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Abstract

Recently Sharir and Welzl [SW92] described a randomized algorithm for a certain
class of optimization problems (including linear programming), and then a subexpo-
nential bound for the expected running time was established [MSW92]. We give an
example of an (artificial) optimization problem fitting into the Sharir-Welzl frame-
work for which the running time is close to the upper bound, thus showing that the
analysis of the algorithm cannot be much improved without stronger assumptions
on the optimization problem and/or modifying the algorithm. Further we describe
results of computer simulations for a specific linear programming problem, which
indicate that “one-permutation” and “move-to-front” variants of the Sharir-Welzl
algorithm may sometimes perform much worse than the algorithm itself.
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1 Introduction

Its is well-known that linear programming can be solved in time polynomial in the bit-size
of the input ( [Kha80]), but the number of arithmetic operations in all known polynomial-
time algorithm depends on the input precision of the coefficients and it cannot be ex-
pressed as a function of d and n, the number of variables and constraints. A major open
problem is to decide whether there exists a strongly polynomial algorithm for linear pro-
gramming, which only needs a number of arithmetic operations polynomial in n and d.
Until recently, the best bound was exponential. Then two randomized algorithms with
a subexponential expected number of arithmetic operations, roughly exp(O(y/dlogn)),
appeared: Kalai [Kal92] obtained one!, and independently it was shown in [MSW92] that
a randomized algorithm (resembling a dual simplex method) developed earlier by Sharir
and Welzl [SW92] has a similar upper bound for the expected running time.

It is natural to ask whether the analysis of these algorithms can be still improved
(perhaps to show that they are in fact polynomial), or whether the expected running time
is close to the upper bounds in the worst case.

At present we cannot answer this question for linear programming itself. However, the
analysis Sharir-Welzl algorithm is based on few simple properties of linear programming.
The algorithm can in fact be formulated and analyzed in an abstract framework, which
encompasses linear programming and various other optimization problems, satisfying few
simple assumptions. In this paper we construct an artificial problem which fits into the
abstract framework, and such that the expected running time of the Sharir-Welzl algorithm
is close to the known upper bound. This shows that the analysis of the Sharir-Welzl
algorithm for linear programming cannot be substantially improved without using more
specific properties of linear programming and/or modifying the algorithm. We do not
consider Kalai’s algorithm here, but since it is similar to the Sharir-Welzl algorithm we
expect that similar results can be obtained for it (one of Kalai’s variants is in some sense
dual to the Sharir-Welzl algorithm).

The Sharir-Welzl algorithm is formulated as a recursive procedure. For implementa-
tion, it would be simpler to have an iterative variant, and also to restrict the amount of
randomness needed. For a linear programming algorithm due to Seidel [Sei91] (a prede-
cessor of the Sharir-Welzl algorithm), whose basic formulation is also recursive, one can do
this very elegantly: Welzl [Wel91] describes a modification which first puts the constraints
into a random order (i.e., generates one random permutation), and then proceeds entirely
deterministically, iterating a simple step. The expected running time is shown to be the
same as for the basic version [Wel91].

Formulating such a one-permutation variant for the Sharir-Welzl algorithm is not dif-
ficult and the resulting algorithm is very easy to implement. A very similar algorithm
was proposed by Megiddo [Meg92]; this algorithm is formulated in a dual setting (as a
variant of Kalai’s algorithm) and it is in fact the simplex algorithm with Bland’s least
index pivoting rule, where one puts the columns into a random order before the algorithm
starts.

However, the analysis used for the Sharir-Welzl algorithm breaks down for the one-per-
mutation variant, and to our knowledge no subexponential upper bounds for the expected
running time are known. We provide an example (this time a linear programming problem,

'In fact, he gives several variants of the algorithm with small differences in the running time bounds;
they are all more or less complicated randomized variants of the simplex algorithm.
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with d variables and 2d constraints) indicating that there indeed is a substantial difference
in the behavior of the one-permutation variant: while the Sharir-Welzl algorithm with any
initial basis has expected running time O(d?), for the one-permutation variant computer
experiments indicate that the expected running time is much larger, perhaps about eV,

In [Wel91], Welzl proposes still another version of Seidel’s algorithm, which he calls
“move-to-front”. Here the algorithm again starts with a random order of the constraints,
but then it keeps changing it (deterministically), trying to put constraints which were in
some sense important for the computation so far to the beginning (hence the name). The
hope is that this makes the algorithm converge much more quickly to the solution, and
indeed computer experiments have shown that this strategy speeds up Seidel’s algorithm
significantly, at least for the examples used in the experiments. Analogously one can
formulate a move-to-front version of the Sharir-Welzl algorithm. Here it is not entirely
obvious what the correct analog should be; we have selected the one which seemed most
natural. The experiments show that for our particular linear programming example, this
variant is still much slower that the one-permutation variant. It is fair to say that the move-
to-front strategy is intended for the situation where the number of constraints is much
larger than the number of variables, while our example has 2d constraints and d variables,
0 it is no reason for discarding the strategy as a bad or useless one. Rather, it should
serve as an example that a seemingly innocent heuristic modification to a randomized
algorithm, destroying the assumptions on which the analysis was based, can make the
performance quite poor.

2 The Sharir-Welzl algorithm

We begin by recalling the abstract framework of [SW92] (with minor formal modifications).
In this setting, an optimization problem is a pair (H,w), where H is a finite set, and
w: 20 — W is a function with values in a linearly ordered set (W, <). The elements of
H are called the constraints, and for a subset G C H, w(G) is called the value of G.

A basis B is a set of constraints with w(B’) < w(B) for all proper subsets B’ of B. A
basis for a subset GG of H is a basis B with B C G and w(B) = w(G). So a basis for G is
a minimal subset of G with the same value as G. The goal is to find a basis for H (and
its value).

We say that a constraint h € H wviolates a basis B, if w(B U {h}) > w(B). The
maximum cardinality of any basis is called the combinatorial dimension of (H,w) and
denoted by dim(H,w).

Let wg € W be a value. The problem (H,w) is called an LP-type problem (with respect
to wy) if the following two axioms are satisfied:

Axiom 1. (Monotonicity) For any F,G with /' C G C H and w(F) > wy,
w() < w(G).

Axiom 2. (Locality) For any /' C G C H with w(F') = w(G) > wp and any
h e H, w(GU{h})> w(G) implies that also w(F U{h}) > w(F).

In order to derive a subexponential bound for the expected running time of the Sharir-
Welzl algorithm, one more axiom is needed.

Axiom 3. (Basis regularity) Any basis 7" with w(7') > wg has cardinality
exactly dim(H,w).



An optimization problem (H, w) satisfying Axioms 1-3 (with some wy) is called a basis-
regular LP-type problem (with respect to wg). Let us call any basis B with w(B) > wg a
regular basis.

Let us see how linear programming fits into this framework. Without loss of generality,
we consider the problem of finding the lexicographically smallest point in the intersection
of a set H of n halfspaces in R?. For simplicity, let us assume that the intersection is
nonempty (the problem is admissible) and that the optimum is well-defined (it is a point
at a finite distance from the origin).

For a subset G C I, we define the value w(G) of G as the optimal vertex (a point of
R?) over the intersection of the halfspaces of G; if the optimum is undefined, we define
w((G) as a formal symbol —oco. Hence the set W is {—oo}UR?, where R? is considered with
the lexicographic ordering. This defines an optimization problem (H,w). Let wy € R? be
any lower bound for the optimum value w(H ). It is easy to check that (H,w) is a basis
regular LP-type problem (with respect to wg) of combinatorial dimension d.

We are going to describe the Sharir-Welzl algorithm. The algorithm is a recursive
function LpType(G,T) with two arguments, a set ¢ C H of constraints, and a basis
T C G (which is not necessarily a basis for ). It computes a basis B for G and uses
the set T" as an auxiliary parameter for guiding its computations. In order to find a basis
for H, LpType(H,T) is called, where T' is some basis such that (H,w) is a basis-regular
LP-type problem with respect to w(7'). All bases encountered during the computation of
the algorithm will have value at least w(7'), so they are regular.

The algorithm uses the following two computational primitives: First, given a (regular)
basis B C H and a constraint h € H, decide whether h violates B, and second, given B
and h as above, compute a basis for B U {h}. Both the computational primitives can
easily be done in polynomial time for linear programming (violation test in O(d) time and
basis change in O(d?) time if the computation is organized similarly as in the dual simplex
algorithm).

Here is a pseudocode for the Sharir-Welzl algorithm:

function LpType(G,T);
if ¢ =T then
return(7)
else
choose a random h € G\ T;
B := LpType(G\ {h},T);
if h violates B then
B := basis(BU{h});
return LpType(G, B)
else
return(B);
end if;
end if;

The operation

B :=basis(BU{h});

in the algorithm will be referred to as a basis change. The analysis will count the number
of basis changes during the computation (the number of violation test is at most n times
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larger, n = |G]).
The following bound is proved in [MSW92] (journal version):

Theorem 2.1 [MSWO92] Let (H,w) be a basis-reqular LP-type problem (with respect to
some wq) with n constraints and combinatorial dimension d, let T be a basis with w(T) >
wo. Then the expected number of basis changes in the call LpType(H,T') is bounded by

exp (%/dln% +0 (\/E+1nn)) :

Let us remark that for n being larger than roughly d?, it is more advantageous to use
a randomized algorithm of Clarkson [Cla88], and the above algorithm is only used as a
subroutine in Clarkson’s algorithm for subproblems with n = O(d?). If one could improve
the running time bound for n = O(d?), an overall improvement follows. In our lower
bound examples, we will have n = 2d.

3 One-permutation and Move-to-front variants

The following is a pseudocode for a “one-permutation” variant of the Sharir-Welzl algo-
rithm, formulated in the spirit of a similar modification of Seidel’s algorithm in [Wel91],
and also being essentially a dual version of Megiddo’s suggestion [Meg92].

function OnePermLp(H,T);
enumerate the constraints of H

in random order hy,...,h,;
B:=1T;
loop
if no h; € H violates B then
return(B)
else

¢ :=min{j € [n]; h; violates B};
B := basis(B U {h;})
end if;
end loop;

The idea of the move-to-front heuristics of [Wel91] is to move the constraint h; which
caused basis change to the beginning of the current permutation of constraints. To imple-
ment this in a function MTF-Lp, the only change compared to the above code is that the
statement

B :=basis(B U {h;});

is followed by the command
(hh h27 sy hz) = (hzv h17 sy hi—l);

which moves h; to the first position and shifts hq,..., h;_1 one position forward.



4 A linear programming example

In this section we define a particular class of linear programs, and we analyze the running
time of the Sharir-Welzl algorithm for these linear programs. The analysis can be viewed
as an introduction to an abstract example discussed next. The linear programs will also
serve as a test example for the one-permutation and move-to-front variants.

Let us consider the linear programming problem in R? with a set

H = {13, hy, hy hy, ... hg, hy}

of 2d constraints, defined as follows:

h(l): x1 >0,

hl: >1

by . (1)
hit z;>1—20 1=2,3,...,d

Al x> 2 1=2,3,...,d.

We are looking for the lexicographically smallest admissible vector «.

We will present a sequence of simple claims and observations, which lead to modeling
the computation of the Sharir-Welzl algorithm by a “flipping process” on vectors of {0, 1}%.

The optimum lies at the vertex (1,1,...,1), and it is determined by the constraints
hi,...,hl. The other constraints are redundant and they are included in order to confuse
the algorithm.

The problem is basis-regular with respect to any finite value, in particular with respect
towg = (0,0,...,0). Let us investigate the structure of regular bases. For a subset G C H,
the optimum is well-defined (bounded in all coordinates) iff G’ contains at least one h” for
every i. The basis for such a G then contains either A? or h! for every i.

Let B stand for the set of all regular bases. B can thus be identified with {0,1}%.
Each B € B uniquely determines the solution vector 2 € {0,1}¢, which we will denote by
w(B). This function is a bijection between B and {0,1}?. For the analysis, it will be more
convenient to look at the solution vectors rather than at the bases.

Let B € B be a basis, z = w(B) € {0,1}¢ the solution vector and hY ¢ B a constraint.
Then h? violates B iff #; = 0, as one easily checks. If it violates B, then the basis
for BU {h?} is (B \ {h:""}) U {h?}. Let us see how this basis change changes z. The
components x1,...,2;_1 remain unchanged, and z; changes from 0 to 1. This causes that
the r.h.s. of the next constraint in B (the one determining x;41) changes (either from 0
to 1 or from 1 to 0), and so also x;41 changes its value. Similarly we find that each of
Tit2,...,2q change their value.

These observations imply that the Sharir-Welzl algorithm for our specific problem
is equivalent to a “flipping process”, which can be described in the form of a recursive
procedure LpFlipping. This procedure uses one global vector z (the current solution), and
it is called with an argument I C [d], which means the set of “free” indices (corresponding
to the indices ¢ with both A2, h! € G). Initially z is set to some value (corresponding to
the solution vector for the initial basis in the Sharir-Welzl algorithm), and the procedure
is called with I = [d]. The procedure works as follows:
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procedure LpFlipping(/);
if I =0 then
return
else
choose a random 7 € [;
LpFlipping(/\ {i}),
if z; = 0 then
flip([i..d]);
LpFlipping(/);
end if;
end if;

The statement £1ip(J) (with J C [d]) means that for each j € J, the value of z; is
“flipped”, that is, z; := 1 — 2; is executed. The number of basis changes in the Sharir-
Welzl algorithm is equal to the number of executions of the “£1ip” statement in the above
procedure, “flips” for short.

Let T'(d, z,I) denote the expected number of flips in the call LpFlipping(/), when x
is the current vector at the beginning of that call, and let 7'(d,z) = T(d, z,[d]).

We observe that within a recursive call LpFlipping(/), the values of 2 at positions
outside I are insignificant for the number of flips within that call. Hence

T(dvxvl):T(|I|vw|I)v (2)

where z|; denotes the vector of components indexed by I. If 2y = 1, then this can never
be changed by subsequent flips, and we find that

T(d,x):T(d—1,$|[2”d]) for zy = 1. (3)

Another simple observation is that at the moment the call LpFlipping(/)is completed,
all the components of x|; must be 1’s.

Let us first investigate To(d) = 17'(d,(0,...,0)). In the call LpFlipping([d]), we first
get a contribution of To(d — 1) from the first recursive call, with I = [d] \ {¢}. Now the

current  has 1 at all positions but possibly z;. If « = 1, then z; = 0, since z; was
0 initially and it was never flipped. In this case, £1ip([l..d]) is executed after the first
recursive call, which changes x to the vector (1,0,0,...,0). The subsequent recursive call

needs Ty(d — 1) expected time by (3).

On the other hand, if ¢ > 1, then x; was always flipped together with z;_;. Since the
value of z;_1 has changed from 0 to 1 as a result, also z; must be 1, so there will be no
second recursive call for ¢ # 1. From this we get the recursion

To(d) = To(d — 1) + éu +To(d—1)).

Together with the initial condition To(1) = 1, this gives To(d) = d.

Let T,(d) denote the expected value of T'(d, z) with a random choice of z, and T,(d)
the maximum of T'(d, z) over all choices of z. The analysis for these quantities is similar
to the one for Ty(d). The difference is that z; can end up as 0 after the first recursive
call even if ¢ # 1. In such case, we have the second recursive call with the initial vector
consisting of ¢ ones on the beginning followed by d — i zeros, which by (3) needs To(d — ¢)



expected time. In the worst-case, having no information whether z; will be 0 or 1 after
the first recursion is completed, we assume that z; = 1. This gives T},(1) = 1,

1 & d+1
Tw(d)gTw(d—1)—|—1—|—EZ;T0(d—z):Tw(d—1)—|—T

or Ty(d) < w.

For a randomly chosen ., z; is independent of z;_; on the beginning, and since it is
flipped simultaneously with x;_; during the first recursive call and z;_; ends up as 1, the
value of x; after the first recursive call will be 0 or 1 with equal probability. This gives

T.(1)= 1/2,

d—1
1 1 . d+3
Ta(d):Ta(d_1)+§+ﬁ E To(d—l)ITa(d—l)—l-T,
=1

that is, T,(d) = dd+3)

5 A slow abstract example

By generalizing the linear programming example from the previous section, we obtain an
example where the Sharir-Welzl algorithm can be proved to run in expected time close
to the known upper bound. We cannot model the example by a linear programming
problem; rather it will be a LP-type problem (resembling boolean programming) fitting
into the Sharir-Welzl abstract framework.

Let A be a lower triangular d x d matrix with zero diagonal over Z; (the two-element
field, {0, 1} with addition and multiplication modulo 2). An LP-type problem P4 defined
by A will be as follows.

Fori=1,2,...,dand p=0,1, let hY = hf(A) denote the constraint

1—1

x; > Zaij$j+p-

i=1

Here zq,...,24 denote variables over Z,. The addition and multiplication on the r.h.s.
is in Zo, and the inequality is to be interpreted as follows: If the r.h.s. evaluates to 1
for given values of z;, then the constraint requires that z; is also 1, otherwise it puts no
requirement on x;.

The constraint set of the problem P4 will be Hy = {h¥(A); i € [d],p € Zs}.

The range of the value function w will be the set W = {—oc} U Z4. The ordering on
W is defined as follows: —oo is the smallest element, and Zg is ordered lexicographically
(taking 0 < 1 in Zg).

For a subset ¢ C H,, the value w4((G) is defined as —oo if there is an index 7 € [d]
such that G contains neither 12 nor i}, otherwise w4((G) is the lexicographically smallest
vector z € 73 satisfying all the constraints of G.

We leave it to the reader to check that this defines a basis-regular LP-type problem
(with respect to wg = (0,0,...,0)) of combinatorial dimension d. A regular basis is a
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subset of H containing exactly one constraint of h?, k! for each 7. Let B be the set of all
regular bases.

The problem discussed in the previous section can be viewed as a special case of Py,
with a;;_1 = 1 and a;; = 0 otherwise. The following facts mentioned in connection with
this special case hold in general:

The optimal value of P4 is (1,...,1). The function w4 restricted to B defines a
bijection between B and the set Z4 of solution vectors. Let B € B be a basis and kY ¢ B
a constraint. A constraint hY ¢ B violates B iff #; = 0, with = w4(B), and then the
basis for BUhY is (B \ {h: "}) U {h’}.

Describing the change in the solution vector caused by such a basis change is somewhat
more complicated this time. First of all, z; becomes 1. Then the r.h.s. of hffll, the
constraint of B defining 2,4, changes its value iff a;4;; # 0, and in such case z;4; is
also flipped, otherwise it remains unchanged. For z;15, we again look at the r.h.s. of the
constraint in B defining it. Its value could change because of z;, and also because of x;41,
or these two influences can cancel out. However, this condition (for changing x;42) only
depends on a;41,;, @i42; and a;42 41, not on the values of x; 41, z;40.

Proceeding with this analysis inductively, we define quantities f;; for & > ¢, with the
meaning that f;z is 1 iff 23 will be flipped when a basis change occurs at index . We get
that f;z is determined as follows:

fik = ki + apiv1 fiivr + ahivofiiee + -+ app—1 fik—1 (4)

(the addition is modulo 2). Let F' = F(A) denote the upper triangular matrix of the fi’s;
we will call it the flipping matriz.

We thus find that the computation of the Sharir-Welzl algorithm with an initial basis
B € B can be modeled by the following procedure A-Flipping called with the initial
value of @ set to wa(B) (the procedure is identical to LpFlipping except for the flip
statement):

procedure A-Flipping([);
if I =0 then
return
else
choose a random 7 € [;
A-Flipping(/\ {i}),
if z; = 0 then
£Lip({i} U {k € [i+ Ludls fir = 13
A-Flipping(/);
end if;
end if;

Our goal is to analyze the expected number of flips, the expectation being over the
internal random choices of the algorithm, a random choice of the initial vector z and a ran-
dom choice of the matrix A (the relevant entries being independent uniformly distributed
0/1 random variables).

We see that the matrix A enters the procedure only via the F matrix. We have the
following elementary lemma:

Lemma 5.1 Let a;; (2 <1 < d, 1 < j < i) be independent uniformly distributed 0/1
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variables. Then fi, (1 < i < d—-1, 1 < k < d) defined by (4) are also independent
uniformly distributed 0/1 variables.

Proof: The value of f;; is determined by the values of as; with ¢ < j < £ < k (this
can either be derived formally from (4) or seen from the considerations leading to that
formula). Let ¢, k', < k' be indices such that &' —i' < k—4,or ' —¢' = k—iand k' < k.
Then we have that the value of f;,r does not depend on the value of a;;. Then also fi
determined by the formula (4) is independent of any combination of the firp’s (with ', &’
as above), because a; is independent of these (a 0/1 quantity independent of a;; is added
to a;k, so the result remains independent of anything a;; was independent of). O

We can thus replace the expectation over the choice of A by expectation over the
choice of F. Let T(d, F,z,I) be the expected number of flips in the call A-Flipping(/)
with flipping matrix F' and initial vector . We let T'(d, F,z) = T'(d, F, z,[d]); again we
observe that T'(d, F,x,I) = T(|I|, F|7,z|f), |7 meaning the submatrix of elements of
F with both row and column indices in [ . Further we let 7'(d) be the expectation of
T(d, F,z) over independent and random choice of z and F'.

With random  and F, the first recursive call in procedure A-Flipping requires 7'(d—1)
expected time. Let us consider the situation after the first recursive call is finished. If 7 is
the randomly chosen index, we have z; = 1 for j # 7. We claim that the current value of
x; is an uniformly distributed 0/1 random variable, which is independent of 7 and of the
random choices of the algorithm during the first recursive call, and also of F. If : = 1, the
value of 21 has not changed in the first recursive call, so the claim holds by independence
of 1 and F. For ¢ > 1, z; has been flipped some number of times during the first recursive
call. The number of these flips did not depend on the initial value of x;, hence also the
resulting value is random and independent of F’, so the claim holds.

If 2; = 1, the procedure is thus finished. If z; = 0, the £1ip statement is executed,
which yields the current vector x with ;=1 for 1 < j <7 and z; = 1— f;; for i <
Jj < d. Then we have the second recursive call, which requires expected time (using a
generalization of (3)) T(d — i F|[2 +1.d)’ x|[l ey d]) The entries of F' are independent

and x|[ d+ 1] is defined by i¢th row of F. Hence the initial vector x|[ 1 1..d] and the
flipping matrix F|[2 1 1.d) e random and independent, and so the expected time for the

second recursive call is equal to T'(d — 7).
Together with the initial condition T(1) = 1/2 we get the recursion

T(d)=T(d-1)+ 5 —I-—ZT — i)

Our considerations thus show that for every d there is a specific matrix F such that
for a random choice of the initial basis, the expected number of flips is at least 7'(d).
Translated back to the LP-type problems setting, it means that for some A the problem
P4 requires at least T'(d) basis changes in the Sharir-Welzl algorithm (started with a
randomly chosen initial regular basis).

It remains to give an asymptotic estimate for T'(d), which is more or less routine. We
first substitute by = T'(d) 4 1, obtaining the relations

bo=1, bd—bd1‘|‘—zb
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From this we derive an equation for the generating function b(z) = bg 4 b1z + boz? 4 ...,

b(=) = 14 2b(=) + /0 %dt

whose solution is

b(z) = @.

Using the Maple V software, with the asymptotic analyzer developed by B. Salvy, P.
Flajolet and others (see [F'SZ91]), the following asymptotics for by is obtained:

by = ——— -
d 61/423/4\/;\4/3 +0 d3/4

This is in a good agreement with numerically computed values of b;. If one does not believe
in the automatic asymptotic analyzer, one can at least prove a less precise estimate by
induction.

We can summarize our considerations in a theorem:

Theorem 5.2 For every d there exists a basis-reqular LP-type problem of combinatorial
dimension d with 2d constraints (of the form P4 ), such that for a randomly chosen initial

d-element basis the expected running time of the Sharir-Welzl algorithm is Q(em/W).
O

6 One-permutation and Move-to-front: Experimental re-
sults

We saw that our linear programming example (1) gives no impressive lower bounds for the
Sharir-Welzl algorithm. However, it seems to have another interesting property: it makes
the one-permutation variant (discussed in Section 3) quite slow, and the move-to-front
variant even slower. At present, we do not know how to analyze the expected number of
basis changes theoretically for either of these variants. We have neither a superpolynomial
lower bound nor a subexponential upper bound resembling the one known for the Sharir-
Welzl algorithm in general.

Methods.  We have performed computer simulations of the one-permutation and move-
to-front variants. In both cases, the computation of the algorithm was first reformulated
as a flipping process on 0/1 vectors (somewhat more complicated than the one for the
Sharir-Welzl algorithm).

For the one-permutation variant, Emo Welzl suggested a binary tree data structure for
both quick detection of the position for flipping and executing the flipping quickly. The
data structure only needs O(logd) time per basis change in simulation of OnePermLp on
example (1) (the current vector is only represented implicitly in the data structure). The
algorithm was then coded independently by David Alberts and by the author, and the
correctness of the implementation was moreover verified by comparison with a slower but
more straightforward implementation.

For the move-to-front variant, it was not obvious how to apply a similar idea to speed
up the simulation, so a straightforward implementation with O(d) time per basis change
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was used. The code was written by the author. All implementations were made in the
C++ language, as nothing better was readily available.

The random permutations needed by the algorithms were generated using the drand48
random number generator of the Unix system. The following well-known method was used:
initialize a sequence to 1,2,...,d, and then for ¢ = 1,2,...,d, exchange the ith element
with jth, j a random index in range [i..d]. Some of the tests were in fact performed with
doubly shuffled permutations (the above algorithm was once more applied on the first
random permutation as an initial sequence), but no significant differences appeared in
comparison with permutations shuffled only once.

The experiments were conducted on SPARC workstations. The results for the largest
dimensions shown usually needed several days of computing time.

Various numbers of repetitions for every dimension were used: 103, 10* and 10°. For
the values where 10? repetitions were still computationally feasible, the results show no
substantial difference between 10* and 102 repetitions, thus one can believe that the results
are close to the true expectation. For larger dimensions, where only 10° repetitions were
performed, the results may be less reliable. This issue will be discussed later.

For the one-permutation variant, the basis {h{,h9,..., A0} was set as the initial one,
corresponding to the vector (0,1,0,1,...). This is the “opposite” of the basis defining
the optimum, so one would expect it should cause the algorithm to run slowly. Some
experiments were also made with a random initial basis. The resulting mean of running
times was somewhat smaller, but the general trend of growth was very similar.

For the move-to-front variant, a randomly generated initial basis was used.

Results. The results for the one-permutation variant are depicted in Figure 1. The
vertical axis, corresponding to the mean of the number of basis changes over the indicated
number of repetitions, is in logarithmic scale. This figure shows that the observed values lie
close to the curve e\/g, but seem to grow somewhat slower. Thus OnePermLyp is drastically
slower than the Sharir-Welzl algorithm itself (the expected running time 7,(d) of the
Sharir-Welzl algorithm for a random initial basis is shown in the picture for comparison),
but still seems to fit below the theoretical upper bound valid for the Sharir-Welzl algorithm.

Figure 2 depicts the results for the move-to-front strategy in a similar way. The growth
in this case is apparently much faster, perhaps exponential.

7 Discussion and open problems

The main problem is of course to find a better combinatorial linear programming algorithm
(ideally a strongly polynomial one), or prove a lower bound. It seems that there is still hope
to show that the Sharir-Welzl algorithm performs better on actual linear programs, using
some property of linear programming not reflected in the abstract framework. It would
be interesting to analyze the one-permutation variant, at least for our particular example.
Quite recently Gartner [Gar92] found a subexponential randomized algorithm for a much
wider class of optimization problems than the ones fitting into the Sharir-Welzl framework.
It is likely that our example could be used to demonstrate that Gértner’s bound for his
algorithm is essentially the best possible under his axioms. But it has not been done yet
and it looks somewhat more complicated than for the Sharir-Welzl algorithm.

Other problems are inspired by the computer simulations performed.

Figure 3 shows the distribution of the number of basis changes (roughly corresponding
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Figure 1: Simulation of the one-permutation variant on example (1); initial vector
(0,1,0,1,...).
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Figure 2: Simulation of the move-to-front variant on example (1); random initial basis.
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Figure 3: Simulation of the one-permutation variant on example (1), d = 80: distribution
of the number of basis changes (based on 100,000 repetitions).
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to running times) for the one-permutation variant on example (1), for dimension 80. This
figure reveals an interesting aspect: Most of the runs give results far below the mean, and
only small proportion of long runs is responsible for a large part of the mean. Specifically,
the mean number of basis changes is over 8000, while the most probable number of basis
changes (maximum of the distribution curve) is about 5000. About 68% of the runs are
below the mean. It turns out that for this algorithm, one can get a somewhat better
expected running time by a “restarting strategy”: if the running time of the current run
has exceeded certain threshold, terminate it and restart.

This effect may seem somewhat peculiar on the first sight. One can demonstrate it on
a simple artificial example. Suppose that certain algorithm A runs for 1 time unit with
probability 1 —p, and for K time units with probability p. Then the expected running time
is Kp+ (1—p). If we run A for one time unit and restart it if it does not stop, we get an
algorithm with expected running time (1 —p).14 (1 —p)p.2+(1—p)p?3+---=1/(1—-p);
for p small and Kp large this is an drastical improvement. It would be interesting to
investigate which algorithms can be made faster by this kind of restarting (perhaps also
embedded in a recursive procedure).

Another aspect of the distribution of the running times is that a very large number of
repetitions is needed in order to estimate the expectation with a reasonable reliability. In
the example of the previous paragraph, if we make fewer runs than 1/p, we probably never
see a long run and we might falsely conclude that the expected running time of algorithm
Ais 1. Similarly for the one-permutation variant, the distribution is such that we seldom
see a run much longer than the mean, although such runs influence the mean significantly.
Thus experiments with a small number of repetitions are inadequate. We believe that in
our experiments, the number of repetitions was already sufficient to get means close to
the true expectation (at least for dimensions where experiments with 10% and 10* or even
10° repetitions were conducted, the outcomes differed only by a little), but there is no
absolute guarantee for this.

This brings us to another issue — pseudorandom numbers. Little is known about
the influence of replacing random numbers by pseudorandom ones in various randomized
algorithms. We have performed some experiments with “artificially bad” random number
generators (see [Knu73] for a thorough discussion of bad generators). In the algorithms
we considered, a large part of the expected running time comes from a small portion of
“exceptional” runs, and this could perhaps make them sensitive to the random number
quality.

Test runs of the one-permutation variant simulations were made with the “Fibonacci”
generator (the next pseudorandom number is the sum of the previous two ones modulo a
fixed number, 2'% in our case), and with a linear congruential generator of poor quality
(with a small multiplier, equal to 91, and modulus 2!%). These preliminary studies did
not show any drastical deviation of the results from the (presumably) good random num-
ber generator, but there seemed to be some systematic deviations. The results for the
Fibonacci generator are given in Table 1. The table shows the presumably “true” expec-
tation (the mean of 10° runs for the Unix random number generator), and the deviations
for 10 and 10* runs with the Unix generator and with the Fibonacci generator (in %).

For the 10° runs of the Unix generator, the results are systematically somewhat smaller
than for 10° runs, which can be explained by the distribution of the running times, see
above. The means gained by the Fibonacci generator seem to behave rather differently;
for some dimensions (60,120) they seem to “converge” to some value larger than the true
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Dimension | Mean of | Deviation: Unix generator | Deviation: Fibonacci generator

105 Tuns 103 runs 10* runs 103 runs 10* runs
20 102.2 -1.2% +0.4% +0.9% +2.7%
40 667.8 -0.9% +0.6% +1.6% +1.0%
60 2635 -3.7% -0.6% +2.7% +4.4%
80 8166 -3.3% +1.6% +3.8% +3.4%
100 21760 =5.7% —-1.0% —2.1% +0.5%
120 52600 -0.5% -0.7% +11.4% +10.4%

Table 1: A comparison with the results obtained using a “bad” random number generator
(one-permutation variant).

expectation. The results for the other bad generator (not shown) indicate a similar ten-
dency, sometimes deviating downwards. Could one extrapolate this and claim something
like that with a given “quality” of the generator (presumably bounded from above by the
word length used) there is no hope in empirically estimating the expectation with accuracy
better than some lower bound, no matter how many repetitions we perform? So far this
is a pure hypothesis, and a much more thorough study would be needed to evaluate the
significance of such deviations. Our preliminary experiments only indicate that this issue
might be worth considering; presumably one should start with some algorithm or random
process where good theoretical results on the distribution are available.
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