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Abstract
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� Introduction

Statement of result� Let P be a closed convex polytope in 
�space which contains
the origin� Given any point w � IR�� its distance from a line 
or any other object�
�� as induced by P � is

dP 
w� �� � inf ft � � � 
w � tP � � � �� �g �

dP is called the convex distance function induced by P � 
Note that the L�� and
L��metrics are special cases of this distance function� obtained by taking P to be
an octahedron or a cube� respectively��
Let L � f��� � � � � �ng be a collection of n lines in three dimensions� The Voronoi

diagram VorP 
L� of L induced by P is de�ned as the decomposition of 
�space into
Voronoi cells� one cell for each line �i in L� de�ned by

V 
�i� � fw � dP 
w� �i� � dP 
w� �j� for all j �� ig �

Each Voronoi cell is a polyhedron 
in general� not convex�� The combinatorial
complexity of VorP 
L� is the overall number of faces 
vertices� edges� facets� of the
diagram�
We show that the combinatorial complexity of VorP 
L� is O
n��
n� log n�� where

the constant of proportionality depends on the number of edges of P � This is an
improvement over previous bounds� which are super�cubic in n� 
�� a bound of
O
n����� for any � � �� proved in ��� for more general Voronoi diagrams in three
dimensions� and 
	� a bound of O
n��
n��� for the case we consider here� developed
by using the results of ���� There are arrangements of lines where VorP 
L� has
complexity �
n��
n��� even if P is a tetrahedron� Thus there remains a gap of a
logarithmic factor between the lower and upper bound�
As a matter of fact� quadratic or near�quadratic bounds for the complexity of


�dimensional Voronoi diagrams were known only in the special case of point sites
and the Euclidean distance ��� 
see also �	�� where techniques from this paper are
applied to the case of point sites and the L��metric� and �
�� where an O
n��
n��
bound is obtained for the case of lines in 
�space and a distance function induced
by a �at 
i�e� two�dimensional� convex polygon�� Our proof crucially depends on
P being a polytope� so it does not seem to extend to the case of Voronoi diagrams
of lines under the Euclidean distance 
where the best upper bound known on the
complexity of the diagram is still O
n���� �����
Generalized Voronoi diagrams� as de�ned above� are strongly related to the union

of Minkowski sums of polyhedra as studied in ���� In fact� if we replace the lines
in L by pairwise�disjoint polyhedral sites A�� � � � � An� then the boundary of the
union

Sn

i��Ai � 
�tP � is the locus of all points whose smallest dP distance to any
site is t� Thus the union of Minkowski sums can be regarded as a cross�section of
the Voronoi diagram of the sites Ai under the distance function dP � Using fairly
complicated topological analysis� the paper ��� establishes a near�quadratic bound
on the complexity of this union� The problem that we study in this paper is more
di�cult in the sense that we bound the complexity of the entire diagram � not just
a cross section 
however� ��� can handle arbitrary polyhedral sites instead of lines��
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The approach� We assume that L and P are in general position 
we will be more
speci�c about that below�� The proof bounds the number of Voronoi vertices� The
main class of Voronoi vertices consists of points v that are equi�distant 
under dP �
to four distinct lines in L� and this distance is the smallest from v to any line in
L� If we denote this distance by �� then v corresponds to a homothetic placement
P � P 
v� �� � v � �P that touches four lines in L and no line in L intersects the
interior of P � In fact� there are three types of vertices in the Voronoi diagram 
and
corresponding placements of homothetic copies P of P �� 
�� four lines in L touch P
at edges of P � 
	� two lines in L touch P at edges and one line in L touches P at a
vertex� and 

� two lines in L touch P at vertices� Vertices of types 
	� and 

� are
relatively easy to count�
In Section 	 we assume that P is a tetrahedron denoted by �� We will repeatedly

consider the motion of a homothetic copy � of � where three given lines keep
contact with three given edges of �� while the tetrahedron is allowed to expand or
shrink and translate� If no line intersects the interior of the tetrahedron during this
motion� it corresponds to moving along an edge of the Voronoi diagram� However�
in our analysis we will also be moving in an �opposite� direction� Starting from a
free homothetic copy � with four line�edge contacts and no line intersecting the
interior 
as in 
�� above�� we �slide� � while maintaining three of the contacts� but
forcing the fourth line to enter the interior of �� In this process we look for the
next critical placement� where lines in L meet edges or vertices of �� We charge the
original placement to other placements reached by performing this sliding process
in two di�erent ways 
by maintaining di�erent triples of contacts�� This leads to a
recurrence relation� which we can solve by using a probabilistic argument� adapted
from a technique recently introduced in �����
Section 
 extends the result to general polytopes P �

� The Case of a Tetrahedron

We assume in this section that P is a tetrahedron� denoted as �� and that L is a
�xed set of n lines in space� A homothetic copy � � �
z� �� � z � ��� for z � IR��
� � �� is called a placement of �� If f is a face 
vertex� edge� or facet� of � then f
refers to the corresponding face of placement �� If a line � � L intersects an edge or
a vertex f of � then we call the pair 
f� �� a contact of �� it is called a vertex contact
or an edge contact� depending on whether f is a vertex or an edge� respectively� The
contact is called touching if � does not intersect the interior of �� A placement � is
free if no line in L intersects the interior of �� and is called almost free if only 
some
of� those lines involved in contacts pierce the interior of �� A placement is called
rigid� if either 
�� there are four edge contacts� or 
	� there are two edge contacts
and one vertex contact� or 

� there are two vertex contacts�
We assume that � and L are in general position in the following sense� 
i� No

two lines in L have a common point or are parallel� 
ii� A line in L can intersect an
edge or a facet of any placement � in at most one point� 
iii� No line parallel to an



�

edge of � can touch three lines of L� 
iv� No placement can have more contacts than
those prescribed for rigid placements in 
��� 
	� and 

�� 
v� If two rigid placements
have the same contacts� then they are identical�� These assumptions can be enforced
by an in�nitesimal perturbation of the lines in L� These assumptions involve no real
loss of generality� because� as can be shown� the maximum complexity of Vor�
L��
for a set L of n lines in 
�space� is obtained when L and � are in general position�
a similar statement holds for general polytopes P �
The placements with four edge contacts are further discriminated� depending on

whether 
�a� at least three of the edge contacts occur on 
not necessarily distinct�
edges incident to a common vertex of � 
common�vertex�contacts�� or 
�b� there are
four edges involved in contacts� which form a quadrilateral in space 
quadrilateral�
contacts�� or 
�c� there are two edges involved in contacts which do not share a
common vertex� and each of them has two line contacts 
opposite�edge�contacts��
These three cases classify all possibilities of four edge contacts�
Our goal is to bound the number of free rigid placements� We �rst settle the

easy cases 
�a�� 
	�� 

�� and then deal with the more involved situations in 
�b�
and 
�c��

Rigid placements with vertex contacts and a lower bound� Because of the
general position assumption� two prescribed vertex contacts can be obtained by at
most one placement� That is� there are at most �	

�
n

�

�
rigid placements with two

vertex contacts 
not even requiring that these placements be free��
Next consider a triangle T with vertex v� and a line 	 
not necessarily in L�� All

homothetic placements T of T with v on 	 can be represented in a two�dimensional
frame F � parametrized by 

� ��� where 
 represents the position of v on 	 and � is
the scaling factor of T � Let s be the edge of T opposite to v� and let � be a line in L�
We want to show that the placements of T where s intersects � can be represented
by a 
possibly empty� straight segment or ray �s�� in the frame F �
Let a and b be the endpoints of s� If v is incident to 	� then a has to lie in

a plane  which contains 	 and is parallel to the edge connecting v and a� We
can parametrize the placements with contact 
v� 	� by the respective positions of
a in  
each such position uniquely determines a placement T � in fact� F and  
have a correspondence by an a�ne mapping� so let us continue the discussion in
 � Moreover� let us allow negative scaling factors for the time being 
using the
term scaling instead of placement�� Note that one halfplane  � of  bounded by 	
represents positive scalings 
i�e� placements�� and the other halfplane  � represents
negative scalings�
Whenever s is in contact with line �� then a is in a plane  � which contains � and

is parallel to s� Thus� for scalings with contacts 
v� 	� and 
s� ��� vertex a has to be
on a line � which is the intersection of  and  �� There is a point pa on this line �
which corresponds to the scaling with contacts 
v� 	� and 
a� ��� pa is the intersection

�If ��z� �� is rigid then� as is easily checked� the four parameters z� � satisfy a system of four
linear equations� Condition �v� requires that this system always has a unique solution�
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of � with  � Similarly� there is a point pb representing the position of a when the
contacts 
v� 	� and 
b� �� occur� The locus 
s�� of a for scalings with contacts 
v� 	�
and 
s� �� are either given by the segment connecting pa and pb� 
when both pa and pb
lie on the same side of 	� or by the complement of this segment on �� 
if 	 separates
pa and pb�� That is� 
s�� � � is either empty� a line segment or a ray�
The discussion should also make it clear that� given a segment � in  �� there

exists a line � so that � is the locus of a for placements with contacts 
v� 	� and

s� ��� actually� there are two such lines� because we can choose either endpoint of �
to represent pa�
We return to frame F � and we abuse notation� by referring to segments when

we mean either line segments or rays� All free placements of T with v on 	 are
constrained by the lower envelope of all segments �s��� for � � L� The lower envelope
of n such segments has complexity O
n�
n��� where � is a slowly growing inverse of
the Ackermann function ����� It is also known that there are sets of line segments
which attain this bound �����	��
We use these observations to bound the number of placements of the tetrahedron

� with vertex contacts� and for a lower bound of the complexity of the Voronoi
diagram of lines in space� Let us show right away� that there are n lines in space�
so that there are �
n��
n�� rigid placements of a triangle T 
with vertex v and
opposite edge s�� In the frame F as described above� we choose dn�	e line segments
above the 
�axis whose lower envelope has complexity !
n�
n��� Let L� be a set of
corresponding lines in space� Now there are !
n�
n�� free placements of T � where
v touches 	 and s touches two lines in L�� A small perturbation of 	 will not change
the complexity of the lower envelope in the frame� So we choose another set L��

of bn�	c lines which are perturbed versions of 	� Some care is needed� we have to
ensure that those lines do not meet the free rigid placements at which v lies on other
lines in L��� To this end� we let  be a plane containing 	 and parallel to s� so if v
sits on  � then  does not intersect the interior of T � Now we can choose the lines
in L�� in  parallel to 	� but close enough so that their frames still give !
n�
n��
complexity for the respective lower envelopes� Altogether� this gives �
n��
n�� free
rigid placements of T � If desired� a �nal su�ciently small perturbation will achieve
general position� Of course� we can also extend the triangle T to a tetrahedron �
without destroying any of the free rigid placements counted above�
We continue with the upper bound argument and bound the number of rigid

placements with one vertex contact�
Let v be a vertex of � and let � be a line in L� As described above� we can

represent all placements with vertex contact 
v� �� in a two�dimensional frame F �
Every edge s in � not incident to v� and every line �� � L n f�g determines a
straight segment in this frame� 
If s is incident to v then� by our general position
assumption� v must lie at a unique point on � when the double contact 
v� ��� 
s� ���
occurs� In other words� the segment induced by s in F is vertical 
i�e�� parallel to
the ��axis�� We ignore these edges since they can be shown to induce only a linear
number of contacts of the type considered here�� All choices of s and �� yield a two�
dimensional arrangement of at most 

n��� line segments in F � The lower envelope



�


in direction �� of these segments represents all free placements of � with contact

v� �� and with at least one extra touching contact� A segment endpoint that lies on
this lower envelope represents a rigid placement of � with two vertex contacts� and
an intersection of two segments on the envelope gives a rigid free placement with
one vertex and two edge contacts� As stated above� the complexity of this lower
envelope is O

n � ���
n���
In what we counted so far� the extra contacts 
beyond 
v� ��� must be touching�

It is easy to see that the almost�free rigid placements 
with the contact 
v� ��� must
appear on a shallow level of the arrangement of these segments 
namely� at level at
most two� where the lower envelope is counted as level ��� The complexity of these
levels is still bounded by O

n� ���
n�� 
see� e�g�� ���"��� There are four choices for
v and n choices for �� and so there are at most O
n
n � ���
n�� almost�free rigid
placements with one vertex contact�
We say that a line in L violates a placement� if it intersects the interior of the

placement� but it is not involved in a contact� Let Dk
L� be the number of rigid
placements with one vertex contact� and at most k violating lines� We have just
shown that D�
L� � O
n��
n��� It is also easy to show that D�
L� � O
n��
n���
Using 	�dimensional representations by planes  as above� it is easily seen that
almost�free rigid placements with a vertex contact and with one violating line appear
at level at most � in the corresponding arrangements of segments within the planes
 � Using the analysis of ���"� as above� the asserted bound on D�
L� follows�

Three contacts incident to a common vertex� Let � be an almost�free rigid
placement� where three of the contacts appear on 
not necessarily distinct� edges
incident to a common vertex v 
i�e�� a placement of type 
�a��� If we shrink the
tetrahedron while keeping v �xed� the contacts on edges incident to v will continue
to exist until one of them becomes a vertex contact 
u� ��� The fourth contact is
broken by this shrinkage� but its participating line might still intersect the interior
of �� That is� after we stop at the vertex contact� we have a rigid placement � of
� with one vertex contact 
say 
u� ��� and two edge contacts 
say 
s� ��� and 
t� ������
and possibly one extra line in L intersecting the interior of �� Note that we can
expand � again� maintaining contact with the same three lines� in at most two ways�
either reversing the shrinking process about v� if s �� t 
in this case v is the unique
common endpoint of s and t�� or� if s � t� about the other endpoint of s� until a
new edge contact is created� Thus we have bounded the number of almost�free rigid
placements of type 
�a� by twice the number of rigid placements of type 
	� where
at most one line not involved in a contact pierces the interior� As noted above� this
gives a bound of O
n��
n���
Let Ek
L� be the number of rigid placements of type 
�a� with at most k violating

lines� We have shown that E�
L� � O
n��
n��� A straightforward application of
the probabilistic arguments of ���"� shows that E�
L� is also O
n��
n���
The bounds on D�
L� and E�
L� will be used in proving bounds for the remain�

ing patterns of contacts� namely� quadrilateral� and opposite�edge�contacts� In the
following discussion� we refer to the facets incident to an edge s of a placement � as
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s�facets� Clearly� every line that intersects � but has no edge contact must intersect
two facets� and there is a unique edge s for which these facets are the two s�facets�

Sliding a tetrahedron� A line � � L and an edge s of � de�ne a unique plane
 �s��� which contains � and is parallel to s� In order for the edge s of a placement
� to meet a line �� s must lie in  �s���� Now let ��� ��� �� be three lines in L� and let
s�� s�� s� be edges of �� not all three the same� The planes  �sm��m�� for m � �� 	� 
�
meet in a common point z 
as implied by the general position assumption�� All
placements where sm 	  �sm��m�� for all m � �� 	� 
� can be obtained by scaling
one such placement with respect to z as a center� Every line � de�nes a 
possibly
empty� interval of positive scaling factors for which � meets the sliding tetrahedron��

If the intervals where the lines ��� ��� �� meet� respectively� the edges s�� s�� s� have
a nonempty intersection� then we call the corresponding motion �sliding � with
contacts 
sm� �m�� for m � �� 	� 
��
We consider a rigid placement � with four touching edge contacts� together

with an ordered pair 

s� ���� 
t� ����� of its contacts� The tuple 
�� 
s� ���� 
t� ����� is
called a doubly�hinged rigid placement� Such a doubly�hinged rigid placement �
is called an 
i� j��placement if it has an opposite�edge� or quadrilateral�contact� if
s �� t� and if there are exactly i � j lines intersecting the interior of �� so that i
of them intersect the two s�facets� and j of them intersect the two t�facets� Every
free rigid placement with quadrilateral�contact induces twelve 
�� ���placements� and
every opposite�edge�contact induces eight 
�� ���placements� The number of 
i� j��
placements� for a given set L of lines� is denoted by C�i�j�
L��

The charging scheme for quadrilateral� and opposite�edge�contacts� Our
strategy is to charge every 
�� ���placement to two other placements 
with at most
one violation��
Given a 
�� ���placement 
�� 
s� ���� 
t� ������ we slide the tetrahedron while re�

leasing the �rst contact 
s� ��� 
and maintaining the other three contacts� in the
direction that causes �� to penetrate the tetrahedron� 
It is easily seen that there is
a unique such direction�� The process is stopped as soon as a new contact occurs�
We discriminate the following types of events�


A� A new edge contact with a line �� is encountered on edge s� Note that we have

reached a 
�� ���placement 
�� 
s� ���� 
t� ����� 
because �� still intersects the two s�
facets�� and there is exactly one 
�� ���placement 
the one we started with� from
which this 
�� ���placement can be obtained in the prescribed manner� This can
be seen by simply reversing the process� that is� we release the line �� involved in
the �rst contact 
s� ��� and slide in the unique direction which does not cause ��

to penetrate the tetrahedron� When the next contact occurs� we have reached our
initial 
�� ���placement� 
In fact� if we start with an arbitrary 
�� ���placement� this
reversed process need not end in a 
�� ���placement#�

�More generally� if P and C are convex bodies and z is a point� then the range of positive reals
� for which P � �z � ��C � z�� �� � is an interval�



"


B� A new edge contact is encountered on an edge di�erent from s� We have four edge
contacts� which are common�vertex�contacts 
this holds� by an easy consideration�
because we started with a quadrilateral�contact or with an opposite�edge�contact��
Either we have four touching contacts and one violating line� or we have three touch�
ing contacts and one contact whose line penetrates the interior of the placement� In
both cases� such a placement can be reached at most a constant number of times
in the presecribed manner� and the number of such placements� as argued above� is
O
n��
n���


C� One of the current edge contacts becomes a vertex contact� Again� such a place�
ment can be reached only in a constant number of ways from a 
�� ���placement�
and the number of such placements is O
n��
n���
In a similar way we slide while releasing the second contact 
t� ���� in the direction

that causes ��� to pierce the tetrahedron� When the next contact occurs� we have
either reached a 
�� ���placement� or we are in a situation as described in 
B� and

C� above�
Now we charge every 
�� ���placement to both placements we have reached by

sliding as above� The number of placements which are of type 
B� or 
C� has already
been bounded by O
n��
n��� so that the charging scheme gives us an inequality of

	C�����
L� � C�����
L� � C�����
L� �O
n��
n�� �

or
	C�
L� � C�
L� �O
n��
n�� � 
��

if we writeC�
L� and C�
L� instead of C�����
L� and C�����
L��C�����
L�� respectively�
Next� let R be a random subset of L of cardinality n� �� Then we get

E�C�
R�� �
n� �

n
C�
L� �

�

n
C�
L� � 
	�

since a 
�� ���placement in R can be derived 
i� either from a 
�� ���placement in
L� if none of its four contact lines is omitted in R 
which happens with probability

n� ���n� or 
ii� from a 
�� ��� or 
�� ���placement in L� if the violating line from L
is omitted in R 
which happens with probability ��n�� The inequality in 
	� comes
from observing that there might exist other 
�� ���placements � in R where the line
omitted from R pierces � at a pair of facets that are not both s�facets and are not
both t�facets�
If we substitute C�
L� in 
�� using 
	�� we obtain


n� 	�C�
L� � nE�C�
R�� �O
n��
n�� � 

�

We de�ne C�
k� as the maximum value of C�
K� over all sets K of k lines� in
particular� C�
�� � C�
	� � C�

� � �� Then 

� 
divided by n
n � ��
n � 	��
implies

C�
n�

n
n � ��
�

C�
n� ��


n� ��
n � 	�
�O

�
�
n�

n

�
�

for n � �� which immediately gives us a bound of O
n��
n� log n� on C�
n��
We have thus obtained the main result of this section�



Voronoi Diagrams of Lines in ��Space �

Lemma ��� The number of free rigid placements of a tetrahedron � among n lines
L in space is bounded by O
n��
n� log n�� Hence� the complexity of Vor�
L� is
O
n��
n� log n��

� The General Polyhedral Case

We extend Lemma 	�� to convex distance functions induced by an arbitrary �xed
convex polytope P � As in the previous section� we need to bound the number of
free rigid placements� We �rst argue that it su�ces to consider only polytopes with
up to " vertices � as long as we consider the number of edges of P to be constant�
Then we extend the result from � vertices 
the tetrahedral case� to larger polytopes
by induction�

Lemma ��� Let r�
n� bound the number of free rigid placements of a convex poly�
tope with at most " vertices in an arrangement of n lines� Then

�
m




�
r�
n� bounds

the number of free rigid placements of any convex polytope P with m edges among
n lines�

Proof� Let P be a free rigid placement of P � Let S � fs�� s�� s�� s
g be four edges
of P which cover all contacts of P � that is� every edge involved in a contact is
in S� and every vertex involved in a contact is incident to some edge in S� Now
QS � conv
s� 
 s� 
 s� 
 s
� is a free rigid placement of QS � conv
s� 
 s� 
 s� 
 s
��
a polytope with at most " vertices� As QS has at most r�
n� free rigid placements
for each S� and there are at most

�
m




�
choices for S� the claim as asserted in the

lemma follows�
Assume now that P has k vertices� � � k � "� and that we have already shown a

bound of O
n��
n� log n� for the number of free rigid placements of polytopes with
k � � or fewer vertices among n lines in space� The base case of k � � is provided
by Lemma 	���


�� The number of free rigid placements of P with a vertex contact� or with three
edge contacts on �not necessarily distinct	 edges with a common vertex� is bounded
by O
n��
n���

The proof of 
�� can be carried out identical to the corresponding cases for a tetra�
hedron�
A notation is required for the following induction steps� For a polytope P and a

vertex x of P � let Px denote the convex hull of all vertices of P except for x�


	� Let a be a vertex of P � The number of free rigid placements� where vertex a is
neither involved in a contact� nor it is incident to an edge involved in a contact� is
bounded by O
n��
n� log n��

Such a placement corresponds to a rigid placement of Pa which has k � � vertices�
Hence the number of such rigid placements is bounded as claimed�
For the remaining situations� all free rigid placements with four edge contacts� it

is helpful to consider the contact graph G induced by those contacts� Its vertices are



��

all vertices of the polytope incident to edges with contacts� and for each contact on
an edge of P we connect the two incident vertices by an edge in the graph G� That
is� if there are two contacts on edge s� then its incident vertices are connected by
two edges in the graph 
recall that three contacts or more on an edge are excluded
by the general position assumption�� G will always have four edges� and at most
" vertices� 
�� deals with the situation when there is a vertex of degree three or
four in this graph� 

� below addresses the case where there is an edge with both
endpoints having degree one in the contact graph�
What is left$ Contact graphs with all vertices having degree one or two� and

no connected component formed by a single edge� That is� there are at most two
connected components which are either cycles or paths of length at least two� This
leaves us with the following possibilities for G� 
i� G is a cycle of length �� 
ii� G
consists of two disjoint cycles of length 	� 
iii� G is a path of length �� 
iv� G is
composed of a cycle of length 	 and a path of length 	� 
v� G is formed by two
paths of length 	 each�
In cases 
i� and 
ii� the contact graph has four vertices� and we are either facing

the base case of a tetrahedron� or there is vertex in the polyhedron which is incident
to no contact edge� when 
	� comes into play�
Cases 
iii��
v� have the following property in common� We can enumerate the

edges of G as e�� e�� e�� e
� so that e� and e� have a common vertex c� e� is incident
to a vertex a of degree one in G� and e
 is incident to a vertex b of degree one in G�
e� and e� may share both incident vertices� 
i�e� may be induced by the same edge
of P �� but otherwise the edges in G stem from distinct edges of P � This pattern is
treated in 
�� below�



� Let s be an edge of P � There are at most O
n��
n� log n� free rigid placements
of P with four edge contacts where there is exactly one contact on edge s� and no
other contact edge shares a vertex with s�

Proof� Let a and b be the vertices incident to s� Given a free rigid placement P as
described in 

�� start sliding P from P so that the line � with contact on s pierces
P � and the remaining three contacts are retained� During this process observe the
corresponding motions of Pa and Pb� Note that both polytopes share the three
contacts with P � and that they are free in the initial part of the motion� since �
will not intersect them� We stop the motion as soon as we reach either a vertex
contact on Pa or Pb� or a new edge contact appears on Pa or Pb� By the induction
hypothesis� the number of such terminal placements is O
n��
n� log n�� The process
can be reversed only in a constant number of ways� Here it is important to observe
that� as we stop the sliding� line � still intersects the interior of P � In order for this
line to escape P � it has to sweep through s or through one of the polytopes Pa or
Pb� It cannot meet s� because that is where we came from� and as soon as � touches
Pa or Pb� we stop�


�� Let s�� s�� s�� s
 be edges of P which are mutually distinct� except that s� and s�
may be equal� Moreover� suppose that s� and s� share a common vertex c� that there
is a vertex a incident to s� only �among s�� s�� s�� s
	� and that there is a vertex b
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incident to s
 only� Then there are at most O
n��
n� log n� free rigid placements of
P with four edge contacts on s�� s�� s�� and s
�

Proof� Note that both s� and s� are present in Pa and in Pb� that s� is present in
Pb� and that s
 is present in Pa�
Fix lines �� and ���� In all placements of P with edge contacts 
s�� ��� and 
s�� �����

the vertex c lies on a line 	� the intersection of planes  �s����� and  �s������� Now �x a
coordinate frame F � F������ representing all such placements� We can parametrize
F by the two parameters 

� ��� where 
 gives the position of c along 	� and � is
the scaling factor of P � As described in the previous section� every edge of P not
incident to c and every line in L de�nes a straight segment in F � The free placements
with c on 	 are represented in F above the 
�axis and below the lower envelope E
of these segments�
In the same frame F we can also represent the free placements of Pa and Pb with

edge contacts 
s�� ��� and 
s�� ����� The lower envelope E for P has to lie below the
lower envelopes Ea and Eb for Pa and Pb� respectively� In particular� a vertex in
E which corresponds to a free rigid placement of P with edge contacts on s� and
s
� is a vertex in the lower envelope E � of envelopes Ea and Eb� Since Ea and Eb

are piecewise linear functions� the complexity of E � is linear in the complexity of
Ea and Eb 
see� e�g�� ������ It remains to observe that� by the induction hypothesis�
the complexity of all the Ea�s over all pairs of lines �� and ��� in L� is bounded by
O
n��
n� log n� 
and similar for b instead of a��
This concludes the inductive argument from k � � to k� since every pattern of

contacts of a free rigid placement induces one of the situations 
���� above� Hence
we have established the bound on the number of free rigid placements� which� at
last� entails the result of this paper�

Theorem ��� The complexity of the Voronoi diagram of a set of n lines in 
�space�
under a convex distance function induced by a convex polytope P is O
n��
n� log n��
The constant of proportionality depends on P and is m
� where m the number of
edges of P � There are sets of n lines where the Voronoi diagram has complexity
�
n��
n��� even if P is a triangle�

Recall that the L�� and L��metrics are convex distance funtions induced by an
octahedron and a cube� respectively�

Corollary ��� The complexity of the Voronoi diagram of a set of n lines in 
�space
under the l��metric is bounded by O
n��
n� log n��

Corollary ��� The complexity of the Voronoi diagram of a set of n lines in 
�space
under the l��metric is bounded by O
n��
n� log n��

Remark� It is noteworthy that in the above analysis the bound of O
n��
n� log n�
comes directly from Lemma	�� 
with the exception of the lower�order termO
n��
n��
in 
�� above�� Thus any improvement in the analysis of the tetrahedral case would
immediately yield a similar improvement for general polyhedra�



�	

Remark� Of course� we could continue the induction beyond k � "� but this
would introduce an exponential dependence on the number of edges of P � This is
the reason for switching to the argument in Lemma 
���

� Conclusion

In this paper we have obtained the �rst 
sub�cubic and� near�quadratic bound on
the complexity of generalized Voronoi diagrams in 
�space�
There are many open problems raised by the results of this paper� First� there

still remains a logarithmic gap between the upper and lower bound we proved�
We believe that our proof can be extended to an O
n��
n� log n� upper bound
for the complexity of the Voronoi diagram of n line segments under a tetrahedral
distance function� For this scenario� we also have also an �
n�
�
n���� lower bound�
Arbitrary polyhedral sites and distance functions seem to be more di�cult� A partial
progress on this problem was recently made in �	�� where a tight worst�case bound of
!
n�� was obtained for the Voronoi diagram of n points in IR� under the L��metric�
The real challenge is� however� to extend our results to the case of Voronoi

diagrams under the Euclidean distance 
where P is a ball�� Our proof technique
relies crucially on the fact that P is polyhedral� and at present we do not see any
way to extend the technique to the Euclidean case� Equally challenging is the
problem of bounding the complexity of planar dynamic Voronoi diagrams under the
Euclidean distance� especially the case where the sites are points� each moving along
some straight line at some constant velocity 
each site has its own line and velocity��
This problem can be transformed into the problem of analyzing the complexity of
VorD
L� in three dimensions� where D is a horizontal disk and L is a collection of
n lines in space� Again� our technique fails in this �non�polyhedral� case�
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