
SERIE B � INFORMATIK

Lower Bounds for a Subexponential

Optimization Algorithm

Ji�r�� Matou�sek�

B �����
July ����

Abstract

Recently Sharir and Welzl �SW��	 described a randomized algorithm for a certain
class of optimization problems
including linear programming�� and then a subexpo

nential bound for the expected running time was established �MSW��	� We give an
example of an
arti�cial� optimization problem �tting into the Sharir
Welzl frame

work for which the running time is close to the upper bound� thus showing that the
analysis of the algorithm cannot be much improved without stronger assumptions
on the optimization problem and�or modifying the algorithm� Further we describe
results of computer simulations for a speci�c linear programming problem� which
indicate that �one
permutation� and �move
to
front� variants of the Sharir
Welzl
algorithm may sometimes perform much worse than the algorithm itself�

�Supported by Humboldt Research Fellowship� Department of Applied Mathematics Charles University
Malostransk�e n�am� ��� ��� 		 Praha �� Czechoslovakia� and Department of Computer Science� Free
University Berlin Arnimallee �
�� W��			 Berlin

� Germany

�

� Introduction

Its is well�known that linear programming can be solved in time polynomial in the bit�size
of the input � 	Kha
��
� but the number of arithmetic operations in all known polynomial�
time algorithm depends on the input precision of the coe�cients and it cannot be ex�
pressed as a function of d and n� the number of variables and constraints� A major open
problem is to decide whether there exists a strongly polynomial algorithm for linear pro�
gramming� which only needs a number of arithmetic operations polynomial in n and d�
Until recently� the best bound was exponential� Then two randomized algorithms with
a subexponential expected number of arithmetic operations� roughly exp�O�

p
d logn

�

appeared� Kalai 	Kal��� obtained one�� and independently it was shown in 	MSW��� that
a randomized algorithm �resembling a dual simplex method
 developed earlier by Sharir
and Welzl 	SW��� has a similar upper bound for the expected running time�

It is natural to ask whether the analysis of these algorithms can be still improved
�perhaps to show that they are in fact polynomial
� or whether the expected running time
is close to the upper bounds in the worst case�

At present we cannot answer this question for linear programming itself� However� the
analysis Sharir�Welzl algorithm is based on few simple properties of linear programming�
The algorithm can in fact be formulated and analyzed in an abstract framework� which
encompasses linear programming and various other optimization problems� satisfying few
simple assumptions� In this paper we construct an arti�cial problem which �ts into the
abstract framework� and such that the expected running time of the Sharir�Welzl algorithm
is close to the known upper bound� This shows that the analysis of the Sharir�Welzl
algorithm for linear programming cannot be substantially improved without using more
speci�c properties of linear programming and�or modifying the algorithm� We do not
consider Kalai�s algorithm here� but since it is similar to the Sharir�Welzl algorithm we
expect that similar results can be obtained for it �one of Kalai�s variants is in some sense
dual to the Sharir�Welzl algorithm
�

The Sharir�Welzl algorithm is formulated as a recursive procedure� For implementa�
tion� it would be simpler to have an iterative variant� and also to restrict the amount of
randomness needed� For a linear programming algorithm due to Seidel 	Sei��� �a prede�
cessor of the Sharir�Welzl algorithm
� whose basic formulation is also recursive� one can do
this very elegantly� Welzl 	Wel��� describes a modi�cation which �rst puts the constraints
into a random order �i�e�� generates one random permutation
� and then proceeds entirely
deterministically� iterating a simple step� The expected running time is shown to be the
same as for the basic version 	Wel����

Formulating such a one�permutation variant for the Sharir�Welzl algorithm is not dif�
�cult and the resulting algorithm is very easy to implement� A very similar algorithm
was proposed by Megiddo 	Meg���� this algorithm is formulated in a dual setting �as a
variant of Kalai�s algorithm
 and it is in fact the simplex algorithm with Bland�s least
index pivoting rule� where one puts the columns into a random order before the algorithm
starts�

However� the analysis used for the Sharir�Welzl algorithm breaks down for the one�per�
mutation variant� and to our knowledge no subexponential upper bounds for the expected
running time are known� We provide an example �this time a linear programming problem�

�In fact� he gives several variants of the algorithm with small di�erences in the running time bounds�
they are all more or less complicated randomized variants of the simplex algorithm�

Lower Bounds for a Subexponential Optimization Algorithm �

with d variables and �d constraints
 indicating that there indeed is a substantial di�erence
in the behavior of the one�permutation variant� while the Sharir�Welzl algorithm with any
initial basis has expected running time O�d�
� for the one�permutation variant computer

experiments indicate that the expected running time is much larger� perhaps about e
p
d�

In 	Wel���� Welzl proposes still another version of Seidel�s algorithm� which he calls
�move�to�front�� Here the algorithm again starts with a random order of the constraints�
but then it keeps changing it �deterministically
� trying to put constraints which were in
some sense important for the computation so far to the beginning �hence the name
� The
hope is that this makes the algorithm converge much more quickly to the solution� and
indeed computer experiments have shown that this strategy speeds up Seidel�s algorithm
signi�cantly� at least for the examples used in the experiments� Analogously one can
formulate a move�to�front version of the Sharir�Welzl algorithm� Here it is not entirely
obvious what the correct analog should be� we have selected the one which seemed most
natural� The experiments show that for our particular linear programming example� this
variant is still much slower that the one�permutation variant� It is fair to say that the move�
to�front strategy is intended for the situation where the number of constraints is much
larger than the number of variables� while our example has �d constraints and d variables�
so it is no reason for discarding the strategy as a bad or useless one� Rather� it should
serve as an example that a seemingly innocent heuristic modi�cation to a randomized
algorithm� destroying the assumptions on which the analysis was based� can make the
performance quite poor�

� The Sharir�Welzl algorithm

We begin by recalling the abstract framework of 	SW��� �with minor formal modi�cations
�
In this setting� an optimization problem is a pair �H�w
� where H is a �nite set� and
w � �H � W is a function with values in a linearly ordered set �W ��
� The elements of
H are called the constraints� and for a subset G � H � w�G
 is called the value of G�

A basis B is a set of constraints with w�B�
 � w�B
 for all proper subsets B� of B� A
basis for a subset G of H is a basis B with B � G and w�B
 � w�G
� So a basis for G is
a minimal subset of G with the same value as G� The goal is to �nd a basis for H �and
its value
�

We say that a constraint h � H violates a basis B� if w�B � fhg
 � w�B
� The
maximum cardinality of any basis is called the combinatorial dimension of �H�w
 and
denoted by dim�H�w
�

Let w	 � W be a value� The problem �H�w
 is called an LP�type problem �with respect
to w	
 if the following two axioms are satis�ed�

Axiom �� �Monotonicity
 For any F�G with F � G � H and w�F
 � w	�
w�F
 � w�G
�
Axiom �� �Locality
 For any F � G � H with w�F
 � w�G
 � w	 and any
h � H � w�G � fhg
 � w�G
 implies that also w�F � fhg
 � w�F
�

In order to derive a subexponential bound for the expected running time of the Sharir�
Welzl algorithm� one more axiom is needed�

Axiom �� �Basis regularity
 Any basis T with w�T
 � w	 has cardinality
exactly dim�H�w
�

�

An optimization problem �H�w
 satisfying Axioms ��� �with some w	
 is called a basis�
regular LP�type problem �with respect to w	
� Let us call any basis B with w�B
 � w	 a
regular basis�

Let us see how linear programming �ts into this framework� Without loss of generality�
we consider the problem of �nding the lexicographically smallest point in the intersection
of a set H of n halfspaces in Rd� For simplicity� let us assume that the intersection is
nonempty �the problem is admissible
 and that the optimum is well�de�ned �it is a point
at a �nite distance from the origin
�

For a subset G � H � we de�ne the value w�G
 of G as the optimal vertex �a point of
Rd
 over the intersection of the halfspaces of G� if the optimum is unde�ned� we de�ne
w�G
 as a formal symbol �	� Hence the setW is f�	g�Rd� where Rd is considered with
the lexicographic ordering� This de�nes an optimization problem �H�w
� Let w	 � Rd be
any lower bound for the optimum value w�H
� It is easy to check that �H�w
 is a basis
regular LP�type problem �with respect to w	
 of combinatorial dimension d�

We are going to describe the Sharir�Welzl algorithm� The algorithm is a recursive
function LpType�G� T
 with two arguments� a set G � H of constraints� and a basis
T � G �which is not necessarily a basis for G
� It computes a basis B for G and uses
the set T as an auxiliary parameter for guiding its computations� In order to �nd a basis
for H � LpType�H� T
 is called� where T is some basis such that �H�w
 is a basis�regular
LP�type problem with respect to w�T
� All bases encountered during the computation of
the algorithm will have value at least w�T
� so they are regular�

The algorithm uses the following two computational primitives� First� given a �regular

basis B � H and a constraint h � H � decide whether h violates B� and second� given B

and h as above� compute a basis for B � fhg� Both the computational primitives can
easily be done in polynomial time for linear programming �violation test in O�d
 time and
basis change in O�d�
 time if the computation is organized similarly as in the dual simplex
algorithm
�

Here is a pseudocode for the Sharir�Welzl algorithm�

function LpType�G� T
�
if G � T then

return�T

else

choose a random h � G n T�
B �� LpType�G n fhg� T
�
if h violates B then

B �� basis�B � fhg
�
return LpType�G�B

else

return�B
�
end if�

end if�

The operation
B �� basis�B � fhg
�

in the algorithm will be referred to as a basis change� The analysis will count the number
of basis changes during the computation �the number of violation test is at most n times

Lower Bounds for a Subexponential Optimization Algorithm �

larger� n � jGj
�
The following bound is proved in 	MSW��� �journal version
�

Theorem ��� 	MSW��� Let �H�w
 be a basis�regular LP�type problem �with respect to
some w	� with n constraints and combinatorial dimension d� let T be a basis with w�T
 �
w	� Then the expected number of basis changes in the call LpType�H� T
 is bounded by

exp

�
�

r
d ln

np
d
�O

�p
d� lnn

��
�

�

Let us remark that for n being larger than roughly d�� it is more advantageous to use
a randomized algorithm of Clarkson 	Cla

�� and the above algorithm is only used as a
subroutine in Clarkson�s algorithm for subproblems with n � O�d�
� If one could improve
the running time bound for n � O�d�
� an overall improvement follows� In our lower
bound examples� we will have n � �d�

� One�permutation and Move�to�front variants

The following is a pseudocode for a �one�permutation� variant of the Sharir�Welzl algo�
rithm� formulated in the spirit of a similar modi�cation of Seidel�s algorithm in 	Wel����
and also being essentially a dual version of Megiddo�s suggestion 	Meg����

function OnePermLp�H� T
�
enumerate the constraints of H

in random order h�� � � � � hn�
B �� T�

loop

if no hj � H violates B then

return�B

else

i �� minfj � 	n�� hj violates Bg�
B �� basis�B � fhig

end if�

end loop�

The idea of the move�to�front heuristics of 	Wel��� is to move the constraint hi which
caused basis change to the beginning of the current permutation of constraints� To imple�
ment this in a function MTF�Lp� the only change compared to the above code is that the
statement

B �� basis�B � fhig
�
is followed by the command

�h�� h�� � � � � hi
 �� �hi� h�� � � � � hi��
�

which moves hi to the �rst position and shifts h�� � � � � hi�� one position forward�

�

� A linear programming example

In this section we de�ne a particular class of linear programs� and we analyze the running
time of the Sharir�Welzl algorithm for these linear programs� The analysis can be viewed
as an introduction to an abstract example discussed next� The linear programs will also
serve as a test example for the one�permutation and move�to�front variants�

Let us consider the linear programming problem in Rd with a set

H � fh	�� h��� h	�� h��� � � � � h	d� h�dg

of �d constraints� de�ned as follows�

h	� � x� � � �
h�� � x� � � �
h	i � xi � �� xi�� i � �� �� � � � � d
h�i � xi � xi�� i � �� �� � � � � d �

��

We are looking for the lexicographically smallest admissible vector x�
We will present a sequence of simple claims and observations� which lead to modeling

the computation of the Sharir�Welzl algorithm by a ��ipping process� on vectors of f�� �gd�
The optimum lies at the vertex ��� �� � � � � �
� and it is determined by the constraints

h��� � � � � h
�
d� The other constraints are redundant and they are included in order to confuse

the algorithm�
The problem is basis�regular with respect to any �nite value� in particular with respect

to w	 � ��� �� � � � � �
� Let us investigate the structure of regular bases� For a subset G � H �
the optimum is well�de�ned �bounded in all coordinates
 i� G contains at least one hpi for
every i� The basis for such a G then contains either h	i or h

�
i for every i�

Let B stand for the set of all regular bases� B can thus be identi�ed with f�� �gd�
Each B � B uniquely determines the solution vector x � f�� �gd� which we will denote by
w�B
� This function is a bijection between B and f�� �gd� For the analysis� it will be more
convenient to look at the solution vectors rather than at the bases�

Let B � B be a basis� x � w�B
 � f�� �gd the solution vector and hpi
� B a constraint�
Then hpi violates B i� xi � �� as one easily checks� If it violates B� then the basis

for B � fhpi g is �B n fh��pi g
 � fhpi g� Let us see how this basis change changes x� The
components x�� � � � � xi�� remain unchanged� and xi changes from � to �� This causes that
the r�h�s� of the next constraint in B �the one determining xi��
 changes �either from �
to � or from � to �
� and so also xi�� changes its value� Similarly we �nd that each of
xi��� � � � � xd change their value�

These observations imply that the Sharir�Welzl algorithm for our speci�c problem
is equivalent to a ��ipping process�� which can be described in the form of a recursive
procedure LpFlipping� This procedure uses one global vector x �the current solution
� and
it is called with an argument I � 	d�� which means the set of �free� indices �corresponding
to the indices i with both h	i � h

�
i � G
� Initially x is set to some value �corresponding to

the solution vector for the initial basis in the Sharir�Welzl algorithm
� and the procedure
is called with I � 	d�� The procedure works as follows�

Lower Bounds for a Subexponential Optimization Algorithm �

procedure LpFlipping�I
�
if I � � then

return

else

choose a random i � I�
LpFlipping�I n fig
�
if xi � � then

flip�	i��d�
�
LpFlipping�I
�

end if�

end if�

The statement flip�J
 �with J � 	d�
 means that for each j � J � the value of xj is
��ipped�� that is� xj �� � � xj is executed� The number of basis changes in the Sharir�
Welzl algorithm is equal to the number of executions of the �flip� statement in the above
procedure� ��ips� for short�

Let T �d� x� I
 denote the expected number of �ips in the call LpFlipping�I
� when x
is the current vector at the beginning of that call� and let T �d� x
 � T �d� x� 	d�
�

We observe that within a recursive call LpFlipping�I
� the values of x at positions
outside I are insigni�cant for the number of �ips within that call� Hence

T �d� x� I
 � T �jI j� xjI
 � ��

where xjI denotes the vector of components indexed by I � If x� � �� then this can never
be changed by subsequent �ips� and we �nd that

T �d� x
 � T �d� �� xj	���d�
 for x� � � � ��

Another simple observation is that at the moment the call LpFlipping�I
 is completed�
all the components of xjI must be ��s�

Let us �rst investigate T	�d
 � T �d� ��� � � � � �

� In the call LpFlipping�	d�
� we �rst
get a contribution of T	�d � �
 from the �rst recursive call� with I � 	d� n fig� Now the
current x has � at all positions but possibly xi� If i � �� then x� � �� since x� was
� initially and it was never �ipped� In this case� flip�	���d�
 is executed after the �rst
recursive call� which changes x to the vector ��� �� �� � � � � �
� The subsequent recursive call
needs T	�d� �
 expected time by ��
�

On the other hand� if i � �� then xi was always �ipped together with xi��� Since the
value of xi�� has changed from � to � as a result� also xi must be �� so there will be no
second recursive call for i
� �� From this we get the recursion

T	�d
 � T	�d� �
 � �

d
�� � T	�d� �

 �

Together with the initial condition T	��
 � �� this gives T	�d
 � d�
Let Ta�d
 denote the expected value of T �d� x
 with a random choice of x� and Tw�d

the maximum of T �d� x
 over all choices of x� The analysis for these quantities is similar
to the one for T	�d
� The di�erence is that xi can end up as � after the �rst recursive
call even if i
� �� In such case� we have the second recursive call with the initial vector
consisting of i ones on the beginning followed by d� i zeros� which by ��
 needs T	�d� i

expected time� In the worst�case� having no information whether xi will be � or � after
the �rst recursion is completed� we assume that xi � �� This gives Tw��
 � ��

Tw�d
 � Tw�d� �
 � �� �

d

d��X
i��

T	�d� i
 � Tw�d� �
 � d� �

�

or Tw�d
 � d�d�
�
� �

For a randomly chosen x� xi is independent of xi�� on the beginning� and since it is
�ipped simultaneously with xi�� during the �rst recursive call and xi�� ends up as �� the
value of xi after the �rst recursive call will be � or � with equal probability� This gives
Ta��
 � ����

Ta�d
 � Ta�d� �
 � �

�
�
�

�d

d��X
i��

T	�d� i
 � Ta�d� �
 � d� �

�
�

that is� Ta�d
 �
d�d�
�

� �

� A slow abstract example

By generalizing the linear programming example from the previous section� we obtain an
example where the Sharir�Welzl algorithm can be proved to run in expected time close
to the known upper bound� We cannot model the example by a linear programming
problem� rather it will be a LP�type problem �resembling boolean programming
 �tting
into the Sharir�Welzl abstract framework�

Let A be a lower triangular d� d matrix with zero diagonal over Z� �the two�element
�eld� f�� �g with addition and multiplication modulo �
� An LP�type problem PA de�ned
by A will be as follows�

For i � �� �� � � � � d and p � �� �� let hpi � hpi �A
 denote the constraint

xi �
i��X
j��

aijxj � p �

Here x�� � � � � xd denote variables over Z�� The addition and multiplication on the r�h�s�
is in Z�� and the inequality is to be interpreted as follows� If the r�h�s� evaluates to �
for given values of xj � then the constraint requires that xi is also �� otherwise it puts no
requirement on xi�

The constraint set of the problem PA will be HA � fhpi �A
� i � 	d�� p � Z�g�
The range of the value function w will be the set W � f�	g � Zd�� The ordering on

W is de�ned as follows� �	 is the smallest element� and Zd� is ordered lexicographically
�taking � � � in Z�
�

For a subset G � HA� the value wA�G
 is de�ned as �	 if there is an index i � 	d�
such that G contains neither h	i nor h

�
i � otherwise wA�G
 is the lexicographically smallest

vector x � Zd� satisfying all the constraints of G�
We leave it to the reader to check that this de�nes a basis�regular LP�type problem

�with respect to w	 � ��� �� � � � � �

 of combinatorial dimension d� A regular basis is a

Lower Bounds for a Subexponential Optimization Algorithm �

subset of H containing exactly one constraint of h	i � h
�
i for each i� Let B be the set of all

regular bases�
The problem discussed in the previous section can be viewed as a special case of PA�

with ai�i�� � � and aij � � otherwise� The following facts mentioned in connection with
this special case hold in general�

The optimal value of PA is ��� � � � � �
� The function wA restricted to B de�nes a
bijection between B and the set Zd� of solution vectors� Let B � B be a basis and hpi
� B
a constraint� A constraint hpi
� B violates B i� xi � �� with x � wA�B
� and then the

basis for B � hpi is �B n fh��pi g
 � fhpi g�
Describing the change in the solution vector caused by such a basis change is somewhat

more complicated this time� First of all� xi becomes �� Then the r�h�s� of h
pi��
i�� � the

constraint of B de�ning xi��� changes its value i� ai���i
� �� and in such case xi�� is
also �ipped� otherwise it remains unchanged� For xi��� we again look at the r�h�s� of the
constraint in B de�ning it� Its value could change because of xi� and also because of xi���
or these two in�uences can cancel out� However� this condition �for changing xi��
 only
depends on ai���i� ai���i and ai���i��� not on the values of xi��� xi���

Proceeding with this analysis inductively� we de�ne quantities fik for k � i� with the
meaning that fik is � i� xk will be �ipped when a basis change occurs at index i� We get
that fik is determined as follows�

fik � aki � ak�i��fi�i�� � ak�i��fi�i�� �

� ak�k��fi�k�� ��

�the addition is modulo �
� Let F � F �A
 denote the upper triangular matrix of the fik �s�
we will call it the �ipping matrix�

We thus �nd that the computation of the Sharir�Welzl algorithm with an initial basis
B � B can be modeled by the following procedure A�Flipping called with the initial
value of x set to wA�B
 �the procedure is identical to LpFlipping except for the flip

statement
�

procedure A�Flipping�I
�
if I � � then

return

else

choose a random i � I�
A�Flipping�I n fig
�
if xi � � then

flip�fig � fk � 	i� ���d�� fik � �g
�
A�Flipping�I
�

end if�

end if�

Our goal is to analyze the expected number of �ips� the expectation being over the
internal random choices of the algorithm� a random choice of the initial vector x and a ran�
dom choice of the matrix A �the relevant entries being independent uniformly distributed
��� random variables
�

We see that the matrix A enters the procedure only via the F matrix� We have the
following elementary lemma�

Lemma ��� Let aij �� � i � d� � � j � i� be independent uniformly distributed �	

��

variables� Then fik �� � i � d � �� i � k � d� de�ned by ��� are also independent
uniformly distributed �	
 variables�

Proof� The value of fik is determined by the values of a�j with i � j � � � k �this
can either be derived formally from ��
 or seen from the considerations leading to that
formula
� Let i�� k�� i� � k� be indices such that k�� i� � k� i� or k�� i� � k� i and k� � k�
Then we have that the value of fi�k� does not depend on the value of aik� Then also fik
determined by the formula ��
 is independent of any combination of the fi�k� �s �with i�� k�

as above
� because aik is independent of these �a ��� quantity independent of aik is added
to aik� so the result remains independent of anything aik was independent of
� �

We can thus replace the expectation over the choice of A by expectation over the
choice of F � Let T �d� F� x� I
 be the expected number of �ips in the call A�Flipping�I

with �ipping matrix F and initial vector x� We let T �d� F� x
 � T �d� F� x� 	d�
� again we
observe that T �d� F� x� I
 � T �jI j� F jI� xjI
� F jI meaning the submatrix of elements of
F with both row and column indices in I � Further we let T �d
 be the expectation of
T �d� F� x
 over independent and random choice of x and F �

With random x and F � the �rst recursive call in procedure A�Flipping requires T �d��

expected time� Let us consider the situation after the �rst recursive call is �nished� If i is
the randomly chosen index� we have xj � � for j
� i� We claim that the current value of
xi is an uniformly distributed ��� random variable� which is independent of i and of the
random choices of the algorithm during the �rst recursive call� and also of F � If i � �� the
value of x� has not changed in the �rst recursive call� so the claim holds by independence
of x� and F � For i � �� xi has been �ipped some number of times during the �rst recursive
call� The number of these �ips did not depend on the initial value of xi� hence also the
resulting value is random and independent of F � so the claim holds�

If xi � �� the procedure is thus �nished� If xi � �� the flip statement is executed�
which yields the current vector x with xj�� for � � j � i and xj � � � fij for i �
j � d� Then we have the second recursive call� which requires expected time �using a
generalization of ��

 T �d� i� F j	i� ���d�� xj	i� ���d�
� The entries of F are independent

and xj	i��d� �� is de�ned by ith row of F � Hence the initial vector xj	i� ���d� and the
�ipping matrix F j	i� ���d� are random and independent� and so the expected time for the

second recursive call is equal to T �d� i
�
Together with the initial condition T ��
 � ��� we get the recursion

T �d
 � T �d� �
 � �

�
�
�

�d

d��X
i��

T �d� i
 �

Our considerations thus show that for every d there is a speci�c matrix F such that
for a random choice of the initial basis� the expected number of �ips is at least T �d
�
Translated back to the LP�type problems setting� it means that for some A the problem
PA requires at least T �d
 basis changes in the Sharir�Welzl algorithm �started with a
randomly chosen initial regular basis
�

It remains to give an asymptotic estimate for T �d
� which is more or less routine� We
�rst substitute bd � T �d
 � �� obtaining the relations

b	 � � � bd � bd�� �
�

�d

d��X
i�	

bi �

Lower Bounds for a Subexponential Optimization Algorithm ��

From this we derive an equation for the generating function b�z
 � b	 � b�z � b�z
� � � � ��

b�z
 � � � zb�z
 �

Z z

	

b�t

���� t

dt

whose solution is

b�z
 �
exp

�
z

����z�

�
�� z

�

Using the Maple V software� with the asymptotic analyzer developed by B� Salvy� P�
Flajolet and others �see 	FSZ���
� the following asymptotics for bd is obtained�

bd �
e
p
�d

e����
��
p
� �
p
d
�O

�
e
p
�d

d
��

�
�

This is in a good agreement with numerically computed values of bd� If one does not believe
in the automatic asymptotic analyzer� one can at least prove a less precise estimate by
induction�

We can summarize our considerations in a theorem�

Theorem ��� For every d there exists a basis�regular LP�type problem of combinatorial
dimension d with �d constraints �of the form PA�� such that for a randomly chosen initial

d�element basis the expected running time of the Sharir�Welzl algorithm is �e
p
�d� �

p
d
�

�

� One�permutation and Move�to�front� Experimental re�

sults

We saw that our linear programming example ��
 gives no impressive lower bounds for the
Sharir�Welzl algorithm� However� it seems to have another interesting property� it makes
the one�permutation variant �discussed in Section �
 quite slow� and the move�to�front
variant even slower� At present� we do not know how to analyze the expected number of
basis changes theoretically for either of these variants� We have neither a superpolynomial
lower bound nor a subexponential upper bound resembling the one known for the Sharir�
Welzl algorithm in general�

Methods� We have performed computer simulations of the one�permutation and move�
to�front variants� In both cases� the computation of the algorithm was �rst reformulated
as a �ipping process on ��� vectors �somewhat more complicated than the one for the
Sharir�Welzl algorithm
�

For the one�permutation variant� Emo Welzl suggested a binary tree data structure for
both quick detection of the position for �ipping and executing the �ipping quickly� The
data structure only needs O�log d
 time per basis change in simulation of OnePermLp on
example ��
 �the current vector is only represented implicitly in the data structure
� The
algorithm was then coded independently by David Alberts and by the author� and the
correctness of the implementation was moreover veri�ed by comparison with a slower but
more straightforward implementation�

For the move�to�front variant� it was not obvious how to apply a similar idea to speed
up the simulation� so a straightforward implementation with O�d
 time per basis change

��

was used� The code was written by the author� All implementations were made in the
C�� language� as nothing better was readily available�

The random permutations needed by the algorithms were generated using the drand��
random number generator of the Unix system� The following well�known method was used�
initialize a sequence to �� �� � � � � d� and then for i � �� �� � � � � d� exchange the ith element
with jth� j a random index in range 	i��d�� Some of the tests were in fact performed with
doubly shu!ed permutations �the above algorithm was once more applied on the �rst
random permutation as an initial sequence
� but no signi�cant di�erences appeared in
comparison with permutations shu!ed only once�

The experiments were conducted on SPARC workstations� The results for the largest
dimensions shown usually needed several days of computing time�

Various numbers of repetitions for every dimension were used� ��
� ��� and ���� For
the values where ��� repetitions were still computationally feasible� the results show no
substantial di�erence between ��� and ��
 repetitions� thus one can believe that the results
are close to the true expectation� For larger dimensions� where only ��
 repetitions were
performed� the results may be less reliable� This issue will be discussed later�

For the one�permutation variant� the basis fh	�� h	�� � � � � h	dg was set as the initial one�
corresponding to the vector ��� �� �� �� � � �
� This is the �opposite� of the basis de�ning
the optimum� so one would expect it should cause the algorithm to run slowly� Some
experiments were also made with a random initial basis� The resulting mean of running
times was somewhat smaller� but the general trend of growth was very similar�

For the move�to�front variant� a randomly generated initial basis was used�

Results� The results for the one�permutation variant are depicted in Figure �� The
vertical axis� corresponding to the mean of the number of basis changes over the indicated
number of repetitions� is in logarithmic scale� This �gure shows that the observed values lie

close to the curve e
p
d� but seem to grow somewhat slower� Thus OnePermLp is drastically

slower than the Sharir�Welzl algorithm itself �the expected running time Ta�d
 of the
Sharir�Welzl algorithm for a random initial basis is shown in the picture for comparison
�
but still seems to �t below the theoretical upper bound valid for the Sharir�Welzl algorithm�

Figure � depicts the results for the move�to�front strategy in a similar way� The growth
in this case is apparently much faster� perhaps exponential�

	 Discussion and open problems

The main problem is of course to �nd a better combinatorial linear programming algorithm
�ideally a strongly polynomial one
� or prove a lower bound� It seems that there is still hope
to show that the Sharir�Welzl algorithm performs better on actual linear programs� using
some property of linear programming not re�ected in the abstract framework� It would
be interesting to analyze the one�permutation variant� at least for our particular example�
Quite recently G"artner 	G"ar��� found a subexponential randomized algorithm for a much
wider class of optimization problems than the ones �tting into the Sharir�Welzl framework�
It is likely that our example could be used to demonstrate that G"artner�s bound for his
algorithm is essentially the best possible under his axioms� But it has not been done yet
and it looks somewhat more complicated than for the Sharir�Welzl algorithm�

Other problems are inspired by the computer simulations performed�
Figure � shows the distribution of the number of basis changes �roughly corresponding

Lower Bounds for a Subexponential Optimization Algorithm ��

� �� ��� ��� ��� ���
dimension

�

��

���

��

���

���

���

���

basis
changes

e
p
d

Ta�d

q

q

q

q

q

q

a

a

a

a

a

q ��� repetitions

a ��� repetitions

��
 repetitions

Figure �� Simulation of the one�permutation variant on example ��
� initial vector
��� �� �� �� � � �
�

��

� �� �� �� �� �� ��
dimension

�

��

���

��

���

���

���

basis
changes

e
p
d

q

q

q

q

q

q

q

q

a

a

a

a

q ��� repetitions

a ��� repetitions

��
 repetitions

Figure �� Simulation of the move�to�front variant on example ��
� random initial basis�

Lower Bounds for a Subexponential Optimization Algorithm ��

�

�#

��#

� �� ��� ��
 ��� ���

basis changes

Mean �
���

Figure �� Simulation of the one�permutation variant on example ��
� d �
�� distribution
of the number of basis changes �based on ������� repetitions
�

��

to running times
 for the one�permutation variant on example ��
� for dimension
�� This
�gure reveals an interesting aspect� Most of the runs give results far below the mean� and
only small proportion of long runs is responsible for a large part of the mean� Speci�cally�
the mean number of basis changes is over
���� while the most probable number of basis
changes �maximum of the distribution curve
 is about ����� About �
of the runs are
below the mean� It turns out that for this algorithm� one can get a somewhat better
expected running time by a �restarting strategy�� if the running time of the current run
has exceeded certain threshold� terminate it and restart�

This e�ect may seem somewhat peculiar on the �rst sight� One can demonstrate it on
a simple arti�cial example� Suppose that certain algorithm A runs for � time unit with
probability ��p� and forK time units with probability p� Then the expected running time
is Kp� ��� p
� If we run A for one time unit and restart it if it does not stop� we get an
algorithm with expected running time ��� p
������ p
p������ p
p����

� ����� p
�
for p small and Kp large this is an drastical improvement� It would be interesting to
investigate which algorithms can be made faster by this kind of restarting �perhaps also
embedded in a recursive procedure
�

Another aspect of the distribution of the running times is that a very large number of
repetitions is needed in order to estimate the expectation with a reasonable reliability� In
the example of the previous paragraph� if we make fewer runs than ��p� we probably never
see a long run and we might falsely conclude that the expected running time of algorithm
A is �� Similarly for the one�permutation variant� the distribution is such that we seldom
see a run much longer than the mean� although such runs in�uence the mean signi�cantly�
Thus experiments with a small number of repetitions are inadequate� We believe that in
our experiments� the number of repetitions was already su�cient to get means close to
the true expectation �at least for dimensions where experiments with ��
 and ��� or even
��� repetitions were conducted� the outcomes di�ered only by a little
� but there is no
absolute guarantee for this�

This brings us to another issue $ pseudorandom numbers� Little is known about
the in�uence of replacing random numbers by pseudorandom ones in various randomized
algorithms� We have performed some experiments with �arti�cially bad� random number
generators �see 	Knu��� for a thorough discussion of bad generators
� In the algorithms
we considered� a large part of the expected running time comes from a small portion of
�exceptional� runs� and this could perhaps make them sensitive to the random number
quality�

Test runs of the one�permutation variant simulations were made with the �Fibonacci�
generator �the next pseudorandom number is the sum of the previous two ones modulo a
�xed number� ��� in our case
� and with a linear congruential generator of poor quality
�with a small multiplier� equal to ��� and modulus ���
� These preliminary studies did
not show any drastical deviation of the results from the �presumably
 good random num�
ber generator� but there seemed to be some systematic deviations� The results for the
Fibonacci generator are given in Table �� The table shows the presumably �true� expec�
tation �the mean of ��� runs for the Unix random number generator
� and the deviations
for ��
 and ��� runs with the Unix generator and with the Fibonacci generator �in #
�

For the ��
 runs of the Unix generator� the results are systematically somewhat smaller
than for ��� runs� which can be explained by the distribution of the running times� see
above� The means gained by the Fibonacci generator seem to behave rather di�erently�
for some dimensions �������
 they seem to �converge� to some value larger than the true

Lower Bounds for a Subexponential Optimization Algorithm ��

Dimension Mean of Deviation� Unix generator Deviation� Fibonacci generator
��� runs ��
 runs ��� runs ��
 runs ��� runs

�� ����� ����# ����# ����# ����#

�� ����
 ����# ����# ����# ����#

�� ���� ����# ����# ����# ����#

�
��� ����# ����# ���
����#

��� ����� ����# ����# ����# ����#

��� ����� ����# ����# �����# �����#

Table �� A comparison with the results obtained using a �bad� random number generator
�one�permutation variant
�

expectation� The results for the other bad generator �not shown
 indicate a similar ten�
dency� sometimes deviating downwards� Could one extrapolate this and claim something
like that with a given �quality� of the generator �presumably bounded from above by the
word length used
 there is no hope in empirically estimating the expectation with accuracy
better than some lower bound� no matter how many repetitions we perform% So far this
is a pure hypothesis� and a much more thorough study would be needed to evaluate the
signi�cance of such deviations� Our preliminary experiments only indicate that this issue
might be worth considering� presumably one should start with some algorithm or random
process where good theoretical results on the distribution are available�

Acknowledgement� Emo Welzl invented a nice and e�cient data structure for
modeling the one�permutation variant� I thank him for this and also for several useful
discussions� Jan Sochor worked on analyzing the �ipping processes LpFlipping and its
relatives� He independently obtained partial results concerning the analysis of T	 and Ta�
and I used some of his ideas in the presentation� Last but not least� I thank David Alberts
for implementing some of the algorithms� performing experiments and preprocessing the
results�

References

	Cla

� K� Clarkson� Las Vegas algorithm for linear programming when the dimension
is small� In Proc�
�� IEEE Symposium on Foundations of Computer Science�
pages �������� ��

 �preliminary version� a later version with improved results
is a manuscript from ��
�
�

	FSZ��� P� Flajolet� B� Salvy� and P� Zimmerman� Automatic average�case analysis of
algorithms� Journal of Symbolic Computation� �����

	G"ar��� B� G"artner� A subexponential algorithm for abstract optimization problems�
In Proc� ��� IEEE Symposium on Foundations of Computer Science� ����� To
appear�

	Kal��� G� Kalai� A subexponential randomized simplex algorithm� In Proc�
�� ACM
Symposium on Theory of Computing� �����

�

	Kha
�� L� G� Khachiyan� Polynomial algorithm in linear programming� U�S�S�R� Com�
put� Math� and Math� Phys�� ��������� ��
��

	Knu��� D� E� Knuth� The Art of Computer Programming� Vol�
� Seminumerical Al�
gorithms� Addison�Wesley� �����

	Meg��� N� Megiddo� A note on subexponential simplex algorithms� Lecture at �� Israeli
Computational Geometry Workshop� Eilat� April �����

	MSW��� J� Matou&sek� M� Sharir� and E� Welzl� A subexponential bound for linear pro�
gramming� In Proc� �� ACM Symposium on Computational Geometry� pages
��
� �����

	Sei��� R� Seidel� Small dimensional linear programming and convex hulls made easy�
Discrete � Computational Geometry� ���
��������� �����

	SW��� M� Sharir and E� Welzl� A combinatorial bound for linear programming and
related problems� In Proc�
��
 Symposium on Theoretical Aspects of Computer
Science �Lecture Notes in Computer Science ����� pages �������� Springer�
Verlag� �����

	Wel��� E� Welzl� Smallest enclosing disks �balls and ellipsoids
� In H� Maurer� editor�
New Results and New Trends in Computer Science �Lecture Notes in Computer
Science ����� pages �������� Springer�Verlag� �����

