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0 Introduction

The usual connectedness concept in General Topology goes back to Riesz
[25], Lennes [13] and Hausdorff [11]. In 1967 Preuss [18] studied a gen-
eralization of connectedness, called £-connectedness, where £ is a class of
topological spaces and a topological space X is called £-connected iff each
continuous map f : X — F is constant for each F € £. Since £ stands for



the german word “Eigenschaft” (english: property) we write P instead of £
in the following.

‘P-connectedness has been characterized by means of internal proper-
ties by Arhangel’skii and Wiegandt [2] in 1975 and even earlier (1972) by
Salicrup and Vazquez [26] where the paper of the latter authors was not rec-
ognized by many mathematicians since it was written in spanish. If P con-
sists only of the two-point discrete topological space, then P-connectedness
means connectedness in the usual sense. Though P-connectedness makes
sense not only for the category Top of topological spaces but also for every
category C (where P is subclass of the object class |C| of C) it has a special
flavour for topological constructs since there exists a two-point discrete ob-
ject, e.g. if Unif denotes the topological construct Unif of uniform spaces
then P-connectedness generalizes the concept of uniform connectedness in-
troduced by Mrowka and Pervin [16] in 1964 (note: uniform connectedness
= P-connectedness provided that P consists only of the two-point discrete
uniform space). Already in 1883 Cantor [4] introduced a concept of con-
nectedness which is applicable to metric spaces. It turned out that uniform
connectedness in metric spaces (regarded as uniform spaces) is nothing else
than Cantor-connectedness. In particular, the rationals regarded as a uni-
form space are uniformly connected but they are not connected as a topo-
logical space.

Concerning factorization of continuous maps connection properties in
Top are extremely useful. In 1934 Eilenberg [6] introduced (monotone
quotient, light)-factorization as a useful tool for the investigation of con-
nectedness properties of compact metric spaces where a continuous map
f : X — Y between topological spaces is called monotone (light) iff for each
y €Y, f~Y(y) is connected (totally disconnected). Whyburn [28], Pono-
marev [17], Bauer [3], Michael [15], Strecker [27], Salicrup and Vazquez [26],
and Dykhoff [5] extended their range to arbitrary T;-spaces and introduced
various modifications and generalizations. But unfortunately (monotone
quotient, light) factorizations in their classical sense do not exist in Top.

Recently, Top (resp. the construct Topgs of symmetric topological spaces
[= Ry-spaces]) and Unif have been embedded into better behaved supercat-
egories, e.g. into the strong topological universe PUConv (resp. SUConv)
of preuniform convergence spaces (resp. semiuniform convergence spaces),
where SUConv is mainly studied in the realm of Convenient Topology
and PUConv in the framework of non-symmetric convenient topology (cf.
[20],[21] and [22]). Thus, many deficiencies of topological and uniform spaces
can be remedied.

In the present paper we study connectedness, disconnectedness and light



factorization structures in the framework of the strong topological universes
FSUConv und FPUConv of fuzzy semiuniform convergence spaces and
fuzzy preunifrom convergence spaces respectively introduced in [23], where
a concept of fuzzy filter due to Eklund and Gahler [7] is used which fuzzyfi-
cates the membership of filter elements too. By means of a result of Herrlich,
Salicrup and Vazquez [26] from 1979 it follows that in topological constructs
with hereditary quotients light factorization structures always exist and the
only connectedness concept for which this is true is P-connectedness. The
relation of P-connectedness and other connectedness concepts in the con-
struct FTop of fuzzy topological spaces has been studied in detail by Lowen
[14].

It has been mentioned in [19] that an internal characterization of con-
nectedness and disconnectedness can be developed in topological constructs
with hereditary quotients analogously to the result of Arhangel’skii and Wie-
gandt [2] in Top. It is proved in this paper that the class of P-disconnected
objects in a topological construct C with hereditary quotients is the object
class of the {PP-monotone quotient } - reflective hull of the full subconstruct
A of C defined by |A| = P — a new result. Since FSUConv and FPUConv
have hereditary quotients (because they are strong topological universes) all
these results can be applied to them. Furthermore, it is shown that there is
a proper class of light factorization structures on FSUConv as well as on
FPUConv.

Last but not least a product theorem for P-connectedness is proved as
a special feature of fuzzy preuniform convergence spaces.

By the way, fundamental constructions in the constructs FUnif and
FQUnif of fuzzy uniform spaces and fuzzy quasi-uniform spaces in the sense
of Gahler et al. [10] respectively are performed such as products, subspaces
and suprema and the construction of the underlying fuzzy uniform space and
the underlying fuzzy quasiuniform space of a fuzzy preuniform convergence
space.

Since our results always include the non-fuzzy case by considering fuzzy
filters with respect to a frame L (with distinct least element 0 and greatest
element 1) only for the trivial case L = {0, 1}, it should be emphasized that
the presentation of connectedness, disconnectedness and light factorization
structures is new even for (non-fuzzy) preuniform convergence spaces.

The terminology of this paper corresponds to [1] and [21].



1 Special topics of categorical topology

In this section C denotes always a topological construct (see [21] for the
definition).

1.1 Definition. A class I C |C| is called a connection class (in C) provided
the the following are satisfied:

(1) {(X,¢&) €|C] : card(X) <1} C K.

(2) if f:(X,&) — (Y,7) is a surjective C-morphism and (X, ) € K, then
(Y,v) € K.

(3) Let (X, &) € C and let (A;);cr be a family of subsets of X with (| A; # 0
i€l
such that the subspaces (A4;,&;) of (X,¢) belong to K for each ¢ € I.
Then | A; (regarded as a subspace of (X)) belongs to K.
el

1.2 Remark. Because of (2) and (3), (1) is already fulfilled if K contains a
non-emtpy space. Furthermore, (3) implies that for each (X,&) € |C| there
are maximal subspaces of (X, ) belonging to K, the so called K-components
of (X,¢) which form a partition of (X,£). Reasonable connectedness con-
cepts for C should constitute a connection class. An important example is
obtained as follows:
Let P C |C|]. Then (X,€&) € |C| is called P-connected iff each C-morphism
f:(X,8) — (Y,v) is constant for each (Y,7y) € P. The class CP of all
‘P-connected C-objects is a connection class.

1.3 Definition. Let K be a connection class in C.

1) A quotient map f: (X,€) — (Y,v) in C is called K-monotone provided
that each fibre of f (i.e. each f~!(y) withy € Y regarded as a subspace
of (X, &)) belongs to K. The class of all K-monotone quotient maps in
C is denoted by MK.

2) A source (f; : (X,€) — (Xi,&i))ier in C is called K-light iff the fibres of
(fi)ier are totally KC-disconnected (Note 1° (Z,¢) € C is called totally
K-disconnected iff for each z € Z the K-component containing z is

singleton {z}. 2° For each x € X the subspace of (X,¢) determined
by N £ (fi(x)) is called a fibre of (fi)icr )-

i€l
The class of all -light sources in C is denoted by LK.



3) A factorization structure (£, M) for sources in C ( cf. [1] for the defi-
nition) is called light iff £ = MK and M = LK for some connection
class K in C.

1.4 Theorem. (Herrlich, Salicrup and Vazquez [12]) If quotients in C are
hereditary and IC is a connection class in C, then the following are equivalent:

(1) (MK,LK) is a factorization structure on C.
(2) K = CP for some P C [C|.

1.5 Remark. If C is extensional, i.e. C has one-point extensions, then
every quotient in C is hereditary and the above theorem is valid.

Usually, a connectedness is a class £ C |C| such that £ = CP for some
P C |C|. The above theorem implies that there is a bijection between the
class of all light factorization structures on C and the class of all connect-
ednesses in C, whenever C is extensional. Since in this paper we are only
interested in extensional topological constructs, we make the following con-
vention: If the connection class K is equal to CP for some P C |C|, then
we say P-monotone, P-light, totally P-disconnected, and P-component in-
stead of K-monotone, K-light, totally C-disconnected, and X-component
respectively.

1.6 Theorem. Let C have hereditary quotients. A class K C |C| is a
connectedness iff the following are satisfied:

(1) K is a connection class.

(2) If f:(X,¢ — (Y,y) is a K-monotone quotient map in C such that
(Y,v) € K, then (X,¢) € K.

Proof. Similarly to [19; 2.12] or [21; 5.1.17].

1.7 Proposition. For each P € |C|, let DP = {(X,¢) € |C| : each C-
morphism f : (Y,v) — (X,€) is constant for each (Y,v) € P}. Then
DygP = DCP is the class of all totally P-disconnected C-objects.

Proof. Similarly to [21; 5.2.3].

1.8 Definition. A subclass K C |C| is called a disconnectedness provided
that there is some Q C |C| such that X = DQ.



1.9 Remark. 1. By 1.7, the class of all totally P-disconnected C-objects
is a disconnectedness (choose Q@ = CP).

2. The operators C' and D have the following properties:

1) (a) PC QC|C|implies a) CP D CQ and 8) DP D DQ.
(b) P C DCP and P C CDP for each P C |C|.
2) CDC = C and DCD = D

3) Cyg = CD and Dy = DC are hull operators, i.e. Cy and Dy are
extensive (cf. 1)(b)), isotonic (P C Q C |C| implies CgP C CyQ
and DgP C Dy Q), and idempotent
( CHCH = CH and DHDH = DH)

1.10 Definition. A subclass £ C |C| is called Cy-closed (Dg-closed)
provided that X = CygK (K = DgKk).

1.11 Proposition. A subclass KK C |C| is Cy-closed (Dg-closed) iff it is
a connectedness (disconnectedness).

1.12 Theorem. There exists a one-one-correspondence between the con-
nectednesses and disconnectednesses of C which converts the inclusion rela-
tion (Galois correspondence) and is obtained by the operators C and D.

Proof. By means of C one obtains a one-one-correspondence which assigns
to each disconnectedness, i.e. Dg-closed subclass of C, a connectedness, i.e.
a Cg-closed subclass of |IC|. The inverse correspondence is obtained by D. It
follows from 1.9.2.1)(a) () and (8) that the inclusion relation is converted.

1.13 Theorem. Let C have hereditary quotients and let P C |C|. Then the
class DgP of all totally P-disconnected C-objects is the object class of the
E-reflective hull E(A) of the full subconstruct A of C defined by |A| = P,
where &€ consists of all P-monotone quotient maps in C.

Proof. Let &' = {P-submonotone quotient maps in C}, where a C-morphism
f:(X,€) — (Y,7) is called P-submonotone iff each fibre of f is contained
in some P-component of (X, ¢). Analogously to [19;3.9], Dy P is the object
class of the &'-reflective hull of A ( C has hereditary quotients!). Since a
P—monotone quotient map is a P-submonotone quotient map, one obtains

1. |&'(A)| = DgP C |E(A)|, where £(A) exists because C has heredi-
tary quotients (and thus (P-monotone quotients, P-light sources) is a



factorization structure for C). If B denotes the full and isomorphism-
closed subconstruct of C defined by |B| = DyP, then B is extremal
epireflective in C and the fibres of the B-reflection rx of (X,¢) € |C|
are exactly the P-components of (X, &) (analogously to [19;3.6], since
C has hereditary quotients), i.e. rx is a P-monotone quotient map.
Consequently, B is a (P-monotone quotient)-reflective subconstruct of
C which contains A. Therefore, £(A) C B, i.e.

2. |5(.A)| C DgP.
The assertion follows immediately from 1. and 2.

1.14 Corollary. Let C have hereditary quotients and let P C |C|. Then
the following are equivalent:

1. (X,g) € DyP.
2. (X,¢€) is a P-light subobject' of a product of objects from P.

3. There is a P-light source (f; : (X,&) = (Xi,&))icr such that
(X;,&) € P for each i € I, where I is a class.

Proof. Since C is a (P- monotone quotient, P-light source)-category which
has products and is (P-monotone quotient)-co-wellpowered, the assertion
follows form 1.13 and the general theory of reflections ( cf. [1; 16.8 and
16.22]).

1.15 Theorem. Let C have hereditary quotients and let P be an isomorphism-
closed subclass of |C| containing a non-empty space. Then the following are
equivalent:

1. P s a disconnectedness.
2. P=DgP.
3. P is closed under formation of P-light subobjects' and products in C.

4. P is closed under formation of P-light sources in C, i.e. whenever
(fi : (X,&) — (X4,&))icr is a P-light source in C such that (X;,&;) €
P for each i € I, then (X,&) € P.

5. (a) P is closed under formation of products and subspaces in C.

(X, €) is a P-light subobject of (Y,~) means that there is a P-light C-morphism
[ (X8 = (Y,7).



(b) Whenever f: (X,€) — (Y,7) is a surjective C-morphism such
that (Y,7) € P and each fibre of f belongs to P, then (X,§) € P.

Proof. Since C is a (P-monotone quotient, P-light source)-category which
has products and is (P-monotone quotient)-co-wellpowered, the full and
isomorphism-closed subconstruct A of C defined by |A| = P is (P-monotone
quotient)-reflective iff one of the two equivalent conditions 3. and 4. is
fulfilled (cf. [1; 16.8]. By 1.13, this is true iff P = DyP. The equivalence of
P = DgP and 5. is proved analogously to [19;3.10] because C has hereditary
quotients. The equivalence of 1. and 2. is obvious (cf. 1.11).

2 Some fuzzy concepts and results

In this section and the following let L be a frame with different least element
0 and greatest element 1, e.g. L = {0,1} or L = [0, 1](= closed unit interval).
For each set X, the characteristic function x4 : A — L from a subset A of
lifz e A,

X to L is defined b = .
fs defined by x4(c) {OifxeX\A

2.1 Remark. For each set X, LX can be endowed with a partial order <
defined as follows:

f<giff f(z) <g(z) for each z € X.

As in L, for infima and suprema in LX the symbols A and A as well as V
and \/ will be used respectively, e.g. for each pair (f,g) € L* x L and

each z € L, (f A g)(x) = f(x) Ag(z) and (f V g)(z) = f(z) V g(x).

2.2 Definition. An L-fuzzy filter (shortly: a fuzzy filter) on a non-empty
set is a map F : L* — L such that the following are satisfied:

FFil; F(I) =1 for each | € L, where [ : X — L is defined by I(z) = [ for
each r € X.

FFily F(f Ag) = F(f) A F(g) for all f,g € LX.
The set of all L-fuzzy filters on X is denoted by Fr(X), where Fp(0) = 0.

2.3 Remark. 1. If F is a fuzzy filter on X, then F(f) < F(g) for all
f,g € L such that f < g. Furthermore, for each f € LX, F(f) <

sup f =sup{f(z) :z € X}.



2. For each x € X, there is a fuzzy filter & : LX — L defined by &(f) =
f(x) for each z € X.

3. If F and G are fuzzy filters on X, then F is called coarser than G (or
G is called finer then F ) denoted by F C G, iff F(f) < G(f) for each
feLX.

2.4 Definition. A fuzzy filter base on a non-empty set X is a non-empty
subset B of LX such that the following are satisfied:

FB; [ € Bforeachl € L.

FB, For each (f,g) € B x B there is some h € B such that h < f A g and
suph =sup f Asupg.

2.5 Remark. Each fuzzy filter base B on X generates a fuzzy filter F on
X defined by
F(f)= \/ sup g for each f € LX .
9<f.9€B

Conversely, each fuzzy filter 7 on X can be generated by a fuzzy filter base
on X, even a greatest one, denoted by baseF, where baseF = {f € Lx .

F(f) =supf}.

2.6 Proposition. Let f: X — Y be a map, F a fuzzy filter on X, and B a
base of F. Define for each g € L%, flg] € LY by flgl(y) = V g(=).

zef~1y)
Then {f[g]: g € BYU{l:1 € L} is a base of the fuzzy filter f(F), defined
by f(F)(h) = F(ho f) for each h € LX, where f(F) is called the image of
F under f. If f is surjective, then {f[g]: g € B} is a base of f(F).

2.7 Definition. Let f : X — Y be a map and F a fuzzy filter on Y. Then
the inverse image of F under f is the coarsest fuzzy filter G on X such that
F C f(G) provided that it exists. Usually, we write f~(F) instead of G. If
X CY andi: X — Y denotes the inclusion map, then i~(F) is also called
the trace of F on X.

2.8 Proposition. (cf. [8; proposition 9]). Let f: X — Y be a map, F a
fuzzy filter on' Y, and B abase of F. Then f~1(F) emists iff supg = supgof
for each g € B. If f~Y(F) exists, then {go f :g € B} is a base of f~(F).

2.9 Definition. 1. Let M be a non empty set of fuzzy filters on X.

Then a fuzzy filter (| F, called the intersection of all F € M, is
FeM



defined by (| F(f) = A F(f) for each f € LX.
FeM FeM

2. Let (X;)icr be a non-empty family of non-empty sets, and F; a fuzzy
filter on X; for each ¢ € I. If p; : [[ X; — X; denotes the i-th
i€l
projection, then the coarsest fuzzy filter F on [] X; such that p;(F) =
i€l
F; for each i € I is called the product of (F;)icr, where [ F; is written

el
instead of F, or F; x Fy in case I = {1,2}.

2.10 Proposition. (cf. [8; proposition 19]). If I is a non-empty set
and for i € I, F; is a fuzzy filter on X;, and B; is a base of F;, then
B={A fijopj:J CI finite and f; € Bj for all j € J} is a fuzzy filter

jedJ
base on [] X; generating the product [] F; of (F;)ier-
el el

2.11 Definitions. 1. A fuzzy topological space is a pair (X,t), where
X is a set and t C LX a fuzzy topology on X, i.e. the following are
satisfied:

FTop; All constant maps from X to L belong to ¢ (this includes the
empty map 0 : ) — L in case X = 0).

FTop: f,g€timply fAge€t.
FTops s C t implies \/ s € t.

If t is a fuzzy topology on X, the elements of ¢ are called fuzzy open
sets of X.

2. Amap f:(X,t) = (X', t') between fuzzy topological spaces is called
fuzzy continuous provided that f1(g') =g’ o f €t for each g’ € t'.

3. Let (X,t) be a fuzzy topological space, and f € LX. Then the interior
of f with respect to ¢, denoted by int;f is defined as follows:

inttf = \/ g.

9<g,9€t

2.12 Remarks. 1. If (X,t) is a fuzzy topological space, then for each
r € X, a fuzzy filter Uy(x) : LX — L is defined as follows:

Us(z)(f) = (intef)(z) for each f € LX,

called the fuzzy neighborhood filter of x with respect to t.

10



2. If (X, X) is an ordinary topological space and L is a complete chain,
thenty = {f € LX : f lower semicontinuous } is a fuzzy topology on X
(f € L is lower semicontinuous iff for each o € L, {z € X : f(z) > o}
is open in (X, X) ie. f: (X,X) — (L,L) is continuous, where the
socalled lower topology L on L has theset {{f €L:8>a}:a€L}
as a subbase .).

2.13 Definition. A fuzzy topological space (X,t) is called a topological
fuzzy topological space provided that there is a topology & on X such that
ty = t.

2.14 Theorem. Let L be a complete chain. Then the construct Top of
topological spaces (and continuous maps) is (concretely) isomorphic to the
construct TFTop of topological fuzzy topological spaces (and fuzzy continu-
ous maps).

Proof. 1. Let (X, X) be a topological space. Then O € X iff its charac-
teristic function xyp : X — L is lower semicontinuous.

2. Amap f: (X,X) — (Y,)) between topological spaces is continuous
iff f:(X,txy) — (Y,ty) is fuzzy continuous.

3. The functor F :Top — TFTop defined by F(X,X) = (X,ty) and
F(f)=f (cf. 2.) is a concrete isomorphism:
If for each fuzzy topological space (X, t) a topological space (X, &}) is
defined by &; = {0 C X : xo € t},then a functor G : TFTop — Top
is defined by G(X,t) = (X, X;) and G(f) = f (cf. 2. and note that
by 1., &, = & for each topology X on X). Obviously, G o F' = Itep
and F' o G = ITFrop, Where for each construct C, I : C — C denotes
the identity functor.

2.15 Definition. 1. (a) Let X be a on empty set and U a fuzzy filter

on X x X. Consider the following conditions:

FU,) U C (z,z) for each z € X.

FU,) U = U™, where U1 (u) = U(u"!) for each u € LX and
u~(z,y) = u(y, z) for each (z,y) € X x X.
If FU,) is fulfilled, consider also

FU3) U CUoU where U ol is the fuzzy filter on X x X defined
by U olU(u) = V U(v) for each u € LX*X  and for

vE base U ,vov<u
each v € LX*X the composition vov is defined by vouv(z,y) =

11



V v(z,z) Av(z,y) for each (z,y) € X x X. If U fulfills
zeX
FU;) and FUgs), then U is called a fuzzy quasiuniformity on

X, and if U fulfills all three conditions FU;), FUs) and FUjs)
it is called a fuzzy uniformity on X.

(b) A fuzzy (quasi) uniformity on the empty set 0 is a map U : L? —
L, where L? = {0}, such that &(0) = 1.

(c) A fuzzy (quasi) uniform space is a pair (X,U) where X is a set
and U is a fuzzy (quasi) uniformity on X.

2. A map f: (X,U) — (X',U') between fuzzy quasiuniform spaces is
called fuzzy uniformity continuous it U' C (f x f)(U).

2.16 Remarks. 1. In case L = {0,1} fuzzy (quasi) uniform spaces may
be identified with the usual (quasi) uniform spaces.

2. As in the non-fuzzy case the composition of fuzzy filters F and G on
X x X need not exist as a fuzzy filter. But if there are z,y,2 € X
such that F C (z,y) and G C (y, z) then a fuzzy filter GoF on X x X,
called the composition of F and G, can be defined according to [10]
as follows:

GoF(w)= \/ F(u) A G(v) for each w € LX*X

vou<w

where the composition v o u € LX*X of u,v € LX*X is defined by

vou(z' y') = \/ u(z',2) Av(z,y")for each (z',y') € X x X.
z2eX

If F C (z,2) and G C (z, ) for each = € X, then for each w € LX*X

GoF(w)= \/ sup(v o u),

u€ base F,v€ base G,vou<w

where sup(vou) = supuAsupv (cf. [10;12.12]). If furthermore, 7 = G
such that F C (z,x) for each x € X, then

FoF(w) = \/ sup v’

u' € base F,uou’' <w

which implies that {u' ou' : v’ € base F} is a base of F o F, since
supu’ ou' = supu'.

12



2.17 Proposition. Let f : X — Y be a map and F,G fuzzy filters on
X such that there are z,y,z € X with F C (x,y) and G C (y,2). Then

(f X INGoF) D (f x F)(G) o (f < f)(F).

Proof. Let w' € LY*Y. Then (f x f)(G o F)(w') = G o F(w' o (f x f))
= V. FAG) = V Fo(fxf)AGoe(fxf))

vou<w'o(fxf) v'ou! <w'
= (fxf)G)o(f xf)(F)(w') since v'ou' < w' implies vou < w'o(f x f) with
u=uo(fxf)and v =1v"o(f x f). The existence of (f x f)(G)o(f x f)(F)

is obvious.

2.18 Definition. 1. A fuzzy preuniform convergence space is a pair (X, F Jx)
where X is a set and FJx a set of fuzzy filters on X x X such that
the following are satisfied:

FUC,) (z,z) € FJx for each z € X.
FUC,) F € FJx whenever G € FJx and G C F.

2. A fuzzy preuniform convergence space (X, F'Jx) is called a fuzzy semi-
uniform convergence space provided that the following is satisfied:

FUC3) F € FJx implies F~! € FJx.

3. Amap f: (X,FJx) — (Y, FJy) is called fuzzy uniformly continuous
iff (f x f)(F) € FJy for each F € FJx.

4. The construct of fuzzy preuniform convergence spaces (and fuzzy uni-
formly continuous maps) and its full subconstruct of fuzzy semiuniform
convergence spaces is denoted by FPUConv and FSUConv respec-
tively.

5. (a) A fuzzy preuniform convergence space (X, F'Jx) is called (quasi)
uniform provided that there is a (quasi) uniformity 4/ on X such
that FJx = [U], where U] ={F € Fr(X x X): U C F}.

(b) A fuzzy preuniform convergence space (X, FJx) is called topo-
logical provided the there is a fuzzy topology ¢ on X such that
FJx = {F C Fr(X x X) : there is some z € X with F D
T X Z/{t(l‘)}

2.19 Remark. 1. Obviously, every uniform fuzzy preuniform conver-
gence space is a fuzzy semiuniform convergence space.

13



2. It has been mentioned in [24] that the construct FUnif (FQUnif)
of fuzzy uniform (fuzzy quasiuniform) spaces (and fuzzy uniformly
continuous maps) is concretly isomorphic to the construct UFPU-
Conv (QUFPUConv) of uniform (quasiuniform) fuzzy preuniform
convergence spaces (and fuzzy uniformly continuous maps), where the
proove corresponds to the non-fuzzy case, and it has been proved that
the construct FTop of fuzzy topological spaces (and fuzzy continuous
maps) is concretely isomorphic to the construct TFPUConv of topo-
logical fuzzy preuniform convergence spaces. In the following we will
prove that FUnif and FQunif are topological constructs and that ev-
ery fuzzy preuniform convergence space has an underlying fuzzy quasi
uniform space and underlying fuzzy uniform space. By [23], the ini-
tial structures in FPUConv are formed as follows: If X is a set,
(Xi, FJx;,)icr a family of fuzzy preuniform convergence spaces, and
(fi: X = X;)icr a family of maps, then
FJx ={F € Fr(X x X) : (fi x fi) € FJx, for each i € I} is the
initial FPUConv-structure on X with respect to the given data.

2.20 Proposition. Let (Y,V) be a fuzzy (quasi) uniform space, X a non-
empty set and f : X — Y a map. Then (f x f)"1(V) exists and is the
coarsest fuzzy (quasi) uniformity on X such that f : (X,(f x f)71(V)) —
(Y, V) is fuzzy uniformly continuous.

Proof. Let z € X. Since V fulfills FUy), V C (f(z), f(z)) = f(z) x f(z)
= f(&) x f(&) = (f x f)(¢ x &). Consequently, (f x f)~1(V) exists (cf. [24
1.11]). If V is a quasiuniformity, then we obtain the following:

FU,) For each z € X, V C (f(z) x f(2)) C (f x f)(d x &) , which implies

(f x )TV € (F x H7THE x H@ x ) Ciex @ = (2 x ).

FUs;) By 2.17,

(f < Hf ><f) W) o (f x £)tV) D (f x HF x £ 1 (V) o (f x

HUf < FH7YV)) D VoV = V since VoV C V because of V o V(u) =
V V(v) < V(u) [note: v < vow for each v € baseV | for

vov<u,v€ base V

each u € LYY and ¥V C V oV by assumption. Thus, (f x f)71(V) C
(Fx ) Y(V)o(f x £)"1(V). If V is a fuzzy uniformity, then V = V! and
wo obtain additionally the following:

FUS) ((F x ) \V)) L= (F x £) 20 1) = (f x £)2(V) [since {h " h
base V} is a base of (f x f)~1(V71) as well as a base of ((f x f)71(V))~!
because (ho (f x f))™ =h~!o (f x f) for each h € base V).

The remaining part of the proove is obvious.
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2.21 Corollary. Let (X, [U]) be a (quasi) uniform fuzzy preuniform con-
vergence space, Y C X and i : Y — X the inclusion map. Then the subspace
(Y,FJy) of (X,[U]) formed in FPUConv is (quasi) uniform. In particu-
lar, (i x i) Y(U) is a (quasi) uniformity on Y and FJy = [(i x i) 1 (U)].

Proof. It suffices to prove that (i x i) () exists and is a fuzzy (quasi)
uniformity on Y. But this follows from 2.20 in case f = ¢ provided that ¥
is non-empty. If Y = ) there is nothing to prove.

2.22 Proposition. Let ((X;, [Us]))icr be a family of (quasi) uniform fuzzy
preuniform convergence spaces. Then the product space (X,FJx) of this
family formed in FPUConv is (quasi) uniform. In particular, if all X; are

non-empty, then FJx = [j([[ Us)], where 5 : [] Xs x X; — [[ Xi x [[ Xi
icl iel iel iel

is the canonical isomorphism with (p; X p;) o j = p) for each i € I and

pi: [ Xi = X, pi: 1] Xi x X; — X; x X; denote the i-th projections.

icl iel

Proof. It suffices to prove that j([[;) is a (quasi) uniformity on X: If all

U; are fuzzy quasiuniformities, we have the following:

FU;) By assumption, for each i € I, U; C (:vi,. z;) for each z; € X;. Thus,

[TU; C 1 (:L'Z,ZL'Z) ((xl,:v,)) = 1(((:10,) (2;))), which implies

J(ITt:) € (((z3), (z:))) for each (z;) € [] X; (note: [] @ C (x;) is always

valid, since p;((z;)) = @; for each i € I and [1#; is the coarsest filter with

this property).

FU;s) By 2.17 we have for each ¢ € I,

PG G © J(TTU) = pi % piGITU:) o (1)

D pi x pi(§([1U:) o pi x pi(§ (1) = Pi((TTU:) © p;(T1:)

= U; o U; D U;,which implies

[t C TG GATU) 0 51T ) € 5 G TTUs) © 5 (TT:)).-

Thus, j(ITth) o j(ITU:) > j(ITt)-

If all U; are fuzzy uniformities, we obtain additionally the following;:

FUs,): Consider the following base B of [[U;:

B={ A ugopj: K CI finite, u; € basely, for all k € K}.
keK
Then B* = {j[u] : v € B} is a base of j([[U;), where j[u ]((:vz),(yl)) =

u((z;,y;)) since j 1s bijective. Furthermore, B* ! = {(j[u]) ! : u € B} is a
base of (j([]24))!. Since for each i € I, Us = U; *,

(%) u; € basel; iff u;l € basel;.
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If K C I is finite and ug € basel, for each k € K,

GIN weopi)) P =3l \ wi'opil
keK keK

which is easily checked (note: j[ A wug o pil((®i), (vs)) = A ur(@k, yr))-
keK keK

Consequently, v € B* implies v~ ! € B* since (x) is valid. Hence, B* = B* !
(note: (v=1)~! =wv) and j([[U;) = (j [[U;)~*. The remaining cases I = 0
or X; = () for some ¢ € I are obvious.

2.23 Proposition. ([10;13.5]). Let B C LX*X. Then B is the greatest
base of a fuzzy uniformity U on X, i.e. B = baseld , if and only if the
following are satisfied:

1. [ € B for each | € L.
2. f,ge B imply f Ng € B and sup(f Ag) =sup f Asupg.

3. feL™X and \/ supg=supf imply f € B.
geB,g<f

4. u € B and x € X imply supu = u(z, x).
5. u € B implies u=! € B.

6. u € B implies V Sup v = sup u.
veEB,vov<u

2.24 Remark. Obviously, B C LX*X is the greatest base of a fuzzy qua-
siuniformity ¢ on X iff the conditions 1.-4. and 6. of the above proposition
are fulfilled.

2.25 Proposition. All indiscrete FPUConv-objects are fuzzy uniform
(and thus fuzzy quasiuniform).

Proof. Let (X, FJx) € [FPUConv| be indiscrete, i.e. FJx = Fr(X x X).
Then B = {l € LX*X : [ € L} is a fuzzy filter base on X x X and the fuzzy
filter F generated by it is contained in each H € Fr(X x X). Furthermore,
F is a fuzzy uniformity on X: Let B* = baseF. Then the conditions 1.-3.
in 2.23 are fulfilled since they are always satisfied by the greatest base of a
fuzzy filter. The remaining conditions 4.-6. are easily checked.

2.26 Theorem. FUnif and FQUnif are bireflectively embedded in FSU-
Conv and FPUConv respectively.
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Proof. Since FSUConv is bireflective in FPUConv (cf. [23; 2.7]) it suf-
fices to prove that UFPUConv (= FUnif) and QUFPUConv (= QUnif)
are bireflective in FPUnif. But this follows from 2.21, 2.22 and 2.25.

2.27 Corollary. FUnif and FQUnif are topological constructs.

Proof. This follows from 2.26 since FSUConv and FPUConv are topo-
logical constructs.

2.28 Definition. Let 1x : (X,FJx) — (X,[V]) be the bireflection of
(X,FJx) € |[FPUConv| wr.t. UFPUConv (resp. QUFPUConv).
Then (X,V) is called the underlying fuzzy uniform space (resp. the un-
derlying fuzzy quasiuniform space) of (X, FJx).

2.29 Theorem. If (X,V) is the underlying fuzzy (quasi) uniform space of
(X,FJx) € FPUConv, then V is the finest fuzzy (quasi) uniformity which
18 contained in each F € FJx.

Proof. Put N = {U : U is a fuzzy (quasi) uniformity on X with & C F
for each F € FJx}. Then N # 0 since the fuzzy filter F generated by
{l € LX¥*X : [ € L} belongs to N. Let W be the supremum of N in the set
of all fuzzy (quasi) uniformities on X partially ordered by “C” (W exists
because of 2.27!). Then W is the finest fuzzy (quasi) uniformity which is
contained in each F € FJx. It suffices to prove that W € N. By [9;3.4],

B={fiN-Afn:{f1,.-,fn} C U baseld non-empty and finite} is a base
UeN

of W. Since W is initial with respect to the family (14 : X — (X,U))yen of
identity maps it is a fuzzy (quasi) uniformity on X. Obviously, B C base F
for each F € FJx. Thus, W C F for each F € FJx, i.e. W € N. In order
to prove W = V), it suffices to show that 1x : (X, FJx) — (X,W)]) is a
bireflection: Let f : (X, FJx) — (X',[W']) be a fuzzy uniformly continuous
map from (X, FJx) into a (quasi) uniform fuzzy preuniform convergence
space (X', [W']).

1. 1x : (X,FJx) — (X,[W]) is fuzzy uniformly continuous, since W €
N.

2. In order to prove that f : (X,[W]) — (X',[W']) is fuzzy uniformly
continuous, it suffices to show that

(=) (f x £YW) D W'
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By assumption,
(x%) (f X f)(F) D W' for each F € FJx.

Thus, (f x f)~1(W') exists (cf. [24; 1.11]) and is a (quasi) uniformity
by 2.20, which belongs to N since by (%),
FOUXHUExHF) D xf)y tOW) for each F € FJx.
Comnsequently, (f x f)~1(W') C W. This implies

W' C(f x F)(f x f)7TOW) C (f x £)(W), i.e. (x) is fulfilled.

2.30 Proposition. Let I be a non-empty set and (F;)icr a family of fuzzy
filters on a non-emtpy set X. If M = {F; : i € I} has a supremum S in
(Fr(X),C) and B; is a base of F; for each i € I, then
B=A{fi, N\--- A fi, :{i1,...,in} C I finite and f; € B; for each i € I} is a
base of S.

Proof. 1. B is a fuzzy filter base on X:

(a) Since ! € B; for each i € I and each [ € L, [ € B for each [ € L.

(b) Since B; C baseS for each i € I, B C baseS. If u,v € B, then
u Av € B and sup(u A v) = supu A supv because u,v € baseS.

2. Let F be the fuzzy filter generated by B.

(a) By definition of B, B; C B for each ¢ € I. Thus, F; C F.

(b) Let U € Fr(X) such that F; C U for each ¢ € I. Then B; C
base F; C baself for each ¢ € I . Consequently B C baseld, i.e.
FCU.

3. It follows from 2.(a) and 2.(b) that F = S.

2.31 Corollary. Let X be a non-empty set, ((X;,U;))icr a family of fuzzy
(quasi) uniform spaces, B; a base of U; for each i € I, and (f; : X — X;)ier
a family of maps. In case I # 0,

B={A ujo(fjxfj):J CInon-empty and finite, u; € B; for each j € J}

jed

is a base of the initial fuzzy (quasi) uniformity on X with respect to the
given data. In case I =0 , B={l € LX*X .1 € L} is a base of the initial
fuzzy (quasi) uniformity with respect to the given data, i.e. a base of the
indiscrete fuzzy (quasi) uniformity on X.

Proof. By 2.20, for each i € I, Uy, = (fi X fi)~'(U;) is the coarsest fuzzy
(quasi) uniformity on X such that f; is uniformly continuous, i.e. the initial
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fuzzy (quasi) uniformity on X with respect to f. Then the initial fuzzy
(quasi) uniformity on X with respect to (f;)scr is the supremum of (Uy, )icr
in the set of all fuzzy (quasi) uniformities on X partially ordered by “C”.
Now the assertion is proved by applying 2.30 since {u; o (f; X f;) : u; € B;}
is a base of Uy, for each i € I. Concerning I = (), see the proove of 2.25.

2.32 Remark. The unique fuzzy uniformity on the empty set is initial.

3 Special features of fuzzy preuniform convergence
spaces

3.1 Theorem. ([24; 2.4 and 4.3]). FPUConv and its full subconstruct
FSUConv are strong topological universes, i.e. they are topological con-
structs which are cartestan closed and extensional and in which products of
quotients are quotients.

3.2 Remark. It follows from 3.1 that all results of part 1 of this paper
are applicable to FPUConv and FSUConv. In particular, in order to
obtain light factorization structures for FPUConv and FSUConv only
those connection classes which are connectednesses can be considered (cf.
1.4). But there are further results on connectedness and light factorization
structures for FPUConv and FSUConv which will be presented in the
following.

3.3 Definitions. 1. (X,FJx) € |[FPUConv]| is called fuzzy connected
provided that each fuzzy uniformly continuous map f : (X, FJx) —
({0,1},{0 x 0,1 x 1}) from (X, FJx) into the two-point discrete fuzzy
preuniform convergence space ({0,1},{0 x 0,1 x 1}) is constant.

2. A fuzzy preuniform convergence space (X, FJx) is called diagonal pro-

vided that () & x & € FJx if X is non-empty.
zeX

3.4 Remark. If X is a non-empty set and g € LX, then the principal
fuzzy filter (g) generated by g has the base {gANa:a € L} U{a: a € L}.

For each non-empty subset M of X we get (xpr) = () @ (cf. [8; (16)]).
zeEM
Thus, (| ©# X & = (xa) where A denotes the “diagonal” of X x X, i.e.
zeX
A ={(z,z):z € X}.

3.5 Example. Each fuzzy (quasi) uniform preuniform convergence space
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(X, [U]) is diagonal since for each x € X, U C & x & which implies
Uc N exaie () xz€U].
zeX zeX
3.6 Proposition. Each diagonal fuzzy preuniform convergence space (X, FJx)
s connected.

Proof. Let f : (X, FJx) — ({0,1},{0x0,1x1}) be fuzzy uniformly contin-

uous. Then (fx f)( () zxz)= () f(2)x f(z)= DXf(x) X f(x) contains

zeX . zeX . .
Ox0orixi,ie f(z)xf(z)D0x0foreachz € X or f(z)x f(z) Dix1i
for each z € X. Thus, f(z) =0 for each z € X or f(z) =1 for each z € X
since 0 and 1 are fuzzy ultrafilters, i.e. maximal elements in (F({0,1}), C)
(cf. [7;4.8]).

3.7 Remark. For each non-empty set X, (| & x & is the discrete fuzzy
zeX
uniformity on X, i.e. the finest fuzzy uniformity on X ( Use 2.23 for base

() €x& = () based x &, then conditions 1.-5. are obvious and concerning
zeX zeX B B
6., for each u € base( [ & x 2)\{0} there is some v € base( [ & x&)\{0}

zeX zeX
with supu = supv and v o v < u, where v is defined by

(z.1) supu ifx =y )
v(z,y) = i .).
Y 0 otherwise.

In order to have a connectedness concept by means of which fuzzy (quasi)
uniform spaces ( = (quasi) uniform fuzzy preuniform convergence spaces)
may be distinguished the two-point discrete fuzzy uniform space ({0,1},0 x
0N 1 x 1) will be helpful as the following definition shows.

3.8 Definition. A fuzzy preuniform convergence space (X, F'Jx) is called
uniformly connected provided that each fuzzy uniformly continuous map
f:(X,FJx) — ({0,1},[0 x 0N 1 x 1]) from (X, FJx) into the two-point
discrete uniform fuzzy preuniform convergence space ({0,1},[0 x 0N 1 x 1])
is constant.

3.9 Remark. In order to develop a common theory of connectedness and
uniform connectedness for FPUConv the notion of P-connectedness as de-
fined under 1.2 is useful, where P C |FPUConv|. But there are close con-
nections between connectedness and P-connectedness in FPUConv which
will be examined now where at first another characterization of connected-
ness is proved.
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3.10 Definition. Let (X, FJx) € |[FPUConv|. Then A C X is called
a partition set (in (X, FJx)) iff for each F € FJx, xaxa € baseF or

X(X\A)x(X\4) € base F.

3.11 Proposition. A fuzzy preuniform convergence space (X, FJx) is con-
nected iff the empty set O and X are the only partition sets in (X, FJx).

Proof. “=" (indirectly). If there is a partition set A C X such that A # ()
and A # X, then f : (X, FJx) — ({0,1},{0x0,1x 1}), defined by f(z) =0
ifx € Aand f(z) =1if z € X\A, is uniformly continuous: Let F € FJx.
Then 1) xaxa € baseF or x(x\4)x(x\4) € baseF. Concerning the first
case (f X f)[xal = Xyra1xs[4] = X{o}x {0} = X{(0,0)} € base (f X f)(F) which
implies [x{(0,03] = 0% 0 C (f x f)(F). Thus, (f x f)(F) = 0 x 0 since
(0,0) = 0x 0 is an ultrafilter. Analogously, (f x f)(F) = 1 x 1 in the second
case. Since f is non-constant, (X, F'Jx) is not connected.

“c”. Let f:(X,FJx) — ({0,1},{0 x 0,1 x 1}) be fuzzy continuous, i.e. if
F € FJx then 1) (f x f)(F) = 0x0o0r2) (f x f)(F) = 1 x1. Concerning the
first case, X{(0,0)} € base (f x f)(F). Because of (f x f)~'((f x f)(F)) C F,
X{(0,0)3 © (f X f) = Xf-1(0)xf-1(0) belongs to a base of (f x f)~'((f x f)(F))
and thus to base F.

Analogously, Xj-1(1)xs-11) = X(x\f-1(0)x(x\f-1(0)) € baseF. Conse-
quently, £71(0) is a partition set in (X, F'Jx ) which implies, by assumption,
that £ 1(0) =0 or f1(0) = X,ie. f=1o0r f=0. Hence, (X,FJx) is
connected.

3.12 Corollary. Each P-connected fuzzy preuniform convergence space is
connected provided that P contains a space with at least two points.

Proof. If (X, FJx) € [FPUConv]| is not connected, then there is a parti-
tion set A C X such that A # 0 and A # X. Let P € P such that there are
a,b € P with a # b. Thus, f : X — P, defined by f(z) =a if x € A and
f(z) =bif x € X\A, is fuzzy uniformly continuous (analogously to the first
part of the proove of 3.11, where 0 and 1 have to be substituted by a and b
respectively) and non-constant, i.e. (X, F'Jx) is not P-connected.

3.13 Remark. In [23] and [24] generalized convergence spaces have been
fuzzyficated, where a fuzzy generalized convergence space is a pair (X, q)
such that X is a set and ¢ C F(X) x X satisfies the following conditions:

FC; (z,z) € q for each z € X.
FC, (F,z) € ¢ whenever (G,z) € g and G C F.
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A map f: (X,q) = (X',q') is called here fuzzy continuous iff (f(F), f(z)) €
q' for each (F,z) € ¢q. The construct of fuzzy generalized convergence spaces
(and fuzzy continuous maps) is denoted by FGConv. Instead of (F,z) € ¢

we say F converges to & w.r.t. q and write F - (or shortly F — z).

3.14 Definition. Let (X,q) € |[FGConv|, AC X. If i4 : A — X denotes
the inclusion map, then the closure of A w.r.t ¢, denoted by cl A, is defined

by clgA = {x € X : there is some F € Fp(X) with F 4 2 and i;ll(]:)
exists}.

3.15 Proposition. Let (X,q) € [FGConv|, AC X, and let i4: A - X
be the inclusion map. Then

1. clyA = {z € X: there is some F € Fp(A) with is(F) > z}

2. If (X,q) is topological (i.e. there is a fuzzy topology t on X such that
(F,x) € q iff F D U(x)), then clyA = {z € X iy U(x)) emists}.

3.16 Definition. A fuzzy generalized convergence space (X, q) is called a
T} -space iff for each pair (z,y) € X x X, (2,y) € q implies z = y.

3.17 Proposition. (X, q) € |FGConv| is a T} -space iff for each © € X,

clg{z} = {z}.

Proof. “=”. Let y € cl,{z}. Then there is some F € F(X) with F % y
such that ifml}(f) exists, i.e. for f € base F, sup f = sup f|y = f(z)

= &(f), which implies F C &. Thus, & < y. By assumption, z = y. Hence,
clg{z} = {x}.

“<=”. Let & % y. Then y € cl {x} since z{*xl}(:v) exists because f € basez,
i.e. sup f = f(z), implies sup f = sup f|(,}. By assumption, z = y.

3.18 Remark. For each (X,FJx) € |[FPUConv| there are two natu-
ral fuzzy generalized convergence spaces (X,qry,) and (X, ¢y, JX)’ where
(F,z) € qryy il &xXF € FJx and (F, ) € gy, iff (FNE)x(FNz) € FJx.
Convergence in (X, grj, ) is called preconvergence in (X, FJx) and conver-
gence in (X, gy, ) is called convergence in (X, FJx).

3.19 Definition. A fuzzy preuniform convergence space (X, F'Jx) is called
a Ty -space (resp. pre-Ti-space) iff (X quJX) (resp. (X, qrJy)) is a Th-space.

3.20 Proposition. Let (X,q) be a fuzzy generalized convergence space,
A C X a dense subset, i.e. clyA =X, and f: (X,q) = (X',¢') a fuzzy con-
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tinuous map from (X, q) into a fuzzy generalized convergence space which is
a T1-space, such that the restriction f to A is constant. Then f is constant.

Proof. If A = () there is nothing to prove. Thus, let A # 0 and f[A] = {z}}

with z{, € X'. Define: g : X — X' by g(z) = zj, for each z € X. In order to

prove f =g, let K ={z € X : f(z) = g(z)}. Then c/,K = K:

Obviously, K C clyK. Let z € cl K, i.e. there is some (F,z) € ¢ such

that i,'(F) exists. Hence, {h|x : h € baseF} is a base of i, (F ) and

{i[hlx] : h € baseF} U {l € LX} is a base of F' = ix(ix (F)). Slnce

F' O F, (F',z) € q. Consequently, (f(F'), f(z)) € ¢ and (9(F'),g(z)) €

because f and g are fuzzy continuous. Furthermore,

B = {flilhlk]] : h € baseF}U{f[l]: 1 € Lyu{l € LX : 1 € L} and
= {g[i[h|x]] : h € base F}U{gl] : 1 € LyU{l € LX : 1 € L} are

bases of f(F') and g(F') respectively. But for each z’ € X', f[i[h|g]](z') =
Vo iblgl@) =V dklx](@) =V ilklx](x) = glilhlx])(2"),

zef-1(z) zeKNf~1(z") zeg—l(z')

i.e. for each h € baseF, f[i[h|k]] = g[i[h|k]]. Additionally, for each I € L,

gll] < f[l]. Thus, f[I] € baseg(F') since g[l] € B' and supg[l] = sup f[I] =
[. Consequently, B C base g(}" ) since B’ C base g(}" ). This implies
f(F") C g(F'). Since g(F') = z{, (note: for each u € LX , uog =u(xy) and
9(F)(w) = F'(uog) = F'(uo(zp)) = u(xh) = zh(w)), zy converges to f()
and g(z) which implies z{, = f(z) and z{ = g(z) by assumption on (X', ¢'),
ie.z € K.
Finally, from A C K C X follows: X =cljACclK =K C X, ie. K=X.
Thus, f is constant.

3.21 Corollary. Let (X,FJx) be a fuzzy preuniform convergence space
and A C X a dense (resp. pre-dense) subset of X, i.e. CIq'YFJXA =X
(resp. clgp, A = X). If f: (X,FJx) — (P,FJp) is a fuzzy uni-
formly continuous map from (X, FJx) into a Ty-space (resp. pre-T-space)
(P,FJp) € |[FPUConv]| such that the restriction of f to A is constant, then
f is constant.

Proof. Since f: (X,FJx) — (P, FJp) is fuzzy uniformly continuous,

f+ (X a0y, ) = (P ayg,,) and f: (X, qryy) = (P,qrsp) are fuzzy contin-
uous and the assertion follows from 3.20.

3.22 Definition. Let (X, FJx) € |[FPUConv|. Then a subset A of X is
called P-connected iff it is P-connected as a subspace of (X, F.Jx).
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3.23 Proposition. The statement “If a subset A of a fuzzy preuniform
convergence space (X, FJx) is P-connected, then clquJXA (resp. cl A)
is P-connected” is true if and only if P is a class of Ty-spaces (resp. pre-
T} -spaces).

dFJx

Proof. “<”". Let f:clg, A — P (resp. f: lops A — P) be a fuzzy
X
uniformly continuous map where P is a Tj-space (resp. pre-Tj-space). By

assumption f|4 is constant, since A is dense (resp. predense) in clg, A
X

grsA) [use 3.15.1], f is constant by 3.21. Thus, clquJXA (resp.
clgp, . A) in P-connected.

“=”. Let P € P and ¢ € P. If C; is the P-component of P containing z,
then the inclusion map i : C;; — P is fuzzy uniformly continuous and thus
constant, i.e. C, = {z}. By assumption and the fact that C, is a maximal
P-connected subspace, cquFJX {z} = {z} (resp. clgy, {z} = {z}). Thus, P

(resp. ¢l

is a Ty-space (resp. a pre-Tj-space).

3.24 Remarks. 1. Since convergence implies preconvergence, for each
(X,FJx) € [FPUConv| and each A C X,

AcClqmXAcCl AcCX

qrJy

and thus, A is dense implies A is predense, and if A is preclosed, i.e.
A= lpsy A, then A s closed , ie. A=cly, A Furthermore, T}
X

is weaker than pre-T1, i.e. pre-17 implies 77.

2. If P C |[FPUConv| is not a class of T}-spaces, then the concept “P-
connectedness” becomes trival:

(a) If P is the empty class, then P is a class of T;-spaces and CP =
|FPUConv|.

(b) Let P C |FPUConv| be not a class of Tj-spaces. Since P is
non-empty, there is some (P, FJp) € P with at least two points
such that (P, FJp) is not a Tj-space, i.e. there are two distinct
points a,b € P with (a,b) € Qypsp, OF (b, a) € Qyp;,- Thus,
each (X, FJx) € |[FPUConv| with at least two points is not P-
connected: Let z,y € X with « # y. Then f : (X,FJx) —
(P,FJp) defined by f(z) = a and f[X\{z}] = {b} is non-
constant but fuzzy uniformly continuous: Let F € FJx. By
definition of f, f[X] x f[X] = {a,b} x {a,b} and x x|« fx] =
(f x f)[1] € B where B = {(f x f)[u] : u € baseF}u{a c LF*F .
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a € L} isabase of (fx f)(F). By 3.4, (Xf(x]x f[x]) = @xaNaxbn
bxanbxb. Furthermore, C = {(fxf)[I]Aa: a € LYU{a: a € L}
is a base of (f x f[1]) (cf. 3.4) where C C base(f x f)(F) [note:
(F x I A 8)pup)) = { L if (p,p') € f1X] % fIX]

0 otherwise

and thus (f > f)(F)((f x I Aa) = (F < )F)(f < FA])A(f %
HF)(@) =sup(f x fIll] ha=1Aa=a=sup((f x f)1]Aa),
ie. (fxf)[l]Aa € base(f x f)(F)]. Consequently, aNbxand C
axanNaxbnNbxanbxb= (xfx)x£1x]) € (f x f)(F), which
implies (f x f)(F) € FJp since by assumption aNbx anb € FJp.
Hence, C'P consists of all one-point spaces and the empty space.

3.25 Corollary. Let P C |FPUConv| be a class of T-spaces (resp. pre-
T} -spaces). Then the following are satisfied:

1. The P-components of each fuzzy preuniform convergence space are
closed (resp. preclosed).

2. If a subset M of a fuzzy preuniform convergence space (X, FJx) is P-
connected, then each subset N of X with M C N Celg, M (resp.
X

MCNCd M) is P-connected.

qFJx

Proof. 1. Since P-components are maximal P-connected subspaces the
assertion is proved by means of 3.23.

2. M may be regarded as a P-connected subspace of the subspace (N, F'Jy)
of (X, FJx). Since cquFJNM = (cquFJX M)NN = N (resp. clg,, M =
(cl M) N N = N) the proove is finished by using 3.23.

qrJ

dFJx

In order to prove a product theorem for P-connectedness some prepara-
tions are necessary.

3.26 Proposition. Let ((X;,t;))icr be a family of fuzzy topological spaces
and (] X;,t) its product in FTop. For each x = (z;) € [[ X;, the topo-
el
logical neighborhood filter Uy(x) of x is the product [ Uy, (zi) of the family
el
(U, (z4))icr of the topological neighborhood filters of the i-th coordinates w;
of x.

Proof. Since FTop is bireflective in FGConv (cf. [24, 3.10]) initial struc-
tures in FTop are formed as in FGConv. Thus, for each F € Fr([[ X;)
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and each = = (z;) € [[ Xi,
F D U(z) < pi(F) D Uy, (x;) for each i € I & F O [] Uy (z;). Hence,

iel
U(z) = N F =1 Uy(i).
F DUy () el

3.27 Proposition. Let ((X;,t;))icr be a family of fuzzy topological spaces
and (I X, t) its product in FTop. If xq) € [[ X; then U = {z € [ X; :

pi(z) = pi(z(0)) for all but finitely many i € I} is dense in [[ X;, i.e.
el
clg, U = X, where (F,z) € ¢ tff F D U(x) and p; : [[ Xi — X; denotes
i€l
the i-th projection.

Proof. Let = (z;) € [[ X;. It must be proved that ir;' (U;(z)) exists (cf.
3.15.2.), where Uy(xz) = [] Uy (x;) (cf. 3.26). B = { A fjopj : J CI
icl jed

finite and f; € baseldy;(x;) for each j € J} is a base of [] Uy, (z;). Let
i€l

firopiy A+ - A fi, opi, € B. Then have to prove sup f;, opi, A--- A fi, opi, =

Sup(fil Opil /\ e /\ fln Op1n|U)

1. “>” is obvious.

2. “<”. Let A= {fi,(ziy) Ao A fi,(zi,) : z = (x;) € [[X;} and A" =
{fi,(®iy) N+ A fi(xi,) - x = (x;) € U}. If a € A, then there exists
some = = (z;) € [[ X; such that a = f;,(xi;) A--- A fi, (zi,). Define
¢’ = (x}) € [[ X; by @} = x; for each i € {i1,...,in} and x; = p;(2(g))
for each i € I\{i1,...,in}. Then 2’ € U and fi, (zj ) A A fi, (2} ) =
fis(iy) Ao A fi (z5,) = a, i.e. a € A'. Consequently, A C B and
sup A < sup B. Hence, i;;' (Uy()) exists for each = € [[ X;, i.e. U is
dense in [ X;.

3.28 Proposition. Let ((X;,q;))icr be a family of fuzzy generalized con-
vergence spaces. If x(g) is a point of the product space (X, q) of this family
in FGConv, then U = {z € X : pi(z) = pi(z(q)) for all but finitely many
i € I} is dense in X.

Proof. Let t; be the discrete fuzzy topology on X;, i.e. t; = L% foreachi €
I, and (X, t) be the product space of ((Xj,t;))icr in FGConv. Then (X, ) is
a fuzzy topological space since FTop is bireflective in FGConv by [24; 3.10].
By 3.27, cl,,U = X. Furthermore, the identity 1x, : (X;,q,) — (Xi,qi) is

fuzzy continuous for each ¢ € I which implies that [[ 1x;, = 1x : (X, q) —
el
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(X, q) is fuzzy continuous, i.e. g < q. Thus, cl, U = X C U C X, ie.
cl,U=X.

3.29 Theorem. Let ((X;, FJx;))icr be a family of non-empty fuzzy pre-
uniform convergence spaces. Then the product space (X, FJx) of this family
in FPUConv is P-connected iff (X;, FJx;) is P-connected for each i € I.

Proof. “=”. Since the projections p; : X — X, are surjective and fuzzy
uniformly continuous for each i € I, it follows from 1.6 (cf. 1.2.(2)) that
(Xi, FJx,) is P-connected for each i € I.

“@’7 .

a) If P is not a class of Tj-spaces, then by 3.24.2, CP is trivial and the
product theorem is valid.

b) Let P be a class of Tspaces and z(g) € X. If z(g) and z(,) € X differ by
at most n < oo coordinates, then z(g) and z(y,) lie in a P-connected
subset of X which is proved by induction on the number n of differing
coordinates in the following manner:

a) If n =1 the assertion is correct; namely if z(;) and z(g) differ e.g. in the
i-th coordinate, then Y = X; x [] px(z(g)) C X is isomorphic to X;
ki

and hence it is P-connected and z(g) and z(;) liein Y.

) Let the assertion be valid for all z(,_1)(n > 2). If z(, is given, then
T(n—1) can be found such that z(,_1) and z(g) differ by one coordinate.
By a), #(,) and z(,,_1) lie in a P-connected subset C1, and by inductive
hypothesis, z(,_1) and z() lie in a P-connected subset Cs. Since
Tm-1) € C1NCy, ie. C1NCy # 0, C = CpUC, is the desired
P-connected subset containing z(g) and z(y).

Let us denote by C’x(o) the P-component of X containing z(g). Thus,

U = {z € X : z and z(g) differ by at most finitely many coordinates} C

C’x(o) C X. By 3.28, clqwj U = X. Hence CE(O) is dense in X which
X

implies X = Cy,, (cf. 3.25.1.), i.e. X is P-connected.

3.30 Proposition. Let P C |[FPUConv| and A a bireflective (full and
isomorphism-closed) subconstruct of FPUConv containing P (i.e. P C
|A|). If R:FPUConv — A denotes the bireflector,
then (X, FJx) € [FPUConv| is P-connected iff R((X, FJx)) is P-connected.

Proof. Use 1.2.2. for K = C'P and the defining property of a bireflection.
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3.31 Corollary. A fuzzy preuniform convergence space is uniformly con-
nected iff its underlying fuzzy (quasi) unifom space is uniformly connected.

Proof. Use 2.26, 3.7 and 3.8 and apply 3.30.

3.32 Definition. A fuzzy generalized convergence space (X,q) is called
symmetric iff (F,z) € ¢ and F C gy for some y € X imply (F,y) € q.

3.33 Proposition. Fach fuzzy generalized convergence space which is a
T1-space s symmetric.

3.34 Remark. A fuzzy topological space (X, t) may be regarded as a fuzzy

generalized convergence space (X, q;), where (F,z) € ¢ iff F D Uy(x) (cf.
[24; 3.10]). Thus, a fuzzy topological space (X,t) is called symmetric iff
(X, q¢) is symmetric. The construct FTop, of symmetric fuzzy topologi-
cal spaces (and fuzzy continuous maps) is concretely isomorphic to a full
subconstruct of FSUConv whose objects are those fuzzy semiuniform con-
vergence spaces (X, F'Jx) for which there is a fuzzy topology t on X such
that F'Jx = {F C Fr(X xX) : thereis some z € X with F D U(z) xUy(z)}.
(similar to the non-fuzzy case), i.e. FTops may be regarded as a full sub-
construct of FSUConv.

3.35 Proposition. Let L be a complete chain and (X,X) a topological
space which is a Ti-space. Then the fuzzy topological space (X, tx) is a
Ty -space (i.e the fuzzy generalized convergence space (X, g, ) is a Th-space).

Proof. Let z € X and y € ¢y, {7}. Since (X, g,) is a topological fuzzy
generalized convergence space, Uy, (¢) has a trace on {x} (cf. 3.15.2.). Thus,
since each f € ty with supf = f(y) belongs to base U, (y), we obtain
f(z) =sup f|{z} =sup f = f(y) for such an f. If y were unequal to = there
would be an open set O C X with y € O and = ¢ O by assumption. Since

Xo € tx such that xo(y) =1 =supxo, xo(z) =xo(y) =1, ie. x € O -
a contradiction.

3.36 Remark. If L is a complete chain, then by means of 3.35, the embed-

ding of Top into FTop (cf. 2.14) leads to an embedding of the construct
Top; of topological Tj-spaces (and continuous maps) into the construct
FTop; of fuzzy topological Tj-spaces (and fuzzy continuous maps). Fur-
thermore, FTop; is a full subconstruct of FTop, (cf. 3.33) which can be
embedded into FSUConv (cf. 3.34).

3.37 Theorem. Let L be a complete chain. Then there is a proper class
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of light factorization structures on FPUConv as well as on FSUConv.

Proof. By [26] there is a proper class of connectednesses in Top; and thus in
FSUConv since Top; may be regarded as a full subconstruct of FSUConv
(3.36). Since FSUConv is a full subconstruct of FPUConv, there is also a
proper class of connectednesses in FPUConv. By 1.4, there is a proper class
of light factorization structures on FSUConv as well as on FPUConv.
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