
SERIE B � INFORMATIK

A polynomial�time algorithm for computation

of the Tutte polynomials of graphs of

bounded treewidth

Artur Andrzejak�

B �����
December ����

Abstract

For each �xed� positive integer k we give an algorithm which decides if a given graph
G has treewidth at most k and if so� it computes the Tutte polynomial of G in time

O���n���� log��c��� log��
�

�
��� where c� is twice the number of partitions of a set with

� k	� elements
 The decision if G has treewidth at most k can be obtained in linear
time due to an algorithm of H
 Bodlaender

�artur�inf�fu�berlin�de� Freie Universit�at Berlin� Institut f�ur Informatik� Takustr� �� ����� Berlin� Ger	
many

�

� Introduction

Triggered by the paper of Jaeger et al	
JVW���
 the computational complexity of the
Tutte polynomial has recently received a lot of attention	 It was shown in
JVW���
that determining the Tutte polynomial t�M � x� y� of a matroid for �xed values a� b
of x and y
 respectively
 is �P �hard unless the point �a� b� of the plane lies on a
hyperbola �x � �� �y � �� � � or is one of � special points ��� ��
 �������
 ������

���� ��
 �i��i�
 ��i� i�
 �j� j
� and �j
� j�
 where i
 � �� and j � e
�i�� �
Wel���
and
Wel����	 Later Vertigan
Ver��� showed that a similar result holds for the Tutte
polynomial of a planar graph	

The evaluations of the Tutte polynomial range very wide and include such quanti�
ties as the chromatic and �ow polynomials of a graph
 the �all terminal� probability
of a network
 the partition functions of the Ising and Potts models of statistical
physics and the Jones and Kau�man bracket polynomials of an alternating link
�
BO���

JVW���

Wel����	 As a consequence
 most of the quantities obtained by
evaluation of the Tutte polynomial �especially all listed above� are �P �hard for the
class of planar graphs	 In spite of this fact it seems to be interesting to investigate
for which classes of graphs the calculation of the Tutte polynomial can be done in
polynomial time	 This question has been partially answered in the matroid case
in
OW���	 For graphs it follows that one of these classes are the series�parallel
networks	

In this paper we show that the Tutte polynomial of a graph of bounded treewidth
can be computed in polynomial time	 More precisely
 we show that for each positive
integer k there is an algorithm which decides in linear time if a given graph G has
treewidth at most k and if so
 the Tutte polynomial of G is computed in �remaining�

time O���n�
�
 log�
c��� log�

�
�
��
 where c� is twice the number of partitions of a set

with � k � � elements	 An explicit form of the algorithm is given
 but because of
large preprocessing time already for k � � its applicability is limited	

The class of graphs of treewidth bounded by an integer k �or
 equivalently
 the
class of partial k�trees� is well studied and includes such graph classes as series�
parallel networks �k � ��
 chordal graphs with maximal clique size k�� and interval
graphs with maximal clique size k�� �see
Bod��b� and
Lee��� for a survey�	 A huge
number of problems being NP �hard in general turn out to be polynomial�time �or
even linear�time� solvable for graphs of bounded treewidth	 The problems include
hamiltonian circuit
 chromatic number
 vertex cover and many more
�see
Bod���

ALS���

AP���

AC���
 and also
Bod��b� for more bibliography�	

� De�nitions and Example

In this section we give some de�nitions
 followed by an example of the application
of the main algorithm	

Our de�nitions follow
Aig���

Wel��� and
BT���	
For a graph G and T � E�G� we denote as GnT or Gne if T � feg the deletion

A polynomial�time algorithm for Tutte polynomials �

of T from G and G�T or G�e the contraction of T from G	 In following
 let c�G�
denote the number of components of G	

If G has an empty edge set then we set the Tutte polynomial t�G� x� y� or t�G�
of G to be �	 Otherwise we have for any e � E�G�

�R�� t�G� � t�Gne� � t�G�e� if e is not a loop or isthmus

�R�� t�G� � x t�Gne� if e is a an isthmus

�R�� t�G� � y t�Gne� if e is a loop	

It can be shown that the Tutte polynomial is well�de�ned	 Obviously t�G� x� y�
is a ��variable polynomial in x� y with nonnegative coe�cients	

A tree decomposition of an undirected graph G � �V�E� is a pair �T�U�
 where
T � �I� F � is a tree and U � fXiji � Ig is a family of subsets of V
 one for each
node in T
 such that

�
S
i�I Xi � V

� for all fv� wg � E
 there exists an i � I such that v � Xi and w � Xi

� for all i�� i
� i� � I
 if i
 is on the path from i� to i� in T
 then Xi� �Xi� � Xi�	

The width of a tree decomposition is maxi�I jXij � �	 The treewidth of a graph
G is the minimum width over all possible tree decompositions of G	

An equivalent notion is a partial k�tree �see
Arn����	 We have �
Lee��
 p	 �����

Lemma � Let G � �V�E� be a graph with jV j � k� Then G is a partial k�tree if
and only if the treewidth of G is not bigger than k�

We consider mostly binary and rooted decomposition trees	 We understand that
a tree T � �I� F � is binary if each node has at most two sons and it is rooted if there
is a unique node in T called root	 For such a tree we write ls�i� � I for the left son
of i � I and rs�i� � I for the right son of i	 We also assume that every node of T is
either a leaf or has at least the left son	

Besides a rooted tree decomposition of G our algorithm needs the following
partition of E�G�	 We create it by assigning to each i � I a set Ei of edges of G
�internal� to i in such a way that for di�erent i� j � I the sets Ei� Ej are disjunct
and if fv� wg � Ei then v� w � Xi	 By de�nition of �T�U� such partition of E�G�
must exist	 Because our algorithm works for any such partition of E�G�
 we still
designate a tree decomposition of G as �T�U� but keep in mind that Ei are �xed for
i � �� � � � � jIj	

Let s�r� be the number of partitions of a set with r many elements	 We write
P �Y � for a partition of the elements in a set Y and we denote by P ��Y � the partition
of Y
 where each element of Y is a singleton	 For i � I and a vertex set Y
 let

�

G�i� P �Y �� be a graph obtained in the following way	 First we create a graph G�

which has vertices in Xi and edges in Ei	 Then G�i� P �Y �� is obtained from G� by
identifying all vertices in each block of the partition P � of Y �Xi
 being a restriction
of P �Y � to Y � Xi	 For example
 G�i� P

��Y �� � G� for any vertex set Y 	 A new
vertex corresponding to a block of P �Xi� keeps one or more names of the vertices
from which it was created	

For two sets X and Y and their partitions P �X� and P �Y � we extend the notion
of their supremum P �X��P �Y � in the partition lattice as follows	 Let C be X �Y

PX�C� a partition of C with all blocks of P �X� and in which all elements in C �X
are singletons and PY �C� a partition of C with all blocks of PY �C� and in which
all elements of C � Y are singletons	 Then P �X� � P �Y � is de�ned as the usual
supremum PX�C� � PY �C� in the lattice of partitions of the set C	

For a node i of T we de�ne the graph subG�i� P �Y �� of G
 where P �Y � is a
partition of a set Y � V �G�
 as the following graph	 Let G� be the graph unionS
j G�j� P

��Xj��
 where j is i itself or a descendant of i	 Then subG�i� P �Y �� is
obtained from G� by identifying for each block of P �Y � all vertices in V �G�� � Y
being in the same block of P �Y �	 In the way analogous to the de�nition ofG�i� P �Y ��
we keep all old names of vertices in V �G�� � Y 	

For example
 for the decomposition tree in Figure � �where each dashed ellipse
represents a node of T � the graph subG�A� P ��fa� b� cg�� is the example graph G from
the Figure � itself and subG�B�P ��fa� c� dg�� is the graph with vertices a� c� d� e� f
and edges fa� dg
 fc� dg
 fe� dg
 fe� fg
 ff� dg	 The graph subG�i� P �Y �� is not
necessary as a data structure for our main algorithm
 but it facilitates the proofs
and explanations	

b

d

a

e f h i

c g

Figure �� An example graph G

A

B D

C E F

Figure �� A tree decomposition of G

We would like to give an example of the way our algorithm works	 In Figure
� we see an example graph G on � vertices and in Figure � a tree decomposition

A polynomial�time algorithm for Tutte polynomials �

�T�U� of G of width �	 The tree T must be binary
 rooted and its depth must
not exceed � dlog �

�
��n�e	 If G has treewidth k
 then its tree decomposition �T�U�

must have width at most � k � �	 We will show in Section � that we can �nd such
tree decomposition of width at most r � � k � � of G in time linear in n if G has
treewidth at most k	

We obtain the Tutte polynomial of G by calling the recursive procedure
TP�A� P ��XA��
 where A is the root of the tree decomposition	 The details of
the algorithm and the analysis of its running time are described in Section �	 For
now
 we would like to give a rough idea why the running time is polynomial	 We
introduce a so called modi�ed splitting tree �S which corresponds to T 	 The tree
�S in our example is shown in Figure �	 Each node of this tree corresponds to one
call of our procedure	 For each node of �S
 the corresponding running time of the
algorithm is O�n
� plus a constant depending on r � � k � �	

Figure �� The modi�ed splitting tree �S corresponding to T

By calling TP�i� P �Y ��
 where P �Y � is a partition of a set Y � V �G�
 we cause
a so called splitting formula to be applied on the the graphs G� � subG�rs�i�� P �Y ��
and on the complementary part G�� � subG�ls�i�� P �Y �� � G�i� P �Y ��	 As a result
we obtain the Tutte polynomial of subG�i� P �Y ��	 The notion of splitting formulas
and a recipe how to obtain them are given in Section �	

More detailed
 a splitting formula requires as input Tutte polynomials of at most
s�r � �� graphs obtained from G� by small modi�cations	 Thus
 that many times
the procedure TP�rs�i�� P ��Y ��� will be called recursively
 for each partition P � of a
certain set Y � � Xi once	

Furthermore
 the same splitting formula requires as input the Tutte polynomials
of at most s�r � �� many graphs obtained from G�� by small modi�cations	 The
situation is slightly more complicated here since we have to regard G�i� P �Y �� in our
computation and cannot call TP�ls�i�� P ���Y ��� immediately �for each partition P ��

of a certain set Y �� � Xi�	 The details are given in Algorithm �	 The only signi�cant
fact is that after some processing we have to call recursively TP�ls�i�� P ���Y ���� at
most s�r � �� many times	

Thus
 each node of �S has at most � s�r � �� many sons	 The important point is
that although the number of nodes of �S increases exponentially fast with the depth
of �S
 the depth of �S is at most logarithmic in n	 Thus
 the number of nodes in �S is
polynomial in n	 We obtain an algorithm with running time polynomial in n
 since
its running time associated with each node of �S is O�n
�	

�

� The splitting formulas

Let K and H be two graphs and let G � K �H be their graph union with vertices
V �K� � V �H� and edges E�K� � E�H�
 where E�K� � E�H� � 		 We call the set
U � V �K�� V �H� the connecting intersection of K and H	 For each �xed r � jU j

the problem how to calculate in polynomial time the Tutte polynomial t�G� x� y�
from the Tutte polynomials and from the number of components of some minors of
K and of H has been solved by Seiya Negami in
Neg���	 The Tutte polynomial
of G can be obtained from the mentioned input by simple matrix multiplication
involving a matrix depending only on r � jU j	

Before we describe a general recipe on how to obtain these so called splitting
formulas we give an example for r � �	 Let K and H be graphs with U � V �K� �
V �H� having three elements u�� u
� u�	 We designate by �U� the partition lattice of
U ordered in such a way that � of the lattice �U� is the partition �u�� u
� u�� with
three blocks	 We name the elements of �U� as p� � �u�� u
� u��
 p
 � �u�� u
� u��

p� � �u
� u�� u��
 p� � �u�� u�� u
�
 p� � �u�� u
� u�� and write jpij for the number
of blocks of a partition pi	 We also de�ne the matrix T� with �i� j��entry being
tjpi�pj j
 where t is a variable and pi � pj is the supremum of pi and pj in �U�	 Then
T� turns out to be

T� �

�
�������

t t t t t
t t
 t t t

t t t
 t t

t t t t
 t

t t
 t
 t
 t�

�
�������
�

Furthermore
 it has an inverse which is

T�
�� �

�

t �t� �� �t� ��

�
�������

t
 �t �t �t �
�t t� � � � ��
�t � t� � � ��
�t � � t� � ��
� �� �� �� �

�
�������
�

To obtain the splitting formula to calculate t�G� x� y� we need the following
matrix obtained only from T�

��

C� � d

�
�����������

�x� ��
 �� x �� x �� x �

�� x xy � x� y � � �� y

�� x � xy � x� y � �� y

�� x � � xy � x� y �� y

� �� y �� y �� y �y � ��

�
�����������

A polynomial�time algorithm for Tutte polynomials �

where

d �
�

�x� ���x y � x� y � ���x y � x� y�
�

The �i� j��entry of C� equals to �y � ��jpij�jpjj��Bij
 where Bij is the �i� j��entry of
T�

�� with t replaced by �x� ���y � ��	
As next we obtain some minors of K and H	 We write K�pi for a graph obtained

from K by identifying each subset of vertices in U being in the same block of a
partition pi � �U�	 For example
 in K�p� all three vertices are identi�ed and all
edges between them become loops	 As another example
 we have K�p� � K	 We
de�ne H�pi
 i � � � � � � in the same way	

As the input for the splitting formula we have ten Tutte polynomials
t�K�pi� x� y�
 t�H�pi� x� y� for i � � � � � � and the numbers c�K�pi�
 c�H�pi� for
i � � � � � � and c�G�
 where c�A� is the number of components of a graph A	 We
combine a part of this input to the vectors

�k� �
h
�x� ��c
K�p�� t�K�p�� x� y�� � � � � �x� ��c
K�p�� t�K�p�� x� y�

i

and

�h� �
h
�x� ��c
H�p�� t�H�p�� x� y�� � � � � �x� ��c
H�p�� t�H�p�� x� y�

i
�

Then the splitting formula is the equation

t�G� x� y� � �x� ���c
G� �k�C�
�hT� �

As we see
 the only time�consuming operations needed to obtain the Tutte polyno�
mial of G from the input are two matrix multiplications with entries being polyno�
mials	

We obtain a splitting formula for an arbitrary
 �xed r � � in the analogous way	
Recall that s�r� is the number of partitions of a set with r many elements	 First

we compute all partitions of U � V �K� � V �H� and order them in such a way that
p
 p� if and only if the partition p� is a re�nement of the partition p	 We index
these partitions in some way �for example
 from pi � pj it should follow i � j�
and introduce the matrix Tr with �i� j��entry being tjpi�pj j	 According to
Neg���

the inverse T��

r of Tr exists
 and so we de�ne Cr as the r�s� � r�s� � matrix with
�i� j��entry being �y � ��jpij�jpjj�rBij
 where Bij is the �i� j��entry of Tr

�� with t
replaced by �x � ���y � ��	 Thus
 Cr depends only on r and on the numbering of
the partitions in �U�	

For a partition p � �U�
 the graphs K�p and H�p are de�ned analogously as
in the example	 Again
 we introduce the following vectors formed from the input of
the formula

�kr �
h
�x� ��c
K�p�� t�K�p�� x� y�� � � � � �x� ��c
K�ps�r�� t�K�ps
r�� x� y�

i

and

�

�hr �
h
�x� ��c
H�p�� t�H�p�� x� y�� � � � � �x� ��c
H�ps�r�� t�H�ps
r�� x� y�

i
�

Then the general splitting formula is the equation

t�G� x� y� � �x� ���c
G� �kr Cr
�hTr � ���

If jU j
 �
 then we obtain t�G� x� y� simply by multiplying t�K� x� y� with
t�H� x� y�	

� The tree decomposition algorithm

Our next goal is to show that we can obtain a rooted
 binary tree decomposition of
depth O�logn� of a graph G in linear time	

Lemma � Let k be a constant� Given a tree decomposition of width k of a graph
G on n vertices� we can compute a rooted� binary tree decomposition of G of depth
at most � dlog�

�
��n�e and width at most � k � � in time O�n� �using a sequential

algorithm��

Proof� The algorithm for the problem is given in
Bod��
 Theorem �	� and �	��
 but
instead of using the tree contraction technique of Miller and Reif
MR���
 we apply
the tree contraction algorithm described in
KR���

AD��� and in
KD���	 �This
improvement has been suggested in
BT����	 The cited algorithm is shown to solve
the problem with O�n� operations in time O�logn� on an EREW PRAM	 As the
processor allocation is no problem �see
KR����
 we can apply the Brent!s scheduling
principle
Bre���� a parallel algorithm requiring w�n� operations and t�n� time can
be simulated using p processors in time w�n��p� t�n�	 Thus
 a sequential algorithm
for our problem will require O�n� time	 �

Although the problem of determining if a given graph G has treewidth at most
k
 where both G and k are input of the algorithm is NP�complete
 we have the
following result
Bod��a�	

Theorem � For all positive integers k there exists a linear�time algorithm that tests
whether a given graph G � �V�E� has treewidth at most k� and if so� outputs a tree
decomposition of G with width at most k�

A survey over the history of sequential and parallel algorithms for �nding a tree
decomposition of a graph is given in
BT���	

Combining Lemma � and Theorem � we obtain the following result	

Corollary � For all positive integers k there is a linear time algorithm� which tests
whether a given graph G on n vertices has treewidth at most k� and if so� outputs
a binary� rooted tree decomposition of G of depth at most � dlog �

�
��n�e and width at

most � k � ��

A polynomial�time algorithm for Tutte polynomials �

� The main algorithm

Let �T�U� be a tree decomposition of a graph G
 V �G� � n
 where T � �I� F � is a
tree with nodes in I and edges in F and U � fXiji � Ig is a family of subsets of V 	
Let r be the width of �T�U�	 We assume that T is a binary
 rooted tree of depth at
most � dlog �

�
��n�e	

Before giving a detailed description of the main algorithm
 we sketch the way
it works	 It consists of two recursive procedures TP and TP�one�son�or�leaf
 both
with input arguments i and P �Y �
 where i is a node of T and P �Y � a partition of a
vertex set Y � V �G�	 Both procedures return as the result the Tutte polynomial of
the graph subG�i� P �Y ��
 but the procedure TP�one�son�or�leaf will be called only
if it is sure that node i of T has no right son	

If i is a leaf of T
 then we can calculate the Tutte polynomial of G�i� P �Y �� using
rules R�
 R�
 and R�	 This is done in the procedure TP�one�son�or�leaf	 Otherwise
we have the situation as in Figure � or in Figure �	 �This is the same representation
as in Figure � but with a triangle representing the subtree of T �	

Y

i

Ci

ls�i�

Figure �� Node i has exactly one son

Ci

i
Y

C �
i

rs�i�ls�i�

Figure �� Node i has two sons

In the �rst case
 TP�one�son�or�leaf is called in order to apply the splitting
formula with the connecting intersection Ci � Xi�Xls
i�	 For each partition P of Ci

the splitting formula requires the Tutte polynomial of a graph G�i� P �Y � � P � and
the number of its components	 The Tutte polynomials of each of these graphs are
calculated using the rules R�
 R� and R�	 We also need the Tutte polynomial of the
graphs subG�ls�i�� P �Y � � P � for each partition P of Ci	 The Tutte polynomials of
these at most s�jCij� many graphs are calculated recursively calling TP�ls�i�� P �Y ��
P � in each case	 Now only the number of components of each of these graphs and
of subG�i� P �Y �� are missing in order to apply the splitting formula	

If the case of Figure � occurs
 �rst we have to apply the splitting formula with the
connecting intersection being C �

i � �Xi�Xls
i���Xrs
i� � Xi�Xrs
i�	 For each parti�

��

tion P � of C �
i we have to consider two graphs subG�rs�i�� P �Y ��P

�� �corresponding
to the graph K�P � of the splitting formula� and a graph subG�ls�i�� P �Y � � P �� �
G�i� P �Y ��P �� �corresponding to the graph H�P � in the splitting formula�	 For each
of the graphs subG�rs�i�� P �Y ��P �� we have to call recursively TP�rs�i�� P �Y ��P ��
and
 after removing the edge fi� rs�i�g �i	e	 cutting o� in T the right son of i and
its subtree�
 we have to apply recursively TP�one�son�or�leaf �i� P �Y � � P �� in order
to obtain the Tutte polynomial of subG�ls�i�� P �Y �� P ���G�i� P �Y �� P ��	 Again

after obtaining the informations on number of components of the graphs required
by the splitting formula we can apply the splitting formula
 obtaining the Tutte
polynomial of subG�i� P �Y ��	

Algorithm �

Input � A rooted
 binary tree decomposition of a graph G of width at most r	
Output � The Tutte polynomial of G	
Actions� Call the recursive procedure TP by TP �j� P ��Xj��
 where j is the root

of the decomposition tree T 	

proc TP�one�son�or�leaf �i� P �Y ��
if i � leaf of T
then return the Tutte polynomial t�G�i� P �Y ��� x� y�
 calculated

using the rules R�
 R� and R��
else �i has only the left son ls�i��	

Ci �� Xi �Xls
i� and p �� jCij�
calculate c�subG�i� P �Y ����
for each partition P of Ci do

calculate t�G�i� P �Y � � P �� x� y� using the rules R�
 R�
 R��
calculate c�G�i� P �Y � � P ���

od

regard the result of the last loop as a vector �kp for the splitting
formula �with graph K � G�i� P �Y ����

for each partition P of Ci do
call TP�ls�i�� P �Y � � P �� x� y��
calculate c�subG�ls�i�� P �Y � � P ���

od

regard the result of the last loop as a vector �hp for the splitting
formula �with graph H � subG�ls�i�� P �Y ����

return result of a splitting formula with input �kp
 �hp
and c�subG�i� P �Y ����

�	

proc TP�i� P �Y ��
if right son of i does not exists

A polynomial�time algorithm for Tutte polynomials ��

then result �� call TP�one�son�or�leaf �i� P �Y ���
return result�

else
C �
i �� Xi �Xrs
i� and p �� jC �

ij�
calculate c�subG�i� P �Y ��� �
for each partition P � of C �

i do
call TP �rs�i�� P �Y � � P �� in order to calculate

t�subG�rs�i�� P �Y � � P ��� x� y��
calculate c�subG�rs�i�� P �Y � � P ����

od

regard the result of the last loop as a vector �kp for the splitting
formula �with graph K � subG�rs�i�� P �Y ����

remove the edge fi� rs�i�g from T �
�Now i has only the left son�	

for each partition P � of C �
i do

call TP�one�son�or�leaf �i� P �Y � � P �� in order to calculate
t�subG�i� P �Y � � P ��� x� y� �which equals
t�subG�ls�i�� P �Y � � P �� �G�i� P �Y � � P ��� x� y�
because fi� rs�i�g is removed from T ��

calculate c�subG�i� P �Y � � P ����
od

regard the result of the last loop as a vector �hp for the splitting
formula �with graph H � subG�ls�i�� P �Y �� �G�i� P �Y �� ��

return result of a splitting formula with input �kp
 �hp
and c�subG�i� P �Y ����

�	

The presented algorithm works for any �xed r being the maximal width of the
tree decomposition	 If r is increased
 some preprocessing is necessary	 Especially
the �tables� of all partitions of a �generic� set of cardinality i for i � �� � � � � r must
be computed and for each i � �� � � � � r the matrix Ci of a corresponding splitting
formula must be obtained	 Clearly this preprocessing has not a polynomial running
time in r unless P � �P
 otherwise we would have a polynomial algorithm for
the calculation of the Tutte polynomial of any graph G	 The preprocessing is also
a serious obstacle in practical applicability of the algorithm	 This is due to the
fact that already for small treewidth k of the input graph the numbers s�r � ��

where still r � � k � � are very large �see Table ��	 Thus
 for example if we would
like to treat graphs with treewidth at most � we have to calculate and store the
matrices Ci of the splitting formulas for i � �� � � � � �
 where C� is already a matrix
�������� �������	 �Remember that C� is an inverse of a matrix of the same size"�

To show that Algorithm � calculates the Tutte polynomial of G we need to show
that for any i � I the procedure call TP �i� P �Y �� with Y � V �G� terminates and
gives the Tutte polynomial of subG�i� P �Y ��
 as subG�j� P ��Xj�� � G
 where j is
the root of T 	

��

We show this by induction on the height h�i� of i � I in T
 i	e	 the depth of
the subtree of T with root being i �by convention
 the leaves of T should have
height ��	 We use the notations as in Algorithm �	 If h�i� � � then G�i� P �Y �� �
subG�i� P �Y �� and thus t�subG�i� P �Y ��� x� y� is calculated using R�
 R�
 and R�	
For the induction step it is not hard to see from the proceeding example and the
listing of Algorithm � that the splitting formula is correctly applied to graphs K �
G�i� P �Y �� and H � subG�ls�i�� P �Y �� �if i has no right son in T � or to graphs
K � subG�rs�i�� P �Y �� andH � subG�ls�i�� P �Y ���G�i� P �Y �� �if i has both sons�	
In the �st case we call for each partition P of Ci the procedure TP with the node of T
being ls�i�
 what gives the correct Tutte polynomial of the graph subG�ls�i�� P �Y ��
P � by induction assumption	 In the latter case we call for each partition P � of C �

i the
procedure TP �rs�i�� P �Y ��P �� and the procedure TP�one�son�or�leaf �i� P �Y ��P ��

which after some processing calls the procedure TP with the node of T being ls�i�	
Thus
 also in the second case the induction assumption can be applied	 Concluding

we observe that the splitting formulas receive the correct input
 as the correctness of
the required number of components of the appropriate graphs if obvious	 Therefore
Algorithm � calculates the Tutte polynomial of G	 We will analyze in the following
how quickly this happens	

There is a rooted splitting tree S � �M�Q� associated with the Algorithm
�	 Its vertices j � M are �certain� pairs �i� P �Y ��
 where i � I and P �Y � is
a partition of some vertex set Y � G	 S has an edge e � Q between vertices
�i�� P��Y��� and �i
� P
�Y
�� if a procedure TP or TP�one�son�or�leaf called with
arguments �i�� P��Y��� has called recursively TP or TP�one�son�or�leaf with argu�
ments �i
� P
�Y
��
 except if �i�� P��Y��� � �i
� P
�Y
�� i	e	 if the called procedure TP
noticed that i� has no right son so the procedure TP�one�son�or�leaf can be called
immediately	 The vertices of S are de�ned as the ends of the edges just described	
Clearly S is a tree with the root �j� P ��Xj��
 where j is a root of T
 the decompo�
sition tree	 We see that in at most every second step the chain of procedure calls
descends one node down the decomposition tree T
 therefore the depth of S is at
most twice the depth of T 	

In order to improve the upper bound on the running time of the Algorithm
� we will consider a tree �S being a modi�ed tree S	 If node i has both sons
 we
can assume that TP�i� P �Y �� has a double�nested loop
 where for each partition
P � �the outer loop index variable� of C �

i � Xi � Xrs
i� the inner loop goes over all
partitions P �the inner loop index variable� of Ci � Xi �Xls
i�	 That is
 we embed
the body of the procedure TP�one�son�or�leaf called in the loop of TP into the body
of TP�	 Because all combinations of the partitions P and P � yield no more than
all partitions of Xi
 we can save some calls of the inner loop	 We conclude that the
such modi�ed procedure TP makes no more than � s�r��� recursive calls of TP or
TP�one�son�or�leaf	 The tree �S is de�ned for this modi�ed procedure TP identically
as S has been de�ned for the original procedure TP
 i	e its edges corresponds to
recursive calls	 Thus
 each node of �S has at most � s�r� �� sons	 The advantage of
�S is the fact that it has depth of T and so this depth is at most � dlog�

�
��n�e
 while

the depth of S was at most twice the depth of T 	

A polynomial�time algorithm for Tutte polynomials ��

�At this point we can see easily that our worst�case analysis of the running time
of the Algorithm � �which depends on number of nodes of �S� is generous	 First
 in
most cases the input of TP is �i� P �Y �� with a partition P �Y � which reduces the
number of di�erent vertices in Xi of G�i� P �Y ��	 Secondly
 the subsets Ci and C �

i

of Xi will frequently not cover Xi completely reducing the size of the connecting
intersections of the splitting formula additionally	 It follows that in average the
number of sons of a node of �S will be much smaller than � s�r � ���	

We can easily bound the number of nodes of the tree �S with the node set
M from above	 The depth of �S is at most � dlog �

�
��n�e and so we have
 putting

c� �� � s�r � ��

jM j
 � � c� � �c��

 � � � �� �c��

 dlog �
�

 n�e

� �c� � ���� �c

 dlog �

�

 n�e��

� � ��

� �c� � ���� c

 log �

�

n���

� � �c� � ���� c�� ��
�

�
�
log �

�

c��

�

 log �

�

n�

� �c� � ���� c�� �
�

�
�
log �

�

c��
 log �

�

n�

� �c� � ���� c�� ��n�

 log �

�

c��

�

Now we have log �
�
�c�� � log
�c��� log
�

�
�
� and so we obtain

jM j � �c� � ���� c�� ��n�

 log�
c��� log�

�
�
�� ���

We obtain the upper bound on the running time of the Algorithm � by multi�
plying the bound on jM j with the maximal time the algorithm spends in a body of
a single node of �S	 For a node �i� P �Y �� � �S we have to execute one or more of the
following actions�

��� Calculate the Tutte polynomials of the graphs G� � G�i� P �Y � � P ��
 where P �

ranges over all partitions of a subset of Xi
 using the rules R�
 R�
 and R�	

��� Find the number of components of the graphs subG�j� P ��P �Y ��
 where j is �rst
the left son and then
 if applicable
 the right son of i and
 if applicable
 also j �
i and in each case P � ranges over all partitions of a subset of Xi	 Furthermore
we have to �nd the number of components of the graph subG�i� P �Y �� and of
the graphs G�i� P � � P �Y �� where again P � ranges of all partitions of a subset
of Xi	

��� Apply at most s�r����� many times splitting formulas and execute the remain�
ing operations in the procedure body such as comparisons
 loop initialization
etc	 This time is dominated by the matrix multiplications of the matrices Cm

m
 k of the splitting formulas and it is bounded by c� �s�r � ����
 where c�
is a small constant	

To ���� For a �xed partition P � of a subset W of Xi we estimate in the following
the time to calculate t�G�� x� y�	 We can treat in our calculation each set of parallel

��

�non�loop� edges e�� � � � � em
 m � � in Ei as a single edge because of the following
generalization of the rule R� which can be easily shown by induction�

t�G�� x� y� �t�G�nfe
� � � � � emg� x� y� �

�y � � � �� ym��� t�G��e�nfe
� � � � � emg� x� y��

Now
 if the rule R� is applicable to e� in t�G
�nfe
� � � � � emg� x� y�
 we obtain

t�G�� x� y� �t�G�nfe�� � � � � emg� x� y� �

�� � y � � � � � ym��� t�G��e�nfe
� � � � � emg� x� y��

Otherwise
 R� or R� can be applied to e� in t�G
�nfe
� � � � � emg� x� y�	

Therefore the calculation time of t�G�� x� y� depends only on the number of edges

in the underlying simple graph G�� of G�	 The graph G�� has at most
�
jV
G��j

	
edges	

As jV �G��j
 r � �
 the calculation time of t�G�� x� y� is bounded from above by a
constant c
 depending only on r	 Depending on the implementation
 c
 may vary	
If a graph G�� has m edges
 then applying R� or generalized R� to an appropriate
edge we create two minors of G� with m � � edges each	 Thus
 we have �m as a
rough upper bound on the number of applications of the rules R�
 R� and R�	 It
follows that

c

 c� ��
r��
� �

where each application of a rule R�
 R� or R� needs a constant time c�	
Now there are at most s�r � �� partitions P � of a subset W of Xi
 and so the

algorithm spends at most the time s�r � �� c
 applying the rules R�
 R� and R�	

To ���� For each vertex of G�i� P �Y �� we obtain the information to which
component of subG�i� P �Y �� this vertex belongs by executing DFS on subG�i� P �Y ��
once	 The DFS has running time at most O�jV �G�j � jE�G�j� �or O��jV �G�j�
� if
subG�i� P �Y �� is not given as an adjacency list�
 where c� is some small constant
depending on implementation	 Ignoring parallel edges we see that DFS needs the
time at most c� n

 for su�ciently large n	 Now
 for any partition P � of a subset of
Xi the number of components subG�j� P

��P �Y ��
 where j � fls�i�� i� rs�i�g
 can be
found using the stored information about the vertices in Xi in time linear in r
 with
a small constant	

It is not hard to see that the time for �nding the number of components of
G�i� P � � P �Y �� for a �xed P � is linear in r
 if we know for each vertex in Xi in
which component of G�i� P �Y �� it is	 This information can be obtained executing
once DFS on G�i� P �Y �� what takes time O�r
�	 Thus
 the total time of calculating
of the number of components of all graphs mentioned in ��� is bounded by

c� n

 � c� s�r � ��

�for su�ciently large n�
 because we loop at most four times over at most s�r � ��
partitions of some subsets of Xi and because r

 s�r � �� for any r � �	 The
constants c� and c� are small	

A polynomial�time algorithm for Tutte polynomials ��

Summing up the cost of the operations described in ���
 ��� and ��� we conclude
that the computing time of the Algorithm � associated with each node �i� P �Y �� is
bounded by

c� n

 � �c� �

�r��
� � � c�� s�r � �� � c� �s�r � ����

for su�ciently large n	
Now combining this result with Equation ��� we can bound the running time of

the Algorithm � from above by

�c� � ���� c�� ��n�

 log�
c��� log�

�
�
�
c� n

 � �c� ��
r��
� � � c�� s�r � �� � c� �s�r � �����

for su�ciently large n	
We have just proved the following proposition	

Proposition
 Let G be a graph on n vertices and �T�U� a rooted� binary tree
decomposition of depth at most � dlog �

�
��n�e with width at most r� Then the Algo�

rithm � computes the Tutte polynomial of G in time O���n�
�
 log�
c��� log�

�
�
�� �with

the constant depending on r� � where c� is twice the number of partitions of a set
with r � � elements�

Combining the last proposition with the Corollary � we obtain the main result
of this paper	

Theorem � For each positive integer k there is an algorithm which decides in linear
time if a given graph G on n vertices has treewidth at most k and if so� it calculates
the Tutte polynomial t�G� x� y� of this graph in total time O���n���
 log�
c��� log�

�
�
��

�with the constant depending on k�� where c� is twice the number of partitions of a
set with � k � � elements�

Table � gives the values of c� and the exponent e�k� of the expression

��n���
 log�
c��� log�

�
�
� for some small k!s	

k � � � � �
c� ����� ������� ��������� ������� � ���
 ������� � ��
�

e�k� ���� ��� ����� ����� �����

Table �� Some parameters of the main algorithm for small values of k	

As a consequence of the Theorem � the great class of problems which are com�
putable in polynomial time for graphs of bounded treewidth can be expanded by
the following problems	 The solution to each of them is given by direct evaluation
of the Tutte polynomial �in some cases multiplied with an easily obtainable factor�	

��

Corollary � For any positive integer k and for each of the following problems there
is an algorithm which solves the respective problem in time polynomial in n for a
given graph G of treewidth at most k� The problems are to 	nd for G the

�� chromatic polynomial of G �
Wel��
��

�� number of nowhere zero �ows of G �
Wel��
��

�� �all terminal� reliability of G �
Wel��
��

�� partition function of the q�state Potts model of statistical mechanics �for q � �
it is the partition function of the well�known Ising model� �
Wel��
��

�� partition function of the random cluster model introduced by Fortuin and
Kasteleyn �
Wel��
��

�� number of acyclic orientations of G �
JVW��
��

�� number of acyclic suborientations of G �
GS��
��

�� number of initially connected acyclic suborientations of G �
GS��
��

�� number of connected subdigraphs of G �
GS��
��

��� number of di�erent score vectors associated with an orientation of G
�
JVW��
��

��� number of connected subdigraphs of G �
GS��
��

��� number W �G�m� which denotes the number of pairs �A� f� such that A is an
acyclic orientation of G and f � V �G�
 f�� � � � � mg is a function which holds
f�u� � f�v� for every edge of G directed from u to v �for m � � this is the
number of acyclic orientations of G� �
JVW��
��

��� Jones polynomial of an oriented alternating link diagram� where G is its asso�
ciated unsigned �blackface� graph �
Wel��
��

Many of the listed problems are known to be �P �hard already for any graph
class containing all planar graphs �
Wel����	

� Acknowledgments

Dominic Welsh et al� have proved several years ago that the Tutte polynomial of
a graph of bounded treewidth is polynomial�time computable but never published
the proof	 The author would like to thank him for the opportunity to prove this
statement again	

The author also would like to thank Jan Arne Telle
 University Bergen
 for his
very valuable suggestions on algorithms for graphs of bounded treewidth	

A polynomial�time algorithm for Tutte polynomials ��

References

AD��� K	 Abrahamson
 N	 Dadoun
 D	 G	 Kirkpatrick and T	 Przytycka A simple
parallel tree contraction algorithm
 J	 Algorithms ��
 No	 �
 ������ ����
���	

Aig��� M	
 Aigner
 Combinatorial theory
 �Springer�Verlag New York
 Inc	 �����	

AC��� Stefan Arnborg
 Bruno Courcelle
 Andrzej Proskurowski and Detlef Seese

An algebraic theory of graph reduction
 J	 Assoc	 Comput	 Mach	 ��
 No	
�
 ������ ���������	

ALS��� Stefan Arnborg
 Jens Lagergren and Detlef Seese
 Easy problems for tree�
decomposable graphs
 J	 Algorithms ��
 No	 �
 ������ �������	

AP��� Stefan Arnborg and Andrzej Proskurowski
 Linear time algorithms for
NP�hard problems restricted to partial k�trees
 Discrete Appl	 Math	 ��

No	 �
 ������ �����	

Arn��� Stefan Arnborg
 E�cient algorithms for combinatorial problems on graphs
with bounded decomposability � a survey
 BIT ��
 ������ ����	

BO��� Thomas Brylawski and James Oxley
 The Tutte polynomial and its appli�
cations
 Matroid applications
 Encycl	 Math	 Appl	 ��
 ������ �������	

BT��� Hans L	 Bodlaender and T	
 Hagerup
 Parallel algorithms with opti�
mal speedup for bounded treewidth
 Extended abstract in proceedings
ICALP	 Technical Report UU�CS��������	 �Can be obtained at the URL
http�##www	cs	ruu	nl#people#hansb#�	

Bod��� Hans L	 Bodlaender
 NC�Algorithms for graphs with small treewidth
 in� J	
van Leeuwen
 ed	
 Lecture Notes in Computer Science	 v	 ���	 Conference�
Graph�Theoretic Concepts in Computer Science
 International Workshop
WG !��
 Amsterdam �Netherlands�
 �Springer�Verlag
 Berlin �����
 ����	

Bod��a� Hans L	 Bodlaender
 A linear time algorithm for 	nding tree�
decompositions of small treewidth
 in� Proceedings of the ��th Annual
ACM Symposium on the Theory of Computing
 �ACM Press
 �����
 ����
���	

Bod��b� Hans L	 Bodlaender
 A tourist guide through treewidth
 Acta Cybern	 ��

No	 ���
 ������ ����	

Bod��� Hans L	 Bodlaender
 Improved self�reduction algorithms for graphs with
bounded treewidth
 Discrete Appl	 Math	 ��
 No	 ���
 ������ �������	

Bre��� Richard P	 Brent
 The parallel evaluation of general arithmetic expres�
sions
 J	 Assoc	 comput	 Machin	 ��
 ������ �������	

��

GS��� Ira M	 Gessel and Bruce E	 Sagan
 The Tutte polynomial of a
graph� depth�	rst search� and simplicial complex partitions
 to ap�
pear in the Electronic Journal of Combinatorics in an issue dedi�
cated to Dominique Foata �The Journal can be viewed at the URL
http�##ejc	math	gatech	edu�����#Journal#journalhome	html�	

JVW��� F	 Jaeger
 D	 L	 Vertigan and D	 J	 A	 Welsh
 On the computational com�
plexity of the Jones and Tutte polynomials
 Math	 Proc	 Camb	 Philos	
Soc	 ���
 No	 �
 ������ �����	

KD��� S	 Rao Kosaraju and Arthur Delcher
 Optimal parallel evaluation of tree�
structured computations by raking
 in� VLSI algorithms and architectures

Proc	 �rd Aegean Workshop Comput	
 Corfu # Greece ����
 Lect	 Notes
Comput	 Sci	 ���
 ������ �������	

KR��� Richard M	 Karp and Vijaya Ramachandran
 Parallel algorithms for
shared�memory machines
 in� J	 Van Leeuwen
 ed	
 Handbook of theo�
retical computer science
 vol	 A� Algorithms and Complexity	 �MIT Press

Cambridge
 MA
 �����
 �������	

Lee��� J	 van Leeuwen
 Graph algorithms
 in� J	 Van Leeuwen
 ed	
 Handbook of
theoretical computer science
 vol	 A� Algorithms and Complexity	 �MIT
Press
 Cambridge
 MA
 �����
 �������	

MR��� G	 L	 Miller and J	 H	 Reif
 Parallel tree contraction and its application

in� Foundations of computer science	 Papers of the ��th annual sympo�
sium
 Portland
 OR
 Oct	 �����
 ����
 �IEEE Computer Society Press

Washington DC
 �����
 �������	

Neg��� Seiya Negami
 Polynomial invariants of graphs
 Trans	 Am	 Math	 Soc	
���
 ������ �������	

OW��� J	 G	 Oxley and D	 J	 A	 Welsh
 Tutte polynomials computable in polyno�
mial time
 Discrete Math	 ���
 No	 ���
 ������ �������	

Ver��� V	 L	 Vertigan
 The computational complexity of Tutte invariants for pla�
nar graphs
 to appear	

Wel��� D	 J	 A	 Welsh
 Complexity� Knots� colourings and counting
 London
Mathematical Society Lecture Note Series	 v	 ��� �Cambridge University
Press
 Cambridge �����	

Wel��� D	 J	 A	 Welsh
 The computational complexity of knot and matroid poly�
nomials
 Discrete Math	 ���
 No	 ���
 ������ �������	

