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� Introduction

Kummer theory states that if F is a �eld of chararteristic zero containing a primitive d	th
root of unity and E is a Galois extension of F with abelian Galois group of exponent d
then E can be generated by a �nite set of radicals d

p
��� � � � � d

p
�k over F� Moreover
 all

sub�elds of the extension are in one	to	one correspondence to the subgroups of the �nite
group ��G
�F � where F � � Fnf�g and ��G
 � f�Qk

i��
d
p
�i

ei j ei � F �� � � F �g�
Building on work of Kneser ��� in the �rst part of this paper it will be shown that

a one	to	one correspondence between sub�elds of a radical extension contained in C and
subgroups of a �nite group de�ned as ��G
 above holds already under much weaker con	
ditions than required by Kummer theory�

To state precisely the conditions that are needed to obtain such a correspondence we
need to describe Kneser�s result� A radical extension E of F can also be de�ned as an
extension generated by a subgroup G of E� such that F � has �nite index in ��G
 � GF ��

Let us call a radical extension E � F �G
 admissible i� �i
 F � contains for all odd primes p a
primitive p	th root of unity if ��G
 contains such a root of unity and �ii
 if ��

p�� � ��G

then

p�� � F �� Kneser then showed that for admissible radical extensions the degree of
E over F is exactly the index of F � in ��G
�

Important admissible extension are real radical extensions
 that is
 extensions of F � R

generated by real radicals� For this case Kneser�s theorem was �rst proven by Siegel ����
and partial results were shown by Besicovitch ��� and Mordell ����� If a radical extension
is generated by complex radicals di

p
�i then Kummer theory requires that F contains a

d	th primitive root of unity
 where d the least common multiple of the di�s� However

F � d�

p
��� � � � � dk

p
�k
 is already admissible if F contains for each prime divisor p of d a

primitive p	th root of unity�
The main result of this paper is that for each admissible radical extensions there is

already a one	to	one correspondence between sub�elds of E and subgroups of ��G
�F ��
To achieve this result it is shown �rst that for linearly independent radicals d�

p
��� � � � � dk

p
�k

over F that generate an admissible radical extension of F any sum
Pk

i�� �i
di
p
�i� �i � Fnf�g

generates the extension F � d�
p
��� � � � � dk

p
�k
� Since a radical extension has a basis consisting

of radicals only
 this result shows that the sub�elds of a radical extension correspond to
subsets of the basis�

The one	to	one correspondence between sub�elds and subgroups as described above
then follows from the fact that if F � d�

p
��� � � � � dk

p
�k� d

p
�
 is an admissible radical extension

such that d
p
� � F � d�

p
��� � � � � dk

p
�k
 then d

p
� can be written as �

Qk
i��

di
p
�i

ei � � � F� ei �
N� As will be seen
 this fact
 too
 is a consequence �better a reformulation
 of Kneser�s
theorem�

The fact that a sum
Pk

i�� �i
di
p
�i� � � Fnf�g� of linearly independent generates an

admissible radical extension F � d�
p
��� � � � � dk

p
�k
 is also interesting from a computational

point of view� In symbolic computation exact arithmetic �especially
 computing inverses

in an algebraic number �eld Q��
 is done via the isomorphism Q��
 �� Q�X ���p�X

�
where p�X
 is the minimal polynomial of �� Hence if we want to do exact arithmetic
in a radical extension of Q and it is known already that

Pk
i��

di
p
qi� qi � Q� generates

Q� d�
p
q�� � � � � dk

p
qk
 it remains to construct the minimal polynomial for

Pk
i��

di
p
qi� say�

But this can be done e�ciently using a variant of the lattice basis reduction algorithm
�see ���
�
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As a nice application of the results on radical extensions
 in the second part of this
paper we prove that an extension Q� d�

p
q�� � � � � dk

p
qk� �m
� qi � Q� and �m a primitive m	

th root of unity contains at most ��m roots of unity� It is also shown that this bound is
optimal� As a corollary we obtain that only for k dividing �� can a k	th root of unity be
written as a rational combination of rational numbers


p��� and real radicals over Q�

� The structure of radical extensions

Building on a result of Kneser ��� we show how to generalize certain results from Kummer
theory �see ���
� First a few de�nitions� Throughout this paper let F be a sub�eld of C�
Denote by F � the multiplicative group Fnf�g of F� An element � � C is called a radical
over F i�

�d � F�

for some positive integer d� Although d and � alone do not uniquely specify a number

in this paper we will denote a radical by the familiar symbol d

p
�� Sometimes this symbol

may in fact refer to any of the d di�erent solutions to Xd � � � �� On other occasions

however
 statements may be correct only for a speci�c solution of this equation� Therefore
it is always assumed that d

p
� denotes a unique complex number�

De�nition ��� An algebraic extension E of F is called a radical extension i� it has
the form E � F �G
� where G is a subgroup of E� such that F � has �nite index in ��G
 �
f�	j � � G� 	 � F �g �
The de�nition simply says that F �G
 is generated by a �nite set of radicals f d�

p
��� � � � � dk

p
�kg

over F� As it turns out
 the formulation given above is often more convenient� However

we will also use the straightforward de�nition of a radical extension as F � d�

p
��� � � � � dk

p
�k
�

De�nition ��� A radical extension F �G
 is called admissible if the group ��G
 satis�es
the following conditions�

�i� If ��G
 contains a p�th root of unity �p� p an odd prime� then �p � F �

�ii� If � �
p�� � ��G
 then

p�� � F ��

Kneser has shown that for admissible radical extensions the group ��G
 alone determines
already the degree of the extension�

Theorem ��� �Kneser� If F �G
 is an admissible radical extension then the degree of
F �G
 over F is the same as the index of F � in ��G
�

Our goal is to show that the sub�elds of the extension F �G
 over F are in a one	to	one
correspondence to the subgroups of ��G
�F �� Before we do so let us describe important
classes of admissible radical extensions and derive some corollaries from Kneser�s theorem
that will be used in the proof of the main result of this section�

Example ��	 If F �G
 � R then the extension is admissible	

These extensions are admissible since the only real roots of unity are �� and ��� For
this class of extensions Theorem ��� was originally proven by Siegel ����� Special cases
were also shown by Besicovitch ��� and Mordell �����
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Example ��
 A radical extension F �G
 � F � d�
p
��� d�

p
��� � � � � dk

p
�k
 such that F containsp�� and for all prime divisors p of d �

Qk
i�� di a primitive p�th root of unity is an

admissible extension	

To proof that these extensions are indeed admissible it su�ces to prove property �ii
 from
De�nition ����

Assume that for p prime the group ��G
 � GF � �
n
	
Qk

i��
di
p
�i

ei j ei � Z� 	 � F �

o
contains a p	th root of unity �� Since �p � � � F for some k between � and p the k	th
power of � must be in F� If the smallest k for which this is true is strictly less than p then
F contains all p	th roots of unity� Hence
 for these p the condition of De�nition ��� is
ful�lled�

So suppose that p is the smallest integer k such that �k is in F� Now for any element �
in ��G
 its d	th power lies in F� Moreover
 we claim that for each � in ��G
 the smallest
integer k such that �k is in F divides d� The fact that F �G
 � F � d�

p
��� d�

p
��� � � � � dk

p
�k
 is

admissible follows from this claim�
To prove the claim let k be the smallest integer such that �k � F for � � ��G
� Assume

k does not divide d� Then d can be written as d � kl � r� with � 
 r 
 k� Since �d � F

and �kl � F it follows �r � F� contradicting the minimality of k� This proves the claim�
The next result is a simple but important corollary to Kneser�s theorem�

Corollary ��� Let F � d�
p
��� � � � � dk

p
�k
 be an admissible extension of F� If a sum S �Pk

i�� �i
di
p
�i is zero for �i � F not all zero then di�erent radicals di

p
�i� dj

p
�j exist such

that

di
p
�i � � dj

p
�j

for some � � F 	
In other words� the radicals d�

p
��� � � � � dk

p
�k are linearly independent over F if any two

of them are linearly independent	

Proof� Again let ��G
 denote the group
n
	
Qk

i��
di
p
�i

ei j ei � Z� 	 � F �

o
�

We claim that if for every pair of di�erent radicals di
p
�i� dj

p
�j

di
p
�i� dj

p
�j �� F�

then the set f d�
p
��� � � � � dk

p
�kg can be extended to a basis of F � d�

p
��� d�

p
��� � � � � dk

p
�k
 over

F� It follows from Kneser�s theorem that a complete system of representatives for the
factor group ��G
�F � is a basis for the extension E� Hence we only need to show that
f d�
p
��� � � � � dk

p
�kg can be extended to a complete system of representatives of the factor

group ��G
�F ��

To prove this let R be a complete system of representatives� Not all radicals di
p
�i need

to be an element of R� However
 the condition di
p
�i� dj

p
�j �� F implies that any radical di

p
�i

is a multiple of a di�erent element si in R� Replacing each ri by di
p
�i still yields a complete

system of representatives for ��G
�F �� The claim and hence the corollary follows�

As mentioned in the previous proof
 Kneser�s theorem implies that the minimal polynomial
of a radical d

p
� over F that generates an admissible extension of F has the formXk� d

p
�k�
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where d
p
�k � F� More general
 if F �G
 is an admissible extension then the minimal

polynomial of any element in ��G
 has the form Xk � � for k � N� � � F�

Now consider an admissible extension F �G
 and a subgroup H of G� F �H
 is an
admissible extension of F and F �G
 is an admissible extension of F �H
� We want to
determine the form of the minimal polynomials of elements in G �or equivalently ��G


over F �H
� From Kneser�s theorem follows directly that these polynomials have the form
Xk � �� where k is a positive integer and � is a linear combination of elements in ��H

with coe�cients in F� However
 it can be shown that � is an element of ��H
 itself� It
su�ces to prove the following result�

Corollary ��
 Let F �G
 be an admissible radical extension of F� Assume that H is a
subgroup of G� Then the degree of E over F �H
 is the index of ��H
 in ��G
�

Proof� The degree �F �G
 � F �H
� of the extension F �G
 over F �H
 is the same as the
degree �F �G
 � F � of F �G
 over F divided by the degree �F �H
 � F � of F �H
 over F�

From Kneser�s theorem we know that �F �G
 � F � and �F �H
 � F � are the indices of F �

in ��G
 and ��H
� respectively� Let us denote these indices by ���G
 � F �� and ���H
 � F ���
The factor group ��H
�F � is a subgroup of the factor group ��G
�F ��Moreover by one

of the isomorphism theorems for groups �see ���
 the factor group ��G
���H
 is isomorphic
to the factor group of ��H
�F � in ��G
�F �� Hence

�F �G
 � F �H
� �
�F �G
 � F ��

�F �H
 � F ��
�

���G
 � F ��

���H
 � F ��

is the index of ��H
 in ��G
�

The lemma states for example that the only real radicals contained in a real radical
extension F �G
 are the obvious ones
 they are exactly the elements of ��G
�

Before we can prove the one	to	one correspondence between sub�elds of a radical ex	
tension F �G
 and subgroups of ��G
�F � one more technical lemma has to be shown�

Lemma ��� Let F be a �eld and � a root of unity	 If d
p
� is a radical over F such that

F � d
p
�
 is an admissible radical extension of F and is contained in F ��
 then the minimal

polynomial of d
p
� over F has the form X l � d

p
�l� where l is an integer such that l divides

d and F ��
 contains a primitive l�th root of unity	

Proof� The extension F ��
 � F is a Galois extension with abelian Galois group �see ���
�
Hence all its sub�elds
 and in particular F � d

p
�
� must be Galois extensions of F�

By Kneser�s theorem the minimal polynomial of d
p
� over F has the form X l � d

p
�l�

where l is the smallest integer such that d
p
�l � F� As in the discussion of the second class

of admissible extension it can be shown that l divides d�
Since F � d

p
�
 is Galois it must contain all roots of X l � d

p
�l� But then it contains a

primitive l	th root of unity
 too� This proves the lemma�

We are ready to prove the main result of this section�

Theorem ��� Let F �G
 � F � d�
p
��� d�

p
��� � � � � dk

p
�k
 be an admissible radical extensions

of F� The sub�elds of F �G
 are in one�to�one correspondence to the subgroups of the �nite

group ��G
�F �� where ��G
 � GF � �
n
	
Qk

i��
di
p
�i

ei j ei � Z� 	 � F �

o
�
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If the radicals di
p
�i are linearly independent over F then any sum of the form

Pk
i�� �i

di
p
�i

with non�zero coe
cients �i � F is a primitive element for F �G
�

Proof� Denote by ni�� the degree of F � d�
p
��� � � � � di��

p
�i��
 over F � d�

p
��� � � � � di

p
�i
� Then

the set

B �

�
kY

i��

di
p
�i

ei � � � e� 
 n�� � � e� 
 n�� � � � � � � ek 
 nk

�

is a basis of F �G
 over F� This basis will be called the standard basis of the extension� By
de�nition
 B consists of linearly independent radicals over F�

Moreover
 due to Corollary ��� there is a one	to	one correspondence between the ele	
ments in B and the elements in ��G
�F ��

Hence it remains to show that each sub�eld of E can be generated by a subset of
the standard basis� By the Primitive Element Theorem each sub�eld can be generated
by a single element �� We claim that F ��
 is the �eld generated by those elements in B

that occur with non	zero coe�cient in the representation of � as a linear combination of
elements in the standard basis� By what has been said before the theorem follows from
the claim�

Hence it remains to prove� Let F � d�
p
��� d�

p
��� � � � � dk

p
�k
 be an admissible radical ex�

tension over F� If the radicals di
p
�i are linearly independent over F then any sum of the

form
Pk

i�� �i
di
p
�i� �i � F� �i �� �� generates the extension F � d�

p
��� d�

p
��� � � � � dk

p
�k
�

To prove the claim denote by d the least common multiple of the integers di� Let �d
be a d	th primitive root of unity�

By the previous lemma if
�j dj
p
�j

�i di
p
�i

� F ��d


for two di�erent indices i� j � k then the ratio must be an l	th root of an element in F such
that F contains a primitive l	th root of unity� Hence after an appropriate renumbering of
the radicals di

p
�i the sum

Pk
i�� �i

di
p
�i can be written as

k�X
i��

�i �� � �i�� � � � �� �i�hi

di
p
�i�

where �i�j is the li�j	th root of an element in F such that F contains a primitive li�j	th
root of unity�

Moreover
 F ��d� d�
p
��� � � � � dl

p
�k�
 is an admissible radical extension of F ��
 �see Ex	

ample ���
� By Corollary ��� the radicals di
p
�i� i � �� �� � � � � k�� are linearly independent

over F ��d
�
The elements in a set f�� �i��� � � � � �i�hig� i � �� �� � � � � k�� are also linearly independent

over F� Otherwise the radicals d�
p
��� d�

p
��� � � � � dk

p
�k would be linearly dependent over F�

Next observe that F � d�
p
��� d�

p
��� � � � � dk

p
�k
 is the same �eld as the �eld generated by

the elements in

H �
k��
i��

f di
p
�i� �i��� � � � � �i�hig �

We now use the Primitive Element Theorem in the following form �see for example ���
�
Let E be an algebraic extension of F� � � E generates E if for any two embeddings 
 and
� of E into the complex numbers 
��
 �� ���
�
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Any embedding of F � d�
p
��� d�

p
��� � � � � dk

p
�k
 maps di

p
�i onto �i di

p
�i for some di	th root of

unity �i and likewise �i�j is mapped �i�j�i�j � where �i�j is a li�j	th root of unity� Furthermore
di�erent embeddings map at least one element in H onto di�erent complex numbers�

Hence
 using the above formulation of the Primitive Element Theorem it su�ces to
show that

k�X
i��

�i�i �� � �i���i�� � � � �� �i�hi�i�hi

di
p
�i ��

k�X
i��

� �i�i
�
� � ��i���i�� � � � �� ��i�hi�i�hi

�
di
p
�i�

where �i� �
�

i� �i�j� �
�

i�j are as before and for at least one index i �i �� ��i or �i�j �� ��i�j for some
j�

Observe that in both sums the coe�cients are elements of F ��d
� Therefore if the two
sums are equal then a linear relation over F ��d
 between the radicals di

p
�i� i � �� � � �k��

exists� By construction these radicals are linearly independent over F ��d
 and hence the
two sums are equal if and only if all coe�cients in their di�erence are zero� We will show
that this is impossible�

Let i be such that �i �� � �i or �i�j �� ��i�j for some j� �i �� � by assumption� Hence

�i �� � �i���i�� � � � �� �i�hi�i�hi
� ��i
�
� � � �i���i�� � � � �� � �i�hi�i�hi

�
� ��

We must show that this is impossible� For the sake of simplicity we drop the index i�
� �� �� hence

� �� � ���� � � � �� �h�h
� ��
�
� � ����� � � � �� ��h�h

�
� �

implies

�� � ���� � � � �� �h�h
 �
��

�

�
� � ����� � � � �� � �h�h

�
�

First assume that the ratio is not an element of F� Consider for both sides the trace
with respect to the extension F ��d� ��� � � � � �h
 of F�

According to Lemma ��� the trace of the left	hand side is exactly the degree of the
extension F ��d� ��� � � � � �h
� Denote this degree by D� The trace of the right	hand side is
exactly the trace of ����� which is a d	th root of unity� IfD� is the degree of F ��d� ��� � � � � �h


over F
�
��

�

�
then the trace of the right	hand side is D� times the trace of ���� taken with

respect to the extension F
�
��

�

�
of F� If the equality above is correct than the latter trace

must be exactly D�D�� the degree of F
�
��

�

�
�

The trace of ���� is the sum of its conjugates
 all of which are d	th roots of unity�
Moreover
 since it is assumed that ���� is not in F� there are at least � di�erent conjugates�
By the triangle inequality a sum of n roots of unity
 not all the same
 are in absolute value

strictly less than n� Hence the trace of ���� with respect to F
�
��

�

�
is in absolute value

strictly less than D�D�� This shows that if ���� is not in F then

�� � ���� � � � �� �h�h
 �
��

�

�
� � ����� � � � �� ��h�h

�
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cannot be correct�
So assume ����� � � � F� In that case
 we must show that

�� � �
 � ��� � ���
�� � � � �� ��h � � �h
�h � �

is impossible�
This is a relation between the elements of f�� ��� � � � � �hg over F� As mentioned be	

fore these elements are linearly independent
 hence the relation can hold if and only if
all coe�cients are zero� In particular
 � � � or equivalently
 � � ��� But then for at
least one index j between � and h the roots of unity �j � �

�

j are di�erent� In which case

�� � �
 � ��� � ���
�� � � � �� ��h � ��h
�h �� �� too� This proves the claim and hence the
theorem�

� Roots of Unity in Radical Extensions of the Rational

Numbers

As an application of the results of the previous section we now show the following theorem�

Theorem ��� Let F � Q� d�
p
n�� � � � � dk

p
nk
 be a real radical extension of Q� If �m is a

primitive m�th root of unity then F ��m
 contains at most ��m di�erent roots of unity	
Moreover� the constant �� is best possible� i	e	� there are real radical extensions F of Q
and m � N such that F ��m
 contains exactly ��m di�erent roots of unity	

Proof� First we reformulate the problem a bit�

Lemma ��� The number M of roots of unity in Q� d�
p
n�� � � � � dk

p
nk � �m
 is the maximum

of all numbers N such that Q� d�
p
n�� � � � � dk

p
nk � �m
 contains a primitive N �th root of unity	

Moreover� m divides M�

Proof� Assume the �eld contains no primitive M 	th root of unity
 instead assume N 
 M
is the largest number such that Q� d�

p
n�� � � � � dk

p
nk � �m
 contains an N 	th primitive root of

unity� ThenQ� d�
p
n�� � � � � dk

p
nk� �m
 contains a primitive N 	th root of unity and a primitive

K	th root of unity for gcd�N�K
 � �� K � �� This implies that Q� d�
p
n�� � � � � dk

p
nk � �m


also contains a primitive KN 	th root of unity� This contradicts the maximality of N� so
M � N�

But then all roots of unity in Q� d�
p
n�� � � � � dk

p
nk� �m
 must be a power of �M � In par	

ticular
 the primitive m	th roots of unity �m must be a power of �M � This is possible if
and only if m divides M�

In view of these facts we can reformulate the original problem� We have to determine
the largest multiple M of m such that Q� d�

p
n�� � � � � dk

p
nk � �m
 � Q� d�

p
n�� � � � � dk

p
nk � �M


for primitive m	th and M 	th roots of unity �m� �M �
Instead of answering this question for the �eld Q� d�

p
n�� � � � � dk

p
nk � �m
 we will answer

it for Q� d�
p
n�� � � � � dk

p
nk� �m�
 where m� � lcm ��� m
� The number M deduced in this

way will be an upper bound on the number of roots of unity in Q� d�
p
n�� � � � � dk

p
nk � �m
�
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Assume that the prime factorization ofm� is given bym� � �e
Ql

i�� p
ei
i � pi prime� e� ei �

N� e 	 ��ThenM can be written asM � �e
�Ql�

i�� q
fi
i

Ql
i�� p

ei
i � qi prime� e�� fi � N� e� 	 e�

The qi�s need not be distinct from the pi�s�
If Q� d�

p
n�� � � � � dk

p
nk � �m�
 � Q� d�

p
n�� � � � � dk

p
nk � �M
 then the �rst �eld must be the

same as Q� d�
p
n�� � � � � dk

p
nk � �Mi


� for all i � �� �� � � � � l�� where M� � �e
�Ql

i�� p
ei
i and

Mi � qfii �e
Ql

i�� p
ei
i for i � �� We will show that this is possible only for e� � e � � and

qfii � �� This implies M � �m� � ��m and will therefore prove the upper bound of the
theorem�

To prove the claim we consider for each Mi� i � �� �� � � � � l�� a �eld Ei such that if
Q� d�

p
n�� � � � � dk

p
nk � �m�
 � Q� d�

p
n�� � � � � dk

p
nk � �Mi


 then Ei must be a sub�eld of this
�eld� Hence the degrees of Q� d�

p
n�� � � � � dk

p
nk � �m�
 and of Q� d�

p
n�� � � � � dk

p
nk � �Mi


 over
Ei have to be the same� From this condition the claim will follow�

We will choose the �eld Ei to be the �eld generated by the real radicals d�
p
n�� � � � � dk

p
nk

and all real square roots in Q��Mi

�

Lemma ��� Let m � N such that �jm� If m � �e
Ql

i�� p
ei
i � ei 	 �� e 	 �� is the prime

factorization of m then the sub�eld of Q��m
 generated by all real square roots in Q��m

is Q�

p
p�� � � � �

p
pl
 if e � � and Q�

p
p�� � � � �

p
pl�
p
�
 if e � ��

Proof� First all quadratic sub�elds of Q��m
 will be determined� By Galois theory these

sub�elds correspond to subgroups of the Galois group of Q��m
 over Q of order ��m�
� �

��m
 � �Q��m
 � Q�� The Galois group of this extension is isomorphic to Z�

m� the multi	
plicative group of integers taken modulo m between � and m which are relatively prime to
m� In particular
 it is abelian� By the following result due to G� Birkho� ��� the number
of quadratic sub�elds of Q��m
 equals the number of subgroups of Z�

m of order ��

Lemma ��	 �Birkho�� If G is an abelian group of order n then the number of subgroups
of order n

d
� djn� equals the number of subgroups of order d�

Z�

m can be written as a direct product

Z�

m � Z�

�e 
 Z�

p
e�
�


 Z�

p
e�
�


 � � � 
 Z�

p
el
l

�

where Z�

p
ei
i

is a cyclic group of order pei��i �pi� �
 and Z�

�e is either a cyclic group of order

� or a direct product of two cyclic groups C�� C�
 one of order � and the other of order
�e���

Each subgroup of order � of Z�

m must be cyclic� Hence we have to determine all
elements in Z�

m of order �� By the above representation for Z�

m these elements correspond
to products h�h�g� � � �gl� where h� � C�� h� � C�� gi � Z�

p
ei
i

and each element is either the

unit element of that group or an element of order �� If e � � then we have to dismiss the
second factor�

Any cyclic group of order d contains for each divisor d� of d exactly one element of
order d�� Hence there are �l�� � � or �l�� � � elements of order � in Z�

m depending on
whether e � � or e � �� The ��	terms occurs because we are not allowed to take the unit
element from each subgroup� Accordingly
 Q��m
 has either �l��� � or �l��� � quadratic
sub�elds�

Next observe that Q��pi
�Q���
 are sub�elds of Q��m
� And if �jm then Q���
 is also
a sub�eld� A well	known result in algebraic number theory �see for example ���
 states



��

that the unique quadratic sub�eld of Q��pi
 is generated by
p
���
pi if pi � � mod � and

is generated by
p
pi if pi � � mod �� Moreover
 Q���
 has the three quadratic sub�elds

generated by
p���p�� and by

p���
Therefore Q��m
 contains q

���
f��f�pf�� � � �pfl��l �

where each fi is either � or � and in case e � � f� is always ��
These square roots generate pairwise distinct quadratic sub�elds of Q��m
� Since this

yields �l�� � � or �l�� � � distinct quadratic �elds depending on whether e � � or e � �
these must be all quadratic sub�elds� Hence a real square root that is contained Q��m

must generate one of the �elds

Q

	q
�f�pf�� � � �pfl��

l



� fi � �� �� f� � � if e � ��

Since all these �elds are contained in Q�
p
p�� � � � �

p
pl
 if e � � and in Q�

p
p�� � � � �

p
pl�
p
�


if e � � the lemma follows�

Denote the �eld generated by the real square roots contained in Q��Mi

 and by the real

radicals d�
p
n�� � � � � dk

p
nk byEi�Hence Ei � Q��Mi


 andQ� d�
p
n�� � � � � dk

p
nk � �Mi


�Ei��Mi

�

Moreover
 if �Mi
� Q� d�

p
n�� � � � � dk

p
nk � �m�
 then Ei��m�
 � Ei��Mi


� In particular
 the
degree of Ei��m�
 over Ei must be equal to the degree of Ei��Mi


 over Ei�

We need the following result from Galois Theory �see for example ���
�

Theorem ��
 Let E be a Galois extension of the �eld K� Denote the Galois group of this
extension by G� Assume furthermore that F is an arbitrary extension of K and denote by
EF the smallest �eld containing E and F� Then the �eld EF is a Galois extension of F
and the Galois group of EF � F is isomorphic to the subgroup of G corresponding to the
extension E � F � E�
Applying this theorem to K � Q� E � Q��Mi


� F � Ei and to K � Q� E � Q��m�
� F �
Ei shows that Ei��m�
 � Ei��Mi


 implies

�Q��m�
 � Q��m�
 �Ei� � �Q��Mi

 � Q��Mi


 �Ei�� i � �� �� � � � � l��

Next we determine how the intersections look like�

Lemma ��� Let d�
p
n�� � � � � dk

p
nk be real radicals and �m be a primitive m�th root of unity	

By E denote the sub�eld of Q� d�
p
n�� � � � � dk

p
nk� �m
 that is generated by the radicals di

p
ni

and by the real square roots contained in Q��m
� Then E �Q��m
 is the �eld generated by
the real square roots in Q��m
�

Proof� Since E �Q��m
 is a sub�eld of the real radical extension E it must be generated
by real radicals �see Theorem ��� and recall from Example ��� that E is an admissible
radical extension of Q
�

Since E�Q��m
 is a real radical extension contained in Q��m
 it must be generated by
square roots �see Lemma ���
� By the same lemma
 the �eld generated by all real square
roots in Q��m
 is the largest possible sub�eld of Q��m
 generated by real radicals�
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By de�nition of E this �eld is also a sub�eld of E� The lemma follows�

Combining Lemma ��� and Lemma ��� shows


 If e � � then

Fi � Q��Mi

 � Ei � Q�

p
��
p
p�� � � � �

p
pl�
p
qi
� i � �� �� � � � � l��

and
F � Q��m�
 �Ei � F� � Q��M�


 �E� � Q�
p
��
p
p�� � � � �

p
pl
�


 If e � e� � � then

Fi � Q��Mi

 �Ei � Q�

p
p�� � � � �

p
pl�
p
qi
� i � �� �� � � � � l��

and
F � Q��m�
 � Ei � F� � Q��M�


� E� � Q�
p
p�� � � � �

p
pl
 for all i


 If e � �
 e� � � then

Fi � Q��Mi

 �Ei � Q�

p
p�� � � � �

p
pl�
p
qi
� i � �� �� � � � � l��

F� � Q��M�

 �E� � Q�

p
��
p
p�� � � � �

p
pl
�

and
F � Q��m�
 �Ei � Q�

p
p�� � � � �

p
pl
 for all i�

Since �eld degrees are multiplicative

��Mi


��m�

�

�Q��Mi

 � Q�

�Q��m�
 � Q�
�

�Fi � Q�

�F � Q�
�

First consider i � � and assume e� � e� In this case

��M�


��m�

� �e

�
�e

but
�F� � Q�

�F � Q�
� �

if e � �� Otherwise this ratio is �� Hence if e � � then e� can be at most � and if e � �
then e � e��

For i � � we can use a similar argument�

��Mi


��m�

� qfi��i �qi � �


if qi is distint from all pi�s� Otherwise

��Mi


��m�

� qfii �



��

On the other hand
�F �i� � Q�

�F � Q�
� �

or
�F �i� � Q�

�F � Q�
� �

depending on whether qi is distinct from the pj �s or not�

Hence qfi��i �qi � �
 � � or qfii � �� The second case is impossible for an odd prime
and the �rst one is possible if and only if qi � � and fi � �� As mentioned this proves the
upper bound�

It remains to show that this bound is optimal� To do so let m be a positive integer
such that gcd���� m
 � ��Moreover let m be divisible by a prime p satisfying p � � mod ��
Consider Q�

p
��
p
��
p
p� �m
� where �m is a primitive m	th root of unity�

As noted aboveQ��m
 contains
p�p� Hence p�� � Q�

p
��
p
��
p
p� �m
� Therefore this

�eld contains
�p
�
�� �

p��
 and �

�
��� p��
�

The �rst number is a primitive �	th root of unity and the second one a primitive �	rd root
of unity� This implies thatQ�

p
��
p
��
p
p� �m
 contains a ��m	th primitive root of unity�

As an immediate corollary we obtain

Corollary ��
 A k�th root of unity can be written as a rational combination of rational
numbers�

p��� and real radicals over Q if and only if k divides ���
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