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.:.\ Abstract
Proo!;; of cla~sic:;"l Chernoff-Hoeffding bounds have been us~d to obtain polynomi­
al-time implementations of Spencer's derandomization method of conditional proba­
bilities Oll .llsual tinite machine models: given m events whose eomplements are large
dc~iations ~orrespoilding tq wcighted sums of n Inutually independent Bernoulli trials)
Raghavan's 'faltice approxiitlation algorithrn eonstructs for 0 - 1 weights and integer
deviation termsih O(inn)-til'rü~a point forwhich allevents hold. For rational weighted
sums of Bernoulli trials the lattice approximation algorithm or Spencer's hyperbolic
eosine algorithm are deterministie proeedures, hut a polynomial-time implementa­
bon was not kliown ..We '~esolve this problem with an O(rhri2 Tog r:n )-tinIi:~ algorithm,
whenever the probability that all events hold is at least f> O. Since such algorithms
simulate the prüofof the underlying large deviation incquality·in- a construetive way;
we caU it th~ algorithmic version of the inequality, Applications togeneral packing
int.eger progran~s, aD-d l'es,ouree const.rained schedulillg result in -:(;ightand polynomial­
time app~o~imatioIlSalgorithms.

Keywords: randomizcd algorithms, derandOlnizatiol1 j approximation at­
gorithuls) integer programming

j
resource constrained scheduling.

1 Introduetion

In many applications'of the probabilistic method combinatarial strUc'tures cail be rep­
resented as a collection of ei/ent!; Ei, . , ., E m , whose complernents Er describe la.rge de­
viations in a finitep'ror,\ibilJiy "pace: far i = 1, ... , m and j = 1,:", niet (Wij) be a
m x"ri matrixwith"Wij'~ iö, Ir n"lQ. Let Xl,' . " X n be mutually independe'itt'O - 1 ran­
dom variables with rationaI expectation JE(Xj) = Pj and let ..pi be ehe vleighted sums

., ,,1/;i. ='L'J=1 .w'ijXj,; Given rational deviation parameters Ai > 0, deuote, ,Qy Ei exac'tly one
oI the events

,
".'.. < E(·''') + A'" or ".'.. > E(·!'·) - A'"'Pt _ 'Pt t 'Pt _ 'Pt t,
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i = 1", "m. The various types of Chernoff-Hoeffding bounds for lP(Ef) can be summa­
rized by the inequaJites

(1)

"

! •• In

wherean <J>~t~mal-.cj~d,ii:!<,qfthe paraweter~i >.p.giyes the sharp~~t n~~i~leo~p'perbound
J(Ai) and fis a function exponentiaJly decaying lnA;. If I:~l j(Ai} '< 1-.1-,( for some
o < f < 1, then lP(n~l Ei) ~ E, hence n~l Ei is not empty and derandomiza.tion is
the task of constl'ucting a point in n~l Ei in polynomial-time. In principle this can be
done by the conditional probability method due to Spencer (see also Erdösj Sclrl'idgc
[11]), for example with Spencer's hyperbolic cosine algorithm [26] or Raghavf111 's latLicc
approximation algorithm [23]. But the efliciency of these algorithms heavily dcpcnds Oll

the eflicient computation of the conditional probabilities or of appropriate upper bound8
on them on nnite machine models, Hke the usual RAM or Turing machine model. In
particular, the computation of the II\oment generating functions E(C""'i) is reqnired. Thi8
indeed is possible in the. following cases;

, . _'(1"" "i j. ". - ,"

• For 0 ~ 1 weighted ,s.iuns of BeJ:noulli trials and integer Ai Raghavan's lattice ap-
. .. ".' '!l ,I . "i' ~ , "

proximation algorithm,hae,an p{nm)-time implementation on the RAM model and
can be considereda~·~~·.,a:igO;i.i)l1:riicformof the RaghavanjSpencel' bound ([23],
Theorem 1 an:d'2)) 'r" d,· .. .

.• For 0 - 1 weightedsu'~s pi. Bernoulli trials, uniform distribution, n = m and Ai =
rn~+livlu2?:!1 (0< 8 ~Jf.2;).a",NC algorithms is k1Jown: one Call use either the
method of (loge n )-wise indepen'dence (Beger ,Rompel [5], Motwani, Naor, Naor [20])
01' the constl'uction of smaU-bias probability spaces ( Naor, Na01' [21]) to design a
parallel o(log3 n)-timi/ algo'ritlün for the cOllstruction of a point in n~, Ei nsing

1 ':'-, .-' , -'

O(n3+1i ) PRAM processors, Sequentially implemented this gives the running time

of O(n3+tlog3 n). •,
. ...... .! • ' I - . .,l . - ~ r,, ! ~ . ;

UnfortunatelYi-fo:r'~;j,iiöna:l'weights wi; and optimal chaiee of ti the moment generating
functions E(e'i"i) necessarily are transcendental, therefore cannot be exactly computed
on a nnite machine model, which on the other hand is presumed for apolynomial runnillg
time of the conditional probability method. Of course, if Wf' negleet 'coniputational errors,
for example using, ,floating point al'ithmetics, tbe conditional probability method runs in
O(nm)'tii11e, no mattctwhat tbe parameters 01' weights are. But fr6m'the computational
complexlty point of vie'!',.when the underlying computatio11al model is a Turing machine
or the RAM'model, 'floatiJ.lg"point'arithmetics is not satisfact6ry: ""','

• Tbe correctness of the algorithm is in doubt, when approximations are done without
provable guarantees .

• ,.The cost.of numerieal approximations i8 apart of the total r11n~ing time',' conse­
quently has· to be taken into acount.

. . . ,~. ! ,. , . .

Indeed, Feldstein and Turner [8] connrmed in theoretieal models that floating point
arithmetic can cause 108s ptrjgfiificance. In conclusiOJ,l, we .have to in'sist' onexaCt C0111­
putations, For a comprehensive discussio11 of the advantages üf 'rhe ~xa~f computation
paradigm versus floating point arithmetic we refer to the recen1; .paper, 'ptc-,K. Yap [31].

"'jf
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For rational weighted sums of Bernoulli trials it remained an open problem, whether
the canditional probability method has 30 polynomial-time implementation on usual models
of camputation, like the RAM model or the Turing maehine model (remark on page 138
in [23]). ,',

As 30 main result of this paper we resolve this problem for various bonnds fr'diti' the
Chernoff-Hoeffding family and obtain results of the following farm.

:;,

Let 0 < < < 1. Whenever' IP(U{;] Ef) :'0 L{;l J(Ai) < 1 - <, then a point in n{;l,Ei"can
be constructed in Q(mn210g n;,n )-time.·, 'J ,,'

The algarithm behind this result gives 30 cleal' and unified implementat1dn' of 'the candi­
tional probabilityrnethocl andsince it heavily simulates the proof of the underlying large
deviation bound', we ealUt..the algorithmie version of the inequality..under eonsideration.

For 30 fix suceess probability < > 0 we have 30 strongly polynomia(;'lgorithm:;l~e.an
algorithm with i'i:mning time independent of the - perhaps large - encading length of
the numbers 'Wij, X;iPi' appearing in the problem. This has an important cansecp1eil'ce in
applications to iIiteger programming, where the randomized roundingjderandolillz'ation
scheme is applied. Iuthe ran~omized rounding step an optimal solution to tne' 'linear
programming relaxation is generil;ted. This solution draws a probability distribution and
helps to derive with non-zero. probability a good approximation of the integral opti.rtriim. In
thc secand step derandomization eoustructs such an approximation. Since' [6{" n~any LP's
fast, strongly polynomial-time algorithms are lenown, for example the Tai'(fos"aJgoritinn
[30], it is desirable to cambine them with a strongly polynomial derandomization procedure
in order to derive strongly polynomial approximation algorithms. We show the foJIowing
two applieations ofalgarithmie versions of ChenlOff-Hoeffding bounds:

Consider tl;e packing integer program

max{eT x; Ax :'0 b}

with c E [O,l]n,aij E [O,l]nlQ andx E JNn.In thecaseofO-l variablesxi,O-l components
aij, Ci = 1 and bi = k far some~pllstant integer k, Raghavan's (23) hypergraph k-matching
algorithm gives an approximatidn'~ftiieinteger maximum within afactor of 1-D(k, m, n).
Far k ;C, lu m tne functioij'D(k,m"n),is constant, thus 30 constant faetor approximation is
achieved. V{ecovedhe iritegerproblem in its fuli generality and show for eVery 0 < < :'0 190

and instances WithljOt tao 'small paeking constraints bi , Le. bi = n(;\ log m), an (1 - <l­
approximation of the integer optimum in deterministie polynomial-time. In partieular a
randomized rounding teclmique js 'introduced, whieh remaves Raghavan 's restrietion to, .
0- 1 integer programs.

Furtherrnare we,coJ;lsi4er a classieal resouree eonstrained seheduling problem, where
the makespan. has, to be miniinized ([13], problem S810, p. 239). We present the first
2-faetor appr~ximation algarit'hm and prove tl13.t the fadar 2 is nearly optimal. In par­
tieular, a reduction of the scheduling problem to the problem of partitioning a graph into
2 perfeet matchings proves for every p < 1.5 that the existenee of '", polynomial-timc
p-approximation algorithm would ;;;:'ply P = NP.

The algDl'ithmie Chernoff-Hoeffding inequalities derived ine this pap'~~ co~stitute basie
derandomization tools, and has been applied to same other paeking integer programs: In
[27] a more sophistieated analysis of the algorithmie Angluin-Valiant bound in the special
case of weighted k-matching in hypergraphs results in", faster derandomization proeedure
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far this problem. A direct application of the approximation algorithm for integer pl'O­
gramming presented in trus paper to the hypergraph k-matching problem would require
a 'd:erandomization time of O(mn210g ITill), while in,[~7] the improved running time of

~ , €', f

O(mW'P n~'1dg n) is shown. Far the feasibility multicommodity flow problemgood deter-
ml1ii~tiC a:pproximation algorithms along with non-approximability proofs are giveniri'f281'
and more about approximability/non-approximability of resource constralned' ~ched1ilib'g'f'

r • . -

ca'ti befound in [29]. ' "
In this paper we consider the RAM model with unit cast [19] for multiplicatio!, and dis-,

tinguish between polynomial and stl'Ongly polynomial algorithms, defined in the usual wa,y: '
By the size of an input we mean the number of data items in the descripton of the input"
while the encoding length of the input is the maximal binary encoding length ofdata items
in tl,e input. On the 'RAM 'model an algorithm runs in polynomial-time (r~sp. strongly,
polynomial-time), if'the'n11mber 'of elemel'ttary arithmetic operations (briefly caUed ruh!

./ . ," ·[1
ning time) is polyrtöfuially'bllurided in both the size and the encoding length ofthe input
(resp. onlyin thesii~"öHheinput) andin, addition the maximal binary encoding length
of a number appca:ring"during; the, execution of the aJgorithm (briefly ealled space) is
polynomially bourrdeihn'thesize andJencoding length öf the input. '

Note that all Sb"de'lined"polynomial-time algorithms are also polynomial-time algo­
rithms on the Turing lilaclünemodel, bee'ause we require that the encoding length of
numbers is polynon'ri:illY'boUllded ih tlle 'input size, This is not the case in "pure" RAlV!
models, where one 'only' 2dUnts elein8n'tary: arithmelic operations, regardless of the size' gf
Ilulttbers. -.-,.!" ,.

2 Algorit:h:mi~Ch~rnbff-ltoeffding Type Inequalities

In the following subsection we cite the basic incqualities, whose algorithmic counterpart
we wish to derive.

2.1 Chernoff-Hoeffding Type Inequalities
" :;; ":'!:.

Let X" .. ,,X",be 111utually independe,lt random variables, where Xi is equal to a,n integer
".j with probabilitypj, an<i {s e,gllaijo an other integer Vj with probability 1 - Pj. For
1 -::: j -::: niet Wj denot\' rational weights with 0 -::: Wj -::: 1 and denote by 1/! the rand6m
variable

n

1/!c= L:>jXj.
j=l

A basic large deviation inequality isdueto Bernstein (see [10]) and Chernoff [9Un,,~re
Binomial case (Uj = 1, Vj c= 0, pj = p, Wj c= 1 for all j = 1, ... , n) and has been g.encrali,!cd
by Hoeffding[15]:'

Theorem 2.1 (BeNM,.fein,'ChernojJ, Hoeffding) L,et Uj c= 1, Vj c= 0 forall j ='1', ::'\', n
lind let A> O. Tlten",' ',,;{ ,

" . . 2' .

(a) !P(1/! > IE(7f;)+ A) -::: exp(_2~ ),

(b)JP('if) < IE(1/!) - A) -::: e,ql(:__ 2~2).

4
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In the literature Theorem 2.1 is weil known as the Chernoff bound. For k-wise inde­
pendent random variables similar bounds can be found in the recent paper of Schmidt,
Siegel and Srinivasan [25].

For small expectations, Le 1E(,p) S; ~, t'he following inequalities, which have been
attributed to Angluin and Valiant [3], give sharper bounds. 1\' ' , \

Theorem 2.2 (Angl"in and Valiant) Let Uj = 1, Vj ';= 01M all'j = 1, ... , n a'nd 'let
o< ß S; 1. Then

(a) 1P(,p> 1E(,p)(l+ß))~exp(-ß2lf(,p))

""(b)1P(..p< JE(..p)(I- ß}) S; exp(_ß'~(,p)).

For random variables with zero expectation there are two inequalities whkh can 'be
found in the book of Alc,\ll and Spencer ([1] , Appendix). The first inequality goes back to
"Hoeffding, while,the,Sfwonp. inequality is due to Alon and Speneer [1].

The(,rem '2.'3' (Ijo~iJ'difii/) Let Uj = 1 - Pj, Vj = ~Pj, Wj = 1 tor all j = 1, ... , n andlet
X> O.Then' . ',' ' ,

(a) 1P(,p > A) S; exp( _ 2~')
,"",

(b) !P(7/> < -A) S; cxp(_2~').

'".. . 2A2 •

Alon and Spencer improved the IIoeffding bound e--' repladng n by pn = Pl+" .+Pn.

Theorem 2.4 (Alon, Spencer) Let "j = 1 - Pj, Vj = -Pj, Wj = 1 tor all j = 1, ... , n and
let A> O. Set l' = ~(pl + ... +Pn). Then

(a) ~P(,I/) > A) S; exp( -2~'n + 2(;:)')

(b) Il'(,p< -A) S; exp(-2~n)'
" .'

o
In .,the next seetiol). \~e,prepare the teclmkal tools for the approxhnate computation of

conditional probabilities and moment generating functions for weigh~ed sums of Bernoulli
trials.

2.2 Pessimistic Estimators and Elementary Funetions

Let us start with a definition of the derandomiz;ttion pl'Oblem. Let (n, lP) be a probability
space, and for simplicity assurri~ that n is the set 6f all vectors oflength n with eomponents
from a finite set S. Let E" ... , E= be a colleetion of events such that lP(n~, Ei) ~ f for
some 0 < f < 1.

Definition 2',5 (Demndomization Problem) Find a vector x E n~, Ei in deterministic
, ·ti"~'ß,bo"nded by a polynomial' im n,'m, 151 and log~. .,

',i",

5 ;, .
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The "eonditional prohahility method" is the following algorithm:

Algorithm CONDPROB

INPUT: An event E C n ""ith IP(E) > O.

OUTPUT:.A vector x E E.

1. Choose Xl as the miminizer of the function w f-> IP[EClw]' wES.
For t= 2, ... , n do:

If Xl ... , xl-l with Xi E S have been selected, set w = Xl where Xl minimizes the futlcti0l'
w f-> IP[ECIXl." ,XI_l,W], wES. :.,

o
The striking observation is that a so eonstrueted X satiafies X E E. But it is hard

to eOlnpute eonditional probabilities direetly. Speneer's hyperbolie eosine algorithm [26]
shows that this is not really neeessary, if upper bounds on conditional probabilities eaube
computed whi~h behave'like eonditional probahilities.This fact has been coneeptualized
by Raghavan [23] wllo introdueed the notion of "pessimistic estimators".

Definition 2.6 (Pessimistic Estimator, [23]) Let (n, IP) be a probability spaee as defined
above. Let EI,,,,, E m be a eollection of events and let E denote the event nEi. Sup­
pose that IP(E) > c, ' > O. A pessimistie estimator' for the evcnt E C is a sequente
(UI"in( Xl, ... , Xl ))1=1 whieh itemtively eonstruct a vector (Xl,,, ., Xn) E D, and possess
the following proper·ties for all 1 :<:: I :<:: n:

(a) IP(Ui~l Eilxl, .. . ,XI):<:: u1min(Xl, ... XI)

(b) Ul'!-l'(XI, ... ,XI,XI+l):<:: Urin(Xl," .,Xl)

(c) Ui"in(Xl) < 1

(d) Each u l
min (Xl,"" xt) can be eomputed in time bounded by a polynomial in n, m, ISI

and log(l/,).

Given a pessimistic estimator, x = (Xl, ... , X n ) is the desired vector I because the conditions
(a), (b) and (e) imply:

m

IP(U Eilxl, ... , X,,) < 1,
i::;;l

hence
m

IP(U EilxI, ... , x,,) = 0,
i=l

therefore X E nZ':ol Ei,
By Definition. 2.•6.,llpper bOllnds on conditional probabilities are the potential eandi­

dates for pessimistie estimators. Sinee in case of sums of independent .randorn v<lJ'i,ablcs
sueh upper bounds typieally are compositions of elementary funetions, we need to eompute
them, at least in an approximate fashion. Lemma 2.7 shows that an approximate computa­
tion of elementary functions like exp(z),ln(z) and,;z ean be done efficiently. It is related
to Brent's [7J approximation of elementary functions defined over compaet intervals, but
the advantage of our approximation is that we ean deal"with arbitrarily large rational

" "', .
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J) ,d· ji!lildi; <,1':.' .' . L."'ll.:- ,', "":';"{>:! J

,Jh1j.I,I).;l;>,'i!~",Lefl1Pla 2,8 shows that a product of compositions of expoiieittiarfunetioris 'fnd
'10g';"'ith;';~ is' efficiently approximable and Lemma 2.9 is a simple observat\o',I whlch will
be used to prove the decreasing monotonicity of the pessimistic estimator.

Lemma 2.7 (i) Let Y be a rational number with encoding length Land let 1'1 E (0,1)
.,be a positive real number,. L~,tN be,a positive integer with N 2: 8 [1~11, t. r~?~. ~, 1·

Then the N -th degree Taylor polynomial " . , , ,

TN(y) = Lt'=o ft' of ex'p(y) Has encdding length O(LN +Nlog N), can 'beicomjiuted
in O(N) time aridthe ine~ualft1/[ ex'p(y) - TN(y)[ :,; 1'1 holds. i"IL , •.

(ii)

(iii)

)";;

Let x 2: 1 be a rational rwmber, 1'2 E (0,1) areal number and Lo = LJog xJ. Rar every
N 2: [log 4~1l.1 a rati~nal number y withencoding length O(LN) can be c~~p~ted in
O(Lo+N) time such that Iln x - y[ :,; 1'2.

Let x b~ a':r~iiorial number with encodiilg length L, 1'3 E (0,1) a positivfireaNiumber.
If x 2: 1, ,ih~n let 1'1 6e, ~a pö~itive int~ger with N 2: flog L 1 and if °< x < 1, then

',,, .' c. ,,' ' '.' '.. , "t3

suppose 'that N 2: [iog ~3T. A rational iwmber y with encoding length R(f +N) can
be computed in O(N)-time such that 1y'X'- y[ :,; 1'3· .

if 1 :,; x2- Lo :,; 1.5
if 1.5 < x2- Lo :,; 2

Proo[
(i) Sinee N 2: 3IYI0i,\~vebyTayi~r'~theorem

N i.L]

and observing tImt N 2: e2 IY[, N! 2: (,.)N and N 2: In ~, the inequality follows. Sinee (;~1)!

is ca!eula,ted from ~ in constant time, TN(y) is computed in O(N)-time. FuiÜlermarc thc
encoding Jength 'ofTN(y) is aj\olynomial in Land N : The encoding length 0\ utv, -is O(LN),
'N! has encoding'length e(N log N) and TN(y) has cncoding lengt110(LN+1\(19g N +N) =
D(LN + NlogN). ,,,'I'

(ii) Far the computation of In x we use its power series expansion. With L o = [log xJas
in the lemma, we have 2La :,; x :';'2La+l, and we can find Lo in O(Lo)-time. Define

Yo = {i~~~:a
" ": " \; '-"-,'. ,',: " . , ,"

and use the deeom'position x = 2La yo ar x = ~2LOyo. It is enoug11 to considet 'the -seeond
ease x = ~2LayO' because the arguments in the other case a.re the same. "V',;

There exists a rational number Y1, ° < Y1 :S ~ with Yo = 1 + Yl> a.nd we have the
decomposition,.

l~ '~"'=;~öi[ln''(l'+ ~l+i~~Cl+ i)J +ln (1+ ~)+ln(l+y;;;'

7



Choosing J2 = [log3(..1-)1 - 1, h = flog (..1-)1 - 1, J4 = flog3(..1-)1 - 1, we obtain Iln (1 +
'Y2 "12 72

~) - SJ2(~)1 -<; ;: anrl SO on. Let N 2: [log~l Then N 2: max(JI , ... ,]4) and defining

!,."

we have Iln (;r) - Yl -<; 72. The total time needed for the computation of Y is O(Lo + N).;

(iii) Let x 2: 1 (the proof for x < 1 is alnlost the same). Starting with the interval
[l,:EI iti,d iterating interval halving we need at most [loge L)l iterations to find a. y with

~3

Iy - vxl -<; 73· Hence with N 2: [log-% 1 the total time needed is O(N) and since the
,encoding lengtll of x isL, y has encoding length O(L + N).

. .. ,", .

o

Lemma 2.8 Let aI, ... , an, b, 7 be rational numbers with encoding length at most L, b 2: 1
andO < 7 -<; L Let 6>,0 and let PI, ... ,,fn,Q be polynomials in n,m,! with Pi,Q 2: 1,
lail -<; Pi and Ibl -<; Q for alt i = 1, ... , n. Let P = Li~1 Pi and denote by Pi, P, Q alsothe
numbers Pi(n, m,! ),P(n, m,!) and Q(n, m,!).

(i) Let TN be the N -th degree Taylor polynomial of the exponential function with N =
10 [P1 [log Q1 + n + [log nt"1. Then a rational number c approximating In band the

numbers TN( aic) can be computcd in ,O(max(n, Plog Q) + log ~)-time such that the
inequality

n . nIrr eaihib - rr TN(aic)l-<; 7
i=l i=l

holds unifor'mly for alt al, ... , an as above.

(ii) Let TN be ihe N -th degree Tayloi' polynomial of the exponential function with N =
]0[1'1 +n+ flog nt"1. Then each Tfv(ai) can be computed in O(max(n,P) +log ~)­

time such that theinequality

n n

. 'I TI eai - TI TN( ai)1 -<;7
i:::;l i=l

hold.. uniformly fo'" alt al, ... , an as above.

(iii) The encoding length ofTN(aic) (resp. ofTN(ai)) is O(L[max(n, PlogQ)+log(~lF)

(resp. O(L[max(n, P) + 10g(~lF).

o
Prooi. (i) and the firstpart of (ili): 1'0 shorten notation set 7J = n~l2-ne-2PrtogQli~ =

n~le-3prlogQl, Lo = [logQJ, N l = [log4(n";)L 01 + 3[PlI10gQ1 and observe that NI 2:

flog ~1 2: [log 41!<t11, Using Lemma 2.7 (ii) we can compute a ra.tional number c 2: 0
such that

Iln b - cl -<; ~

8
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in time

(3)
. 1

O(Lo + N,) = O(max(logn, Plog Q) + loge - )),
". . .~ •..::, .. ,.,,:: Ir'

I!
and the encoding length of cis O(LN,) = O(L[max(log n, Plog Q) + log ~]). By the mean
value theorem, there is avE [c,lnb] (or v E[lnb,c], iflnb::; c) with

n n
Iln b - cll I:ailevL=, ai

i=l
I.

, . (4)
,', !

I,: .

\;

< ~PeP(1 + log Q) with 2

< ~Pe2P[1ogQ1

< ~e3P[1ogQ1

"I
n+l

Now we approximate eLi=, ai c: put N = 10 [P1 [log Q1 + n + [log nt'l and let TN be the

N-th degree Taylor polynomial of the exponential function. Since N 2': S[laicil1 + [log *1,
we can invoke Lemma 2.7 (i): havillg precomputed c as above, TN(aic) 'can be computed
in time ., . ,

..' O(N;,',,' O(ma.x(n, Plog Q') + log ~),
.. "I

(5)

its encodillg length is
1 .'

O(LN,N) = O(L[max(n,PlogQ) +log(-)]2)
"I

and for eacl, i = 1, ... , n the estimate

leaiC - TN(aic)1 ::; '7

holds. Furthermore, because Iln b - cl ::; ~ ::; 1

ITN( aic)1 < 1 + eaic

< 1 +eai(1 + lnb)

< 2e2Pi [log Q1.

(6)

So, for allY product TIil±'1' Fi where Pi, is.either eaic.01' ,TN(aic) we have.,
n·

HFi::; 2ne2Li~,Pi[logQ1= 2ne2P [1ogQ1,
i=l .

(7)

Employing the triaugle illequality n-times aud using (4), (6), (7) we get

-, . J I. J,

. i - . .'

n n .

ITI eailnb -;-. !I 'l'N(aic)I <
i=l : !i=1' .

n"l

n+l
< .,:]:

, rI-

; .• <lI' .,:,

9



By (3) and (5) the total computation time of each TN(aic) is

1
G(N) = G(max(n,.PlogQ) +log -).

I

(ii) Apply the proof of (i) skippingthe ~omputationof the logarithms.
o

The next lemma will be needed to show the monoton.icity of the pessimistic estimator.
Tts pfoof is an easy exercise,

Lemma 2.9 Let h,. ,}~'be a finiteand monotone decreasing sequence oJ "cal numbcrs.
Let ft > 0 and let gl, , gn be a sequence with 1ft - Yll :0; ft. The sequence h1 ,· .. , hn
dcfined by h/ = 9/ +2(2n - l)ft Jor I = 1, ... , n is monotone decreasing.

o

2.3 0 - I Random Variables

Let m E JN. We define rn large deviation events as follows:

We are given n mutllally independent 0 - 1 random variables Xl, ... , X n defined throngh
P"ob(Xj = 1) = Xj and Prob(Xj = 0) = 1 - Xj fm some rational numbers 0 :0; Xj :0; 1.
For 1 :0; i :0; m, 1 :0; j :0; niet Wij denote rational weights with 0 :0; 1J)ij :0; 1 and denote by
,pi the random variables

n

,pi =I: 1J)ijXj.
j=l

For 1 :0; i :0; m let Ai > 0 be rationalnllmbers and define the event Ei(+) by

and let Ef-) denote the event

"'I/-'i ::c JE( 'I/'i) - A;".

Furthermore set E = n;';:,l Ei where Ei is either E!+) or Ef-l. For each event Ei let
J(A,) be the upper bound onlP(Ef) given by the corresponding large deviation inequality

in Theorem 2.1 or 2.2, so J(A,);" exp(-~) or J(Ai) = exp( ß;~h"i)) with d = 2,3.
Suppose that for some 0< E < 1 the striet inequality

..~'

m

I:J(Ai) < 1- E

i=l

(8)

is satisfied. Then Theorem 2.1 resp. 2.2 imply IP(n;';:,l Ei) ::c E, hence n;';:,l Ei is not empty
and we wish to find a vector x E n;';:,l Ei in determimstie time bounded by a polyn~mial

in n, m and log~.

Befme we start with the proof, we brieily sketch the main steps. We wish to construct
pessimistie estimators for the events Ef. For examp]e, let Ei be the event ",pi :0; JE( ,pi)+A;'.

10



Conditioning on'!{X" ... ,xil = (Y" ... ,Yil with Yj E {O,1} and 1 < I c;<n, Markoff's
inequality and the independence of the X/s imply

LP[EfIY" ... ,Yd < e-AitiLE(eti>Pi[Y""',Yl)

'- :i_

n

e-Aiti rr.LE(etiwi,Xj[y" ... ,y/).
j=l

> 'j

In the most complicated case ti is of the form 'ti = In Si and we have to approximate the
factars

TG'(e'WijX, Insi [y Y )
.ll.:.J 1, ... ) 1 •

This can be done by Taylor polynomials and such polynomials will deline a pessimistic
estimator. The crucial point is that the accurancy of approximation 01' in other words the
degree of such polynomials mtist be chosen carefully in order to guarantee both, a fast
polynomial running time of the approximation procedure and the pessimistic estimator
properties.· ;

First let us consider the Angluin-Valiant bound. Before we continue, we put a soft
technical restriction on the deviation terms Ai.

Deviation parameter in the Anglnin- Valiant bonnd:

Let Ai = ßi18('IjJ;). lf Ei is an event of the form EJ-J, then Ei is non trivial only, if
Ai< 18(7/'i), which - assuming 18('ljJi) > 0 - is equivalent to ßi < 1. But in the proof of
Theorem 2.2 (b) (see [18], proof of corollary 5.2 (b)) an optimal choiee of tbe parameter 'ti

introduccd in (1) requires that ti is areal funetion in 18('IjJ;) and ßi and has a sing~larity

at ßi = 1. For this reaROil we assurne that

(9)

for some constant K, > O. Note that the restriction above is only a technicaJ assump­
tion and does not affeet the applicability of derandomization to the integer programming
problems considered in this paper.

Theorem 2.10 (Algorithmic Anglnin- Valiant Ineqnality) Let 0 < f < 1 and E" ... , Ern
be a eollection 0/ events estimated by the Anglnin- Valiant bonnd. Snppose\h(Lt (8) and
(9) are satisfied. Then IP(nr;;, Ei) :2: E. and a veetor x Enr;;, Ei ean be eons/rneted in
o (mnZlog ",;n) time.'

.Pl'Ooi In the following we will give the proof of the required running time. Space con­
sideration can be done in parallel'passing through the proof and repeatedly using LeIbma
2.8 (ii). Since this requires only tedious calculations, but in principle should be deal', we
omit the details.

Case 1: m = 2

Set Ai = ßi18( ,pi). Let E, be the event:

and let E z be the event

11



(10)

(11)

All other combination of events ean be tre\Lted in the same way. The basic functions V" V2

from whieh we will·deriv" the pessimistic"estimator are defined as follows. For 1 ~ I ~ n
let Y" ... ,YI be chosen from {O, 1}. The upper bounds for the eonditional probabilities &"e"

lP[Efly" ... , Yd ~ e-tiAilE(eO"itr1f>i),

where 0"1 = +1, 0"2 = -1 and an optimal ehoiee of ti gives the Angluin-Valiant bound.
According to McDiarmids proof of the AIjgluin-Valiant inequality [18] ti = In Si with

, (lE('1>I) +~,)(n - JE(1b,))
sI = ,

JE(1b,)(n - JE(1b,) - A,)
i

JE(1b2)(n''- JE(1b2) + A2)
S2 = (n - JE(~~))(JE(1b2) - A2)'

The event " '1>, ~ IE(1bJl +A, " with .x, = ß,IE(1b,):

Let SI be as in (10) and define for I 2: 1

~ 1 n
1~(I) (Yl> ... , YI) = e-(JE('1/)1) + Al) ln SI eLj=1 WljYj In SI TI [x jeWlj In SI +1 - x.i]

.i=1+1

and for 1= 0

. n
VO(I) = e-(lEe1bJl +Al) In SI TI [X.i eWlj In s, +1 - x.iJ.

j=1

The event " 1b2 2: IE( '1/)2) - A2 " with A2 = ß2 IE('1>2):

With 82 as in (11) deHne for I 2: 1

[ _ . n
~(2)(YI'" .,YI) = e-(-'2 - JE(1b2))lns2e-,L.i=lw2.iY.ilns2 TI [xje-w2.ilnS2 +1- x.i]

.i=I+1

and for I = 0

n

VO(2) = e-(A2 - JE('1>2)) lns2 II[x.ieW2.ilns2 +1- x.i]'
j=l

To unify the notation put WiO = 0 (i = 1,2). Then the ~(i),s (i = 1,2) ean be rewritten as

n

~(i)(YI""'YI) ~ II JE(eai.iln Si),
, )'::::0

with

-(( -l)i-'JE('1>i) + Ai)
( l)i-'- ; WijYj

(-l)i-I w ··X·
'J J

12
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:"> Note that, X~, is our random variable, 'So for j 2 1+2 the aij'S are random variables,
tao. By McDiiümid's proof of the Angluin-Valiant inequality ([18], prooLof corolle;~1f 5.2
(b)) we have

and using the assumption (8)

JP(Ef) +JP(E~) ~ V
O
(l) +Vo(Z) ~ e-

ßfE
3(,p,j +'~~ß~Ez(,p·) ~ i '-- f.

(12)

(13)

<

In view of the conditions (a) and (c) bf Definition 2.6 the functions 11{ are the right upper
bounds fram which the pessimistic estimatOl' should be derived. We will apply Lemma 2.8
First we show that the s;'s are polynomially bounded.

Claim: Let I< = max(l, 1<1)' Then Si ~ ,4n" for i = 1,2.

Proof of the Claim: In order to bound Si from above we introduce in addition independent
o- 1 random variables X n+1 , •.• , X Zn+1 and multiply each such X j with weight.O,,,'I;his
changes neither the expectation JE( 'l/Ji) nor the bounds nor the praof of Theorem 2.2 except
tha.t we have to consider' 2n +'1 instead of n. Since JE( 'l/J1) ~ n we have

l'lll'thermore with the assllmption (9) and using JE( 'l/J2) ~ n

2n +1 - (1 - ßz)JE( 'l/Jz)
(2n +1- Jl<~('l/J2))(1-ßz)

2n+ 1
~~~-

(n +1)n- K1

< 2nK1
•

We invoke Lemma 2.8 (i) : Set I =. Z(4~ 1) and Q = 2n3K
. Since laiol ~ 2n for i = 1,2

and laijl ~ -J for·j, = 1,.... ,1+ 1, we can set fm each i = 1,2, Po = 2n and Pi = 1 for
j = 1, ... , I + 1, hence P = 2::;=0 Pj ~ 3n. With N as in in Lemma 2.8 (i)'we"ha.i:e .

n+l 1
N = 10[Pl [logQl + n + [log--l = O(nlogn+log-).

I (
(14)

(15)

Let T be the N -th degree Taylm polynomial of the exponential function. T,1).en .Lemma
2.8 (i) implies that for eashi = 1,2 thc cstimate

n n

TI e aij In Si - TI T(.aijCi) ~ I
j=O j=O

uniformly holds for all aij depending on Y1,' .. , Yl and for every i tlle ~';tional i',Uional
numbers Ci and T(aijCi) can be computctd in O(nlog n + log ~) time. Note th"t this
estimation is uiüform for all 'aij,· bec.ause

I I

'Elaijl ~ 'E P; = P ~ 3n.
j=l i::::O

13



Taking expectation and using the independence of the X j and (15) we conclude for each
i= 1,2

n

IVi(i\YI, ... ,Yd - IIJE(T(aijci))I:S; "I.
j=O

We proceed to the definition of the pessimistic estimator. For i = 1,2 define

n

Ti(YI, .. ·,Yi) = IIJE(T(aijci)),
j=O

Let Ui be a sequence of fun ctions defined by

-".,./.

(16)

-. ''-

Ui(YI,; ", Yl) = T(y!, . .. , Yi) +4(2n - lh· (17)

FurthermOl'e let'Uiin(XI,"" Xi) be iLeratively defined by the following proced,ur~.

j=1: Let Xl be the value from {O, 1}, which minimizes the function Y -> UI(y).Set

Uruin( ) '. U ( . '] XI·= 1 Xl).

j=l: Suppose that X1, ... ,XI-I have been chosen from {O,1} alld Ui"if('"1, ... ,i/... 1)'has
been defined. Let Xi be theminimizer ofy-> Ui(XI, ... ,Xi_I,y),yE {O,1},alld define

Let (u1min) denotethe sequence Uljl1(Xl), ... ,u~n(Xl, ... ,Xn).
First we show that the sequence (Ui

ruin) satisfies the conditions (a), (b) and (c) of Definition
2.6. Dcfine

IP(E~ u E~lxI, ... , Xi) <

Vi = Vi(I) +Vi(2)

Then by (16) the inequality

holds uniformly for aJl YI, ... , Yi E {O, 1.}.

Condition (a):
Ey (13), (19) and (17)

( (1) (2))( )Vi + Vi Xl," ., Xi

< (Tl +T2)(XI, ... , XI) +2")'

< UI(XI, ... ,Xi) +4(2n-IJ'Y.

14
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But by definition, UI(X1, ... ,Xl)t4(2n-lh = UruU (Xl"",XI)'

Condition (h):
In order 1.0 apply Lemma 2.9 pul.

. ,:') I,';.

11 = min[Vi(Y1, .. ',Y/-l, 1), Vi(Yl, ... ,Yl-l,O)]

and

91 = min[T(Yl"'" YI-1, 1), T(Yb"" Yl-1, 0)].

Using (19) we have. ".,';

'; l:i f

for all I = 1, ... , n. Si"ce, h, ... , In is monotonely decreasing, Lemma 2.9 implies thaI. the
• ", - . '\:;".;" j -,.

sequcnce (Ur tn
) possessefi\the.s~,me propertY·"j-' :,.;\ ~', ;. '.- "1 I:'

doi..dition (e): ."" '. "
With condition (b), \l~ing,min(V1(1),V1(0)) ~ Va and (13) we gel.

'Uf,in(Xl) - T1(X1)tT2(Xl)t4(2n-1}y

< min(V1(1), V1(0)) t 2, t 4(2n - 1h
< Vö t2,+4(2n-1h

. "", 'liJI) t Va(2) t 2, t 4(2n - 1h
,.; ,[

< 1 - f t 2, t 4(2n - Ih
= 1.

.;, ,-

(20)

"\lc are done, if we can show an overaJl running time of O(mn2 10g mn). Let llS fix,
1 ~ I ~ n and consider the Taylor approximation for Vi(I). The argumentation far Vi(2)

goes similaI' . First note t.hat

Tr(1)( ) _ Tr(I)(. ) 1 WlIYllln 81vI Yl,· .. ,Yl - vl_1 Y""',Yl-l 1 e
IE(eall n 81 )

AccOl'rung 1.0 Lemma 2.7 (i) and with N a.s in (14) we can compute cl,lE(T(allc1)) and
lE(T(W1/YllCl)) in 0 (N) = O(n log,n +log ~)- time. In the first step t.he approximation of

. , ", - n

e~(lE(1h) + .\1) ln81 rHxjeWljln81 t i - Xj]
j=l

requires the computat.ion ofn t 1 Taylor polynomials. This takes O(n[nlog n t log ~])

time. Then by indudion and using the recursion (20) the total time far the computaion
of UI(X1,.'" XI) is

o (n [nlögntIOg;] t ~ (nlogntIOg ;)) = 0 (n210g~).

Case 2 in'2;2':" ".
""li' ".~;}dl.Jl)i' ,'i ,li; i.. " . _, . ,"

._No\~ thaI. fo,r ,arbit.rarY.m the same proof goes through, if we replace 'EHy;':' and"define
'.<, .
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Then we get a worst case running time of

m 2 mn
O(mn[nlogn +log -]) = O(mn log-)

f (

and the theorem is proved.
o

The algorithmic version of the Chernoff-Hoeffding- Bernstein bound calf' pe derived
similarily.

Theorem 2.11 (Algorithmie Chernoff-Hoeffding Inequality) LetO < f < 1 (md El) .. " E",
be events estimated by the Chernoff-Hoeffdinginequality. Suppose that (8) is ~atisJJcd..Thcn

lP(n~l E;) " fand a veetor x E n~l E; ean be construeted in 0 (mn[n +10g,';")l-tülle.
. I (H.l, '_'."-!-;'; ,

Proof. We follow the argumentation in the proof of the· algorithmic AnglnhkValiant in­
equality. Let the events E; be as there. The Chernoff-Hoeffding bound is

2.\2
J(>';) s: exp(--')

n

According t.o t.he proof of t.he Chernoff-Hoeffding inequa.lit.y (Theorem 2.1) as given in
[18] t.he parameters t; are ti = ~. Therefore we do not bave to comput.e logarithms and
can spare a log-fact.or. Because trivially >.; s: n, we have O(t;>.; +nti) = O(n), thus t.he
exponent of

. e-t;>';lE(et;.,pi)

is O(n). So due t.o Lemma 2,7 (il) the degree of the approximat.ing Taylor polYllOmial as
weil as t.he time t.o evaluate such a polynomial is only O(n +logen;,,)) = O(n+ 10g('Z)).
The rest. of the proof can be carried out as in Theorem 2.10. .

o

2.4 The Case n = nj~l{1- xj, -Xj}

In t.his subsect.ion We consider t.he Alon-Spencer bounds. vVe ca.n argue as ir!, ~he sect.ion
above, wit.h minor modiftcat.ions of the not.at.ion. We are given n mutually independent.
ra.ndorn variables defined through Prob(Xj = 1- Xj) = Xj and Prob(Xj = -Xj) = 1- Xj
for some rational nurnbers 0 :S Xj :S 1. For 1 :S i :S m, 1 :S j :S niet W;j be rational
weights from {O, I} and denot.e by .,p; t[le random varia.bles

- ,-;
n

'l/Ji = LWijXj.

j=1

Pul. Pi = 1E(.,p;)/n; 1"here ni = Lj~l W;j and let >'i > 0 be rational numbers. For 1 s: i :S m

let Ef+l be the event. ".,pi :S +>';" and let Ef-l denote the event ",Pi" ->';". Furthermore

set E = n~l Ei where E; is either Ef+l or Ef-l. For each event Ei let J(>'i) be the upper
bound for lP(Ef) as given by the corresponding large deviation inequalities in-'Theorem

.:,:' . 2)..2- . )3 A~ '. . .-)3
2.3 or 2.4, so J(>';) = exp(-n) or J(.\;) = exp(-~ +~) 01' J(>';) = exp(~2Pi~'J.

Suppose that for sorne 0 < f < 1

m

LJ(>.;) < 1- f.

i::::ol
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:11

Furtherrnare, we need again same technlcal assumption to avoid singularities of parameters
used in the proof of the underlying boifJid~.' ,f ",. i'

Deviation Paramefwr./n,the Alon-Spenee~Bound: ,
:J~~,1':~ed t,OS?W1iden,Iheoxem 2.4 (a) only Jf 'Lj=1 Wij > 0, then we assurne tl]at

, ,,]

. ,
for same constant 1<2 > 1 and

,-\ -. -

(22)

(23)

for some constant "'3 > 1. The derandomization result is:..- -

Theorem 2.12 Let 0 < E < 1 and E
"

.. " Em be events satisfying (22), (23),o,nd (21).
Then IP(ni""E,i) ;:; E (md a veetor x E n~, Ei can be eonstTueted in 0 (mn2 1og m,n) -time.

Proof: In view of proof of Theorem 2.10 it is sufficient to consider the case m = 2,

Let 1:S 1:S n and Yl", .,YI with Yi E {1- Xi,-Xi}.
Thc basic fHnctions V" V2 here are:

The event. "1/J, :S '\,":

Let t, > 0 and define for I ';> 1

1~(')(y"" .,YI) = e-i1 .\' e'L;=, WljYji, fr [xje""j(l- X,i)i, +(1- xj)e-W, jx';t,]
j::::l+1

The event "1/J ';> -'\2":

Lei; t2 > 0 and define for I ';> 1

Yt(2)(y,,'... , YI) = e-t2 .\2 e- 'L;=1 W2jYi i z Ir [xje- w2j(l- Xj)i2 + (1 _ xj)eW2jX'jt2],

j=l+l

With thc following minor modifications i;he proof can be carried 011t as in the 0-1 case.
The parameters ii can be choosen aecording to the proof of Corollary A.7 (respeetively thc
proof of Corollary A.10jTheorem A.13 in [1]): In case öf Theorem 2.3, ii = ~for i = 1,2

and in thc proof of Theorem 2.4 (b), t2 = 'L"=~:V'jXj' Therefore the exponent-B'äbove are
.• J . , .'

ratiollal ii11mbers and in view of Lemma 2,8 we don't have to comp11te logatithms. In case
of Theo'r<!m 2.4 (a) t, = In(l + 'Ln Al. ) and by restriction (22), 'Ln .\1. <).,nK2 .

}"=1 Wl j X) _ )"=1 Wl]X) '.\><.• ,

This will give 11S according to Lemma 2,8, taking Q = 1+ .\,nK2 and wit.h I as in the proof
of Theorem 2.10 a r11nning time of O(1<2n210g ~), With .\, = D(nK3

) as in restriction
(23) and sinee the I<'S are constant, we are done.

o

.~'

; " ~

,li,'
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2.5 Multivalued Random Variables

Finally, we consider multivalued random variables, especially n mutually independent
diee. We investigate a situation in whieh the random vari'ables under consideration have.
Biomial distribu.tion and thus may apply the tools developed so far. Let n, N be ni:m­
negative integers. We are given "Ti mutually independent random variables Xj with values
in {O, ... , N} and probability distribution Prob(Xj = k) = Xjk for all j = 1, ... ,n,k ='
1, .. ·.; N and Li:=1 Xjk = 1. Suppose that the Xjk are rationalnumbers with 0 ::;. xj'~ " 1.
Let Xjk denote the Tandom variable whieh is 1, if Xj = k and is 0 else. The probability
space 18

n N

D = {(Y1,"" Yn) E rHO, I}N; Yj E {O, 1}N , L, Yjk = I}.
j=1 k=1

FOT 1 " k " N, 1 " i " m, 1 " j " nIet wi;) be rational weights with 0 " w~) " 1. FOT
i = 1, ... , m and k = 1,: .. ;N deline the sums ,pik by

. )(24)

Let Aik > 0 be rationalnllmbers. Denote by Ei~) the event

(25)

and by Ei('~) the event

(26)

Let (Eik) be a collection of mN such events. Wo invoke the Angluln-Valiant incquality. As
in the 0 - 1 case let f(Aik) be the upper bOllnds for JP(Efk) given by the itlequality under
consideration. We suppose that

m N

L, L, f(Aik) < 1 - f.

i=l k=!

(27)

for some 0 < E < 1 and assurne timt the events satisfy condition 9.

Theorem 2.13 LetO < E< 1 and Eik be as abovc satisfying (9) and (27). Then 1P(ni::01 ni:=1 Eik) ~

Eand a veetor x E ni::01 ni:=1 Eik can be construeted in 0 (Nmn210g N~m]) -time.

Proof: For j = 1, ... , nIet Dj be the j -th copy of the set

N

{w E {O, I}N; L, Wjk = I}.
k=1

The only diffcrcnce to the proof of Theorem 2.10 is that in each step of the <;onditi9ual prob­
ability mcthod we have to choose a vector Y E Dj instead of an integer. This can.be done

as in the proof of Theorem 2.10, but would give us a rllnning time of 0 (N2mn21og N,;,n])
as there are Nm events, n random variables, and - this incrcases the· TUnning time - for

18



each random variable we have N choices. But in our context a simple observation reduces
the" running time 1.0 0 (N mn2+log N,;,n]): consider the first step of the computation oi,

the pessimistic estimator. Let Yl E f/1 be the veetor we are goingito"select in the first ~.tep, I

in other words, we wish 1.0 determine the outcome of the first die. Let Eik be arbitr~ry;'
but for a moment fix. Then, because ,pik is a sum of independent Bemoulli trials, ,p,:k

i8 either "L'J=2 w~)Xjk +wg J or it is "L'J=2 w;;JXjk. So, for this ,pik we have 1.0 approx­
imate only two upper bounds for the conditional probabilities. Each such bound is thc
product of O(n) faetars of the form exp(ai In bi) for same rational numbers ai, bio Für each

of these factars the approximation time is 0 (n log n+ log N,m), thus for the product we

need 0 (n[n log n +log N,m J) time. (see also the proof of Theorem 2.10. We da this far all

events Eik and gel. a time of 0 (Nmn[n log n +log l'!,m]). In the second step, after having
selected the first vector from!!l, we can use the update argument at the end of the pro(;f

of Theorem 2.10 and gel. a time of 0 (N m[nlogn +log N;, I). Summing up over all the'n
steps, we gel. a overall runniIig time of ..

( Nm) ( 2 Nnm)O. Nmn[nlogn+log,--;;-] = 0 Nmn log-(-] .

. ,0

3 Integer Programming

3.1 A General Integer Program of Packing Type

Let ~+ be the set of non-negative integers an(llet Q+ be the set of non-negative rational
numbers. Let 118 consider the following integer program:

where b E Q't', A is a m X n matrix with rational components aij E [O,l]n and c is a
rational vector c E [0, Ir.

Let us denote by P the polytape {x E IQ+; Ax :S b} and by PI it,,' integer skeleton
Pn 71:+. The LP relaxation, where the componets Xj of x ca11 take arbitrary non-negative
rational values, can be solved in polyuomial-time with standard linear programming algo­
rilhms. Let Y:>- 0, Y E Q+ be an optimal solution veetor found by linear programming. If

. we try to apply the known 0 - 1 randomized rounding method directly, we gel. problems
due 1.0 the fact that we are rounding 1.0 arbitrary integers and we must guarantee that
the rounded vector idn PI, with positive probability. There are two more or less obvious
randomized roundiug methods for rounding the components Yj 1.0 an integer, but both
have drawbacks:

(a) The perhaps most obvious rounding procedure is 1.0 round Yj 1.0 [Yjl or to lYjJ. This
can be done in a randomized way perforrning n independent Bernoulli trials ~j, defined
through Prob(~j = 1) = Yj - lYj J and Prob(~j = 0) = 1 - Yj + lYj J. Let yI be the rounded
vector with cornPonents'lYjJ +~j and denote by lyJ the vector with compon"nts lYjJ.
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Invoking the Angluin-Vallant inequallty we can prove yI E PI as follows.Let bred E IQm
be the decreased vectorwith components bi ed := bi - (ALyJ);. Then with Theorem 2.2 (a)

Prob(yI 'f- PI) Prob(3 i(AyI)i > bi)

= Prob(3i (AOi > bi - (ALyJ)i)

Prob(3i (AOi > (1 + l)~Wd)
m bfed

< I:e--t2
i::::l

and we can conclude that Prob(yI E PI) > 0, if the last inequality is strictly less than l.
This indeed is the case under the typical assumption of randomized rounding in integer
programming, Le. if bied = n(ln m) for all i (the constant here is 12). See also [23], analysis
of k-matching. But even if bi = n(ln m), it may happen that the decreased right hand side
bred drops below the lower bound for bi and the analysis faits. Thi8 is the reason why the
0- 1 randomized rounding scheme of [23] cannot be applied directly.

(b) An intuitive better idea is to perform a more flexible rounding in which by chance same
Yj tan become much bigger or smaller than rYj1. One extreme way to da so is to split alT
each Yj into 2 LYjJ "segments" of value 0.5 and one segment of value Yj - LYjJ. This complete
splitting enforces bied = bi and the 0 - 1 randomized rounding scbeme is applicable: for
each Yj randomly round the values of the segments to 0 or 1 with probabilities equal to
the segment values. The j-tb entry of the rounded vector y I theu is the SUltl ovcr all
the rounded segments corresponding to Yj. IIence we have reduced the problem to' 0 - 1
randomized rounding, and since bi"d = bi, we have Prob(y l E PI) > 0, provided tbat
bi = n(ln m) for all i. Unfortunately, this is not a polynomial-time rounding algorithm,
because the number of random variables depends on the magnitude of llumbers appearing
in tbe fractional solution.

Our strategy is to compromize between these two extreme roundings. Let 0 < f < l.
The goal is to derive an (1- f )-factor approximation of the integer optimnm. It is achieved
in 3 steps.

• (Randomized Rounding) First we split off each Yj in a fixed integer part yP" and a

sufficiently big roundable part y'j"r with Yj = yPX + y'j"T (AlgOl'ithm Split(f)). The
sizes of the roundable parts y'j"T are responsible for tbe number of random variables

we 11se. In Lemma 3.1 we show tImt at most o(ml:gm) 0 - 1 random variables are

needed to ensure that for all i, bied = neO~m), whenever bi = neO~m). Then for

each j = 1, .. . ,n we set k j = [y'j"r] and define 2kj +1 independent 0 -1 random

variables Xl,"" X2k,+l' The rounded vector x 2: 0, x E 7l
n will have components

2kj+l

Xj := yJ'x + L Xl,
[=1

j = 1, ... ,n (Algorithm ROUNDING) .

• (Analysis) In Theorem 3.2 we show with the Angluin-Valiant inequality (Theorem
2.2) that x satisfies Ax :s; band eT x 2: (1 - €)eT Xopt with probability at least ;\'
where Xopt is an optimal integer solution.
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• (Derandomization) Finally, we will derandomize the algorithm via the algorithmic
Angluin-Valiant inequality.

In the whole analysis we need two important parameters, b, and C,:

6(2 - c)
b, := f 2 1 rlog(2m)1 and

c

16
Ce := ­

c2 (28)

Algorithm SPLIT(E)

INPUT: The fractional optimal solution Y = (Yl' ... , Yn) with Yj ~ 0 and 0 < ( < 1.

OUTPUT: For each Yj an integer yrX ~ 0 and a rational number y'j"' ~ 0 with Yj =
fix + var

Yj Yj'

begin
Initialization: Set for all j = 1, ... , n

Ytx
:= lYjJ,

yJ"' := Yj - lYjJ,
for each i = 1, ... ,m do

While bi - (Ayfix)i < b, do

choose Yj E {yJ", ... , y{ix} with aij > 0 and Yj ~ 1.
set yrX := yfix _ 1 and yjU1' := yja,r + 1 .

end
While cT y - cT yfiI < C, do

choose Yj E {y{'x, ... , y{ix} with Cj > 0 and y,i ~ 1.

set Y.tx
:= ytx - 1 and yjar := yjur + 1 .

end
end

The next lemma follows immediately.

Lemma 3.1 Let b, = f6(~;-')1 flog(2m)1 and c, = :g as in (28). If bi ~ b, for alt i =
1, ... , m and Lj~l CjYj ~ e" then SPLIT(E) generates for each bi at most oCo:,m) random

variables and eomputes y!ix in o(ml;,gm) time such that

fOT alt i = 1, .. . ,m.

b - (Ay!ix) , > band cTy _ eTy!ix > c
t t_t _10 (29)

o
Now we can deline the randomized rounding procedure. For each j = 1, .. . ,n set

k j ,= lYJ"r j and deline 2k j + 1 independent 0 - 1 random variables Xl, ... , X2kj+ I by

Prob(XI = 0)
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Prob (X2kj+1 = 1)

Prob (X2ki+l = 0)

1 :::: I :::: 2kj.

Algmithm ROUNDING

(Yj -lYjJ) (1- V
1- (Yi- lYjJ) (1 -~) ,

1. Fm eaeh I = 1, ... , 2kj + 1, set independently XI to 0 oi' 1 with probabilities denned
as above.

2. Output is the raunded vertor x ~ 0, x E lNn with eomponents

2kj+l

Xj := yJ'x + L X/,
1=1

j = 1, .. . ,n.

o

Theorem 3.2 Let 0 < t :::: 190 and b, = f6(~;-')1 flog(2m)]' Suppose that bi ~ IJ, for alt
i = 1, ... , m and C, +... +Cl, ~ ~g. Then an integer veetor x E Zf', x ~ 0 with Ax :::: b
can be constructed in polynomial-time such that

T T Tc x:,. (1 - t)c Y ~ (1 - t)e Xopt.

Proof. Note tllat thc somewhat strauge restrictiou E :::: J90 is neeessary to satisfy conditioll
(9), but has no influenee Oll the quality of approximation, sinee we want to approximate a
maximum. 'We divide the praof into 3 steps. First we show that the vector x is in PI with
probability at least ~. Then it will be proved that with probability at leastl"fT":; is an
(1 - tl-approximation of J Xopt. Henee with probability at least ~ botll,i8 true and in the
third and last step we derandomize using the algorithmic'Angluin-Valiant 'in'equality.

Claim .1: lP(Ax :::: b):,. ~.

Praof. Let bied be the redueed right hand side with

Wd := bi - (AyJix)i

Fm eaeh j = 1, ... , n let ~j be the random variable

2kj+l

~j:= LXI
1=1

and let ~ E n'f- denote the vector with components ~j. For i = 1, ... ,m denne iJii by

iJi i := (A~);.

22



Then

JE( Wi)
n

L aij(Yj - Yt
X
)(1- ~)

j=l

n

:0; (bi - L aijyt
X
)(1 - ~)

j~l

(1- ~)(bi - (AyJix)i)

(1- 2. )Wd

2

Taking ßi = 2~' for aIl i we get by the AngJuin-Valiant Inequality (Theorem 2.2 (a))

lP(Wi > W d
) lP(Wi > (1 +ß)(1 - ~)Wd)

(
ß; (1 - <) b;ed)< exp 2

3

< exp(-log 2m)
1

2m

Hence for aIl i = 1, ... , m

(AX)i [AyJix + W]i

(AyJix)i +Wi

< (AyJix)i +Wd

bi

with probability at least ~.

Claim 2: lP(cTx 2: (1- fleTy) 2: ~.

Pl'Oof. Define the reduced objective fllnction value by

(30)

Then the random variable z := cT ( satisfies JE( z) = cT y"aT (1 - ~).

The vector wlth 1 In the first b, components and 0 elsewhere Is feaslble, because on
the one hand bi 2: b, and on the othcr hand Cl +...+cb, 2: *, hence cT y:::: ~f. According

to Lemma 3.1 we have zTed 2: ~f and setting ßo = J(2-,)z"d it is easily verified that

lIence by the Angluin-Valiant inequality
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and Claim 2 is proved. Combining Claim 1 and 2 we conclude that the assertion oi
the theorem holds at least with probability !. In order to derandomize tbis result, we
apply the algorithmie Angluin-Valiant inequality (Theorem 2.10). The total number oi
randOlll. variables .after the..exeeution of the algorithm SPLIT(f) is N = n + N, with

N, = o(ml~,ßm). Reca11 that for i = 1, ... ,m, ßo = )(2 'lz"d and ßi = 2~" Let Ei be

the event "Wi :<; bred", which ean be written as "Wi :<; (1 - ßi)(l- ~)bred" and Jet Eo be
the event "cTE ~ (1- ßo)(l- ~)z,·ed". (30) and (31) imply

m ß2(l_-'-)zred m ßf(1-f)bred

lP(Eü)+ 'LlP(Ef):<; e- 0 i +'L e- 3

i:::::l i=l

< 3
4'

and condition (8) is satisfied with constant probability strietly less than 1. In arder to
apply Theorem 2.10 we must also ensure that the restriction (9) is satisfied which

1
ßo<l--.-- N K1

far some constant 1<, > O. Using zrcd ~ ~~, , :<; {o and assuming N ~ 2 (which always is
tl'ue) we get

1 1
ßo <1--<1--..- 4 - N2

o
In case oi al1 Cj = 1, we tl'ivia11y have c, +... + cb< = b,. FUl'thel'mol'e, ii A is a 0 - 1

matrix, then the corresponding linear program can be solved in strongly polynomial time
by the LP algarith!TI of Tardos [30] and we have

Coro11ary 3.3 Let 0 < f :<; {o and b, = r6(:;-')1110g(2m)1. Suppose that Cj = 1 for aU
j = 1, ... , n, A is a 0 - 1 matrix and bi ~ b, fOT aU i = 1, ... , m. Then an integer vector
x E ;zn, x ~ 0 with Ax :<; b can be constTucted in strongly polynomial time such that

T T Tc x ~ (1 - f)C Y ~ (1 - f)C Xopt.

3.2 Resource Constrained Scheduling

An instance of the resomee constrained scheduling problem with start times consists oi
([13], p. 239):

• A set :r = {J
"

... , .In} of independent jobs. Each job h needsa time of one time unit
far its completion and eannot be seheduled beiol'e its stal'ttime'Tj, Tj E {1, ... , n}.

• A sei P ={P" , Pm} of identieal pl'Oeessors. Eaeh job needs one 'proeessor.

• A set R = {R" , R,} of l'enewable, but limited resomees. This means that at any
time a11 resomees are available, but the available amount of eaeh reSOUl'ee R; is bounded
by bi E lN. For 1 :<; i :<; s, 1 :<; J' :<; niet RiU) E [0,1] be rational resomce requirements,
indieating thai every job Jj needs Ri(j) amount oi resOUree Ri in order to be prcieessed.

The combinatorial optimization problem is:
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• Find a schedule (or assignment) a : :J f-+ IN of minimal time length subjeet to the
starting times, processor and resource constraints.

Since the processor requirements can be decribed by introducing an additional resource
Rs+I with upper bound bs+I = m and defining Rs+I(j) = 1, the resource constraints are
briefly formalized as

VZEIN,iE{I, ... ,s+I}: 2..= Ri(j):S;bi ,
{j,"(j)=z}

where {j : a(j) = z} is the set of jobs scheduled at time z. The problem is N 1'-hard in
the strong sense, even if "i = 0 for all j = 1, ... , n, s = 1 and m = 3.

According to the standard notation of seheduling problems the unweighted (Le. Ri(j) =
0,1) version of our problem can be formalized as Plres . ·1, "i,Pi = llCmax . This notation
means that the number of identical processors is part of the input (- PI -) that resources
are envolved (- res -) that the number of resourees and the amount of every resouree are
part of the input, too (- res·· -), that every job needs at most 1 unit of a resouree (­
res· . 1-), that start times are envolved (-- "i -) and that the proeessing time of all jobs
is equal (- Pi = 1 -) and that the optimizatiou problem is to finish the last seheduled
job as soon as possible (-ICmax -). Note that we consider the rational weighted version
with Ri(j) E IQ n [0, IJ.

The best known approximation algorithm for the problem class Plres ... , Ti = 0, Pi =
IICmax , where the jobs ean be proeessed at any time (Ti = 0) and the maximal resouree­
usage of a job is part of the input, is d11e to Röek and Sehmidt [24]. They showed, employing
the polynomial-time solvability of the simpler problem 1'21res ... , Ti = 0, Pi = IrC",a"
where only 2 processors are given, a r~l-factor approximation algorithm. Note tl13.t Röck
and Sclunidt's approach is based on the a.ssumption that no start times are given, i.e.
Ti = 0 for all jobs Ji E :J. In fact, their algorithm canuot be used, wheu starting times are
givel1, since the problem P21res . ·1, Ti,Pi = llCmax is also N P-cornplete, so their basis
solution cannot be constructed in polynomial-time.

Furthermore, for zero start times Garey ct al. construeted with the First-Fit-Decrcasing
heuristie a schedule oflcngth CFFD which asymptotically is a (s+ ~ )-factor a.pproximation,
i,c. there is an non negative integer N such that for all Copt 2:N

1
GFFD :s; Cop'(s + 3').

de Ja Vega and Lueker [32] improved this result presenting for every E > 0 a linear time
algorithm with asymptotic approximation performance d +f.

Given arbitrary start times in {I, ... , n} we will show the firstpolynomial-time 2­
factör approximation. Let Copt be the integer minimum of our scheduling problem and let
the integer C denote the size of the minimal schedule, if we consider the LP relaxation,
where fractional assignmcnts of the tasks to seheduling times are allowed. We briefly call
sol11tions to the LP relaxation "fractional sehedules" and solutions to the original integer
problem "integral schedules". This should not cause any confusion: Cis always an integer,
only the assignments colTcsponding to C are fractional.

Theorem 3.4 FOT the problem Plres . ·1, Tj,Pi = llCmax with mtional resource require­
ments, i.e. Ri(j) E Qn [0, 1] a schedule of sizc at most 2Gopt can be found in deterministic
polynomial time, provided that bi 2: 6[log(4C(s +1))1 for all i = 1, ... , s + 1.
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Remark

• Note that C is at most the sum of 11. and the maximal start- time, hence the factor
10g(Cs) is within the size of the problem input .

• Our results are related to the results of Lenstra, Shmoys and Tardos [17J, who gave
a 2-factor approximation algorithm for the problem of scheduling independent jobs with
different processing times on u11.reZated processors. Their algorithm is essentially a combi­
l1atorial rounding procedure rounding the solution of the associated LP. Moreover, they
showed that there is no p-approximation algorithm for p < 1.5 , unless P = NP. U11­

fortunately their rounding procedll1'e does not apply to the case, when arbitrary resource
constraints are given. The reason is that given arbitrary resource constraints, the LP might
loose essential combinatorial structures, fOT example the polyhedron is not pointed any­
more (see [17]). This is a typical situation where randomization might be helpful. The
significance of the 2-factor approximation is emphasized by the most probable intractabil­
ity of the problem of fiuding approximations better than 1.5 in polynomial-tirne.

Theorem 3.5 Eve11. if bi E D(log(Cs)) for all co11.strai11.t bou11.ds bi , there is 11.0 poZynomiaZ­
time p-approximation aZgorithm for Plres . ·1, rj,Pj = 11Cmax for any p < 1.5, unZess
P=NP

Before going into details, we give an outline of the proof of Theorem 3.4. First we must
generate a fractional solution, then we have to define randomized r01111ding. While the
first problem is easily solved by standard methods solving at most log T linear programs,
where T = n + Tmax and Tmax is the Inaximal starting-time, in order to find the minimal
fractional completion time C, the second problem is non trivial: for each job Jj let Xjz

be the 0 - 1 variable indicating whether or not the job .Tj is processed at time z. Then,
because we wish to process the job Ji, we must require L~~l Xjz = 1. Suppose tImt we
have found the fractional completion time C corresponding to XjZ> 0 :c; Xjz :c; 1 (the
fractional optimal assiglllnents of the jobs to the scheduling times) with L~~l Xjz = 1. A
possible and suggestive randomized rounding procedure would be to cast for each job .Tj
independently a C-faced die with face probabilities XjZ> where thc z-th face represents the
dlOicc of the time z for job .Tj for all z = 1, ... , C and j = 1, ... , 11.. Unfortunately, since
we have a packing problem it may happen that simple dice casting produces a schedule
in which too many jobs are scheduled at thc same time requiring more resources than
available.

To avoid such prohlems we enlarge the time interval {1, ... , C} to {1, ... , 2C} and
consider fOT each job Jj a die with 2C faces, where for each z E {1, ... , C} the faces zand

z +C occur with probability ~. In this fashion we will generate a schedule within 2C
and at each time the cxpected amount of resource Ri will be only ~ ..

Proof of Theorem 3.4:

Let Tmax := maXj=l, ... ,n Tj and T = Tmax + n. Then obviously

C :c; Cop' :c; T :c; 211..

C can be found as follows: Start with an overall deadline C E {1, ... ,T} and according to
[17J check, whether the LP
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Lj Ri(j)Xjz < bi VRi ER,
z E {J, ... ,T}

Lz Xjz 1 VJ; E .:J
Xjz 0 Vz < Tj,j E {1.J ... ,n}
Xjz 0 VJj E .:J,z > C
Xjz E [0,1] .

has a solution. Using binary searoh it is clear that we will find C having solved at most
log T such LPs. Let Xl,' .. , X" be mutually independent random variables taking values
in {1, ... , 2C}, where for each z E {1, ... , C}

x·
W(X; = z) = lP(Xj = z +C) = ---E.

2

1"01' Z E {1, ... , 2C} and j = 1, , n !ct X jz be the 0 - 1 random variable, which is J, if
Xj = Z and zero else. For i = 1, , s+1let Eiz be the event that at a time z E {1, ... , 2C}
the i- th resource constraint bi is not violat.ed:

"
"'i.~ R·( ') v, < b'"LJ t J _"l.JZ _ 1

j=l

Ohviously

E(t Ri(j)Xjz ) = t Ri(j) x/z :S bi

j=l ,;=1 2 2

for all i and z. By the Angluin-Valiant incquality (Theorem 2.2 (a)) and using the as­
sumption bi ::::- 6 [Jog(4C( s + 1))1 for all ,[ = 1, ... , s + 1 we havc

"
lP[Eizl = W[L Ri(j)Xjz > bi]

j=l

4C(s +1)'

VVe only have events ofthe form E(+), Ihus we don't have to care about restriction (9) for
I;he deviation parameters, and Theorem 2.13 conc1udes the proof.

o
The negative result is:

Theorem 3.6 Even if all start times are zero and bi E .Ii(log(ns)) for all
i = 1, ... , s + 1, it is N P-complete to determine, whether Ol"not the scheduling problem
Plre" . ·1,1·j = O,]1j = 11Cmax has a solution with Cop' = 2.
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Remark Note that Theorem 3.6 implies Theorem 3.5, since it is a special case of problems
considered in Theorem 3.4: We have zero start times, henee T = n and C :0; n. Therefore
the N P-eompleteness of problems with bi E D(log(ns)) implies the completeness of prob­
lems with bi E D(log(Cs)). And finally, an approximation bettel' than a factor ~ would
contradict Theorem 3.6: W.l.o.g. assurne that Copt > 1. If a p-approximation algorithm
with p < i outputs 2, then Copt = 2, and if its output is greater or equal 3, then Copt :,. 3
(beeause p < ~). Henee we would be able to deeide in polynomial-time whether 01' not
Copt = 2.

Proof of Theorem 3.5

We give a reduetion to the problem of decomposing a graph into two perfect matehings,
which is known to be NP-complete [13]. Let G = (V,E) be a graph with IVI = n'. For a
moment let ]( :,. 0 be an arbitrary integer. We will define a seheduling problem associated
to G with n jobs, m proeessors and oS constraints. First we define an auxilliary graph
H = (V(H), E(H)):
For eaeh node in G introduce K red copies and 2K blue copies and let V(R) be the set of
these red and blue nodes. Whenever {v, w} E E, put an edge between the eorresponding
to red copies {Vi, Wi} of V and W for 1 :0; i :0; K. Let us eall a11 the red copies corresponding
to the same node in G a red set. We identify each node of H with a job, so n = 3n'K.
Considering m = 3n'K identieal proeessors, we get rid of the proeessor eonstraints.

,,-'
w (

"'.
red node,1

'.
) red nlldes..'

Figure 1: The Graph H

Let us define three type of resouree eonstraints A, Band C corresponding to suhsets
of V(O) and V(H) as fo11ows:

Type A:
For each set of three nodes ('" 1), w) of 0 with at least two indueed edges define a

resouree R(u,v,w) with upper bound 2K and suppose that any job associated to a red copy
of one of this three nodes (", V, w) needs Olle unit of R(u,v,w) in order to be processed.

w

u v

Figure 2: Type A resourees

Type B: Whenever 1J is anode of 0 with degree two or more, define a resouree Ru
with upper bound K(deg(1J)-1). Suppose that any job associated with a red copy of one
of the neighbours of 1J needs one unit of Ru in order to be proeessed.
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Figure 3: Type B resourees

Type C: Denne for every red node Vi and every set SK with J( of its corresponding
blue nodes a resouree R(Vi,SId with bound J(, and suppose that each job in SK U {v,}
needs one unit of R(V"SId.

red nodes

bluc
nodes

Figure 4: Type C resources

Due to the reSOUl'ce constraint of type C the key observation is that in a feasible
schedule of length 2 all the red copies of the same node u E G must be scheduled at the
same lime. Tbis ean be seen as follows. Let us assurne far a moment that this is not true.
Then there is avE V with at least one red copy v' scheduled at the time 1 and at least
one red copy v" scheduled at time 2. VVe ean sehedule, due to resource constraint of type
C with bound J(, at most J( - 1 blue copies of v at time 1 and therefore must schedule
tbe remaining blue copies of v at time 2, violating same resouree constraints of type C.

Henee the problem is whether or not tbe red jobs can be seheduled in two times without
splitting off the red sets.

We show: There is a partitioning of G into 2 perfect matchings if and only if there is a
feasible schedule of size 2.

(a) If there is a feasible sehedule, put the nodes of G eorresponding to red nodes (ar jobs)
being seheduled at time 1 in a set VI, and the remaining nodesof Gin a set V2 • Sinee a
feasible sehedule does not split off the red sets, VI and V2 buil<l apartition of the nodes
of G. Tbey induee 2 perfeet matehings: Every resouree constraint of type Bensures tbat
at least one neighbour of anode v E Vi is in tbe same set 'ai; v itself, willle the constraints
of type A ensure that far every node v E Vi at most one neighbour is in the same set as v
itself. Henee the induced degree of v is one and we have construeted two perfeet matehings.

(b) Let VI, V2 be a partitioning of G into two perfeet matehings. (If there are isolated
nodes in G, then there are no perfeet matehings. Pairs of nodes with degree 1 we put into
VI)' Sehedule thc red eopies of nodes in VI at time 1 and its blue eopies at time 2. Sehedule
the red eopies of nodes in V2 at time 2 and its blue eopies at time 1. Using the matching
property it is easily verified that this is a feasible sehedule. .
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The proof is complete, if we can show the logarithmic growth of the constraint bounds
m and bi for i = 1, . .. , r. For this we must specify K. Taking K = log nl it is easily verified
that the number of constraints s is

(
210g n')s = 0 ((n')3 +n' + log nl log nl

) = O( (n')C)

for some constant c. Since all our constraint bounds are n(K), we finally can show by a.
straight forward computation that K ~ odog(ns) for some collStant 0' ~ O.

o
Remark Theorem 3.5 says that there is no polynomial-time approximation algoritlull

within a faetor p < 1.5, unless P = NP. This should not be misinterpreted. Theorem
3.6 makes dear that the pathological instances here are instances whose optimal schedule
is 2. But it might be possible that for instances with larger optimal schedules better
approximation factors can be achieved. Indeed, meanwhile we could prove this. For a
comprehensive discussion of the complexity of resource constrained scheduling see [29J.

4 Conclusion

(a) The running time of the algorithmic Chernoff-Hoeffding inequalities is O(mn2 log n;:n),
while the basic conditional probabiiity method runs in O(mn)-time. It is an interesting
problem to dose this gap as mueh as possible.

(b) In our applieations to integer programming we had to assurne that the constraint
veetor b = (b" ... ,b=) posseses components in n(logm). It remains an open problem, if
approximation algorithms earl be given, evcn if bi = O(Iog m).

(e) For resouree eonstrained 'sclleduIing we showed a polynomial-time 2-faetor approxi­
mation algorithm and also that there does not exist a substantially better approximation
algorithm, unless P = NP. Extension of this result has been givell in [29].
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