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Abstract: A tesselation C is called strongly normal, if it is normal (topological discs with intersections
that are either empty or connected) and for any subset of cells C1,...,Cy, C* of the tesselation holds: if
the intersection ﬂle C; of all C; is nonempty and each C; has nonempty intersection with C*, then the

intersection C* N ﬂle C; of all C; with C* is nonempty. This concept was introduced for polygonal or
polyhedral cells in a recent paper by Saha and Rosenfeld, where they proved that it is equivalent to the
topological property that any cell together with any set of neighboring cells forms a simply connected
set. Answering a question from their paper, it is shown here that at least in the plane the cells need
not be convex polygons, but can be arbitrary topological discs. Also the property is already implied
if all collections of three cells have this property, giving a simpler characterization and a connection to
Helly-type theorems.

1. Introduction
One possible interpretation of digital geometry is that it models some region of image
space by a finite set of cells C (corresponding to the possible image points), and studies
properties of subsets of C (the image) like convexity, connectedness etc. Normally the
underlying tesselation is the regular tesselation by squares, but there has also been some
work on regular hexagonal or triangular tesselations, as well as on arbitrary tesselations.
[t is reasonable to restrict our study to normal tesselations (e.g. Griinbaum and Shephard,
1987), i.e. collections of cells such that each cell is a topological disk, two cells have no
interior points in common, the intersection of two cells, if nonempty, is connected, and
the cells are uniformly bounded in size (this last condition is necessary in classical tiling
theory, but trivially satisfied in our situation, where the number of cells is finite. We do
not require the union of the cells to cover the plane.) Tesselations by convex polygons
(polyhedra) are always normal in this classic (tiling-theory) sense; Saha and Rosenfeld
(1998) required a slightly stronger property: that the polyhedral tiling should be face-
to-face, but this is not necessary.

In a recent paper, Saha and Rosenfeld (1998) introduced the concept of strong nor-
mality, a neighbourhood intersection condition which they showed to be equivalent to a
local topological well-behavedness condition. A set C of cells of a tesselation is strongly
normal, if it is normal and for each C*,C,,...,Cy € Cif N, C; # 0 and C* N C; # ()
(i = 1,...,k), then C* N N¥_,C; # 0. Saha and Rosenfeld showed that for normal
tesselations by polygons or polyhedra this is equivalent to the property that for each
C*,Cy,...,C, €CifC*NC; #0 (i =1,...,k), then C* U Y, C; is simply connected.
Thus if any intersection of neighbours of C*, if notempty, meets C*, then any union of
C* with some neighbours is simply connected. Some tesselations have this property, e.g.
the regular square and hexagonal tesselation are strongly normal; others, like the regular
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triangular tesselation, are not strongly normal: for if 77,75, T3 are edge-to-edge neigh-
bours of a central triangle 7', then T;, T3 are neighbours of T}, but the union T} U T, U T;
is not simply connected.

At the end of their paper, Saha and Rosenfeld asked whether their result on tessela-
tions by polygons and polyhedra could be generalized to arbitrary (normal) tesselations.
It is the aim of this paper to provide that generalization.

2. The twodimensional case
The main result of this paper is
Theorem: Let C be a normal tesselation. The following properties of C are equiv-
alent:
(1) If C*,Cy,...,Cp € C with N, C; # 0 and C* N C; # O for each i,
then C* NN, C; £ 0.
(2) If A,B,C € C with ANB # 0, AnC # 0, BNC # () then
ANBNC #0.
(3) If A,By,By € C with AN By # 0, AN By # () then AU B, U B, is
simply connected.
(4) If C*,Cy,...,Cy € C with C* N C; # O for each i, then C* UUY_, C;
is simply connected.

Proof: (1) = (2) is trivial, since (2) is just the special case k = 2 of (1).

(2) = (1) is a consequence of the topological Helly theorem (Helly 1930; Molnér, 1957;

Eckhoff, 1993):

Theorem: (topological Helly theorem) Let D be a finite family of connected, simply
connected sets in the plane, such that any two of them have connected
intersection, and any three have nonempty intersection, then all of them

have nonempty intersection.
To deduce now (1) from (2), we take the set {C* Cy,...,Ck} as D and note that the

pairwise intersections are nonempty by the assumption of (1), and connected, since C is a
normal tesselation. The intersection of any three of them is nonempty by the assumption
of (1), if C* is not among the three sets, and by an application of (2) to the assumption
of (1), if C* is among three sets. Thus we can apply the above theorem and obtain that
the intersection of all sets in {C*, (1, ..., Ck} is nonempty, which is the conclusion of (1).

(2) = (3) Let A, By, By € C be three cells with AN By # (), AN By # 0, and let v be
a closed curve in A U B; U By, which we wish to contract to a point. Assume first that
AN B; N By is not empty, and w a point from this intersection. The curve v consists of
intervals in which it is in a single set (A or B; or By), and from each such interval we
introduce an arc from the curve through the set to w and back to the curve (growing
these loops is a homotopy). Then we have a new curve which consists of many loops,
starting at w, going through one of our sets, reaching v and following it into another set,
then returning to w. Each loop is therefore a closed curve that goes only through the
union of two of our sets, two topological discs with connected intersection, so each loop
can be independently contracted to w.

It remains the case that ANDB;N B, is empty; then by property (2) the intersection BN By
is empty. Thus any closed curve v that goes through all three sets cannot go from B;
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directly to By, but has to go through A. Thus v can be decomposed into arcs starting
in A, going through B; and returning to A, and each of these arcs can independently
contracted until he is in A, then the whole curve in A can be contacted to a point. So
AU By U B, is simply connected.

(3) = (2) Let A, B, C' € C be three cells with pairwise nonempty intersection, and suppose
that AN BN C is empty. We will show that then A U B U C' is not simply connected,
contradicting (3). For this we select a closed curve v which starts in some point a € A,
goes to some point b € B, then to ¢ € C, and returns to a. We can select v in such a
way that it is the boundary of a topological disc X. We now use the following lemma
(Lyusternik, 1963), which follows from Sperner’s lemma and is known as an important
step in the proof of Brouwer’s fixed-point theorem:
Lemma: Let X be a topological disk, pi, ps, p3 points on the boundary of X, and
Y1, Y5, Y; three closed sets such that X C Y, UY,UYs, p; € Y;, and the
boundary of X between p; and p;,, is covered by Y;UY;,; fori =1,2,3.

Then there is a point ¢ € X such that ¢ € Y NY;NYs.
Using a, b, c as pi,pe,p3 and A, B, C as Y7,Y,, Y3 we find that if X C AU B UC, then

AN BN C is nonempty, contradicting our assumption. Thus there is a point r € X \
(AU BUC(C), and since A, B, C are closed sets, there is a whole disk around r that does
not belong to AU BUC. Now the winding number of v around r is one, and this is the
winding number of any homotopic image of v, as long as the path of the homotopy is in
AU BUC (does move across r). So vy cannot be contracted to a point (with winding
number zero), contradicting our assumption (3).

(3) = (4) Let C*,CY,...,C) € C such that C* N C; # (0, and let v be a closed curve in
C*UC;U---UCg. To contract v to a point, we select a point w in C*, partition v in
intervals such that each interval is in a single set from {C*, C},..., Cy}, and introduce
in each interval a loop from 7 through the set and C) to w, and back to . Then we can
repartition the curve into intervals starting and ending at w. Each of these w-loops is a
closed curve going through C* and at most two of the C;. Thus by (3) each loop can be
contracted independently to the point w. This proves (4).

(4) = (3) finally is again trivial, (3) being the special case k = 2 of (4).

3. Further Remarks
The threedimensional problem is probably more difficult, since the only known higher-
dimensional variants of the topological Helly theorem require either algebraic topology
(Helly (1930): if F is a family of homology cells in IR? such that the intersection of any
k < d of them is again a homology cell, and the intersection of any d + 1 is nonempty,
then the intersection of all of them is nonempty), or stronger intersection conditions
(Matousek 1995).

For convex cells we have the classical Helly theorem (a finite collection of d-dimen-
sional convex sets has nonempty intersection iff each subcollection of d + 1 sets has),
so we can state that it is sufficient to check the intersection condition only for £ < d
neighbouring sets C1, ..., C} instead of for arbitrary numbers k.

Saha e.a. (1997) studied strongly normal tetrahedralizations of spatial domains. This
is probably less useful, since any strongly normal subdivision of some spatial domain X

3



into polyhedral cells must be such that for each interior cell C' and each face F' of C
there is another (opposite) face F' of C' disjoint to F' (cubical cells being the smallest
such example). For if C' is an interior cell with face F', and each of the other C-faces
has a common point with F', then one can select three other faces F}, Fy, F5 of C such
that each of these faces has a nonempty intersection with F', and Fy N Fy N Fy # ), but
FNF,NF,NF3=(. So the cells belonging to these faces on the other side of C' do not
satisfy the intersection condition of strong normality.

Thus it is simple to construct strongly normal tetrahedralizations of any convex or
starlike domain: just select one point in the interior, triangulate the boundary, and join
each boundary triangle to the interior point to obtain a tetrahedron. But there are no
useful strongly normal tetrahedralizations, since we cannot make the tetrahedra small.
So cubical space-divisions are the simplest type of ‘arbitrarily fine’ strongly normal cell
divisions.

4. References

Eckhoff, J, 1993. Helly, Radon and Carathéodory Type Theorems, 389445 in Handbook
of Convex Geometry Vol A, P.M. Gruber and J.M. Wills, Eds., Elsevier/North Holland

Griinbaum, B., Shephard, G.C., 1987. Tilings and Patterns, W.H. Freeman, New York

Helly, E., 1930. Uber Systeme abgeschlossener Mengen mit gemeinschaftlichen Punkten,
Monatsh. Math. 37 281-302

Lyusternik, L.A., 1963. Convex Figures and Polyhedra, (translated from the Russian by
T. Jefferson Smith) Dover Publications, New York

Matousek, J., 1995. A Helly-type theorem for unions of convex sets, Proc. Eleventh
Annual Symposium on Computational Geometry 1995, 138-146, ACM Press

Molnér, J., 1957. Uber den zweidimensionalen topologischen Satz von Helly (in Hungar-
ian, with Russian and German summary) Mat. Lapok 8 108-114

Saha, P.K., Rosenfeld, A., 1998. Strongly normal sets of polygons and polyhedra, Pattern
recognition letters 19 1119-1124

Saha, P.K., Dutta Majumder, D., Rosenfeld, A., 1998. Local topological parameters in a
tetrahedral representation, Graphical Models and Image Processing Vol. 60 423436
http://www.cfar.umd.edu/ftp/TRs/CVL-Reports-1997/TR3826-saha.ps.gz



