Applying an Edit Distance to the Matching of Tree Ring
Sequences in Dendrochronology *

Carola Wenk

Institut fiir Informatik
Freie Universitit Berlin
Takustr. 9, D-14195 Berlin
wenk@inf.fu-berlin.de

Abstract

In dendrochronology wood samples are dated according to the tree rings they
contain. The dating process is a one dimensional matching in which the sequence of
tree ring widths in the sample is compared to a dated master sequence. Assuming that
a tree forms one ring per year a consecutive piece in the master sequence is searched
which has the same length than and is similar to the sample sequence. A brute force
algorithm takes §(mn) time where n and m are the lengths of the sample and the
master sequences, respectively.

Yet sometimes a tree produces no ring or even two rings in a year. A sample
sequence containing this kind of inconsistencies cannot be dated correctly by the simple
dating algorithm mentioned above. We therefore introduce a O(a*(m + n) + a?mn)
algorithm for dating such a sample sequence against an error-free master sequence.
Our algorithm takes into account that the sample might contain up to « missing or
double rings and suggests possible positions for these kind of inconsistencies. This is
done by employing an edit distance as the distance measure.

1 Introduction

1.1 Dendrochronology

The tree ring structure in wood samples is important in many research areas, like for
instance in archaeology, climatology, geomorphology and glaciology. The reason for that
is that the growth of a tree and therefore its tree rings depend on the environmental
conditions that the tree has been exposed to, so that the tree rings build an archive of
these environmental conditions. The science that deals with the dating of tree rings in
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order to answer questions related to natural history is called dendrochronology. The name
is derived from the greek words dendron (wood), chronos (time) and logos (the science of).

A tree ring is a growth layer that the tree forms under its bark during the vegetation
period. It consists of big, thinwalled cells that are built in the beginning of the growth
period and also of thin, thickwalled cells built at the end. The first type of cells ensures
the food supply of the shoots, whereas the other type accounts for the stability of the
stem. Since the second type of cells looks much darker than the first type it is possible
to visually detect the border between two successive tree rings. In areas with an annual
vegetation and winter period a tree usually adds exactly one tree ring per year.

In dendrochronology a wood sample is usually characterized by the sequence of its tree
ring widths '. Since trees growing under similar conditions (especially climatic conditions
like rainfall) build similar tree rings it is possible to successfully compare certain tree ring
sequences. In fact, the usual way of dating tree ring sequences in dendrochronology is to
compare the undated sequence to a dated sequence. This procedure, called crossdating, is
a fundamental task in dendrochronology.

1.2 Crossdating

Assuming that the trees being considered have built exactly one ring each year, a cross-
dating can be performed by sliding the sample along the master sequence starting and
ending with a certain constant minimum overlap of e.g. 50 rings. At each position a
distance measure between the overlapping parts of the sequences is computed and the
position yielding the best distance is considered as the correct dating position. The most
common distance measures are the t-value, and the so-called Gleichlaufigkeitskoeffizient
(percentage of slope equivalence).

Let © = zg,...,zny—1 and y = yo,...,yn—1 be the two sequences being compared in
one step of the algorithm. Then the ¢-value (Student’s t) is defined by

t=r/(1—2) (1)

where r is the correlation coefficient

!Depending on the application there are also other tree ring characteristica than the width used (see
e.g. [11]), but in this article we will regard tree ring widths only.
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with the arithmetic means z and y. The Gleichlaufigkeitskoeffizient Glk is the percent-
age of slope equivalence of the two sequences,

N—2
1
Gk = > x(@irr — @i = yiyr — i) (4)
i=0
) 1 N-2
- N-1 Z X(@iv1 — xi = k) - x(yir1 —yi = k) (5)
. .. . 1, if a=b
with the characteristic function x(a = b) = { 0. if aktb’

A sequential computation of all distances takes 6(nm) time, where n and m are the
lengths of the master and the sample sequences, respectively. Considering formula 3 a non-
sequential computation of all correlation coefficients depends on the efficient calculation of
the correlation terms Y x;y;, since all other terms can be computed in linear time. Note
that the inner sum in formula 5 is also a correlation term. Employing the Fast Fourier
Transform (FFT) all such correlation terms can be computed in time 0((n+m)log(n+m))
instead of the brute force 6(nm), see e.g. [6],[7],[2]. Due to the discretization of the slope
of the sequences the Gleichlaufigkeitskoeflizient usually gives less information than the
t-value.

Since the data is very noisy it usually does not suffice to simply date the sample
sequence according to the overlapping position which has the best distance. The results
of the matching algorithm are always visually checked by a dendrochronologist.

Before the above described comparison can be made, the tree ring sequences have to
be filtered. This so-called standardization process cleans the data from individual trends,
which usually are long term trends, so that only general trends which occur in several
tree ring sequences remain. Typically high-pass filters like the percentage of a five-year
running mean or the difference of logarithms are used.



1.3 Missing and double rings

However, the assumption made above that a tree ring sequence contains exactly one value
per year is not always true. First of all mistakes during the measurement of the ring
widths happen, especially if the rings are very thin. But due to bad growing conditions a
tree might also not build a ring around the whole stem or even not at all, which can result
in a missing ring in the tree ring sequence. Furthermore climatic changes can cause a tree
to build two rings a year, a double ring.

If the sequences to be compared contain missing or double rings most matching algo-
rithms do not produce satisfying results since they do not take into account the transpo-
sition in time which is caused by a missing or a double ring. The usual approach to date
a probably inconsistencies containing sample sequence against a clean master sequence is
to split up the sample into shorter parts, to date each part on its own (either manually or
using Cofecha [4]) and finally to manually conclude a possible position for a ring insertion
or merging. Cofecha [4] is a quality control tool which checks a set of dated samples for
mutual dating consistency by splitting up each sequence into small pieces and comparing
these to the other sequences. This leads to a lot of information to be evaluated. The
information needed to deduce a possible missing ring (i.e. when the pieces to the right of
the missing ring position date all to one year later) is then available, but a missing ring is
not explicitly proposed.

2 Edit distances in an a-box
2.1 A simple edit distance

Assume there are given two standardized tree ring width sequences A = ay, ..., a,—1 and
B =bg,...,b;m—1, where A is subject to probably containing missing or double rings (rep-
resenting the sample sequence) whereas B is known to be a clean reference sequence
(representing a part of the master sequence). In order to get a notion of how much A
differs from B we look for a transformation transforming A by inserting rings (which com-
pensates a missing ring) or merging two rings to one (which compensates a double ring)
into a sequence close to B. Closeness is defined by taking the sum of the squared distances.
The transformations allowed are described by transformation sequences over the alphabet
{I,M,N} where I stands for insert M for merge and N for identity operation.

Let for example be A = 3,2,1,2,5,3 and a transformation
T M M N1 I N sequence 7 = MM NIIN. The transformation is performed
A 32125 3 sequentially from left to right by merging 3 and 2 to 5 (M),
- ? i 5 4 4 3 merging 1 and 2 to 3 (M), not changing 5 (N), inserting a

ring which is done by taking the average p = E’Qﬁ =4 of the
two surrounding rings (I), inserting another ring in the same manner (I) and finally not
changing the last ring 3 (N).



The simple edit distance Dgjmp(A, B) is defined by

m—1
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where 7y, , contains all transformation sequences (which we identify with a transformation
each) that transform a sequence of length n into a sequence of length m. We call a
transformation sequence which minimizes the sum optimal. For a transformation 7 € 7y, ,,
let v, be the number of merge operations, ¢, the number of insert operations and v, the
number of identity operations in 7. Then from the definition of 7 follows n = 2 * v, + v,
as well as m = v, + 1 + v = n+ 1 —y-. Making use of these properties it is easy to show
that 7, ,, is non-empty if and only if n < 2m. This notion of an edit distance is based
on the edit distance for strings (see [3], [12]) or on the dynamic time warping in speech
recognition (see [10], [9]) respectively.

The profit of taking the sum of the squared distances as a minimization criterion is
the existence of a recurrence relation which leads to an efficient computation of the simple
edit distance. Define Dy (i, 5) 1= Dygimp(A[0..¢ — 1], B[0..5 — 1]) to be the simple edit
distance of the prefixes of A and B for i < 2j. Then the definition of the transformations
by transformation sequences implies the existence of the following recurrence:

Dgimp(0,0) = 0
Dyimp(i — 2,5 — 1) + (aj—2 + aj—1 — bj_1)?,
Dyimp(i,7) = min< Dgimp(i — 1,5 — 1) + (ai—1 — bj_1)?,
Dsimp(iaj - 1) + d(/j'(i - 1) - j—1)2

forall 0 <i<n,0<j<mwith ¢ <2j.

Although the transformation space is exponentially big a dynamic programming ap-
proach allows to compute Dgjm,(A, B) in §(nm) time and space. This is accomplished by
sequentially filling an (n + 1) x (m + 1) matrix (see figure 1) in which the cell (3, j)
contains the value Dygjpp(4,5). The condition ¢ < 2j and the symmetrical condition
(n — 1) < 2(m — j) cut two corners off the matrix which represent undefined or for
the computation of Dgjyy(n,m) unnecessary values, respectively. According to recur-
rence (7) a value is computed out of at most three values (see figure 2). The value
Dgimp(A, B) = Dgimp(n, m) is placed in cell (N, M).

An optimal transformation can be retrieved from the filled matrix by backtracking the
performed computation. This is done by starting in cell (n,m) and recursively checking
which of the three possible cells contributed its value to the examined cell (either by
recalculating the sums or by checking a previously saved pointer/arrow to a cell). In this
way a path of cells (or arrows, see figure 2) from cell (n,m) to cell (0,0) is constructed
which obviously corresponds to a transformation sequence.



n
i
i
Figure 1: Matrix for the dynamic programming computation of the simple edit distance
Dgimp(A, B). The left cut-off is caused by the condition ¢ < 2j, the right by (n — i) < 2(m — j).
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Figure 2: Dynamic programming computation of the simple edit distance according to the recur-
rence relation (7).



2.2 Van Deusen’s edit distance

The transformation space over which the simple edit distance is minimized includes in
particular transformations with many editations. Transformations like this correspond
to paths in the computation matrix with many non-diagonal arrows. Since a tree ring
sequence usually contains only very few missing or double rings, Van Deusen [1] reduced
the transformation space by allowing only those paths in the matrix which stay inside a
given strip of constant width around the diagonal starting at (0,0); see figure 3.

0 1 m <—j

Figure 3: Van Deusen’s computation matrix with a strip of width o = 2 to each side of the
diagonal. The diagonal has been shaded.

The width of a strip is given by a parameter o which denotes the width on each side of
the diagonal. The in this way reduced transformation space contains only transformations
in which the edit operations are locally balanced. Yet there are still transformations with
many edit operations possible. For instance if the transformation sequence alternates
between a merge and an insert operation the conforming transformation path still stays
inside a strip of width 1 around the diagonal.

2.3 «-box edit distance

A straight forward improvement of Van Deusen’s edit distance is the following notion
which we will call a-boz edit distance or k-edit distance. This type of edit distance has
been proposed for strings by Sankoff and Kruskal [5] in 1983. Since the number of edit
operations contained in an optimal transformation is supposed to be small, the idea is to
regard transformations and edit distances depending on the number of edit operations.



We therefore define the k-edit distance as follows:

m—1
) B 5
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where 7y, 1 is the set of all transformation sequences transforming a sequence of length
n into a sequence of length m using exactly k edit operations. Let again 7, be the number
of merge operations, ¢ the number of insert operations and v, the number of identity
operations in 7. Then from the definition of 7 follow m =, + ¢, + v, =n + t; — v, and
tr +vr = k. It is then easy to show that 7y, ;, ; is non-empty if and only if m > k and
m—n=k—2yforaye{0,...,k}

We define D (3, j, k) to be the k-edit distance between the prefixes A[0..i—1] and B[0..5—1].
Just as in the case of the simple edit distance the k-edit distance satisfies a recurrence
relation:

D(0,0,0) = 0

D(i—2,5 — ,k 1)+(az 2+az 1 —bj_1)?,
D(i,j, k) = min D(z—l ] L k) + (a;j— )2,
D(i,j -1)+ d(M( ) i—1)? (9)

forall 0<i<n,0<j<m
with j >k and j—i=k—2y fora yv€{0,...,k}.

Due to the condition j —i = k — 2 for a v € {0,...,k} the defined values of D(i, j, k)
form diagonals inside the matrix (see figures 4 and 5). For each v € {0,...,k} there is
one corresponding diagonal in level k. All edit distances in one diagonal contain the same
number of merge and insert operations as shown in figure 5.

2 i1 .
i J J : J

level k i-1

level k-1 L -

21 i

Figure 4: Dynamic programming computation of the k-edit distance according to the recurrence
relation (9). A projection of the two levels onto one level results in the matrix shown in figure 2.

The «-edit distance can be computed in a dynamic programming manner in
(o min(n,m)) time and space. The storage required is a part of an (o + 1) x (n +
1) x (m+1) box (see figure 5) in which cell (¢, 7, k) contains the value D(i,j, k). According
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Figure 5: Dynamic programming box needed for the computation of the 3-edit distance between
two sequences of length 4 and 7. The defined cells have been shaded. The number of merge (M)
and insert (I) operations corresponding to the diagonals have been written next to each diagonal.

to recurrence (9) the value D(7, j, k) is computed out of at most three values (see figure 4)
whereby a change of the k-level is performed only in the case of an edit operation (merge
or insert). The computation is carried out by filling the diagonals level by level, thereby
touching each cell only a constant number of times, until finally filling cell (n,m, a). Note
that this computation box (a-box) contains especially all k-edit distances between A and
B with 0 < k < a. In each k-level there are at most k 4 1 diagonals and each diagonal
o
contains at most min(n,m) + 1 cells. Therefore there are (min(n,m) + 1) > (k + 1)
k=0
= (min(n,m) + l)w = O(a? min(n,m)) cells to be filled.



Often an optimal transformation contains two opposite edit operations (insert-merge
or merge-insert) almost successively. A pair of edit operations like this has no global effect
on the edited sequence but only a local effect during the short time interval between the
two edit operations. Given a threshold (e.g. 10) for the minimum number of years between
two opposite edit operations, 10 cells on the diagonal after an edit operation are marked
such that the opposite edit operation is not allowed when calculating the edit distances
for these cells.

Although theoretically there can be several optimal transformations associated with
one edit distance (this corresponds to more than one arrow pointing to one cell), we always
choose exactly one optimal transformation per edit distance (or cell), since due to the real
valued input data an exact equality of the sums is unlikely. Then instead of storing in
each cell a pointer to the cell which contributed its value to the sum, we collapse a path
of diagonal pointers to one pointer (shortcut) directly pointing to the position where the
transformation path changes the k-level. That way a traceback of the transformation path
of a cell in level k£ needs 0(k) time and a transformation can be saved for later use in 6(k)
space.

3 Crossdating employing k-edit distances

Crossdating is usually performed by sliding the sample sequence across the master sequence
and computing distance measures between the overlapping parts at each crossing position.
The same is done in the algorithm presented here using the k-edit distance and therefore
taking into account possibly missing or double rings. The parameter « must be specified
by the user in advance. As a postprocessing step a new heuristic is applied in order to
further restrict the number of edit operations contained in a transformation sequence.

3.1 Simple crossdating by sample sliding

Let’s take a closer look at the a-box which has to be filled in order to compute the a-
edit distance between the sample and a certain (coherent) piece of the master sequence.
Assume the master piece starts at year y. Then the last row of each k-level, 0 < k < «,
contains all k-edit distances between the sample and all prefixes of the master piece, while
each last column contains all k-edit distances between the master piece and all prefixes of
the sample. If the master piece is a suffix of the master sequence (or if its length is the
length of the sample plus ), the a-box contains all possible k-edit distances between the
sample and those master pieces which date the sample to year y.

When we slide the sample across the master, at each position computing an a-box for
the sample and the suffix of the master sequence, especially the last row and last column
of each level, we obtain all information we need to date the sample: The last rows contain
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results comparing the sample to the master sequence at different offsets, where each offset
is represented in one a-box. The last columns are interesting only in the case that the
sample partly overlaps the end of the master sequence, so that a prefix of the sample must
be considered. Otherwise, that is in the case that the master piece is longer than the
sample, the last column degenerates to one cell which is already part of the last row.

After having computed all edit distances in all last rows and last columns of each
level in each a-box, we need to compare them in order to find a good dating. A simple
comparison is not meaningful, since the number of terms summing up to a k-edit distance
in formula (8) varies according to the number and kind of edit operations performed
and also according to a partly overlap of the sequences. So we need to normalize the
edit distance by dividing by the number of summed up terms which is the length of the
transformed sample sequence. Yet a simple comparison of all normalized edit distances
(which means sorting them and taking the smallest as the best) turned out not to be
useful. The reason for that is that the normalization removes the information about the
length of the sequence (i.e. the number of summands), so that shorter sequences cause a
better edit distance more easily than longer sequences do.

Since the t-value is length-dependant and a commonly used distance measure in den-
drochronology (which dendrochronologists are familiar with) we take the ¢-value between
the transformed sequence and the master piece as a judging criterion. The correlation co-
efficient can be implicitly calculated during the matrix filling process at asymptotically no
extra cost. So we sort all ¢-values of the last row and last column of each box and output
the biggest ¢-values, each together with an optimal transformation (i.e. the positions of
possibly missing and double rings) and the corresponding dating proposal (offset) to the
user.

3.2 Heuristic postprocessing of the results

The algorithm described so far simply sorts all results in the end without taking the number
of edit operations into account. Therefore the best results will often contain too many edit
operations. A standard approach to that problem is to penalize edit operations either by
a multiplicative or an additive term, but unfortunately this also affects edit operations at
correct positions. Indeed, it seems that incorrect edit operations are somehow more robust
concerning penalties. We therefore decided not to penalize the edit operations, but we
compare the obtained results in a heuristic postprocessing step. We store all edit distances
of all last rows and last columns of each level of each a-box in an overall result structure.
Then usually a good dating appears several times among the best results. Those similar
results then differ only in some edit operations, whereby they usually share some edit
operations (the correct ones) and include some more edit operations which improve the
edit distance a little but which are incorrect.

The heuristic we developed then tries in two phases to identify some possibly redundand
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results and deletes those from the overall result structure. For each edit distance result
(that is an edit distance in the last row or column of a box-level) we do a redundance
check within the box plus another check concerning some neighboring boxes.

In the first check phase it is tested, if the normalized distance is significantly smaller
than each normalized edit distance associated with each last cell on the diagonals on the
transformation path. This captures the idea that one good match often appears several
times, where the different occurences share some correct edit operations and include some
more incorrect edit operations. An additional edit operation should therefore be admitted
only if it improves (hence decreases) the edit distance significantly. A normalized edit
distance e is said to be significantly smaller than the normalized edit distance ecomp, if
e/ecomp < 0.9. If an edit distance did not pass this check it is deleted from the overall
result structure and not compared to other edit distances anymore.

The second check phase is established to eliminate those inter-box redundand results,
which date the sequence a few years wrong according to superfluous edit operations at
the beginning of the transformation sequence. Call the subsequence of the transformation
sequence which includes only the insert and merge operations an edit sequence. For every
prefix of the edit sequence the time transposition it induces is calculated (a merge operation
corresponds to a transposition one year to the left, an insert operation one year to the
right). The a-box at the transposed position is checked if it contains an edit distance eomy
with an edit sequence equal to the remaining suffix of the edit sequence being checked.
Now the normalized edit distance e whose edit sequence probably contains an unnecessary
prefix is deleted if e/ecomp > 0.9.

3.3 Crossdating algorithm

Summing up, the crossdating algorithm works as follows:

Crossdating algorithm:

Standardization of the master and the sample sequence (see par. 1.2)
For all overlap positions of the sample in the master
Fill a-box (see par. 2.3 )
For all cells in the last row and last column of each level
Normalize edit distance
Compute optimal transformation
Redundance check 1: Check with norm. edit distances on transformation path.
If edit distance is not redundand:
Store the distance, the t-value, the transformation and the offset number
in an overall result structure.
Redundance check 2: Remove inter-box-redundand results.
Sort all results in the result structure by decreasing t-value.
Display the best results (those with the highest ¢-values).
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The standardization can be done in §(m + n) time and space. The number of a-boxes
to be filled is O(n + m), so that they can all be filled in O(a?mn) time. We do not need
to store all a-boxes since we need only the last row and the last column of each level
of every a-box. There is one last row or last column entry for each diagonal, so that

we only have to count the diagonals of which there are at most (k + 1) in every k-level.
[0}

So we have O((m +n) Y. (k + 1)) = O(a?(m + n)) edit distances to be stored. But for
k=0
each edit distance we also store its corresponding optimal transformation which needs

0(k) space, so that the space which is altogether needed to store all results sums up to
(8%
O((m+n)(1+ 3 (k+1)k)) = O(a®(m+n)). Additionally there is O(a? min(n,m)) space
k=1

for one a-box needed to fill a box.

The first redundance check needs 6(k) time for each edit distance which sums up to

[e]
O((m+n)(1+ X (k+ 1)k)) = O(a®(m + n)) altogether. The second redundance check
k=1

needs O(k?) time each, hence together O((m + n)(1 + Y (k + 1)k?)) = O(a(m + n)).
k=1

For the redundance checks there is asymptotically no more space needed. The sorting of
all results takes O(a?(m + n)log(a?(m + n))) time. (Since we are interested in some of
the best results only we actually do not have to sort all results, but sorting does not affect
the asymptotical running time.) So altogether the algorithm needs O(a*(m +n) + a?mn)
time and O(a?(m + n)) space.

4 Test results

4.1 Implementation

The crossdating algorithm has been implemented in C++ in a command-line-oriented
Unix environment. A program executable can be obtained from the author.

In practice a crossdating program outputs several good matchings (e.g. the best 5 or
10), and the dendrochronologists visually checks if one of them represents the correct dat-
ing. Likewise the program we have implemented allows the user to subsequently evaluate
the results according to different criteria. I.e. once the results have been computed, the
best results in a certain time interval, those having a bigger minimum overlap or those for a
lower value for « can be queried. The computation time of such modified result queries by
scanning the list of the sorted results is linear in the number of results, thus O(a?(m+n)).
Note that our program especially computes all those t-values that are computed during
the simple sliding algorithm. They can be accessed by querying the results for & = 0. Our
program therefore generalizes the simple sliding algorithm.

Several tests have been performed which we will present in the following three para-
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graphs: Tests with randomly generated missing or double rings, tests on data containing
real missing rings and finally runtime tests. However, the automatized tests do not cover
the interactive program properties.

4.2 Randomly generated disturbances

The program was tested on collections of already dated samples. In each collection one
sample was randomly disturbed by deleting or splitting up some values, and this sample
was then tried to date against the mean sequence of the remaining sequences in the
collection.

Tests were performed mainly for the parameter values & = 2, a minimum overlap of 50
and a redundancy threshold of 10 (see end of paragraph 2.3). For each sample a random
disturbance has been carried out 5 times. Some test results are shown in the tables 1, 2,
3, 4 and 5. The column date shows the percentage of those data sets in the collection for
which the correct dating has been found. Date & edit shows the percentage of those data
sets for which the correct dating and the correct type of editation in an interval of radius
10 around the correct position has been found. The column k shows the average number
of proposed edit operations for those results for which the correct date and editation has
been found. For standardization the percentage of a five-year running mean (also called
floating average; in the following tables abbreviated with float-ave) or the difference of
logarithms (abbreviated with log) were used.

The data used was supplied by the following sources: The kieftest data is tree ring width
data from a German pine, which was supplied by Deutsches Archiologisches Institut?.
The SET01 and SET02 data are files which come with the crossdating program TSAP [8]
(which does not search for missing or double rings during the crossdating). The other data
was taken from the ITRDB3, where the germ data sets are from German oaks, the cana
data from Canadian white spruce, the az data from Arizona where az526 is ponderosa
pine, the oh data from white oak from Ohio and the swed data from scotch pine from
Sweden.

Table 1 shows how many samples of each tested collection the algorithm dates correctly
when no random disturbances have been performed. With o = 0 this equals a simple
sliding algorithm concerning t-values which dates 97% samples correctly on the average®.
With o = 2 the percentage of correct datings decreases by up to 33% (on the average
only by 15% though), and the number of mistakenly found edit operations increases by up
to 0.9 (on the average only by 0.4). Although our algorithm therefore does not perform
really good on sequences that do not contain missing or double rings, it produces much

*We like to thank Dr. K.-U. Heufiner from Deutsches Arch#ologisches Insitut, Eurasien-Abteilung, Im
Dol 2-6, D-14195 Berlin.

3The International Tree-Ring Data Bank (ITRDB) is located at
http://www.ngdc.noaa.gov/paleo/treering.html.

“On the average means here averaged over the tested collections shown in the tables.
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more promising results on sequences that do.

date date | k date date | k

a=0 a=2 a=0 a=2
kieftest, 96 % 80 % 0,3 96 % | 86 % | 0,5
germ001 || 98 % 80 % 0,2 98 % |83 % | 0,2
germ003 || 100 % | 94 % 0,1 100 % | 8 % | 0,1
germ004 || 96 % 79 % 0,7 9%6 % | 8 % | 0,9
germ006 || 100 % | 88 % 0,4 100 % | 94 % | 0,0
cana030 94 % 72 % 0,3 94 % | 89 % | 0,0
az052 100 % | 80 % 0,1 100 % | 80 % | 0,4
az526 100 % | 100 % 0,1 100% | 95 % | 0,8
SET01 94 % 69 % 0,7 94 % | 63% | 0,5
SET02 96 % 71 % 0,8 9% % | 63 % | 0,5
oh004 100% | 72% 0,1 100 % | 79 % | 0,1
swed302 98 % 82 % 0,0 98 % |89 % | 0,1

Float-ave preprocessing

Log preprocessing

Table 1: Test results without manipulation of the data.

To see that, let’s take a look at table 2 which shows test results for the germ(001 data
with one randomly deleted element and for different values of a. Setting o = 0 (again,
this equals the simple sliding algorithm) the correct date is found in only 51% or 41%
of the cases (for floating-average or log preprocessing, respectively). When allowing the
algorithm to perform some editations by choosing « slightly greater than 1, the chance
for a correct dating increases dramatically. But the farther « is away from the correct
number of edit operations needed, the more false edit operations are performed and the
more the chance for a correct date decreases. But since there are not suspected many
double or missing rings in a tree ring sequence, a small value of « (e.g. 2 or 3) should be

sufficient most of the times.

a || date | date & k date | date & | k
edit edit
0|l 51 % 0% 0,0 41 % 0% 0,0
1(94% | 91% 1,0 9B % | 91% | 1,0
2193% | 89 % 1,0 92% | 8 % | 1,0
3181 % | 7% 14 4% | 6% | 1,4
4 1182% | 8% 1,5 84% | 6% | 1,4
51 8% T8% 2,2 % | 6% | 1,9

Float-ave preprocessing

Table 2: Test results concerning the germ001 data with a random
deletion of one sample element and different values for a.
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Tables 3, 4 and 5 show test results for different data collections with one random dele-
tion, one random splitting and two random consecutive deletions, respectively. Although
the percentages for a correct dating with a correct editation vary from 38% to 95%, the
percentages are usually extremely higher than those for a dating with « = 0. However,
as can be seen in the column date for o > 0, the program finds the correct date more
often than the correct date plus the correct editation, because it proposes some wrong,
additional or not enough edit operations. In fact, if the program finds the correct date, it
usually proposes most of the editations at an almost correct position and skips necessary
editations only if they are too close to the beginning or the end of the sequence. In any
case the results of the program give more information to the user about possibly missing
or double rings than the standard crossdating methods do. Concerning two consecutive
deletions, table 5 shows that if two missing rings have been found, they lie only about 2
or 3 years apart.

4.3 Real missing rings

In this paragraph we present results from tests performed on data containing real missing
rings. Test data like this is widely available because many dendrochronologists mark a
missing ring as a ring with width 0. Test data for double rings is rather hard to find because
dendrochronologists usually do not record the occurence of double rings. The reason for
that is that a double ring can (with some more preparation of the wood or a better
microscope) often visually be identified on the wood, whereas a missing ring cannot. We
therefore restricted the tests on data with real inconsistencies to data containing missing
rings.

Table 6 shows test results for collections of samples where some samples contain missing
rings. During the tests « has been chosen to be 4. The breclav data was supplied by
Deutsches Archaologisches Institut, the others are available at the ITRDB. The wa data
is from a subalpine larch from Washington State, the chin data is Armand’s pine from
China, and the az data is from Arizona, as mentioned above. The column # of samples
contains the number of samples in the collection that contain missing rings. The ave. # of
miss. rings column shows the average number of missing rings contained in the samples.
The data € edit column contains the number of samples (and also the percentage relative
to the # of samples) that the algorithm dates correctly with the correct number and
position (with a tolerance of 10) of insertions. The master sequences to date against are
built out of those samples in each collection that do not contain missing rings.
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runtime in seconds

# of ave. # of date date & date date &
samples | miss. rings edit edit
wa067 19 2,42 16 = 84% | 12 =2 63% 17 =2 89% | 14 = 74%
wa069 13 1,08 122=292% | 9=69% || 13 =2 100% | 10 = 77%
wa072 19 2,32 16 = 84% | 13 = 68% 16 =2 84% | 13 = 68%
wal079 23 2,22 17 =2 74% | 15 =2 65% 18 =2 78% | 17 =2 74%
breclav 7 1 7T=100% | 5= 71% 7 = 100% 6 = 86%
chin04 13 2,92 12=92% | 9=69% || 13 = 100% | 11 = 85%
az052 6 3,33 5283% | 4=267% 5= 83% 4~ 67%
az526 14 3,71 13=93% | 6 =43% 13 = 93% 7= 50%

Float-ave preprocessing
Table 6: Test results for data with real missing rings.

Log preprocessing

4.4 Runtime tests

The crossdating algorithm has been implemented in C'+ 4 in a Unix environment and has
been tested on a Sparc Ultra machine. The runtime the program needs for fixed a = 2 is
illustrated in figure 6, and for a fixed sample length n = 300 in figure 7.
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Figure 6: Runtime tests with o = 2 and
n and m the lengths of the sample and
master sequence, respectively.

5 Implementation and Conclusions

We investigated the problem of matching tree ring width sequences (crossdating) which
is stated in dendrochronology. Assuming that a tree forms exactly one ring each year the
matching can be performed by an easy 6(mn) algorithm. We presented a O(a*(m +n) +
a?mn) crossdating algorithm which takes the possibility of missing and double rings into
account by employing an edit distance as a distance measure.
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The algorithm has been implemented and tested. The tests show that the dating
quality of the algorithm varies depending strongly on the input data and is best when «
equals the number of inconsistencies to be found. It is therefore not possible to date a tree
ring sequence according solely to the first dating proposition of the algorithm. However, in
the usual dating process results of an automatic matching are taken as dating propositions
only and are always visually verified by a dendrochronologist. Since our program allows
to evaluate the computed results for some different parameter settings, e.g. for a lower
value for «, in rather fast O(a?(m +n)) time, and it usually proposes some good datings,
the program should definitely be eligible to serve as an additional dating tool searching
for missing and double rings.

For further research it is interesting to investigate if it is possible to compare several tree
ring sequences at once in order to produce a mean sequence (master sequence, chronology).
Another question is if similar matching techniques based on the edit distance can be applied
to other environmental archives like sea or glacier sediments, where certain environmental
events cause different distortions of the underlying sequences.
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