
Framework supporting Rapid Information
Modelling

C. Ignat, M. C. Norrie

Institute for Information Systems
Swiss Federal Institute of Technology (ETH)
ETH-Zentrum, CH-8092 Zurich, Switzerland

Abstract

In this paper, we present a framework capable of supporting Rapid Infor-
mation Modelling. The management of information is done at the conceptual
level without the user having to define a data model for information organi-
sation. We introduce the notion of heterogeneous collections together with a
flexible notion of typing. One can easily define new typing constraints accord-
ing to user needs and integrate them into the framework. To support the pro-
cessing and querying of information, we provide algebra operations which can
be evaluated with or without type checking. An initial version of the frame-
work has been implemented as a web application offering flexible access to
information.

1 Introduction

Information modelling can be understood as the activity of designing specific do-
mains of interest called information spaces [Kob00]. Information spaces can be
seen as environments into which users enter to find answers to questions about a
specific topic, to browse large collections of information and to update and reor-
ganise information. Information spaces may be shared by user communities and
individual users may want to organise or view the information spaces according to
their own preferences or requirements.

Rapid Information Modelling (RIM) supports the construction of information
spaces on the conceptual level without it being necessary to define a data model for
information organisation. In an RIM application, the user can represent concepts
of a specific domain as information objects, create categories for these information
objects, build relationships between them or add properties to them. The user can
perform all these activities without knowing about information or data modelling.
Information objects can be dynamically classified into heterogeneous collections of
objects and associations. Further, the operations on these collections may optionally
be performed with or without type restrictions.



For implementing our RIM framework, we have used the eXtreme Design (XD)
framework developed by Kobler [Kob00] and the generic object model OM as an
expressive data model for supporting the conceptual design modelling process.

Since web browsers are being used increasingly, not only for browsing the
world-wide web, but also as a generic user interface for all kinds of web-applications,
we decided to implement an initial prototype as a web application.

The RIM framework and the Web application implemented as an initial proto-
type of this framework represent the initial step in the research problem of rapid in-
formation modelling. The second stage is to develop the desktop application which
will be described later in this paper. Based on the feedback from the second stage,
we will evaluate our approach and carry out any necessary adaptations or refine-
ments. In a third stage, we then plan to extend the framework to support general
application development.

In this paper, we present the metamodel which underlies the RIM approach,
together with the algebra developed for RIM. Additionally, we outline the archi-
tecture of our prototype and discuss the directions of future work in terms of both
extensions to the framework and applications.

To motivate the RIM framework, we begin in section 2 with a brief statement
of our vision expressed in terms of a planned first application. Section 3 presents
an overview of the OM model and XD design, emphasising the reasons for choos-
ing them in our approach. Section 4 motivates the need for information modelling
by means of an example and presents the overall architecture describing classifi-
cation and typing levels. Also, we present a web application developed using the
framework. Section 5 describes some issues for extending the framework.

2 Motivation

We believe that current systems tend to be either under-organised or over-organi-
sed. Users are either restricted by a fully-specified schema or left to their own
information chaos. We therefore propose RIM as a solution.

As part of a larger project on community information spaces, we first want to
implement an advanced email system using the RIM framework. This email sys-
tem will provide users with a more flexible means of organising emails through
classifications and associations. Further, it should be possible to store and organise
information extracted from emails. Let us highlight some key problems of this ap-
plication that can be solved using the RIM framework. Suppose, for example, that
a professor is responsible for managing the submission and selection of papers for
a conference. An initial schema for managing information might include a collec-
tion Papers containing objects of type paper with attributes name, identifying
the name of the author of the paper and file, corresponding to the name of the
file sent. As paper submissions are received by email, the professor will create the
appropriate objects in the database. However, it may happen that the process does
not go as smoothly as anticipated and some submissions are received which require
special handling, e.g. a file that is damaged or does not correspond to the required
format. With the RIM approach, the professor can simply and dynamically add
additional attributes to the created object stating that another file is expected.



The use of heterogeneous collections and of operations performed on these
collections can be motivated by the following example. In the context of previ-
ous application, suppose that the professor manages information about the persons
participating at the conference by using the collection Conference Contacts
containing objects of type contact. Type contact has the attributes name,
address and email. Further, information about friends can be managed by
the use of collection Friends which mainly contains objects of type friend.
Suppose type friend has the attributes name, birthdate and interests.
Assume some persons from the conference become new friends of the professor,
but for these persons the birthdate and their interests are not yet known. Using
the RIM framework, it is possible to add to collection Friends objects of type
contact, because all collections are heterogeneous. Operations over collections
can be performed with or without type checking. For example, we can perform
the intersection without type checking between collections Friends and Con-
ference Contacts to obtain the collection of persons from the conference that
became friends of the user. Then, we can perform a selection with type checking
over collection Friends to obtain all friends for which the birthday is a specified
day.

There are different ways that users want to extract and organise information
received as part of their everyday activities. Through simple drag and drop opera-
tions, they will want to move information between applications – such as email and
calendar systems – and also to store it on their desktops. Easy management and
retrieval of information dropped on the desktop requires an ability to organise that
information, but without the need for pre-defined schemas. The information may
be private, or part of a community information space in which users have different
information spheres defining not only the scope of their information access, but also
their information view.

We now go on to first describe the models on which RIM is based and then the
initial framework that has so far been developed.

3 The eXtreme Design (XD) approach

In this section, we first describe the OM generic model which underlies our ap-
proach in terms of the basic constructs and operations required for semantic data
modelling. We then go on to describe the eXtreme Design (XD) approach that we
use for RIM. As we will show, XD is also based on the OM view of modelling and
in fact has a metamodel expressed in OM as its core.

The generic object model OM is suitable for conceptual design because it can
be used for all stages of the database development cycle [KNW98] and offers a rich
set of concepts for classifying and typing.

For example, in a university we want to have an information system capa-
ble of managing student and teacher data. So, we can define the follow-
ing type hierarchy in OM notation, as shown in Figure 1. We assign to a per-
son properties such as name, birthdate, address and email. Addition-
ally, we assign to a student the attribute year of study and the method at-
tends courses and to a teacher attributes rank, salary and office and



the method teaches courses. Further, we want to classify persons into stu-
dents and teachers.

person

student teacher

name : string

birthdate : date

address : string

email : url

year_of_study : string

attends_courses : () −> (courses: set of course)
teaches_courses : () −> (courses: set of course)

office : string

salary : integer

rank : string

Figure 1: Typing hierarchy for University example

The OM model distinguishes between the classification of entities into cate-
gories according to general concepts of the application domain and the description
of the representation of entities within the database in terms of types [Nor95].

In reality, a person can be classified as a student and as a teacher simultaneously.
In this way, a person will play the role of a student and of a teacher at the same time.
The OM model allows objects to have different types simultaneously. So, the same
person object can be dressed with the types student and teacher. Such role
modelling cannot be supported in most object-oriented data models.

In our example, as shown in Figure 2, role modelling is achieved by insert-
ing objects into collections Persons, Students and Teachers assuming as-
sociated member types person, student and teacher respectively and it is
possible that an object belongs to more than one collection at the same time. For
instance, if an object is a member of the collection Students and Teachers
simultaneously, it gains the attributes name, birthdate, address, email,
year of study and the method attends courses if it is viewed through
collection Students and the attributes name, birthdate, address, email,
rank, salary, office and the method teaches courses if it is viewed
through collection Teachers.

Persons

TeachersStudents
teacherstudent

person

Figure 2: Classification

The OM model provides support for collections of objects and associations (bi-
nary collections). It specifies a set of operations over collections such as union, in-
tersection, difference, cross product, flatten, selection, map, reduce and cardinality,



and a set of operations over binary collections such as domain, range, inverse, com-
pose and closure. Further, the OM model defines some integrity constraints such as
subcollection, cover, disjoint, partition, intersection and cardinality constraints. For
a full description of the OM model and its associated algebra see [Wür00].

The OM model can be used for all stages of database development. In the con-
ceptual database design stage, we can express knowledge about objects, semantic
groupings of objects and associations between objects — all using a very powerful
graphical notation in which there are represented the collections of objects, the as-
sociations between these collections and the constraints [NW00]. During the data
model mapping phase, the conceptual schema is transformed to the data model of
the chosen DBMS by using Data Definition Language (DDL) statements. The pop-
ulation of the database is described in terms of Data Manipulation Language (DML)
statements.

The eXtreme Design (XD) approach [Kob00] facilitates rapid information
modelling (RIM) by making it possible to specify and implement concepts of the
application domain on a very high level of abstraction. The eXtreme Design ap-
proach comprises the XD meta model and XD algebra and is supported by the XD
framework.

The XD meta model is defined in term of the OM model, making it possible to
easily customise the meta model by adding collections and associations. The set
of object attributes and methods is not fixed and they can be added and removed at
runtime.

Compared to other design methods such as the ones proposed in [Boo91, CY91,
RBP91], we do not have to change the design specification and implementation if
we want, for example, to introduce new object properties or additional relationships.
Also, the third generation methods such as the Unified Modelling Language (UML)
[UML] or Object-oriented Process, Environment and Notation (OPEN) [Hen97]
provide techniques for categorising application domain objects, for defining rela-
tionships among objects and for specifying object properties. However, when intro-
ducing new requirements to a software system, often it is necessary to change and
adapt the corresponding design specifications together with their implementations.

Figure 3 shows the XD meta model which is divided into three main parts cor-
responding to the activity of classification, structuring and typing.

The activity of classification corresponds to role modelling, i.e. the specifica-
tion of the roles that the objects play in the application domain. Objects can be
classified to be members of Object Groups as shown in Figure 3 by the associ-
ation are member of between Objects and Object Groups. An Object
Group, in turn, can be a member of other Object Groups as shown by the
association are member of over Object Groups.

Structuring refers to defining relationships between objects. By the associa-
tion refer to between meta objects, we can express hierarchical relationships
[DT93] such as is a, instance of, part of, membership of relationships and non-
hierarchical relationships (one-to-many and many-to-many relationships). The
specified by association between the refer to association and the Objects
collection can be used to characterise the refer to association by assigning facts
[Kob00].



attribute

objectGroup

object

method

valueEntity

Object
Groups

Attributes Methods

Value Entities

are_member_of

0:*

0:*

refer_to

0:*

0:*

are_specified_by

0:*

1:1

are_defined_by

0:*

0:*

have

0:*0:*

specified_by

Objects
0:*

0:*

refer_to

0:*

0:*

0:*

0:*

refer_to

0:*

0:*

are_member_of

Figure 3: A schema in the OM model

Typing refers to methods, attributes and attribute values. Attributes are linked
to the object by are specified by associations and methods are linked to the
object by have associations. Value entities are associated to attributes by are de-
fined by associations and to objects by refer to associations. Value sets can
be specified by refer to associations between value entities.

The XD Algebra consists of algebraic operations for all three parts of the XD
meta model, defining operations for object groups, for object relationships and facts
and for object properties [Kob00].

4 Rapid Information Modelling

In what follows we will motivate the need for rapid information modelling by
means of an example. Let us consider again the university example. Consider
the Students collection. Each student object which is a member of this collec-
tion has associated properties such as name, birthdate, address, email,
year of study, and attends courses. Suppose that, after having the list of
all students, we find out that 1% of the existing students not only study, but also
work. Thus, for these students, we decide to keep some extra information about
their job: address of work and salary.

In the case of the OM model, each collection has an associated type, and an
object belonging to that collection is dressed with that type. A solution for the
described problem would be to change the type student associated to the col-
lection Students to reflect the extra information. In that case, the type stu-
dent would have associated attributes name, birthdate, address, email,
year of study, address of work and salary. But it does not make sense
to have all these properties for the students who do not work. On the other hand,



the type student associated to the collection cannot be changed at runtime. An-
other possibility would be to create a new collection StudentsThatWork with
the associated type studentThatWorks. Type studentThatWorks has the
attributes address of work and salary. So, a student that works can be ac-
cessed both from collection Students and then is viewed as being of type stu-
dent and from collection StudentsThatWork and then is viewed as being of
type studentThatWorks. But for this approach the schema has to be changed
by creating the new collection StudentsThatWork and the new type stu-
dentThatWorks. Moreover, if we want to store different kinds of additional
information for different students, we will end up with a lot of collections and types
created only for representing some particular cases.

So, there are problems when we want to add some attributes to an object belong-
ing to a collection without having to change the schema. The same problem arises
when we want to delete some attributes of an object in a collection. For instance,
when we insert a student object into the collection Teachers, we do not want
to associate to it the attribute office.

We argue the necessity to add or remove attributes of an object at runtime and
also to model heterogeneous collections. For adding and removing attributes of
objects at runtime we have used the XD framework. The XD framework is a de-
scription at the level of objects and is based on the key notion that everything is
an object. The RIM framework extends the XD framework by allowing a descrip-
tion at the level of collections. There were designed heterogeneous collections, i.e.
collections in which the members have some common features, but not all of their
properties are the same. Heterogeneous collections can be implemented by associ-
ating not only one, but more types to a collection.

In the RIM framework, we wanted to model the data model used at the client
application level using the meta model from the server side.

According to the XD meta model, there are three levels corresponding to the
three activities, as depicted in Figure 4: classification, typing and structuring. At
the classification level we deal with collections and associations. At the typing level
we allow an object to be dressed with more than one type. In the OM model im-
plementation under Java, OMS Java, this was accomplished by constructing two
classes: OMObject and OMInstance [NK00]. At the structuring level we deal
with relations between objects. In what follows, we will explain in detail our ap-
proach for each of the three levels.

Classification level used in the ’OM-like’ data model is implemented by means
of collections and associations or binary collections and their algebra. We deal with
heterogeneous collections, in this sense extending the OM model which allows only
homogeneous collections.

A collection can contain objects of different types. Each object inside the col-
lection has an associated type. Because a collection has different associated types,
we can view the collection through any of these types. So, we can introduce the
notion of collection viewed through a type.

We denote a collection � having members of type ��, ��, . . . , �� by ����� ��� � � � �
���. Suppose ��, � � �� �, is the set of object instances of types �� belonging to
collection �. Then, ����� ��� � � � � ��� � �� � �� � � � � � ��. � viewed through the



 Application
API Server

Classification

Client

(Algebra)

Data Model Meta Model

relations between objects)

Structuring

(hierachies, 

"OM Instances"

"OM Objects"

Associations

Collections

(attributes, methods)

Typing

XD Framework API

"OM−like"

Figure 4: Architecture

type ��, denoted by ����� will contain the set of objects instances of type ��, i.e.
����� � ��.

We also have introduced some graphical notations for representing a collection
together with its members and for representing an object instance of a type together
with its attributes, as shown in Figure 5. Note that the object can have some missing
or extra attributes compared to the attributes of the type. When representing it like
this, there will be listed only the existing attributes of the object which belong also
to the type.

ObjectID

attribn=valuen
...

attrib2=value2

attrib1=value1

typeName

objectMemberID1
objectMemberID2

...
objectMemberIDn

CollectionName

Figure 5: Collection and Object Representation

We have introduced the notion of base type of a collection. For a collection we
can explicitly specify the base type, according to the semantics of that collection.
For instance, for collection Students the base type can be specified to be stu-
dent, for collection Teachers the type teacher and so on. But, if no base
type is associated to a collection, it can be established to be the type of the majority
of members of the collection. For a collection ����� � � � � ���, if the base type is ��,
then it will be denoted by �����.

For the heterogeneous collections we have defined a set of operations: cardinal-
ity, union, intersection, difference, selection, map and reduce.

These operations can be realised in two ways:



� without type checking meaning that the operations will not take into account
the types of the members of the collections. The operations are evaluated in
the same way as operations over two sets.

� with type checking meaning that the operations will take into account the
types of the members of the collections, that means the collections are viewed
through a certain type.

We will use an example for illustrating how a union operation can be performed
with or without type checking. Consider the collection Students containing as
members the objects given by their object identifiers: OID1, OID2 and OID3. Ob-
jects represented by OID1 and OID2 are dressed with type student and the ob-
ject represented by OID3 is dressed with type person. Suppose that the base type
of collection Students is type student, denoted by Students[student].
Further, consider the collection Teachers having as members the objects given
by their object identifiers: OID4, OID5 and OID1. Objects represented by OID4,
OID5 are dressed with type teacher and the object represented by OID1 is
dressed with type student. Suppose that the base type of collection Teachers
is type teacher, denoted by Teachers[teacher].

Let us consider the union operation between collections Students and Teach-
ers. When performing union without type checking we obtain

�������� � 	�
���
� � �OID1, OID2, OID3, OID4, OID5�
������� �	
�

����
���

The result will be a collection which will not have implicitly associated a base
type, but it can be established to be the type of the majority of members of the
collection. In this case there are 2 members of type student, 2 members of type
teacher, and 1 member of type person. So, the base can be either student
or teacher.

In the case of union with type checking, we will consider only the members
of the two collections which are instances of the base types of the collections. The
result collection will have as base type the least common supertype of the base types
of the collections. The least common supertype has as properties the intersection of
properties of the type student and of the type teacher. So, the least common
supertype of type student and teacher is type person. The result of the
union with type checking of collections Students and Teachers is

�������� ��������� � 	�
���
� ���
���
� �
���� �	
�

����
���

� �OID1, OID2� � �OID4, OID5� � �OID1, OID2, OID4, OID5�

The object members of the result collection are dressed with type person,
but they did not lose the additional properties corresponding to type student for
objects given by OID1 and OID2 and respectively to type teacher for objects
given by OID4 and OID5.

At the typing level, as in the OM model, we allow an object to have different
types simultaneously. We have seen that in the eXtreme Design meta model the set



of object attributes and methods is not fixed. Suppose we create an object and dress
it with a certain type. What happens if we remove or add attributes to the object?
In the case of strong typing, the object would no longer be an instance of that type.
So, typing should allow some flexibility.

We say that an object can be considered to be dressed with a type even if the set
of attributes of the object is different than the set of attributes of the type. Of course,
this difference cannot exceed some limits.

An object can be dressed with a certain type if one of the following conditions
is fulfilled:

1. the object has a number of common attributes with the type
2. the object has at most � extra attributes and at most � missing attributes

compared to the attributes of the type, � being specified
3. the ratio between the number of common attributes and the number of differ-

ent attributes must be greater than a given limit.

no. of common attribs
no. of missing attribs + no. of extra attribs

� percentage�

where percentage is given.

The structuring level refers to specifying object relationships. For example, in
our framework we have developed subcollection relationships.

Also, the framework offers some functions in which information is analysed
and schema and data definition files generated in terms of the DDL (Data Defini-
tion Language) and DML (Data Manipulation Language) associated with the OM
model. These can then be loaded into a particular data management system based
on the OM model such as OMS Java [NK00].

We have developed a web application which can be considered as a prototype
for RIM. For the connection between the browser and our application we have used
Java Servlets [Mos99]. The application allows the user to create objects of dif-
ferent types, to update objects including the possibilities of adding and removing
new attributes, to create new types and collections, and to insert or remove objects
into collections. Also, the user can choose one of the typing constraints we have
mentioned previously, according to which an object is determined to be instance of
a certain type. According to the type an object is dressed with, the user can find
out the most suitable collection for containing that object. The user can perform
algebra operations over collections, either by typing a query in the Algebraic Query
Language (AQL) [NW00] or by being guided to select the parameters necessary for
performing different operations.

5 Future Work

In this section we present some issues for future extensions to the framework.
The framework can extend the typing constraints to refer not only to attributes,

but also to methods. We refer to the attributes and methods of an object as the
properties of that object. Then, the typing conditions will be modified to refer to



properties instead of attributes. A more general case is to take into account not only
the number of properties, but also some specified properties.

We also propose to develop a full algebra for binary collections. This can be
done with some modifications to the framework in order that all operations on col-
lections apply also to binary collections. From the specific operations for binary
collections, there were implemented only domain and range. But, there can be
implemented also domain restriction and subtraction, range restriction and sub-
traction, inverse, composition, nest, unnest, division and closure.

The subcollection constraint has been implemented, but other forms of classi-
fication constraint such as the cover constraint, disjoint constraint, partition con-
straint and intersect constraint could also be implemented.

Currently, a collection must be of bulk type set. The framework can be ex-
tended for supporting also bulk types bag, ranking and sequence behaviour which
are supported in the OM model.

After the schema has been generated, it would be possible to automatically cre-
ate a hierarchy of types by analysing, not only the attributes of the types, but also
information concerning objects and collections. If two types have some common
attributes, it does not imply that the two types are in a subtype relationship. We have
to analyse whether there exist objects instances of both types or if there exist col-
lections containing members of both types, because a collection means a grouping
of objects having some common features.

Because we are using a metamodelling approach, the additional flexibility is
traded for the cost of less structure. For example, what happens when querying
on an object for an attribute that it was already removed? For this problem we
can apply the exception handling mechanism discussed in [Bor85a]. In this paper,
an Information System is defined to be a computer system maintaining knowledge
about some aspect of the world and consisting of two main parts: a database of
persistent facts and a collection of application programs (’transactions’) which are
run against the database in order to retrieve or update information on it. An excep-
tional object is created when, for example, a transaction tries to access a missing
attribute or one of the constraints is violated. When exceptional facts are tried to
be accommodated, some of the transactions will be semantically incorrect or incor-
rectly typed. An essentially ’demand driven’ technique [Bor85b] for dealing with
exceptional values is to allow transactions which signal or propagate exceptions ei-
ther to be ’backtracked’, so that all side effects are undone, or to be ’resumed’. The
resume possibility means that the exceptional value is replaced by another value for
the particular case. For instance, in case of missing attributes, we can provide null
values to indicate lack of information. A problem for which we have not found yet
a very suitable solution is the following one. Suppose a method accesses an existent
attribute of an object. Further, suppose this attribute is removed and then there is
added another attribute with the same name but different type. The method relies
on the fact that the attribute is of the older type. The exception mechanism is not
yet implemented in the framework.

As future work, the desktop vision application we have described in section 2
will be developed. The existing RIM framework will be extended and we will
develop some other applications using this framework to demonstrate its generality.



For instance, we want to investigate its suitability for the information management
of web sites.

References

[Boo91] G. Booch. Object Oriented Design with Applications. Ben-
jamin/Cummings Publishing, 1991.

[Bor85a] A. Borgida. Thoughts on accommodating exceptions to (type) con-
straints in Information Systems. In Persistence and Data Types Papers
for the Appin Workshop, August 1985.

[Bor85b] A. Borgida. Language features for flexible handling of exceptions in
Information Systems. In ACM Trans. on Database Systems, December
1985.

[CY91] P. Coad and E. Yourdan. Object-Oriented Design. Prentice-Hall, 1991.

[DT93] T. Dillon and P.L. Tan. Object-Oriented Conceptual Modelling. Prentice
Hall, 1993

[Hen97] B. Henderson-Sellers. OPEN: Object-oriented Process,Environment
and Notation, The first full lifecycle, third generation OO method. CRC
Press, 1997.

[Kob00] A. Kobler. The eXtreme Design Approach. Draft Thesis, 2000

[KNW98] A. Kobler, M.C. Norrie and A. Würgler. OMS Approach to Database
Development through Rapid Prototyping. In Proc. 8th Workshop on In-
formation Technologies and Systems (WITS’98), Helsinki, Finland, De-
cember 1998

[Mos99] K. Moss. Java Servlets: second edition. McGraw-Hill, 1999

[Nor95] M.C. Norrie. Distinguishing Typing and Classification in Object Data
Models. In Information Modelling and Knowledge Bases, vol VI, ch.25
IOS, 1995 (originally appeared in Proc. European- Japanese Seminar
on Information and Knowledge Modelling, Stockholm, Sweden, June
1994)

[NK00] M.C. Norrie and A. Kobler. OMS Java Object-Oriented Framework
and Data Management System. Institute for Information Systems, ETH
Zurich, May 2000

[NW00] M.C. Norrie and A. Würgler. OMS Pro Introductory Tutorial. Institute
for Information Systems, ETH Zurich, March 2000

[RBP91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen.
Object-Oriented Modelling and Design. Prentice-Hall, 1991.

[UML] UML Resource Center. http://www.rational.com/uml/index.jsp. OMG
Unified Modelling Language Specification Version 1.3, 1999

[Wür00] A.P. Würgler. OMS Development Framework: Rapid Prototyping for
Object-Oriented Databases. Phd thesis, Departement of Computer Sci-
ence, ETH, CH-8092 Zurich, Switzerland, 2000


