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Abstract

The integral image approach allows the optimal computation of Haar-based features for real-

time recognition of objects in image sequences. This short note gives a direction to generalize

the approach to high-dimensional images. We o�er a formula for optimal computation of sums

on high-dimensional rectangles.

Integral Image - Haar-Based Features - High-Dimensional Image - Möbius Inversion Formula

1 Introduction

Many computer vision applications require quick feature extraction and classi�cation, in particular
real-time location of objects in image sequences. A solution for such problem, though �rst introduced
for face detection, is the approach introduced by Viola and Jones [6]. They construct a boosted
cascade of simple classi�ers based on Haar-similar features that measure vertical, horizontal, central,
and diagonal variations of pixel intensities. These features are de�ned as the di�erence between
sums of image values on two, three and four rectangles, see Fig. 1.

The sum of image values i(x′, y′) on a rectangle (x0, y0]× (x1, y1]

A =
∑

x0<x′≤x1

∑
y0<y′≤y1

i(x′, y′) (1)

is computationally expensive, since its complexity depends on the rectangle's size. Viola and Jones
use the integral image as an intermediate array representation to optimally compute A. The integral
image value at the pixel (x, y) is de�ned as

I(x, y) =
∑

0≤x′≤x

∑
0≤y′≤y

i(x′, y′), (2)

i.e. the sum of the original image values on the rectangle [0, 0] × [x, y]. The integral image is
computed in one pass over the image using the recurrence

c(x, y) = c(x, y − 1) + i(x, y), (3)

I(x, y) = I(x− 1, y) + c(x, y), (4)

1



Figure 1: Haar-based rectangular features used for face recognition. The features are the sum on
the values on the gray region minus the sum on the white region.

Figure 2: Left: Integral image representation. Right: The four references used to compute the
image values on the gray area.

with
c(x,−1) = I(−1, y) = 0, (5)

where c(x, y) is called the cumulative row sum. See Fig. 2. Thus, one can compute A in constant
time using only four references to the integral image:

A = I(x1, y1)− I(x1, y0)− I(x0, y1) + I(x0, y0). (6)

The integral image approach only uses the spatial domain, excluding the extra information given
by the time dimension. By contrast, Ke et.al [3] include the time domain to detect motion events
and persons' activities in videos. They extend the approach de�ning the integral video to e�ciently
compute volumetric features from the video's optical �ow, using eight references to the integral
video to compute sums on parallelepipeds, see Fig. 3.

Many other image structures could pro�t from this approach, such as three dimensional images
that represent ultrasound sequences in medical applications or �ow in porous media in experimental
�uid dynamics [4]. These structures are not only static but dynamic high-dimensional images i(p, t),
where t ∈ [0, T ] and p ∈ Rn are the indexes in the time and spatial domain with n = 2, 3. Thus, a
natural question is how we can generalize this method for high-dimensional images.

We noted that generalizing the approach consist basically in adapting two main steps. One that
computes in one pass an integral array, and other that computes in constant time the sum of pixels
included in an hyper-rectangle using only few references to the integral array.
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Figure 3: Above: Volumetric features computed by the integral video. Below: The black circles are
the references used to compute the sum of the optical �ow on the volumen V .

The next section states these generalization steps and begins with some useful notation and
de�nitions.

2 Integral Representation in Higher Dimensions

We denote vectors with the usual notation

x = (x1, . . . , xd). (7)

Bold-faced scalars denote vectors whose entries are equal to the scalar.
Superindexes in vectors represent a labeling, which can be a scalar m such as

xm = (xm
1 , . . . , x

m
d ), (8)

or a vector n like
xn = (xn1

1 , . . . , xnd
d ). (9)

Note that, if m is a number, then xm = xm. As usual, em is a vector of the canonical basis, where
emm = 1 and emn = 0 for n 6= m.

We de�ne below a relation that plays a relevant role in this work.
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De�nition 1. The partial order � on the vectors is de�ned as

x � y⇔ xi ≤ yi, i = 1, . . . , d. (10)

Remark 1. The partial order lets us consider intervals similar to the one dimensional case, such
as the semi-closed interval

[x,y) = {z : x � z ≺ y}. (11)

Note that the interval de�nes geometrically a semi-closed hyper-rectangle. We will use without
distinction interval or rectangle to denote such a set.

De�nition 2. A d-dimensional image is a real-valued function

i : [0,u]→ R. (12)

The integral image I : [0,u]→ R of the image i is de�ned as

I(x) =
∑

z∈[0,x]

i(z). (13)

2.1 Optimal Computation of Integral Images

The �rst step in the approach is the computation of the integral image in one pass. This step is
relatively easy to generalize: if the array has dimension d, then one has only to maintain d−1 extra
arrays and de�ne a recursion similar to (3)-(5). We state formally this idea:

Proposition 1. The integral image I is computed in one pass over the image i using the arrays
cm, m = 1, . . . , d− 1, and the recurrence

I(x) = I(x− e1) + c1(x), (14)

c1(x) = c1(x− e2) + c2(x) (15)

...

cd−1(x) = cd−1(x− ed) + i(x), (16)

with
cm(x) = I(x) = 0, (17)

when xn < 0 for m = 1, . . . , d− 1 and n = 1, . . . , d.

Proof. Reordering the sum in the integral image we have:

I(x) =
∑

0�z�x

i(z) (18)

=
∑

0≤z1≤x1

· · ·
∑

0≤zd≤xd

i(z1, . . . , zd) (19)

=
∑

0≤z1≤x1−1

· · ·
∑

0≤zd≤xd

i(z1, . . . , zd) + (20)

∑
0≤z2≤x2

· · ·
∑

0≤zd≤xd

i(x1, z2, . . . , zd) (21)
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If we de�ne
c1(x) =

∑
0≤z2≤x2

· · ·
∑

0≤zd≤xd

i(x1, z2, . . . , zd), (22)

then we have
I(x) = I(x− e1) + c1(x). (23)

Similarly, we de�ne for n = 1, . . . , d− 1

cn(x) = cn(x− en+1) + cn+1(x), (24)

with
cn+1(x) =

∑
0≤zn+1≤xn+1

· · ·
∑

0≤zd≤xd

i(x1, . . . , xn, zn+1, . . . , zd), (25)

where cd(x) = i(x).
The second step in the approach is the optimal computation of

A =
∑

z∈(x0,x1]

i(z), (26)

given the image i, its integral image I, and the rectangle of interest (x0,x1]. This step is much
more di�cult to generalize than it seems. For two-dimensional rectangles, one can derive an optimal
expression using, for example, visual inspection of Fig. 2. However, using only visual inspection
to compute sums on a rectangle in dimension higher than two is very di�cult if not impossible.
Actually, one needs a general expression to compute sums on the rectangles in terms of the integral
array. The key we found is relating the sum on the rectangle of interest with the partial ordering
on vectors, the integral image and the concepts we de�ne next.

De�nition 3. The corners of the rectangle (x0,x1] are the vectors

xq = (xq1
1 , . . . , x

qd
d ), (27)

where q ∈ {0, 1}d.

De�nition 4. The binary representation of the rectangle [x0,x1) are the sums on its corners

S(q) =
∑

z∈[0,xq]

i(z), (28)

A(q) =
∑

z∈(xq−1,xq]

i(z), (29)

where x−1
n = 0 for n = 1, . . . , d.

Figure 4 compares the concepts de�ned above with the original de�nitions of Viola and Jones.
The binary representation o�ers a useful way to prove the generalization of the second step,

using the following result of combinatorial theory:
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Figure 4: Notation using binary labels for integral representations.

Proposition 2. [Möbius Inversion Formula] Let f(q) be a real-valued function, de�ned for q ranging
in a locally �nite partially ordered set Q. Let an element m exist with the property that f(q) = 0
unless q ≥ m. Suppose that

g(q) =
∑
p≤q

f(p). (30)

Then
f(q) =

∑
p≤q

µ(p, q)g(p), (31)

where the function µ is called the Möbius function of the partially ordered set Q. The value µ(p, q)
is computed recursively for p ≤ q as

µ(p, q) =
{

1, p = q
−
∑

p≤r<q µ(p, r), p 6= q.
(32)

We refer the interested reader to [5] for the proof of the Möbius Inversion Formula.
Now, we state an important result of this section:

Proposition 3. We can express a binary representation of the rectangle [x0,x1) as

S(q) =
∑
p�q

A(p), (33)

A(q) =
∑
p�q

(−1)`(q)−`(p)S(p), (34)

where

`(q) =
d∑

i=1

qi. (35)

Proof. Equation (33) is easily proved using

[0,xq] =
⋃
p�q

(xp−1,xp]. (36)
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Now, we prove (34). Observe that the element m mentioned in Prop. 2 guarantees that the
sum (30) is well de�ned. In our case, the sum (33) runs over a �nite number of indexes, so it is
already well de�ned. Thus, the partial order � and (33) satisfy the hypothesis of the the Möbius
Inversion Formula, then we conclude

A(q) =
∑
p�q

µ(p,q)S(p). (37)

We have only to prove
µ(p,q) = (−1)`(q)−`(p). (38)

For such purpose, we use the de�nition (32) of the Möbius function. Suppose �rst that p = q. Then
we have `(p) = `(q) and thus

µ(p,q) = 1 = (−1)0 = (−1)`(q)−`(p). (39)

Suppose that p 6= q and that (38) is valid for µ(p, r), with p � r ≺ q. Using the de�nition (32),
we have

µ(p,q) = −
∑

p�r≺q

µ(p, r) (40)

= −
`(q)−`(p)−1∑

i=0

∑
p�r≺q

`(r)=`(p)+i

µ(p, r), (41)

= −
`(q)−`(p)−1∑

i=0

∑
p�r≺q

`(r)=`(p)+i

(−1)`(r)−`(p) (42)

= −
`(q)−`(p)−1∑

i=0

∑
p�r≺q

`(r)=`(p)+i

(−1)i (43)

= −
`(q)−`(p)−1∑

i=0

(−1)i
∣∣∣{p � r ≺ q : `(r) = `(p) + i}

∣∣∣ (44)

= −
`(q)−`(p)−1∑

i=0

(−1)i

(
`(q)− `(p)

i

)
(45)

= −
`(q)−`(p)∑

i=0

(−1)i

(
`(q)− `(p)

i

)
+ (−1)`(q)−`(p) (46)

= (−1)`(q)−`(p). (47)

The above result lets us conclude the second step in the generalization of the approach:
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Proposition 4. Given an image i, its integral image I and the rectangle [x0,x1), we can compute
the sum A of the image values on the rectangle using 2d references to the integral image with the
formula

A =
∑

p∈{0,1}d
(−1)d−`(p)I(xp). (48)

Proof. Equation (48) is an immediate consequence of Prop. 3 and

S(q) = I(xq), (49)

A(1) = A, (50)

which are derived from the de�nition of binary representation.

3 Concluding Remarks

This short note gives a direction to generalize the Integral Image approach for d-dimensional images.
The generalization consists in the computation of a integral array in one pass and the optimal
computation of sums on rectangles using 2d references to the integral array.

The generalization has some drawbacks for high d. The computation of the integral array uses
d− 1 extra arrays, that means a memory increase that many personal computers could not support
for large images. Another problem is the curse of dimensionality. The boosting method used by
Viola and Jones selects the best feature from all possible ones generated by scaling, rotating and
translating a base feature through the image. If we consider, for example, the �rst (and simplest)
volumetric feature in Fig. 3, then the number of features is O(n2d) for an image of dimension
n × n × n. Despite these drawbacks, the results presented in this note seem to us an attractive
starting point for future applications.

By the other hand, there is another generalization not related directly with object recognition. If
we use integral instead of sums in Prop. 4, then we can informally say that (48) o�ers a generalization
of the Fundamental Theorem of Calculus [1]. Remember that this theorem states that, if f is a
continuous function on the interval [x0, x1] and F is an antiderivative of f , then∫ x1

x0

f(x) dx = F (x1)− F (x0). (51)

Note that the integral image can be regarded as an �antiderivative� of the original image, since it
is an integral of the image with a variable upper limit, similar to the antiderivative of a function of
one variable. Using this analogy, the generalization to several variables computes the integral of a
function f on the interval using its antiderivative F evaluated at the rectangle's corners:∫

[x0,x1]
f(x) dx =

∑
p∈{0,1}d

(−1)d−`(p)F (xp). (52)

This generalization is a �direct� generalization of the Fundamental Theorem of Calculus as compared
to Stoke's Theorem, which involves specialized concepts such as manifolds and di�erential forms [2].
A formal statement of this generalization needs the de�ntion of integrability and antiderivative
for functions of several variables, among other concepts. We are sure, however, the proof of the
generalization could follow the procedure we developed in this note to demonstrate Prop. 4.
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