The Linear-Extension-Diameter of a Poset

STEFAN FELSNER' and KLAUS REUTER?

L Freie Universitit Berlin, Fachbereich Mathematik und Informatik,
Takustr. 9, 14195 Berlin, Germany

FE-mail: felsner@inf.fu-berlin.de

2 Mathematisches Seminar, Universitit Hamburg,
Bundesstrasse 55, 20146 Hamburg, Germany

E-mail: reuter@math.uni-hamburg.de

Abstract. The distance between two permutations of the same set X is the number
of pairs of elements being in different order in the two permutations. Given a poset
P = (X, <), apair Ly, Ly of linear extensions is called a diametral pair if it maximizes
the distance among all pairs of linear extensions of P. The maximal distance will be
called the linear extension diameter of P and is denoted led(P). Alternatively led(P)
is the maximum number of incompararable pairs of a two-dimensional extension of P.
In the first part of the paper we discuss upper and lower bounds for led(P). These
bounds relate led(P) to well studied parameters like dimension and height. We prove
that led(P) is a comparability invariant and determine the linear extension diameter
for the class of generalized crowns. For the Boolean lattices we have partial results.

A diametral pair generates a minimal two-dimensional extension of P or equiv-
alently a maximal interval in the graph of linear extensions of P. Studies of such
intervals lead to the definition of new classes of linear extensions. We give three char-
acterizations of the class of extremal linear extensions which contains the greedy linear
extensions. With complementary linear extensions we introduce a class contained in
the set of super-greedy linear extensions. The complementary linear extension of L
is the linear extension L* obtained by taking the reverse of L as priority list in the
generic algorithm for linear extensions. A complementary pair is a pairs L, M of lin-
ear extensions with M = L* and L = M*. Iterations of the complementary mapping
starting from an arbitrary linear extension eventually leads to a complementary pair.
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1 Introduction and Alternate Formulations

The distance between permutations m, o of the same set X, denoted dist(m, o), is
the number of pairs of elements being in different order in the two permutations.
Given a poset P = (X, <), a pair Ly, Lo of linear extensions is called a diametral
pair if it maximizes the distance among all pairs of linear extensions of P.
The maximal distance will be called the linear extension diameter of P and is
denoted led(P). In [Reu96b] the linear extension graph G(P) was defined as the
graph with vertices the linear extensions of P and two vertices connected by an
edge if the linear extensions differ by an adjacent transposition only. Figure 1
shows the six element poset called chevron and its linear extension graph. An
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easy fact about G(P) is that any pair L;, Lo of linear extensions is connected in
G(P) by a path whose length equals the distance between L; and Ly. Hence,
led(P) is exactly the graph diameter of the linear extension graph G(P).
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Figure 1: The chevron and its linear extension graph.
This poset has linear extension diameter 6.

The intersection of a collection A = {Ly,..., Ly} of linear extensions of P is
a poset P4 which is an extension of P. The graph G(Pj4) is an induced subgraph
of G(P). Interestingly subgraphs of G(P) corresponding to extensions of P are
exactly the convex subgraphs of G(P) (see [BW91] or [Reu96b)).

Let inc(P) denote the number of incomparable pairs of P. If L, Lo is a di-
ametral pair for P then Py, 1,y is a two-dimensional extension of P and Ly, Lo
is a diametral pair for Py, 1,3, i-e., led(Pfp, 1,}) = led(P). The incomparable
pairs of Py, 1, are exactly the pairs being in different order in L; and Lo,
therefore, led(Pyy, 1,}) = inc(Pir, 1,1) = dist(Ly, L2), where inc(P) denotes
the number of incomparable pairs of P.

We call a two-dimensional extension () of P a minimum two-dimensional
extension of P if () has a minimal number of comparable pairs that are in-
comparable in P. Dually, a minimum two-dimensional extension maximizes
inc(P{ Li, L2}). Together with the previous paragraph this proves the following
Theorem.

Theorem 1 The linear extension diameter of P equals the number of incom-
parable pairs of a minimum two-dimensional extension of P.

By definition inc(Q) < inc(P) for every extension @) of P. As a consequence
of the theorem we have the general bound

led(P) < inc(P). (1)
Equality in inequality (1) is a characterization of two-dimensional posets:

Theorem 2 For a poset P the following two statements are equivalent:

dim(P) <2 and led(P) = inc(P).



Proof. We have already seen that led(P) = inc(P) for two-dimensional posets.
If P is one-dimensional then led(P) = 0 = inc(P).

For the converse suppose led(P) = inc(P) and let Ly, Ly be a diametral pair.
The number of pairs being in different order in L; and Lg is inc(P). Therefore,
P is the intersection of Ly and Ly which proves dim(P) < 2. 0

Inequality (1) is only sharp for two-dimensional posets but as shown with
the standard examples the following inequality may be sharp in any dimension

led(P) < inc(P) — (dim(P) — 2). (2)

Proof. Take a diametral pair L, Ly and add one by one linear extensions such
that (_, Li D (/2] L; until {L,,..., Ly} is a realizer of P. Since k > dim(P)
and each L; contributes a new incomparability to the intersection the poset
P(1,, 1.,y has at most inc(P) — (dim(P) — 2) incomparable pairs. 0

In the next section we give several lower bounds on the linear extension
diameter. These bounds relate the new parameter to width, dimension and
fractional dimension of the poset. In Section 3 we investigate the effect of
small changes at the poset on its linear extension diameter. We also show that
led is a comparability invariant. In Section 4 we deal with special classes of
posets. In particular we determine the linear extension diameter of generalized
crowns. Section 5 introduces the concept of complementary linear extensions
as a heuristic for finding pairs of linear extensions of large distance. We prove
some properties of complementary linear extensions that seem to be interesting
in their own right.

2 Lower Bounds on the Linear Extension Diameter

Given a poset P = (X, <) and disjoint subsets A,B C X we say A is over
B and write A/B in a linear extension L if ¢ > b in L for all incomparable
pairs a||b with a € A and b € B. It is well known (see e.g. [Tro92, p. 19]) that
for every chain C there exist linear extensions with C/X and X/C. Such a
pair of linear extensions has distance at least ) .- inc(x) where inc(x) denotes
the number of elements incomparable to . Generalizing notation by defining
inc(C) = 3 cc inc(x) for every chain C' we have proven our first lower bound

max inc(C) < led(P). (3)
C chain

Equality holds for the chevron and for all width two posets. The value of
this lower bound is easily computable by a maximum weighted chain algorithm.
Consider a chain partition C, ..., Cy, of P. Obviously width(P)(max¢ inc(C)) >
iz inc(C;) = 2inc(P). Hence our upper and lower bounds on led in (1) and
(3) are only apart by a factor depending on the width of P,

2inc(P)
[ width(P)

Another lower bound relates the linear extension diameter to the dimension
dim(P). Take a realizer R = {L,...,Lq} with d = dim(P) for P. Choose at

] < led(P) < inc(P). (4)



random a pair S, Sy of different linear extensions from R, the probability that
an incomparable pair z||y is incomparable in S; N Sy is at least (d — 1) /(g)
Therefore, the expected number of incomparable pairs in S; N So is at least
2inc(P)/d. This proves the bound

2inc(P)

[ dim(P)

Since dim(P) < width(P) this bound (5) implies (4). Brightwell and Schein-
erman [BS92] introduced the fractional dimension of a poset (fdim(P)) as
the least rational number d; such that there is a m and a multiset realizer
M = {Ly,...,Ly} of P, such that for every incomparable pair z,y we have
x <y in L; for at least m/dy of the linear extensions. If we choose at random
a pair S, Sy of linear extensions from M the probability that an incompara-
ble pair z||y is incomparable in S} N Sy is at least m/dg(m — (m/dy))/ () =
2(m(df —1)/((m — 1)d%) > 2(df — 1)/(d%) Since fractional dimension can be
substantially smaller than dimension the next bound seems worth to be stated

| < led(P). (5)

2(fdim(P) — 1)inc(P)
( fdim(P)2
A class of orders where dimension and fractional dimension get far apart
are the interval orders. The dimension of interval orders grows unbounded (see
e.g., [Tro92]) but the fractional dimension is bounded by 4 (see [BS92]). In fact,
as shown recently by Trotter and Winkler [TW96] the fractional dimension of
interval orders can be arbitrarily close to 4. From the above bound we thus
obtain that led(I) > (3/8)inc(I) for every interval order I. However, we can
easily do better. It was shown by Rabinovich ([Tro92, page 196]), that an
interval order I = (X, <) has a linear extension with A/(X \ A) for every subset
A of X. Choose a random subset A of X and consider two linear extensions
with A/(X \ A) and (X \ A)/A. The expected number of incomparabilities in
the intersection of the two linear extensions is at least (1/2)inc(I). Hence for
every interval order I

| < led(P). (6)

(1/2)inc(I) < led(I). (7)

The next bound relates inc(P) and the height h = height(P). Let Ay,..., Ay
be an antichain partition of P and let a; = |A;|. The weak order with A; as
ith level is a two-dimensional extension of P. The number of incomparabilities
is ; (%) which is at least h(néh), hence, led(P) > n(n — h)/2h. For inc(P) we
have the obvious bound inc(P) < (%) — (%). Therefore inc(P) < n?/2 —h?/2 =
n? — (1/2)(n? + h?) < n? — nh. Comparing the two inequalities we obtain

inc(P)

——1 < led(P). 8
' Sheigni(p)| = 1) ®)

The bounds of this section compare led(P) to certain fractions of inc(P).
Graham Brightwell (personal communication) suggested a family P, of random
posets showing that the gap between inc(P) an led(P) can indeed be large.

Formally, led(P,) = o(1)inc(P,).



3 Removals and Substitutions

Consider the removal of a point « from P. Let Ly, Lo be a diametral pair for
P — 1z, there exist linear extensions L. of P such that removing x gives L; for
i = 1,2. The distance of L}, L is at least as large as the distance of L; and
Lo, hence led(P — z) < led(P). For a lower bound on led(P — z) consider
a two-dimensional extension @) of P such that inc(Q) = led(P). @Q — z is a
two-dimensional extension of P — z and the incomparabilities of () are those of
@ — x plus those containing element z. The incomparabilities of () containing
x are at most as many as the incomparabilities of P containing z, i.e. inc(x).
Hence, led(P — z) + inc(z) > led(P).

Theorem 3 led(P) > led(P — z) > led(P) — inc(z) and both inequalities can
be sharp.

Proof. It remains to show that equality may occur. Equality on both sides
happens if inc(z) = 0. However, there are less trivial examples. On the left
side take as x one of the minimal elements of C or D (these are posets from
the list of 3-irreducible posets (see e.g. [Tro92, p. 62]), D is the chevron). On
the right side equality is attained for every two-dimensional P. 0

Abusing notation we write P —r for the poset resulting from P after removal
of a single covering relation r. P — r has more linear extensions then P, more
precisely, G(P) is a subgraph of G(P—r). Hence, led(P) < led(P —r). Equality
is again possible: let P be the chevron augmented by the comparability r =
(1 < 3) (see Figure 1). A lower bound for led(P —r) can be obtained from the
lower bound for point removal: Let r be a relation involving x, then led(P) >
led(P — z) = led((P —r) — x) > led(P — r) — (inc(z) + 1). The example of the
crown A, shows (see Section 4) that removing r can increase led by as much
as (1/2)(inc(z) + 1).

Theorem 4 Let 1 = (z < y) be a covering relation of P, then led(P) <
led(P — r) < led(P) + min(inc(z), inc(y)) + 1.

Let P = (X,<p) and Q = (Y, <) be posets on disjoint sets. Standard
constructions are the parallel composition P+ Q = (X UY, <p U <() and the
series composition P* Q = (X UY,<p U <g U(X xY)). In both cases the led
of the composition is easily determined by the components.

o led(P + Q) = led(P) + led(Q) + | X||Y].

e led(P x Q) = led(P) + led(Q).
Let # be an element of P and let P2 be the poset obtained by substituting
Q for x in P. To be more specific, P = ((X —z) UY,<) with a < b iff
a,be X —zanda<pbora,beY anda <y bora€ X —z,beY anda <pzx
orac€Y,beX —zandxz <phb.

Theorem 5 led(P) + led(Q) + (led(P) — led(P — z))(|Q| — 1) < led(P?) <
led(P) + led(Q) + inc(z)(|Q] — 1).



Proof. Let Ly, Lo be a diametral pair for P and Ny, No be a diametral pair for
Q. Consider the linear extensions (L))t and (L3)Y2. Compute the distance
between (L1)M and (L2)2? as the number of adjacent transpositions necessary
to change (L1)M into (L2)Y? and note that changing L; into Lo requires at
least led(P) — led(P — x) adjacent transpositions involving element z. This
leads to the lower bound on led(P2).

For the upper bound select an element ¥y € Y and count the incompara-
bilities of a two-dimensional extension of led(P%) in three parts. There are at
most led(P) incomparabilities between two elements in X — z + y, there are
at most led((Q)) incomparabilities between two elements in Y and, finally, there
are at most inc(z)(|Q| — 1) incomparabilities between elements of X — z and
elements of Y — y. 0

Another interesting aspect of led is the question of comparability invari-
ance. Reuter [Reu96a] observed that the linear extension graph G(P) is not a
comparability invariant. Nevertheless, as will be shown next the linear exten-
sion diameter is a comparability invariant. The proof is based on the following
lemma.

Lemma 6 The linear extension diameter of P is attained by a pair L1, Ly of
linear extensions in both of which the elements of Q) appear consecutively.

Proof. Let Ly, Ly be a diametral pair of PY. Let @ = (Y, <) and choose
y € Y such that in P(p, 1,) element y is incomparable to the maximal number
of elements z ¢ Y. Let L) be obtained from L; by first removing the elements
of Y from L; and then reinserting them at the original position of y so that
their internal order remains unchanged. Let L) be obtained from Lo by the
same procedure. From the choice of y it follows that the distance of L} and Lf
is at least as large as the distance of Ly and Ly. Therefore, L], L, is a diametral
pair and the elements of @) appear consecutively in L) and in L5. 0

Theorem 7 Linear extension diameter is a comparability invariant.

Proof. A consequence of Gallai’s work [Gal67], made explicit in [DPW85], is
a simple scheme for proving the comparability invariance of a property. It has
only to be shown that for all posets P and () and elements z of P the property
is unable to distinguish between PlQ and Pfd where Q% denotes the dual of Q,
ie,y <y inQ?iffy <yin Q.

Given a linear extension of PQ? in which the elements of () appear consecu-
tively we obtain a linear extension of PlQ ! by reversing the order of the elements
of Q. Hence, if Ly, Ly is a diametral pair linear extensions of P¥ as in Lemma 6
we obtain a pair attaining the same distance for P:,?d. Since the converse also
works the linear extension diameters of P¢ and P:,?d are equal. 0

4 Generalized Crowns and Boolean Lattices

In this section we first deal with a class of posets where we can determine
the linear extension diameter exactly. Trotter defines generalized crowns as a



class of posets that interpolates between the 3-irreducible crowns A,, and the
standard examples S,,. For n > k > 2 define Cﬁ as the height two poset with
minimal elements {0,1,...,(n—1)} and maximal elements {0',1",..., (n—1)"}.
Element i is larger then the elements {i — |(k—1)/2],i—|(k—1)/2] +1,... i+
|k/2]} where indices are taken modulo n.

Lemma 8 can be found in [Tro92, p. 35], for the translation note that Ck
equals Trotter’s SZ;{C_I. In particular C2 = A,, C*» ! = §,, and Cfl is k
regular.

Lemma 8 A linear extension L of a generalized crown C]fl can have i’ < j in
L for at most (""E™) pairs (¢, 7).

Consider a pair Ly, Ly of linear extensions of C. Since each linear extension
is reversing at most (”7;”1) of the (i, j) pairs, the poset Py, ,1,) has at most
(n — k + 1)(n — k) incomparable pairs #'||j. Adding the min/min and the
max/max pairs we obtain (n —k + 1)(n — k) + n(n — 1) as an upper bound on
led(CF). This upper bound can be attained. For L; take the minimal elements
of Cﬁ in the order 0,1,—1,2, —2,... and sort in the maximal elements as early
as possible. When all minimal elements have been used there are k£ maximal
elements left, depending on the parity of £ we have taken the maximal elements
in the order 0/,1', —1",2',... (k odd) or in the order 0/, —1',1', —2' ... (k even)
continue this pattern for the remaining maximal elements. For Lo begin with
the reverse ordering on the minimal elements and again sort in the maximal
elements as early as possible. The final £ maximal elements are taken in the
reverse of their order in L. Figure 2 illustrates the drawings of generalized
crowns resulting from this process.
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Figure 2: Drawings of the generalized crowns C2, C3, C3 and C3.
Dotted lines indicate comparabilities of minimum two-dimensional extensions.

Remark. A nice way of visualizing the construction is to use the diametral
linear extensions as the row and column indices for the bipartite adjacency
matrix of the CF. The results for C3 and C} are displayed next. An entry * at
position (4, j') indicates that i||j" in the crown but 7 < j' in the two-dimensional
extension.
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Theorem 9 For each n > k > 2 the linear extension diameter of the general-
ized crown CE is given by:

led(CF) = 2n(n — k) + k(k — 1).

Proof. We have shown that (n—k+1)(n—k)+n(n—1) =2n(n—k)+k(k—1)
is an upper bound on led(CF). As for the lower bound we have described a pair
L1, Ly of linear extensions. From the above matrices it is easy to see that these
two linear extensions have distance (n —k + 1)(n — k) + n(n — 1). n

Corollary 10 For the crown A, and the standard example S,, this gives
o led(A,) =2(n —1)2 =inc(A,) — (n —2) and
e led(S,) =n?— (n—2) =inc(S,) — (n—2).

We now turn to the Boolean lattices. Unfortunately, we only have partial results
for this seemingly simple class of posets. The goal of our investigations was a
proof of the following conjecture.

Conjecture 1 The linear extension diameter of the Boolean lattice B, is
led(B,) = 2""2 — (n +1)2" 2.
Proposition 11 led(B,) > 2?2 — (n + 1)2" 2,

Proof. Let L be the reverse lexicographic order on the subsets of [n], i.e.,
A <1, B if the smallest element of the symmetric difference of A and B is in B.
Clearly, L is a linear extension of B;,,. Now revert the order on 1,..,n and let
L’ be the corresponding lexicographic order, L' is sometimes called the reverse
antilexicographic order and can be described by A <, B if the largest element
of the symmetric difference is in B. Reverse lexicographic and antilexicographic
order are hereditary, i.e., if X C [n] then L restricted to the subsets of X is the
reverse lexicographic order of these sets.

Let X be the first half of elements of L', i.e., the set of subsets of [n] not
containing n. and let Y be the complement of X. We count the incomparable
pairs of Pp, ;s in three parts. The number of incomparable pairs (A4, B) with
A€ X and B € X is led(B, 1) = 2?»~* — n2"=3 by induction. The same
is true for the pairs (A, B) with A € Y and B € Y. It remains to count the
incomparable pairs (A, B) with A € X and B € Y, since A precedes B in L’
we count pairs A, B with n € A, n € B and B <; A. This number is (Zn;)
since A <y, Biff A<y B —n. 0
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Figure 3: The drawing of By, Bs and Bg obtained from reverse lexicographic
and reverse antilexicographic linear extensions.

Lemma 12 Reverse lexicographic and reverse antilexicographic linear exten-
stons are a diametral pair of B, forn <4.

Proof. For n < 3 this is trivial. Let n = 4 we know that at least two of the
incomparabilities of the standard example S4 contained in B4 are comparable in
the two-dimensional poset corresponding to a diametral pair. In the standard
labeling of By with binary vectors we may assume that these two relations are
(0100) < (1011) and (0010) < (1101). Let By denote the poset after addition
of these two relations.

Consider the following nine induced subposets of By: The first is the sub-
poset induced by (0001), (1000), (0110), (1001), (1110), (0111). The other eight
are denoted (Q;; and are obtained by inserting ¢ at position j in each of the
vectors (001), (010), (001), (110), (101), (011) for + € {0,1} and j = 1,2,3,4.
Each of these 9 posets is a 3-crown and it is easily checked that no two of these
crowns have a critical pair in common. It follows that in any two-dimensional
extension of By at least one of the 3 critical pairs of each 3-crown is comparable.
This gives a total of 2 + 9 additional comparabilities in any two-dimensional
extension of By, i.e., led(B4) < inc¢(B4) —11 = 44. The construction of Proposi-
tion 11 gives a two-dimensional extension of By with 44 incomparabilities which
is thus optimal. 0

We have not been able to generalize the proof of the previous lemma to
the general case. There is, however, an easy property that should be true for
diametral pairs that would imply the Conjecture 1. We first state the property
as a conjecture. Then we prove the implication in Lemma 13. A more detailed
discussion of properties of diametral pairs will be subject of the next section.

Conjecture 2 Let L,L' be a diametral pair of a poset P then at least one of
the two linear extensions L, L' reverts a critical pair of P.

Lemma 13 Conjecture 2 implies Conjecture 1.



Proof. Let L,L' be a diametral pair for B,. We may assume (Conjecture 2)
that L' reverts the critical pair ({1,..,n — 1},{n}). As in the construction we
let X and Y be the sets of the first and second half of L. Again X is the set
of subsets of [n] not containing n. The number of incomparable pairs (A, B) in
Pr, 1 with A € X and B € X is at most led(Bj—1). The same holds for pairs
with AeY and BeY.

It remains to estimate the number of incomparable pairs (A, B) with A € X
and B € Y that are reversed by L, i.e., pairs (4,B) withn € A, n € B and
B <y, A. Let (A, B) be such a pair and let mate(A, B) = (B —n, A+ n), note
that B—n € X and A+ n € Y. Since mate is an involution mate defines a
pairing of the pairs (4, B) € X xY. At most one of (A4, B) and mate(A, B) can
be reversed by L, otherwise, B <y A <j A+n <; B—n < B a contradiction.
A pair ((A, B), mate(A, B)) that may contribute a reversal is characterized by

A, B —n and these are different subsets of [n — 1]. Therefore, the number of
n—1

reversals contributed by pairs (A, B) € X XY is at most (|)2(‘) = (* , ). Putting
things together
2n71
led(By,) < 2led(B,, 1) + ( 5 )
Induction completes the proof. O

5 Intervals in G(P) and Diametral Pairs

For two linear extensions M, N of P let the interval [M, N] in G(P) consist of
all linear extensions on shortest path between M and N, put differently it is
the set of linear extensions of Py, ). We call M, N an eztremal pair if there is
no interval [M’, N'] properly containing [M, N]. Note that [M', N'] D [M, N]
implies dist(M', N') > dist(M,N). Hence, diametral pairs are extremal. A
locally extremal pair is a pair M, N such that [M, N] is not properly contained
in [M', N'] with M' a neighbor of M or M' = M and N’ a neighbor of N or
N' = N. Figure 4 illustrates the definitions. It is immediate that for pairs
M, N of linear extensions the following implications hold

diametral = extremal = locally extremal.

1234

2134
1243

2143

2413

Figure 4: The N and its linear extension graph. The pair (1243,2134) is locally
extremal, the unique extremal pair is (1234,2413).
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Those diametral pairs we understand best are the minimal realizers of two-
dimensional posets. Kierstead and Trotter [KT89] observed that the linear
extensions of such a 2-realizer are super-greedy. The definition of greedy and
super-greedy can be based on the following generic algorithm for linear exten-
sions.

LINEAR EXTENSION
fori=1tondo

choose z; € MIN(P — {z1,..,2—1})
output z1,z9,...,x,

e For greedy linear extensions z; is chosen from MIN(P — {z1,..,z;—1}) N
succ(z;—1) whenever this set is nonempty.

e For super-greedy linear extensions x; is chosen from MIN(P—{z1, .., z;—1})N
succ(z;) where j < i is maximal such that this set is nonempty.

Lemma 14 Let P be a poset and L o super-greedy linear extension. Either P
is a chain or L reverses a critical pair.

Proof. We may assume that P has more then one minimal element. Let x; be
the minimal element of P that comes last in L = xy,...,x,. Since L is super-
greedy P — {z1,..,2;} = succ(z;) and, hence, succ(z;—1) C succ(z;). Since
pred(z;) = 0 C pred(z;—1) the pair (z;,z;_1) is a critical pair reversed by L.

5.1 Extremal Linear Extensions

Call M an eztremal linear extension if there is a linear extension N such that
there is no interval [M’, N] properly containing [M, N]. Interestingly, extremal
linear extension are exactly the linear extensions participating in locally extreme
pairs.

Proposition 15 For a linear extension M the following is equivalent:
o M is an extremal linear extension.

e There exists a linear extension N such that M, N is locally extremal.

Proof. Let M be an extremal linear extension with witness N. We define a
partial order on G(P) with respect to a linear extension M as follows: L <ps L'
if the set of pairs of L' which are in reverse order relative to M contains the
corresponding set for L. This is equivalent to saying that the interval [M, L']
contains the interval [M, L]. If we choose N’ as a maximal element above N
with respect to <7, then M, N’ is a locally extremal pair. M is extremal with
respect to N’ because N' <yv N <y» M <y M’ implies [M, N] C [M', N].
Since, N is a witness for M’s extremality this requires M = M’. The other
direction is obvious from the definitions. 0

With the next proposition we characterize extremal linear extensions. Re-
call that a jump in a linear extension L = x1,z2,...,%, iS a pair x;, x4 of
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consecutive elements in L that are incomparable in P. If z;, ;41 are compara-
ble in P we call the pair a bump of P. The bump decomposition of L is obtained
by cutting L in each bump. This gives an ordered partition L = oy, a9, ..., ax
such that each block «; is a maximal interval of elements Tijy ey Tijpq—1 such
that consecutive elements in «; form a jump.

Example. Let P be the chevron labeled as in Figure 1. In M = 132456 there
are three jumps and two bump, the bumps are (24) and (56)). The bump
decomposition is a; = 132, ag = 45, a3 = 6.

Proposition 16 A linear extension L of P is extremal iff every block «; of the
bump decomposition ai,ao,...,ar of L induces an antichain in P.

Proof. Let N be such that L, N is a locally extremal pair. Assume that some
block «; does not induce an antichain and let z,y € a; with z < y in P. Not
all the adjacent pairs of «; can be in reverse order to IV, because this would
imply y < £ in N. Hence some adjacent pair can be switched in «; to increase
the distance to NV, a contradiction.

In order to prove the other direction let N be the word resulting from L
by reversing every block of the bump decomposition of P. If all blocks induce
antichains in P, then N is a linear extension of P. Moreover, L is extremal
with respect to IV, since only the switch of an adjacent pair of some block yields
a neighboring linear extension of L. But such a linear extension is closer to NV
as L is. 0

Corollary 17 FEwvery greedy linear extension is extremal.

Proof. If L is not extremal, then there exist z,y in some block «; of L with z
being covered by y in P. Observe that = and y cannot be adjacent in «;. Now,
L is not greedy, since y is a candidate to be chosen right after z. 0

In general, however, the class of extremal linear extensions contains non-
greedy linear extensions. Even both linear extensions of a locally extremal
pair may be non-greedy. Take for example the 3-crown C% on {0,1,2,0',1',2'}
(element 4’ is larger then 7,7 — 1) the pair (2,1,0,0’,2',1"), (0,1,2,1',2",0") is
extremal but neither is greedy. Due to their vast amount extremal pairs seem
to be rather useless for heuristics or approximations of the linear extension
diameter. In the next subsection we discuss a much stronger property.

5.2 Complementary Linear Extensions

Let L be a linear extension of P and specify the choice function in Algorithm
LINEAR EXTENSION so that in each round z; is the last element of MIN(P) in
L, i.e., take the reverse of L as preference list for the construction of a new
linear extension M. We call M the complementary linear extension of L and
denote the complementary mapping by x, i.e., x : L — M = L*. The k fold
iterated complementary map of L is L**.

Example. Let P be the chevron labeled as in Figure 1. If L = 132456 then
L* = 315624.

12



The intuition is that L* tends to have many pairs in the reverse order of L,
hence, the distance from L to L* should be large.

Proposition 18 Complementary linear extensions are super-greedy.

Proof. Let yi,..,y; be an initial segment of L*. For element x € MIN(P —
{y1, -, yt}) let i(r) = max(i : z > y;). We have to prove that y;;1 is an element
2’ with 7(z') maximal. Suppose not, y;11 = 2/ but i(2') = r < i(z) = s. The
choice of z' implies that z <j; z'. Consider the situation when ys; was chosen
and note that at this time 2’ was available. Since ys; < x we have y, <p; '
contradicting the choice of ys. O

Corollary 19 For linear extensions the following implications hold
complementary =—> super-greedy =—> greedy —> extremal.

As it is the case with super-greedy linear extensions complementary linear
extensions may be constructed by an algorithm based on a stack. To construct
the complementary linear extension of L begin with an empty stack S. Push
the elements of MIN(P) onto S in the order induced by L on this set. For
i = 1,..,n repeat: z; < pop(S) and push the new minimal elements, i.e., the
elements of the set C; = MIN(P — {z1,..,z;}) — MIN(P — {z1,..,2;_1}) onto
S. The order in which elements of C; are pushed is again the order induced
by L on this set. The complementary linear extension L* of L is x1,...,%p,
i.e., the elements ordered by the time of their pop. The formal proof that the
stack algorithm applied to L constructs the complementary linear extension L*
is very similar to the proof of Proposition 18.

We illustrate the two procedures for complementary linear extensions with
the following example (Table 1). Let P be the chevron with the labeling of
Figure 1 and let L = 132456. In the left column of the table we have L with
elements already used for L* removed. Underlined elements are the elements of
MIN(P — {z1,..,z;—1}) and bold are the elements of Cj, i.e., the new minimal
elements. The next three columns correspond to the stack based construction
and explain themselves. Finally, there is a column with the growing L*. We
like to remark that yet another way of interpreting the construction of L* is as
a certain depth-first-search on the diagram of P with a least element 0 added.
The corresponding spanning tree consist of the edges (z;,y) for y € C;.

L Stack  pop C; L
132456 13 3 0 3
1 2456 1 1 {2,5} 31
2456 25 5 {6} 315
24 6 26 6 0 3156
24 2 2 {4} 31562
4 4 4 0 315624

Table 1: Demonstrating the construction of a complementary linear extension.
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A complementary pair is a pair L, M of linear extensions with M = L* and
L = M*. Continuing with the example L = 132456 we saw L* = 315624 and
compute L? = 125346 and L*3 = 315624. Since L*3 = L* the pair L*, L*? is a
complementary pair. In this case it is a diametral pair as well.

Proposition 20 A realizer L, L' of a two-dimensional poset is a complemen-
tary pair.

Proof. In L' the elements of MIN(P) are in the reverse of their order in L.
Therefore, L' and L* are equal in the first element z. Since L* =z + (L — z)*
and L — z, L' — z is a realizer of P — z induction shows L' = L*. 0

From the definition it is not obvious that every poset has a complementary
pair this, however, is an immediate consequence of the following ‘convergence’
theorem.

Theorem 21 Let P be a poset of height h and L be a linear extension then
L¥2h=1 = [¥2h+1 in other words L**"=1 L*?* is o complementary pair of P.

The proof of the theorem will be based on two lemmas.

Lemma 22 Let I be a down-set of P. The complementary linear extension of
the restriction of L to the suborder induced by P on I equals the restriction of
L* to I. With L|X denoting the restriction of L to a subset X of P this can be
written as (L|I)* = L*|I.

Proof. The proof is by induction on n = |P|. Let = be the last minimal element
of P in L and note that z is the first element of L*. Consider P — z. With
M = L|(P — x) we have L* = zM*.

If £ ¢ I then M|I = L|I and

L\ = M1 = (M|1)* = (LT)"
with the second equality being the induction hypothesis. Else, if z € I then
L\ = aM*|(I — 2) = 2(M|(I = 2))* = (LI)"

with the second equality being the induction hypothesis. O

Lemma 23 Let P be a poset, A C MAX(P) and Q = P — A. If L is a linear
extension of P with L*|Q = L*3|Q then L*3 = L*5.

Proof. For t > 1 let L* =zt z!, ... z! and use the superscript ¢ to denote
structures involved in the stack based construction of L*!. For example the
elements of the set C! = MIN(P — {z!,..,z!}) — MIN(P — {z}, ..,z |}) are the
elements pushed onto stack S* after the pop of z!.

By Lemma 22 L*|Q = L*3|Q implies that L*|Q, L*?|Q is a complementary
pair for Q. If 2t ¢ @ then obviously C! = (. Hence, for ¢, of the same parity

(both odd or both even) the same sets are pushed in the same order onto the
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stacks S* and S*. More formally, if ¢! denotes the index of the ith element of
Q in L*' then Ct = Ctt, for t = mod 2 and 1 < i <|Q|. Using the simplified

notation C! = Ct (w1th calligraphic C) we restate this fact.

Facr. ¢t =Y for t=tmod2and1<17<|Q|

The linear extension L*! is completely determined by the evolution of the stack
St. From C! = Cf, we could conclude that L*! only depends on the parity of ¢ if
the order in which the elements of C! are pushed onto S remained unchanged
or equivalently if the order of the elements of C! in L*' remained unchanged.
This will be proved for ¢ > 3.

Let D;; =C}n (72 C7 NCF for 0 odd and e even and note that there is an
order «;; of the elements of DZJ such that in the sequence L** the order of these
elements alternates between «;; for ¢ odd and the reverse of «;; for ¢ even.

CLAM. Let j <k and y € D;j, x € Djy,. For t > 3, ¢t odd, = precedes y in L*,

Proof of Claim. Assume the existence of o > 3 odd such that y precedes z
in L*°, we shorten notation writing y <, « for this fact. Since z,y € C} we
conclude that z <, y. Let e =0 —1 and recall j <k and y € C§ and z € C}.
Hence, y was pushed onto stack S¢ earlier then z and since z <, y element y
was still buried in S¢ when x was pushed. Inspection shows that there was a
z € C5 with z < z and z was pushed after y onto S¢. It follows that the order
of x y,zlnL*e Vis y <ol 2 <e_1 .

From z,y € C;~ e = () and y <._1 = we obtain that z was pushed before y
onto S¢ 1. Since z < = element z was pushed onto S¢ ! before  and y.

To obtain y <1 z <e_1 « the stack S¢~! would thus get the elements
pushed in order z,z,y and pop them off in order y, z, z. This, however, corre-
sponds to a 3-element permutation that cannot be realized with a stack. This
contradiction concludes the proof of the claim. A

It follows that for ¢ > 3, ¢t odd the order of the elements of C? in L*' is
-1 <t Qjp—2 <t ... <¢ a;1. This completely determines the evolution of the

stack, hence, L*3 = L*5 = L*7 .. .. O
Proof (Theorem 21). Let Ay, Ag, ..., Ay be the canonical antichain partition of
P with height(P) = h, i.e., Ajy1 = MIN(P — Aj — ... — A;) and U" 4; = P.
Let A<, = AU Az U... U A} and note that A<y is a down-set.

CLAIM. L**=1 Ay = LAy for k=1,... h.

Proof of Claim. By Lemma 22 it suffices to prove (L|A<)** 1 = (L|A<j)*2F 1
For k = 1 this is trivially true. Since Ay C MAX(A<j) we can use Lemma 23
with L = L*?*~4| A, for the induction step. A

Since A<j = P this implies the theorem. 0

Proposition 24 If M, N is a complementary pair, then the interval [M,N] is
locally extreme in G(P).

Proof. Assume that there is neighbor N’ of N such that [M,N] C [M,N'].
Let (z,y) be the unique pair with z <y y and y <ps z. Since N = M* and
both z and y were minimal elements when = was chosen we find that y <us x.
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This implies that N’ is on a shortest path from M to N, a contradiction to
[M,N] C [M,N']. Similar arguments disprove the other cases. 0

A diametral pair need not be a complementary pair. An example is given
in Figure 5.

Figure 5: Left: P and its unique minimum two-dimensional extension.
Middle and right: The two complementary two-dimensional extensions of P.
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