give a simple
algorithm which we speed up afterwards with a batching technique. We proceed



as follows: Compute the arrangement of the k; := cklog k ellipses, together with
an efficient point location data structure in O(k? logk;) time; then query this
data structure with all points in R. This takes O(mlogk;) time and identifies
an uncovered point. Now if k3 < y/m the total time spent in that procedure
is O((m + k%) logk;) = O(mlogky) = O(mlogm). If k; > \/m we can split E
into g := [k1/y/m] groups of size at most y/m and run the previously described
procedure for each of these groups. This requires O(k;+/mlogm) time. To sum-
marize, we can identify an uncovered point ¢ € R\UE in O((m+ki/m)logm) =
O((y/m + klogk)\/mlogm) time.
Putting all this together, algorithm 3 needs:

1. O(n?logn) preprocessing time to initialize the partition tree, and

2. in each of the O(kg log(n)log(1/€)) rounds
(a) O(n3/210g°M n) time for the weight update and the sampling step, and
(b) O((v/m + ko log ko)/mlogm) time for the verification step.

Theorem 3. For any € > 0 algorithm 3 computes with probability at least 1 — €
in O(n?logn + ko log(n) log(1/€)(n*/? 1og® M n + (/m + ko log ko )y/m logm)) =
O(n? + kon®/? 4 kom + k3\/m) time a cover of size at most 2cko log k.

4.2 Handling degenerate cases

To finish the description of our approximation algorithm we need to clarify a
few points. First of all we have to show how to adapt our method so that it can
handle axis-parallel parabolas and halfplanes. Next, since our ultimate goal is
to find a cover with ellipses only, we also have to describe how to repair a cover
computed by the algorithm so that it only uses ellipses. This is actually quite
straightforward in the original setting but if we relax the covering condition to
allow covered points on the boundary of covering objects, this issue gets slightly
more intricate.

Parabolas and halfplanes. First note that axis-parallel parabolas can also be
written in the form of equation (1) if we allow 0 < a < 1. Therefore the algorithm
we just described can handle them without any modifications.

The case of halfplanes is slightly more complicated. However, we can adopt
the basic techniques that work for parabolas and ellipses. In order to find all
halfplanes that contain a point ¢ € R, we have to perform a halfplane range-
query in the dual setting. Thus we can also use efficient data structures for
this problem and augment them appropriately with the weight information for
the halfplanes. Thus we end up with two data structures: one that handles
ellipses and parabolas and one that handles halfplanes. In the sampling step we
first decide, depending on the total weight of the data structures, whether to
take a halfplane or an ellipse/parabola, and the continue the sampling in the
appropriate data structures as described above. The asymptotic performance of
the algorithm is not affected by this modification.

Since the covering relation is strict, i.e., no point of R lies only on boundaries
of canonical objects, the halfplanes and parabolas in a C-cover can be replaced
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by the smallest enclosing axis-parallel ellipses of the points covered by the corre-
sponding canonical objects that respect F'. The total time required by this step
is O((m + n)ko log ko) which is dominated by the runtime of the approximation
algorithm.

Non-strict covers. We can modify our approach so that it also works when we
allow the points of R to be covered by the boundary of the covering objects.
We call a set of axis-parallel ellipses E a non-strict cover of (R, F') if the union
UE := UgegF covers R and respects F, i.e., R C UE and F Nint(UE) = §. All
our previous arguments and algorithms carry over to this setting. In particular
we can compute a non-strict C-cover for (R, F') of size O(kglogko) within the
time bounds stated in Theorem 3. The only difficulty arises in the last step when
we have to replace halfplanes and parabolas by ellipses. We defer the — quite
technical — details of this step for a full version of the paper.

4.3 The application revisited

In the spot detection application for electrophoresis gels which we have described
in Section 1 the task is to cover a planar region by the union of a minimal num-
ber of axis-parallel ellipses. Since for the computer-assisted analysis the elec-
trophoresis gels are scanned, the planar region is given as a pixel pattern. Let
therefore a connected pixel pattern R be given. We identify a pixel with its cen-
ter, and assume that pixels lie on a grid. Let F' be the set of grid points not in
R that are one pixel away from the boundary of R. Let n = |F|, which yields
m = |R| = O(n?). Now we can employ Theorem 3 and obtain a O(kg log ko)
cover in expected O(n2kg) time. Since every connected horizontal or vertical se-
quence of points of R is always bounded from both sides by a point of F' in this
setting, we can conclude that halfplanes or parabolas cannot occur in a cover,
so we need not take the trouble to handle these special cases.

Acknowledgments. We would like to thank Helmut Alt, Sariel Har-Peled, and
Ulrich Kortenkamp for fruitful discussions.
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