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Abstract

Kummer theory states that if F is a field containing a primitive d-th root of unity
then the subfields of a radical extension of F' generated by radicals ¢/p1,..., ¥px
over F' can be described by subgroups of the group of d-th powers of elements in
F\{0}. Building on work of Kneser in this paper we show that the same result can
be obtained if F' satisfies weaker conditions. For example, it suffices that for each
prime divisor p of d the field F' contains primitive a p-th root of unity. This result is
used to prove that an extension Q( %4/n1, ®¥/nz,..., %/nk,(m), %/n; a real radical
over Q, (m a primitive m-th root of unity, contains at most 24m roots of unity. The
bound is optimal.
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1 Introduction

Kummer theory states that if F'is a field of chararteristic zero containing a primitive d-th
root of unity and F is a Galois extension of F with abelian Galois group of exponent d
then F can be generated by a finite set of radicals p1,..., ¢/py over F. Moreover, all
subfields of the extension are in one-to-one correspondence to the subgroups of the finite
group T(G)/F* where F* = F\{0} and T(G) = {7y ], pitle € I,y € Fr}.

Building on work of Kneser [7] in the first part of this paper it will be shown that
a one-to-one correspondence between subfields of a radical extension contained in C and
subgroups of a finite group defined as I'(G) above holds already under much weaker con-
ditions than required by Kummer theory.

To state precisely the conditions that are needed to obtain such a correspondence we
need to describe Kneser’s result. A radical extension F of F' can also be defined as an
extension generated by a subgroup G of £* such that F™* has finite index in I'(G') = GF™.
Let us call a radical extension £ = F(G') admissible iff (i) /”* contains for all odd primes p a
primitive p-th root of unity if I'((¥) contains such a root of unity and (ii) if 14++/~1 € I'(G)
then v/—1 € F*. Kneser then showed that for admissible radical extensions the degree of
I over F is exactly the index of F* in I'(G).

Important admissible extension are real radical extensions, that is, extensions of /' C R
generated by real radicals. For this case Kneser’s theorem was first proven by Siegel [11]
and partial results were shown by Besicovitch [2] and Mordell [10]. If a radical extension
is generated by complex radicals 4/p; then Kummer theory requires that F' contains a
d-th primitive root of unity, where d the least common multiple of the d;’s. However,
F(4/p1,...,%/pr) is already admissible if F contains for each prime divisor p of d a
primitive p-th root of unity.

The main result of this paper is that for each admissible radical extensions there is
already a one-to-one correspondence between subfields of £ and subgroups of I'(G')/F*.
To achieve this result it is shown first that for linearly independent radicals 4/p1, ..., %/px

over F' that generate an admissible radical extension of F any sum Y%, y; &/pis v: € F\{0}
generates the extension F(4/p1,. .., %/pk). Since a radical extension has a basis consisting
of radicals only, this result shows that the subfields of a radical extension correspond to
subsets of the basis.

The one-to-one correspondence between subfields and subgroups as described above
then follows from the fact that if F'(4/p1,. .., %/pk, &/p) is an admissible radical extension
such that ¢p € F(4/p1,..., %/py) then &p can be written as 'VHle &/pi, v EF e €
N. As will be seen, this fact, too, is a consequence (better a reformulation) of Kneser’s
theorem.

The fact that a sum Ele Y:4/pi» v € I'\{0}, of linearly independent generates an
admissible radical extension F(4/py,..., %/px) is also interesting from a computational
point of view. In symbolic computation exact arithmetic (especially, computing inverses)
in an algebraic number field Q(«) is done via the isomorphism Q(«a) = Q[X]/(p(X)),
where p(X) is the minimal polynomial of a. Hence if we want to do exact arithmetic
in a radical extension of Q and it is known already that Ele 4/, ¢; € Q, generates

Q( 4/q1,..., %/qxr) it remains to construct the minimal polynomial for Ele 4/q;, say.
But this can be done efficiently using a variant of the lattice basis reduction algorithm

(see [6]).
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As a nice application of the results on radical extensions, in the second part of this
paper we prove that an extension Q( 4/q1,..., %/qk,(m), ¢ € Q, and (,, a primitive m-
th root of unity contains at most 24m roots of unity. It is also shown that this bound is
optimal. As a corollary we obtain that only for £ dividing 24 can a k-th root of unity be
written as a rational combination of rational numbers, v/—1, and real radicals over Q.

2 The structure of radical extensions

Building on a result of Kneser [7] we show how to generalize certain results from Kummer
theory (see [1]). First a few definitions. Throughout this paper let I be a subfield of C.
Denote by F™* the multiplicative group F\{0} of F. An element v € C is called a radical
over Fiff

e F.

for some positive integer d. Although d and p alone do not uniquely specify a number,
in this paper we will denote a radical by the familiar symbol &p. Sometimes this symbol
may in fact refer to any of the d different solutions to X¢ — p = 0. On other occasions,
however, statements may be correct only for a specific solution of this equation. Therefore
it is always assumed that @p denotes a unique complex number.

Definition 2.1 An algebraic extension I/ of I is called a radical extension iff it has
the form E = F(G), where G is a subgroup of E* such that F* has finite index in I'(G) =

{v8lve G, peFry}.

The definition simply says that F'(() is generated by a finite set of radicals { 4/p1, ..., %/pr}
over F. As it turns out, the formulation given above is often more convenient. However,
we will also use the straightforward definition of a radical extension as F(4/py, ..., %/pk)-

Definition 2.2 A radical extension F(G) is called admissible if the group I'(G) satisfies
the following conditions:

(1) If I'(G) contains a p-th root of unity C,, p an odd prime, then ¢, € F*

(ii) If 1 ++/—1 € I(G) then /—1 € F*.

Kneser has shown that for admissible radical extensions the group I'() alone determines
already the degree of the extension.

Theorem 2.3 (Kneser) If F(G) is an admissible radical extension then the degree of
F(G) over F is the same as the index of F* in I'(G).

Our goal is to show that the subfields of the extension F((G') over F are in a one-to-one
correspondence to the subgroups of I'(G)/F™*. Before we do so let us describe important
classes of admissible radical extensions and derive some corollaries from Kneser’s theorem
that will be used in the proof of the main result of this section.

Example 2.4 If F(G) C R then the extension is admissible.

These extensions are admissible since the only real roots of unity are +1 and —1. For
this class of extensions Theorem 2.3 was originally proven by Siegel [11]. Special cases
were also shown by Besicovitch [2] and Mordell [10].



Example 2.5 A radical extension F(G) = F(4/p1, %/p2, ..., %/pr) such that F contains
V=1 and for all prime divisors p of d = Hle d; a primitive p-th root of unity is an
admissible extension.

To proof that these extensions are indeed admissible it suffices to prove property (ii) from
Definition 2.2.

Assume that for p prime the group I'(G)) = GF* = {ﬁ Hle &/pifilei €L, B e F*}
contains a p-th root of unity (. Since (¥ = 1 € F for some k between 1 and p the k-th
power of { must be in F. If the smallest & for which this is true is strictly less than p then
F contains all p-th roots of unity. Hence, for these p the condition of Definition 2.2 is
fulfilled.

So suppose that p is the smallest integer k such that (¥ is in F. Now for any element +
in I'(G) its d-th power lies in F. Moreover, we claim that for each v in I'(G) the smallest
integer k such that % is in F' divides d. The fact that F(G) = F(4/p1, 4/p1, . .., %/pr) is
admissible follows from this claim.

To prove the claim let & be the smallest integer such that v¥ € F for v € T'(G). Assume
k does not divide d. Then d can be written as d = kl + r, with 0 < r < k. Since ’yd el
and % € F it follows 7" € F, contradicting the minimality of k. This proves the claim.

The next result is a simple but important corollary to Kneser’s theorem.

Corollary 2.6 Let F(4/pi,..., %/pr) be an admissible extension of F. If a sum § =
Ele ki§/pi is zero for k; € F not all zero then different radicals 4/p;, 4/p; exist such
that

d; pZ:/{W

for some xk € F.
In other words, the radicals 4/p1, ..., %/px are linearly independent over F' if any two
of them are linearly independent.

Proof: Again let I'(G) denote the group {ﬁ Hle &/pile €L, B € F*} .
We claim that if for every pair of different radicals 4/p;, 4/p;

Vil /pj & F,

then the set {4/p1,..., %/pr} can be extended to a basis of F'(4/p1, %/pz, ..., %/pk) over
F. 1t follows from Kneser’s theorem that a complete system of representatives for the
factor group I'(G')/F™ is a basis for the extension £. Hence we only need to show that
{4/p1s-- ., %/pr} can be extended to a complete system of representatives of the factor
group I'(G)/F™.

To prove this let R be a complete system of representatives. Not all radicals ¢/p; need
to be an element of R. However, the condition d\z/p_z/W ¢ F implies that any radical 4/p;
is a multiple of a different element s; in K. Replacing each r; by 4/p; still yields a complete
system of representatives for I'(G)/ F*. The claim and hence the corollary follows.

As mentioned in the previous proof, Kneser’s theorem implies that the minimal polynomial
of a radical /p over I’ that generates an admissible extension of I’ has the form Xk Uk,
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where ¢/p* € F. More general, if F(G) is an admissible extension then the minimal
polynomial of any element in I'(G) has the form X* —y for k € N,y € F.

Now consider an admissible extension F((G) and a subgroup H of G. F(H) is an
admissible extension of F' and F((G) is an admissible extension of F(H). We want to
determine the form of the minimal polynomials of elements in G (or equivalently I'(G))
over F'(H). From Kneser’s theorem follows directly that these polynomials have the form
X% — v, where k is a positive integer and 7 is a linear combination of elements in T'(H)
with coefficients in F. However, it can be shown that v is an element of I'(H) itself. It
suffices to prove the following result.

Corollary 2.7 Let F(G) be an admissible radical extension of F. Assume that H is a
subgroup of G'. Then the degree of E over F(H) is the index of I'(H) in I'(G).

Proof: The degree [F(G) : F(H)] of the extension F(G) over F(H ) is the same as the
degree [F(G) : F] of F(G) over F' divided by the degree [F(H): F] of F(H) over F.
From Kneser’s theorem we know that [F(G) : F] and [F(H) : F] are the indices of I
in I'(G7) and I'( H ), respectively. Let us denote these indices by [['(G) : F*] and [I'(H ) : F™*].
The factor group I'(H )/ F™ is a subgroup of the factor group I'(G')/ F*. Moreover by one
of the isomorphism theorems for groups (see [4]) the factor group I'(G')/T'(H ) is isomorphic
to the factor group of I'(H )/ F* in I'(G)/F™. Hence
[F(G): F*]  [I(G): F¥]

) = U] = iy ) = e - )

is the index of I'(H) in T'(G).

The lemma states for example that the only real radicals contained in a real radical
extension F(G') are the obvious ones, they are exactly the elements of I'(G).

Before we can prove the one-to-one correspondence between subfields of a radical ex-
tension F((') and subgroups of I'(G')/ F™* one more technical lemma has to be shown.

Lemma 2.8 Let F' be a field and ¢ a root of unity. If /p is a radical over F' such that
F(¢p) is an admissible radical extension of I and is contained in F(() then the minimal
polynomial of Yp over I has the form Xi- \d/ﬁl, where [ is an integer such that | divides
d and F({) contains a primitive [-th root of unity.

Proof: The extension F({) : F is a Galois extension with abelian Galois group (see [5]).
Hence all its subfields, and in particular F'(¢/p), must be Galois extensions of F.

By Kneser’s theorem the minimal polynomial of &/p over F’ has the form X - \d/ﬁl,
where [ is the smallest integer such that \d/ﬁl € F. As in the discussion of the second class
of admissible extension it can be shown that [ divides d.

Since F(&/p) is Galois it must contain all roots of X' — @p'. But then it contains a
primitive [-th root of unity, too. This proves the lemma.

We are ready to prove the main result of this section.

Theorem 2.9 Let I'(G) = F(4/p1, %/p2;- .., %/pr) be an admissible radical extensions
of F. The subfields of F'(G') are in one-to-one correspondence to the subgroups of the finite

group I'(G)/F*, where I'(G) = GF* = {ﬁ Hle 4/piilei €L, B € F*} .



If the radicals 4/p; are linearly independent over F then any sum of the form Ele ki 4/ps
with non-zero coefficients r; € F' is a primitive element for F(G).

Proof: Denote by 1,11 the degree of F(4/p1,..., di+y/piy1) over F(4/p1,. .., 4/p;). Then
the set

k

B = {Hdi P, 0<e; <ng,0<ey < ng,...,0< e <nk}
=1

is a basis of F'(G') over F. This basis will be called the standard basis of the extension. By

definition, B consists of linearly independent radicals over F.

Moreover, due to Corollary 2.7 there is a one-to-one correspondence between the ele-
ments in B and the elements in I'(G)/F*.

Hence it remains to show that each subfield of F can be generated by a subset of
the standard basis. By the Primitive Element Theorem each subfield can be generated
by a single element . We claim that F(v) is the field generated by those elements in B
that occur with non-zero coefficient in the representation of v as a linear combination of
elements in the standard basis. By what has been said before the theorem follows from
the claim.

Hence it remains to prove: Let F(4/p1, %/pz,..., %/pk) be an admissible radical ex-
tension over F. If the radicals 4/p; are linearly independent over F' then any sum of the
form Ele Ki&/pi, ki € I, ki # 0, generates the extension F(4/p1, %/p2,- - ., %/Pk)-

To prove the claim denote by d the least common multiple of the integers d;. Let (4
be a d-th primitive root of unity.

By the previous lemma if

o d /D
SV ¢ P
i Y/ Pi
for two different indices ¢, 7 < k then the ratio must be an [-th root of an element in F such
that I’ contains a primitive [-th root of unity. Hence after an appropriate renumbering of
the radicals ¢/p; the sum Ele Ki4/p: can be written as

i
Zfﬁ (L4 pin + -+ pin,) /065
=1
where p; ; is the [; ;-th Toot of an element in /' such that F' contains a primitive /; ;-th
root of unity.

Moreover, F((4, 4/p1,.-., ¥/pr) is an admissible radical extension of F(() (see Ex-
ample 2.5). By Corollary 2.7 the radicals 4/p;, ¢ = 1,2,..., k', are linearly independent
over F((q).

The elements in a set {1, pt;1,..., i n;}, ¢ = 1,2,..., k', are also linearly independent
over I. Otherwise the radicals 4/p1, %/p2, ..., %/pr would be linearly dependent over F.

Next observe that F'(4/p1, %/p2, ..., %/pk) is the same field as the field generated by
the elements in

k/
H o= J{4pis it s prin} -
=1

We now use the Primitive Element Theorem in the following form (see for example [9]):
Let F be an algebraic extension of F. v € F generates F if for any two embeddings o and
T of E into the complex numbers o(v) # 7(7).
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Any embedding of F(4/p1, %/pz, ..., %/pr) maps /p; onto (; 4/p; for some d;-th root of

unity ¢; and likewise p; ; is mapped (; ju; ;, where (; ; is a l; j-th root of unity. Furthermore
different embeddings map at least one element in H onto different complex numbers.

Hence, using the above formulation of the Primitive Element Theorem it suffices to
show that

k/
E Gk (L4 Gaptig 4 -+ Cingbbins) §/pi #
=1

k/
Sk (L4 i + -+ Cpttin,) Yoi,
=1

where (;, (], (; j, ¢/ ; are as before and for at least one index 7 (; # (j or (;; # ¢/, for some
7.

Observe that in both sums the coefficients are elements of F'((g). Therefore if the two
sums are equal then a linear relation over F((y) between the radicals 4/p;, ¢ = 1,...kK/,
exists. By construction these radicals are linearly independent over F'({;) and hence the
two sums are equal if and only if all coeflicients in their difference are zero. We will show
that this is impossible.

Let ¢ be such that (; # (f or (;; # Cz{,j for some j. k; # 0 by assumption. Hence

G (L4 Giaptia o Ginattin) = G (L Clapia + o+ G i) = 0.

We must show that this is impossible. For the sake of simplicity we drop the index ¢.

¢ # 0, hence

COA+ G+ 4 Gun) = ¢ (L4 a4+ Gun) =0

implies
!

(1+CIH1‘|‘“‘+Chﬂh):%(1‘|‘C{H1‘|‘""|‘gbﬂh>.

First assume that the ratio is not an element of F. Consider for both sides the trace
with respect to the extension F((4, pi1, ..., pn) of F.

According to Lemma 2.8 the trace of the left-hand side is exactly the degree of the
extension F((q, pt1,-- -, Hn). Denote this degree by D. The trace of the right-hand side is
exactly the trace of ('/(, which is a d-th root of unity. If D’ is the degree of F((q, pt1, ..., 1n)

over F (%) then the trace of the right-hand side is D’ times the trace of (’/( taken with

respect to the extension F (%) of I. If the equality above is correct than the latter trace

must be exactly D/D’, the degree of F (%) .
The trace of (’/( is the sum of its conjugates, all of which are d-th roots of unity.

Moreover, since it is assumed that ¢//( is not in F, there are at least 2 different conjugates.
By the triangle inequality a sum of n roots of unity, not all the same, are in absolute value

strictly less than n. Hence the trace of ('/{ with respect to F (%) is in absolute value
strictly less than D/D’. This shows that if {’/( is not in F' then

/

(1+<1u1+---+<huh)=%(1+<{u1+---+42uh)



cannot be correct.
So assume ('/(’ = v € F. In that case, we must show that

(Y=D+ (G =+ + (= CGIun =0

is impossible.

This is a relation between the elements of {1,uy,...,pup} over F. As mentioned be-
fore these elements are linearly independent, hence the relation can hold if and only if
all coefficients are zero. In particular, v = 1 or equivalently, ( = (’. But then for at

least one index j between 1 and h the roots of unity Cj,g are different. In which case,
(v=1)4+ (G — ¢+ -+ (Ch — ¢ )pn # 0, too. This proves the claim and hence the
theorem.

3 Roots of Unity in Radical Extensions of the Rational
Numbers

As an application of the results of the previous section we now show the following theorem.

Theorem 3.1 Let F = Q( 4/n1,..., %/nx) be a real radical extension of Q. If (,, is a
primitive m-th root of unity then F((y) contains at most 24m different roots of unity.
Moreover, the constant 24 is best possible, i.e., there are real radical extensions F' of Q
and m € N such that F((,,) contains exactly 24m different roots of unity.

Proof: First we reformulate the problem a bit.

Lemma 3.2 The number M of roots of unity in Q( 4/n, ..., %/nk,(n) is the mazimum
of all numbers N such that Q( 4/n1, ..., %/nk, (m) contains a primitive N -th root of unity.
Moreover, m divides M.

Proof: Assume the field contains no primitive M-th root of unity, instead assume N < M
is the largest number such that Q( 4/n1,..., %/n, () contains an N-th primitive root of
unity. Then Q( 4/n1,. .., %/nk, () contains a primitive N-th root of unity and a primitive
K-th root of unity for ged(N, K) = 1, K > 1. This implies that Q( 4/n1,..., %/nk, (n)
also contains a primitive K N-th root of unity. This contradicts the maximality of IV, so
M = N.

But then all roots of unity in Q( %4/n1,..., %/nk, () must be a power of (ar. In par-
ticular, the primitive m-th roots of unity {,, must be a power of (3;. This is possible if
and only if m divides M.

In view of these facts we can reformulate the original problem. We have to determine
the largest multiple M of m such that Q( 4/ny,..., %/nk,(n) = Q( /11, ..., %/ 1k, ()
for primitive m-th and M-th roots of unity (,,, (ar.

Instead of answering this question for the field Q( 4/n1, ..., %/nk, () we will answer
it for Q( %/n1,..., %/Mk, () where m’ = lem (4, m). The number M deduced in this
way will be an upper bound on the number of roots of unity in Q( 4/n1,..., %/nk, (n ).
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Assume that the prime factorization of m/ is given by m’ = 2¢ H _1 Pi', pi prime, e, €; €

N, ¢ > 2. Then M can be written as M = 2¢ Hi/ lqu’ HZ 1P, giprime, €', f; e N, €' > e.
The ¢;’s need not be distinct from the p;’s.

If Q(%/ni,..., %0k, Cnr) = QU &/01,. .., %/ng,Cur) then the first field must be the
same as Q( d{/_l,.. . %/, Cury), for all @ = 0,1,...,0', where My = 2¢’ Hﬁzlpfi and

M; = f’26 H _, P for ¢+ > 0. We will show that this is possible only for ¢’ —e = 1 and

f’ = 3. This implies M < 6m’ < 24m and will therefore prove the upper bound of the

theorem.

To prove the claim we consider for each M;, i = 0,1,...,I', a field F; such that if
Q( /n1,. .., %k, () = Q(Y/n1,..., %Nk, () then E; must be a subfield of this
field. Hence the degrees of Q( 4/n1,..., %/nk, () and of Q( 4/n1, ..., %/nk, () over

FE; have to be the same. From this condition the claim will follow.
We will choose the field £; to be the field generated by the real radicals 4/ny,..., %/ny
and all real square roots in Q(({as, ).

Lemma 3.3 Let m € N such that 4|m. If m = 2°¢ HZ 1P e > 1, e > 2, is the prime
factorization of m then the subfield of Q((,,) generated by all real square roots in Q((y,)

is Q(\/P1.-- - /P1) if € =2 and Q(\/P1,- .., /P1.V2) if e > 2.

Proof: First all quadratic subfields of Q((,,) will be determined. By Galois theory these

subfields correspond to subgroups of the Galois group of Q((,) over Q of order @,
p(m) = [Q(¢m) : Q). The Galois group of this extension is isomorphic to Z7,, the multi-
plicative group of integers taken modulo m between 1 and m which are relatively prime to
m. In particular, it is abelian. By the following result due to G. Birkhoff [3] the number

of quadratic subfields of Q((,,) equals the number of subgroups of Z%, of order 2.

Lemma 3.4 (Birkhoff) IfG is an abelian group of order n then the number of subgroups
of order %, d|n, equals the number of subgroups of order d.

Z7 can be written as a direct product

Z¥ =75 X L ey X L¥ey X+ XL e
m 2 p11 p22 pll7

where Z*el is a cyclic group of order p;" (pz — 1) and Z3. is either a cyclic group of order

2 or a dlrect product of two cyclic groups C7,C5, one of order 2 and the other of order
2072,

Each subgroup of order 2 of Z7 must be cyclic. Hence we have to determine all
elements in Z7, of order 2. By the above representation for Z7 these elements correspond
to products hihogy - - - g1, where hy € C,hy € Cy,9; € Z* e and each element is either the

unit element of that group or an element of order 2. If e = 2 then we have to dismiss the
second factor.

Any cyclic group of order d contains for each divisor d’ of d exactly one element of
order d’. Hence there are 2!T!1 — 1 or 2%2 — 1 elements of order 2 in Z* depending on
whether e = 2 or € > 2. The —1-terms occurs because we are not allowed to take the unit
element from each subgroup. Accordingly, Q((,,) has either 21 — 1 or 242 — 1 quadratic
subfields.

Next observe that Q((p,), Q(C4) are subfields of Q((y, ). And if 8|m then Q((s) is also

a subfield. A well-known result in algebraic number theory (see for example [5]) states
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that the unique quadratic subfield of Q((,,) is generated by /(—1)p; if p; = 3 mod 4 and
is generated by /p; if p; = 1 mod 4. Moreover, Q((g) has the three quadratic subfields

generated by v/—1,v/2, and by v/—2.

Therefore Q((,,) contains

\/(_1)f12f2p{3 .. .pfl+27

where each f; is either 0 or 1 and in case e = 2 f; is always 0.

These square roots generate pairwise distinct quadratic subfields of Q((,,). Since this
yields 2/+1 — 1 or 242 — 1 distinct quadratic fields depending on whether e = 2 or ¢ > 2
these must be all quadratic subfields. Hence a real square root that is contained Q((.,)
must generate one of the fields

Q( 2f2p{3”'p{l+2)7fi:0717f2:01f€:2‘

Since all these fields are contained in Q(/p1,...,/p1) if e = 2 and in Q(\/p1,. .., /DI, V?2)
if € > 2 the lemma follows.

Denote the field generated by the real square roots contained in Q((as;) and by the real
radicals 4/n, ..., 4/ny by I;. Hence E; C Q(Car;) and Q( 4/, . .., %/nk, Cur, ) =E:(Cory ).
Moreover, if (yr, € Q( 4/n1,- .., %/Nk, () then Ei((nr) = Ei((ar;). In particular, the
degree of F;((,+) over F; must be equal to the degree of F;((ns,) over F;.

We need the following result from Galois Theory (see for example [8]).

Theorem 3.5 Let F be a Galois extension of the field K. Denote the Galois group of this
extension by G. Assume furthermore that F' is an arbitrary extension of K and denote by
EF the smallest field containing F and F. Then the field F'F is a Galois extension of F
and the Galois group of EF : F is isomorphic to the subgroup of G corresponding to the
extension I/ : F N F.

Applying this theorem to K = Q, £ = Q((ar,), F'= E;and to K = Q, F = Q((), I' =
E; shows that E;((n) = Fi((a,) implies

Next we determine how the intersections look like.

Lemma 3.6 Let 4/ny,..., %&/ny be real radicals and (,, be a primitive m-th root of unity.
By E denote the subfield of Q( %/, ..., %/nk, () that is generated by the radicals 4/n;
and by the real square roots contained in Q((y, ). Then ENQ((yn) is the field generated by
the real square roots in Q(().

Proof: Since £NQ((,,) is a subfield of the real radical extension £ it must be generated
by real radicals (see Theorem 2.9 and recall from Example 2.4 that £ is an admissible
radical extension of Q).

Since ENQ((,,) is a real radical extension contained in Q((,,) it must be generated by
square roots (see Lemma 2.8). By the same lemma, the field generated by all real square
roots in Q((y,) is the largest possible subfield of Q((,,) generated by real radicals.
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By definition of E this field is also a subfield of . The lemma follows.

Combining Lemma 3.3 and Lemma 3.6 shows
o If ¢ > 2 then
E = Q(CM;)QEZ = Q(ﬂv\/p_lv"'v\/ﬁv\/g)v = 1727"'71/7

and

F:Q(Cm’)mEz:FOIQ(CMO)QEOIQ(ﬂv\/p_lv7\/]71)
o If e = ¢ =2 then
FZIQ(CMJQEZIQ(\/P_I,a\/ZTb\/Q_z)J: 1727"'71/7

and

F=Q((n)NE; =Fo=Q(Cr,) N Eo=Q(Vp15-.../m) for all i

o Ife=2, ¢ >2then

FZIQ(CMJQEZIQ(\/P_I,a\/ZTb\/Q_z)J: 1727"'71/7
FO:Q(CMO)QEOIQ(\/iv\/p_h"'v\/ZTI)v

and

F=Q((w)NE; =Q(\/p1,-..,4/p) for all 7.
Since field degrees are multiplicative

o(M;) _ [Q(¢m,): Q] _ [Fi: Q]

e(m')  [Q(Cw): Q] [F:Q]
First consider + = 0 and assume e’ > e. In this case

@(MO) _ 9el—e
oty

but
(£ : Q]

[F: Q]
if e = 2. Otherwise this ratio is 1. Hence if e = 2 then €’ can be at most 3 and if e > 2
then e = €.
For ¢ > 0 we can use a similar argument.

i((%j)) =q¢/' (g - 1)

=2

if ¢; is distint from all p;’s. Otherwise




12

On the other hand '
EARELY)

[F: Q]

(F9:Q] _

[F: Q]

depending on whether ¢; is distinct from the p;’s or not.

or

Hence qii_l(qi — 1) =2 or ¢/' = 2. The second case is impossible for an odd prime
and the first one is possible if and only if ¢; = 3 and f; = 1. As mentioned this proves the
upper bound.

It remains to show that this bound is optimal. To do so let m be a positive integer
such that gcd(24, m) = 1. Moreover let m be divisible by a prime p satisfying p = 3 mod 4.
Consider Q(v/2,/3, /P> Cm ), Where (,,; is a primitive m-th root of unity.

As noted above Q((,,,) contains /—p. Hence v/—1 € Q(\/§, V3, /P G ). Therefore this
field contains ) )

—(14++/—-1)and =(1 — /—3).

(14 V=) and (1= V=)

The first number is a primitive 8-th root of unity and the second one a primitive 3-rd root
of unity. This implies that Q(v/2, /3, /P> Cm ) contains a 24m-th primitive root of unity.
As an immediate corollary we obtain

Corollary 3.7 A k-th root of unity can be written as a rational combination of rational
numbers, \/—1, and real radicals over Q if and only if k divides 24.
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