SERIE B — INFORMATIK

Algorithmic Chernoff-Hoeffding Inequalities
in Integer Programming

Anand Srivastayv
Peter Stangier

B 95-17
December 1995






_Algorithmic. Chemoff—Hoeffdmg Inequalities in Integer
| - Programming ¥

Anand Srivastav* Peter Stangier*™

x

April 1995

Tridyt, Ted oo

P 1
I B H

Abstract

Proofs of classical Chernoff-Hoeffding bounds have been used to obtain polynomi-
al-time implementations of Spencer’s derandomization method of conditional proba-
bilities on nsunal finite machine models: given m events whose complements are large
deviations corlespondmg to welghted sums of n mutually independent Bernoulli trials,
Raghavan’s Tattice approxitnation algorithm constructs for 0 — 1 weights and integer
deviation terms i Q(mn)-time a point for which all events hold. For rational weighted
sums of Bernoulli trials the lattice approximation algorithm or Spencer’s hyperbolic
cogine algorithm are deterministic procedures, hut a polynomial-time implementa-
tion was not kiiown, We Tesolve this problem with an O(an fog B2)-time algorithm,
whenever thie probability that all events hold is at least € > 0. Since such algonthms
simulate the proof of the underlylng large deviation inequality-in a constructive way,
we call it the algorithmic version of the inequality, Applications to general packing
integer programs. and resource constrained scheduling result in £ight and polynomial-
time approximations algorithms.

Keywords: randomized algorithms, derandomization, approximation al-
gorithms, integer programming, resource constrained scheduling.

1 Introduction

In many applications of the probabilistic method combinatorial struétures can be rep-
resented as a collection of events i, ..., En, whose complements F¥ ﬂesiﬁribé large de-
viations in a finite prob‘ablht‘y space for i=1,...,mand j = 1,...,n let (w”) be a
m xn matrix with w;; € 0,1 NQ. Let Xy, .. X be mutually mdependent 0— 1 ran-
dom variables with vatioial expectation E(X, ) = p; and let <); be the Welghted sums
o b = 0% wi X, Given rational deviation parameters A; > 0, denote, by E; exactly one
of the events R

“aby < E(w;) + A7 or “of > E(dd) — A7,
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t = 1,...,m. The various types of Chernofl-Hoeffding bounds for P{ Ef) can be summa-
rized by the inequalites

P(Ef) < e HAE(HY) < FO), (1)

wliere.an optinual cldick of the parameter ¢; >0 gives the sharpest p@§81ble upper bound

f(A;) and fis a function exponentially décaying in A;. If o 1f(’\ )< Vi for some
0 < ¢ < 1, then P(NZ,4 E;) > ¢, hence % E; is not empty and derandomization is
the task Df constructing a point in (j2; F; in polynomial-time. In principle this can he
done by the conditional probability method due to Spencer (see also Erdés/ Scllridge
{11]), for example with Spencer’s hyperbolic cosine algorithm [26] or Raghavan’s lattice
approximation algorithm [23]. But the efficiency of these algorithms heavily depends on
the efficient computation of the conditional probabilities or of appropriate upper bounds
on them on finite machine models, like the usual RAM or Turing machine model. In
particular, the computation of the moment generating functions IE(eb%) is required. This
indeed is possible in the followmg cases:

e For 0 -1 Welghted sumb of Beruoulli trials and 111tege1 As Rd-gh&\’dﬂ s lattice ap-
proximation algouthm ha,s an O(nm) time implementation on the RAM model and
can be considered as a; algonthmm form of the Raghdvan/Spencer bound ([23],
Theorem 1 an !2)

e For0 -1 welghLQd sums of Bunoulh ‘trials, uniform distribution, n = m and A; =
n2+5\/ln 2m) (0 <.6 <1 /2).a.NC algorlthms is known: one can usc either the
method of (log® n)-wise independence (Beger,Rompel [5], Motwani, Naor, Naor [20])
or the construction of small bias probability spaces { Naor, Naor {21]) to design a
parallel O(log n) tirne’ aigo‘rlthm for the construction of a point in (i, F; using

O(n%é) PRAM processors. bequentlaﬂy implemented this glves the Iunnmg time

Unfortunately; for'"rafﬁiidnaiﬁveights w;; and optimal choice of %; the moment generating
functions T{e*¥) necessarily are transcendental, therefore cannot be exactly computed
on a finite machine model, which on the other hand is presumed for a polynomial running
time of the conditional probability method. Of course, if we neglect ¢omputational errors,
for example using floating -point arithmetics, the conditional probability method runs in
(O(nm)-time, no matter. what the parameters or weights are. But frém the computational
complexity point of view,.when the underlying computational model is a 'lurmg ma,chme
or the RAM- model floating, point a,uthmetlcs 18 not sa,tlsfa,ctory

o The correctness of thie algorithm is in doubt, when approximations-are done w1th0ut
provable guarantees.

.. The cost.of numerical approximations is a part of the total running tlme, cotse-
guently hasto be taken into acount.

Indeed, Feldstein and ’lurner [8] confirmed in theoretical models that ﬂoa,tmg point
arithmetic can cause loss oﬁ @;gplﬁca,nce In conclusion, we have to insist on-exaét com-
putations. For a comprehensive discussion of the adva,ntages of the exa,dt computa,tmn
paradigm versus floating point arithmetic we refer to the recen’q pa.pen of C K. Yap [31].
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For rational weighted sums of Bernoulli trials it remained an open problem, whether
the conditional probability method has a polynomial-time implementation on usual models
of computation, like the RAM model or the Turing machine model (remark on page 138
in [23]).

As a main result of this paper we resolve this problem for various bounds from the
Chernoff-Hoeflding family- and obtain results of the following form.

Let 0 < ¢ < 1. Whenever IP(UW] Ef) < Y% F(A) < 1— ¢, then a point in ﬂ 1,]_*, ccm
~ “be constructed in O(mn? log ™% )-time. e

7

The algorithm behind this result gives a clear and unified implementation of the condi-
tional probability méthod and since it heavily simulates the proof of the underlying large
deviation bound, we call it the algorithmic version of the inequality undel conmdela.tlon
For a fix success probability ¢ > 0 we have a strongly polynomial a,lgouthm ‘e, an
algorithm with rimning time independent of the - perhaps large - encoding léngth of
the numbers w;;, A;ip;:appearing in the problem. This has an important conséquence in
applications to integer programming, where the randomized rounding/derandoinlzation
scheme is applied. In'the randomized rounding step an optimal solution to thé linear
programming relaxation is genera,ted This solution draws a probability distribution and
helps to derive with non-zero. probability a good approximation of the integral optnrmm In
the second step derandomization constructs such an approximation. Smce {61 many LP’s
fast, strongly polynomial-time algorithms are known, for example the Tardos’ algorithm
[30}, it is desirable to combine them with a strongly polynomial derandomization procedure
in order to derive strongly polynomial approximation algorithms. We show the fo]lowmg
two applications of algorithmic versions of Chernoff-Hoeffding bounds: :
Consider the packing integer program

max{c’ z; Av < b}

with ¢ € [0,1]", a;; € {0, 1]NQ and 2 € IN™. In the case of 0—1 variables z;, 01 components
aij, ¢ = | and b; = & for some constant integer k, Raghavan's [23] hypergraph k-malching
algorithm gives an a,ppto)umatmn of the integer maximum within a factor of 1—D(k, m,n).
For k > lnm the function D (k,m,n).s constant, thus a constant factor approximation 15
achieved. We cover the initeger problem in 1ts full generality and show for every 0 < ¢ < &
and instances with 10t too'small packing constraints b;, i.e. b; = Q( logm), an (1 - c)
approximation of the integer optimum in deterministic polynomial-time. In particular a
randomized rounding technique is-introduced, which removes Raghavan’s restriction to
(0 — 1 integer programs, '

Furthermore we.consider a classical resource constrained scheduling problem, where
the makespan: has to be minimized ([13], problem $S10, p. 239). We present the first
2-factor applomma.tmn algonthm and prove that the factor 2 is nearly optimal. In par-
ticular, a reduction of the scheduling problem to the problem of pa,ltltionmg a graph into
2 perfect matchings proves for every p < 1.5 that the existence of & polynomial-time
p-approximation algorithm would imply P = NP,

The algorithmic Chernoff-Hoeffding inequalities derived ir:this pa,per constitufe basic
derandomization tools, and has been applied to some other packing integer programs: In
[27] a more sophisticated analysis of the algorithmic Angluin-Valiant bound in the special
case of weighted k-matching in hypergraphs results in a faster derandomization procedure



for this problem. A direct application of the approximation algorithm for integer pro-
gramming presenied in this paper to the hypergraph k-matching problem would require
a dérandomization time of O(mn? log %), while in [27] the improved running time of
O(n‘i’ii'-P #¥log n) is shown. For the feasfmhty multicommodity flow problem good detér-
mititstie dpproximation algorithms along with non-approximability proofs are glven g [28] '
and more about approximability /non-approximability of resource constrained schedﬂlmg :
calii be found in [29]. :

In this paper we consider the RAM model Wlth unit cost {19] for multlphcatlon and dis-
tinguish between polynomial and strongly polynomial algorithms, defined in the usual way: '!
By the size of an input we mean the number of data items in the descripton of the input,,
while the encoding length of the input is the maximal binary encoding length of data items
in the input. On the RAM model an algorithm riuns in polynomial-time (resp strongly
polynomial-time), if the nviriber ‘of elementary arithmetic operations (bmeﬂy called run—
ning tlme) is polynomla,ﬂy boutided in both the size and the encoding length of the mput

""" ‘the input) and.in addition the maximal binary encoding lengtlhi
of a numbel appcarmg ‘during the. execution of the algorithm (briefly called spa,ce) is
polynomially bounded in'the size andlencoding length of the input.

Note that all & ‘d¢fined: ‘polynomial-time. algorithms are also polynomial-time algo-
rithms on the Turing macliine model, because we require that the encoding length of
numbers is polynomldﬂy baunded- it the input size. This is not the case in “pure” RAM
models, where one only co‘unts elementa:ry arithmetic operations, regardless of the size of
numbers. Tt Lo

2 Algoriﬁﬂ]}:ﬁié C hernoﬂ'—HG effding Type Inequalit ies

In the following subsection’ we cite the basic inequalities, whose algorithmic counterpaéﬁt
we wish to derive.

2.1 Chernoff—Hoeffdmg Type Tnequalities

let Xq,..., Xy be mutua,lly mdependent random variables, where X; is equal to an integer
u; with probability. 2j-and is equa.l to an other integer v; with proba.blhty 1 —p;. For

1 < 7 < nlet w; denote rational Welghts with 0 < w; < 1 and denote by 4 the randcrm
variable .

Cip= Yy wiX
. =l
A basic large deviation' inequality is due-to Bernstein (see [10]) and Chernoff [9],in, the
Binomial case (uJ =Lv=0,p;=pw;=1 for all § = 1,...,n) and has been generalized

by Hoeffding [15]:"

Theorem 2.1 (Bemstem Chernoﬁ, Hoeﬁ‘dmg) Lct uj = 1,9 = 0 for all j = 1
and let X > 0. Tﬁcn

(¢) (%> IE(¢)+ ) < exp(-22)
(6) (b < B(p) — A) < exp(--22).




In the literature Theorem 2.1 is well known as the Chernoff bound. For &-wise inde-
pendent random variables similar bounds can be found in the recent paper of Schmidt,
Siegel and Srinivasan [25]. .

For small expectations, i.e IE(%) < %, the following inequalities, which have been
attributed to Angluin and Valiant 3], give sharper bounds. : 31" cF o

Theorem 2.2 (Angluin end Valiont) Let u; = 1,v; e for all’ 5= 1,...,n and let
0<f<1. Then = :

(a) P(p > B)(L+F)) < exp( - EL0
W () (< B($)(1~ B)) < exp(— 258,

For random variables with zero expectation there are two inequalities which ca,n. be
- found in the book of Alon and Spencer ([1} , Appendix}. The first inequality goes back to
Hoeffding, while the second inequality is due to Alon and Spencer [1].

Theorem 2.3" (Hoeﬁdmg) Let u; = l PV =i, wj =1 for all j= 1 ,n and let
A 0. -Then ' -

(a.) ﬂ"('gb > /\) < exp(~gf\—)

(8) (3 < -X) < exp(=2),

. ° T o B )
Alon and Spencer improved the Hoeffding bound e replacing n by pn = p1+. . A Pn.

Theorem 2.4 (Alon, Spencer) Let u; = 1 —p;,v; = —p;, w; =1 for dllj = 1,...,n and
let A > 0. S'c:tp:f;(m%—...-l—pn). Then, ' NS

(@) P> 2) < exp(- 22 + 7i55)

(b) (< =2) < exp;(—z%l).

O

1In the next section we prepare the technical tools for the approximate computation of

conditional probabilities and moment generating functions for weighted sums of Bernoulli
trials.

2.2 Pessimistic Estimators and Elementary Functions

Let us start with a definition of the derandomization problem. Let ({2, IP) be a probability
space, and for simplicity assurite that (2 is the set of all vectors of length n with components
from a finite set 5. Let By, ..., E,, be a collection of events such that P(2, E;) > ¢ for
some D < € < 1. I '

Deﬁmtmn 2.5 (Demndomzzataon Prablem) Pind a vector z € [~y E; in deterministic
©itgne _bounded by a polynomivl in nym, |S| and log 1 <. T
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The “conditional probability method” is the following algorithm:
Algorithm CONDPROB .

INPUT: An event E C £ with P(E) > 0.
OQUTPUT: A vector z € F.

1. Choose 1 as the miminizer of the function w — P[Ew],w € S. e
For tl=2,...,n do:

If 24 ...,2;_1 with z; € S have been selected, set w = 2; where z; minimizes the functi_gp

wes PE2y ..., 81,w],w € S. l

O

The striking observation is that a so constructed z satisfies € E. But it is hard

to compute condifional probabilities directly. Spencer’s hyperbolic cosine algorithm [26]

shows that this is not really necessary, if upper bounds on conditional probabilities can be

computed which behave Tike conditional probabilities., This fact has been conceptualized
by Raghavan [23] who introduced the notion of “pessimistic estimators”.

Definition 2.6 (Pessimistic Estimator, [23]) Let (2, IP) be a probability space as defined
above. Let Fy,..., E,, be a collection of events and let E denote the event (| E;. Sup-
pose thal IP(F) > ¢, ¢ > 0. A pessimistic estimator for the event E° is o sequenice
(U (@1, ..., 2)), which ileralively consiruct a vector (z1,...,%,) € @ and possess
the follownng properties for afll 1 <1 < n:

(a) P2y By, .. m) UM, .. o)
(b) Uﬂ%n(’b‘],. . .,$[,£B,!+1’) S Ulmm(.’l.‘l,;. .,{Ei,)

(e) Umn{z;) <1

(d) Bach UT™(zy,...,z1) can be compuled in time bounded by a polynomial in n,m, |5}
and log(1/¢).
Given a pessimistic estimator, z = (@1, ..., €, ) Is the desired vector, because the conditions

(a), (b) and {c) imply: N
IP(U Eflzy,. .., zn) < 1,

i=1
hence

P(| ) Eflz1,...,20) =0,

‘therefore z € (g F :

By Definition 2. 6 -upper bounds on conchtlonal proba,’mhtlcs are the potential candi-
dates for pessimistic estimators. Since in case of sums of independent .random variables
such upper bounds typically are compositions of elementary functions, we need to compute
them, at least in an approximate fashion. Lemma 2.7 shows that an approximate computa-
tion of elementary functions like exp(z},In(z) and +/z can be done efficiently. It is related
to Brent’s [7] approximation of elementary functions defined over compact intervals, but
the advantage of our approximation is that we can @éél"ivith arbitrarily large rational
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.,numbers;. Lemma 2.8 shows that a product of compositions of exponentla,l functlons a,nd
'loga.rlthms is efficiently approximable and Lemma 2.9 is a simple observation which will
be used to prove the decreasing monotonicity of the pessimistic estimator.

Lemma 2.7 (i) Lety be a rational mimber with encoding length L and let v € (0 1)
.. be a positive real number. Let N be a positive inleger with N > S[Iyl] —I— ﬂog ,Yl]
Then the N-th degree Taylor polynomml

Tn(y) = Th 3] ¥ of éxp(y) Fas encoding length O(LN + N 1og N), can bel compsuterl
in O(N) time. cmd the mequalﬁty [exp(y) Trn(y)| < 41 holds. b g

(1i) Letz > 1lbea mtwnal number, ")‘2 € (0 1) a , real number and Lo = |log 'LJ " For every
N > [log? ‘1] a rational number y with encoding length O(LN) can be compute(i in
O(Lo+ N) time such that |ln =z — y| < 7s.

(#i) Letz be a mtwnal number with encodmg lerigth L, v5 € (0,1) a posztwe -redlt Hvmber.
Ifz > 1, then let N be a posziwe integer with N 2 [log 2] and if 0 <z < 1, then
suppose that N > |'Iog ] A mtwnal numbe?‘ y with bncodzng length O(L + N ) can
be computed in O(N) tzme such that |f —y| € 7.

Proof. ' e R
(i) Since N > 3[y| we ha,ve by Taylor s theorem
Nl
N+ 1Y~ NI

lexp(y) - Tn(y)l < (

-‘-]
Iy
is calculated from f in constant time, Tn(y) is computed m O(N)—~time. lurthel more the
encoding length'of T (y) is a polynomial in L and NV : The encoding length of y™.is O(LN),
“N'!has encoding length G{N log N) and Tn{y) has encoding length O(LN +Nleg N+N) =
O(LN 4+ Nlog N). . 7

and observing that N > &?jy|, N! > (N YWand N > 111 5, the inequality follows. Since =y

ARTAR

(ii) For the computation of In z we use its power series expansion. With Ly = {log 2] as
in the lemma, we have 270 < 2 < 2%+ and we can find Ly in O(Ig)-time. Define

a2l if1<a270 <15 y
BT %900 if 15 <22 <2 SRR

U G G . e aymgaed
and use the decomposition 2 = 2™y or z = §2L°'yg. It is enough to considér ‘the second
case ¥ = §2L°yg, because the arguments in the other case are the same.' - *::

There exists a rational number 1, 0 < 3 < % with 95 = 1 4 3, and we have the

p)
decomposﬂ;lon
ST

lnmr“"Lg[In(l—{- )-{—111(1—1— )]+111(1+ )~|~1n(1+yi)'=

B .!.l

J . Lo - Dtam
Lot 85(2) == 3_(~1)"" 2. Then with Jl-ﬂog(f@ﬂﬂ Land 0 < s < § il g
= i
=1

J} 41 1

il T2
In(1 -8 —_—.
| (14 y1) ~ Su(m)l < 7 +1 S 3 S g




Choosing J; = [togg(:)] — 1, /5 = ﬂog(;—;)] —1,Jy= ﬂogg,(,?—z)] — 1, we obtain |In (1+
1) = 55,(3) < % and so on. Let N > [log 227, Then N > max(Jy, ..., J4) and defining

= Lo[Sn(3) + Sw(3) + S8(5) + 5w

we have |In{2) — y| € 72. The total time needed for the computation of y is O(Lg + N}

(iii)) Let = > 1 (the proof for z < 1 is almost the same). Starting with the interval
[1,4] atid iterating interval halving we need at most flog(:)] iterations to find a y with
ly — vz| < ¥3. Hence with N > [log'Z] the total time needed is O(XV) and since the
encoding length of z is L, y has encoding length O(L 4+ N).
. . ‘ 0

Lemma 2.8 Letay,...,a,,0,7 be rationdl numbers with encoding IPngth atmost L, b > 1
and'0-< vy < 1. Let § > 0 and let Py,...., Ppn, Q be polynomials in n,m, 5 6 with F;, Q@ > 1,
la;] < P; and 16].< Q for alli=1,...,n. Let P = Y."y P; and denote by Py, P,Q also the
numbers Pi(n,m,$), P{n,m,}) and Q(n m, 3).

(i) Let T be the N-th degree Tuylor polynomial of the exponential funct'ibn with N =
10[P] [log @1 + n + [log ”—“ﬂ] Then a rational number ¢ approzimating In b and the

numbers T (a;c) can be computed in O(max(n, Plog () + log 1) time such that the
inequalily

{H eulih _ HTN(%C)I <y
=1 i=1

holds uniformly for all a1, ... a, as above.

(i) Let TN be the N-th degree Taylor polynomial of the ezponential function with N =
10[P] +n+ [log J‘—] Then edch TN(az) can be computed in O(max(n, P)+log 1)-
time such that the mequalzty

- ﬁ o ﬁTN(Gi)I <7

=1 i=1
holds uniformly for all a4, ...,a, as above.

(tii) The encoding length of Tn(a;c) (ﬁ"ésp:. of T (ai)) s O(L{max(n, Plog Q) Jrlog(,%)]z)
“(resp. O(Limax(n, P) -+ Io_g(,}y—)]z).

- : u)
Proof. (i) and the firstpart of (iii): To shorten notation set 5 = #2‘”6"21) log @1 ig —
;1%6—31’[105@1, To = log @], N1 = [log i(n_tlj@] + 3[P][log @] and observe that Ny >
[log %ﬁ] > (log il%l], Using Lemma 2.7 (ii) we can compute a rational number ¢ > 0
such that

lnb—e| <& ' - (2)



in time

O@ﬁﬂﬂ—mmﬂmnPMQHbdD (3)
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and the encoding length of ¢ is O(LN1) = O(L[max(log n, P]og Q) + Iog 1]) By the mean
value theorem, there is a v € [¢,Ind] (or v € [Inb, ¢}, if Inb < ¢ ) with

lezy:l ailnd _ 5ok aic [Inb — ¢f| Zaﬂe” D= G
=1
leisies e ¢ gpeP (A 108Q) i o
PegPl-log Q]
Be e e3P log Q]
- ot - ’}' !
. . (4
T W

IA

IN

R
L

IA QA

Now we approximate g2 =1 GiC, cput N = 10[P|[log @] + =+ [log m] and let Ty be the
N-th degree Taylor polynomial of the exponential function. Since N > 8|'|aic,|'| + [tog 1],

we catt invoke Lemma 2.7 (1) havmg precomputed ¢ as above, Tn(a;c) ¢an be computed
in time e Vit

T O(N) = O(max(n, P165 ) + log 1), - %)
- g
its encoding length is ‘
O(LNy1N) = O(L[max{n, Plog ) + log(— )] )

and for each ¢ = 1,...,n the estimate
|e%¢ — Tw(aic) < n (6)
holds. Farthermore, because |lnh— ¢} < ¢ <1

|TN(0.3'C)| < 1-}_— g€
1 + eﬂ.i(l + ]Jlb)
262135(10@ Q]

So, for any product [{i.; F; wlie_]:e E ié_git_her e%¢ or ;TN(aic) we have !

<
<

[T 1 < 2e? Tim Rllog Q] — one2Pllog Q1 (M

i=1

Employing the triangle inequality n-times and using {(4), (6), (7) we get

IH&E“1 Inb HIN(G;C)l < none2Pllog Q]W
BRIEYY: A . __Ti:_}l_“‘ ' ; ‘iII
a4 Lo
} < - &




By (3) and (5) the total computation time of each Tn(a;c) is

O(N) = O(max(n,Plog Q) + log %)

(i) Apply the proof of (i) skipping the goﬁlputation of the logarithms. 5
N . O

The next lemma will be needed to show the monotonicity of the pessimistic estimator.
Its proof is an easy exercise:

Lemma 2.9 Let fi,..., fi be a finite.and monotone decreasing sequence of real numbers.
Let p > 0 and let gy,...,9. be ¢ sequence with |fi — g} < p. The sequence hy,..., N0y,
defined by hi = g1+ 2(2n — Dy for 1 = 1,...,n is monolone decreasing.

O

2.3 0-1 Random Variables

Let m ¢ IN. We define m large deviaiion evenis as follows:

We are given n mutually independent 0 — 1 random variables Xj, ..., X, defined throngh
Prob(X; = 1) = &; and Prob(X; = 0) = 1 — &; for some rational numbers 0 < Z; < 1.
For 1 <i<m,1 <7< nlet w;; denote rational weights with 0 < w;; <1 and denote by
1; the random variables

n
;= g wi; X ;.
i=t

For I <1< mlet X; > 0 be rational numbers and define the event _Ei('lﬁ) by
and let Ef_) denote the event
“oby > T(ePs) — A7

Furthermore set £ = (., B; where E; is either E(H or L‘(_) For each event E; let
f(A;) be the upper bound on IP(EC given by the correspondmg lcuge deviation inequality

in Theorem 2.} or 2.2, so f(X\;) = exp(_hL) or f(A;) = exp(— U (10' ) with d = 2,3.
Suppose that for some 0 < ¢ < 1 the strict inequality

D) <1-e (8)

is satisfied. Then Theorem 2.1 resp. 2.2 imply (% £;) > ¢, hence (2, E; is not empty
and we wish to find a vector ¢ € (%, £; in deterministic time bounded by a polynomial
in n,m and log :

Belore we start with the proof, we briefly skétch the main steps We wish to construct
pessimistic estimators for the events Ef. For example, let F; be the event “if; < I(4f)+ A",

10
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.. Condltlomng oni(Xq,..., X)) = (w, .. ,y;) with y; € {0,1} and 1 < l <:in, Ma.rkoff’
inequality and the mdependence of the X;’s imply

PLEf|y1, ..., m] < e MHE( Yy, .., 3)

e = Mt ]:[.E(etiw‘j){jlyl,. ) .,,y[).

i=1

In the most complicaled case ¢; is of the form ¢; = In s; and we have to approximate the
- factors B
E(ewaXslnsi|y . y).

This can be done by Taylor polynomials and such polynomials will define a pessimistic
estimator. The crucial point is that the accurancy of approximation or in other words the
degree of such polynomials mist be chosen carefully in order to guarantee both, a fast
polynomial running time of the approximation procedure and the pessimistic estimator
properties. :

First let us consider the Angluin-Va,lia.nt bound. Before we continue, we put a soft
technical restriction on the deviation terms A;.

Deviation parameter in the Angluin- Valiant bound:

Let A; = Fil(4;). I E; is an event of the form Ei(ﬁ), then F; is noun trivial only, if
Ap < TE(4h;), which —- assuming IE(1;) > 0 — is equivalent to §; < 1. But in the proof of
Theorem 2.2 (b) (see {18], proof of corollary 5.2 (b)) an opiimal choice of the parameler #;
introduced in (1) requires that ¢; is a real function in E(4;) and §; and has a singﬁlarity
at g; = 1. For this reason we assume that

Bisi- )

nh

for some constanl x; > 0. Note that the restriction above is only a technical assump-
tion and does not affect the applicability of de1 andomlzatlon to the integer programming
problems considered in this paper.

Theorem 2.10 (Algorithmic Angluin-Valiant Inequality) Let 0 < € < 1 gnd Eq,..., F,
be a collection of events estimated by the Angluin-Valiant bound. Suppose that (8) and
(9) are satisfied. Then P(L; F;) > e and a vector ¢ € (ir B; can be consirucled in
O (mn?log ™*) time.

Proof. In the following we will give the proof of the required running time. Space con-
sideration can be done in parallel ‘passing through the proof and repeatedly using Lethma

2.8 (ii). Since this requires only tedlous caIculatmns but in principle should be clear, we
omit the details. :

Case 1: m=12
Set A; = B:;5(%;). Let Ey be the event:

¥ < E(1) + s
and let £y be the event o
e > E(1h) — As.

11



All other combination of events can be treated in the same way. The basic functions Vi, V5
from which we will derivé the pessimistic;estimator are defined as follows. For 1 <1< n
let 21, .., % be chosen from {0, 1}. The upper bounds for the conditional probabilities are:

P(Bfl, ., ] < e BN,

where o7 = +1, 03 = ~1 and an optimal choice of ¢; gives the Angluin-Valiant bound.
According to McDiarmids proof of the Angluin-Valiant inequality [18] ¢; = In s; with

(B £2)(n — B(tr))

T E@Dm - ) - M) (10)
;
o = E(3h)(7 - E(3h2) 4 Aa) (1)
L7 (0 = E()) () — A)’ |

The event “ ¢ < (1) + N\ ” with A; = B1IB(py):
Let s; be as in (10) and define for [ > 1

= T
Vr(l)(yl; cen ) = e*(]E(if)l) 1 A1) In 51823':1 w154 In 81 H [‘,Ejewlj In s 11 7]
: G=l11 '

and for i =10

Poon
V(J(l) — o (E(1)+ A1)l 51 H[féjewlj Insy g _ 7).
i=1
The event “ oy > IE(thy) — Az with Ay = BrlE(z);):
With s, as in (11) define for { > 1

VB, ) = e (d2 — E(s))In sz~ 2 w3585 10 2 ﬁ [¢je W sz 415
. i=lt1

and for { = 0
Vo(z) _ (M — E(t))nse H[i:jeng}n 241 ).

J=1

To unify the notation put wyy =0 (¢ = 1,?). Then the Vg(i)’s (2 = 1,2) can be rewritten as

Vz(i)(yl,- ) = H ]E(eaijln .51'),

7=0
with
(CDTE@) A i=0
aij = (1) twyy; 0 F=1,...,1

(—l)i_lwinj : j:l{l,...,n

12



., Note that X1 is our random variable, so for 4 > [ + 2 the a;;’s are random variables,
too By McDiaimid’s proof of the Angluin-Valiant inequality ([18], proof:of coro]lary 5.2
(b)) we have

s H)(Eﬂyl:---:yi)Sm(i)(yla“-ayl) (12)
and using the assumption (8)
y @ @ - BEG) v BEER) .
PEN+PED<Vy ' + V7 <e” 3 4+ 2 <l-e (13)

In view of the conditions (a) and (c} of Definition 2.6 the functions V; are the right upper
bounds from which the pessimistic estimator should be derived. We will apply Lemma 2.8
First we show that the s;’s are polynomially bounded. '

Claim: Let s = maz(L, £1). Then s; < An” fori=1,2.

Proof of the Claim: In order to bound S from above we introduce in addition independent
0 - 1 random vartables X,41,..., Xgn41 and multiply each such X; with Welght 0. Thls
changes neither the e‘{pecta.tlon IF‘('gb,_) not the bounds nor the proof of Theorem 2.2 exrcpt
thal we have to consider 2n -1 instead of n. Since IE(#:) < n we have

SH{E() A2 A 1 - B(4h)
81 =
TE(p1)(2n + 1~ E() — M)
Furthermore with the assumption (9) and using E(1),) < n

_ B(th)(2n + 1 — W(tha) + Ag) 20+ 1 — (1 — B2 )I(9s)
(2n.4+ 1 - E(2))(E(hs) — Aa) (2n+1 = (2))(1 — fa)

< 22+ 1)

i

< 2n+1
T o (n41lmm
< 2n",

We invoke Lemma 2.8 (1) Set v = 2(4 = and = 2n3". Since |ap| < 2n for § = 1,2

and |a23.| <1 for§ = 1,...,0+ 1, we con set for cach { = 1,2, Py = 27 and P, =1for
7=1,...,1+ 1, hence P= Zl—o P; < 3n. With N asin in Lemma 2.8 (1) 'we have ’

N = 107P][log @] + n + [log

] = O(nlogn -+ log z) (14)

Let T be the N—th degree Taylor polynomial of the exponential function. Then Lemma
2.8 (i) implies that for each i = 1,2 the estimate '

T n
H eaij hl % - H T(!aijci) S Y BRIV Lo (15)
j=0 i=0 ’ A

uniformly holds for all a;; depending on yy,...,y and for every i the fétional‘i'i;tional
numbers ¢; and T'(a;jc;) can be computetd in O{nlogn + log %) time. Note that this
estimation is uniform for all a;, because

1 - I
E|a.,;j[ < ZR =P < 3n.
=1 i=0
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Taking expectation and using the independence of the X; and (15) we conclude for each
i=1,2

* n . B ’, "r. '
V0,0 = [] BT (aie))] < 7. 7 )
J=O S L

We proceed to the definition of the pessimistic estimator. For 7 = 1,2 define
7L
Tilwr, - w) = [] BT (@ise:),
s

“and L
T, m) = (T + T2)(¥1, - - )
Let U; be a sequence of functions defined by
U(yey oy ) :T(yl, . ,yj) +4(2n — 1)y. (17)

Furthermore let-U™(zy, . . .., ;) be iteratively defined by the following procedure,

j=1: Let 2, be the value from {0,1}, which minimizes the function y - U;(y). Set

U-jmin(Il) .:: U](E]_}.

J=IL: Suppose that 21,...,2;_1 have been chosen from {0,1} and U,‘Eif‘(:ul, . .,a:;f;i')‘:ha,s

been defined. Let z; be the minimizer of y — Uj(z4,...,21-1,%), ¥ € {0,1}, and define

U™, .. zier, 2) o= U@, .0 w1y, ).

Let (UMin) denote the sequence UP™(z1),. .., UMMz, ... 2, ).
First we show that the sequence (U™") satisfies the conditions (a), (b) and (c) of Definition
2.6. Define

V, = Vl(l) + Vé{z) Dot (18)
Then by (16) the inequality

1T(y15 - -nm) = Vi, m)l < 29 (19)

holds uniformly for all vy, ...,y € {0,1}.

Condition (a):
By (13), (19) and (17)

.

IP(E{UES"LI: “)3;!) (T/l(l) Jrvvl{z))(wl?""wz)
(T1 + Ta)(@, . oym) + 27

Ul(mla' . .,ﬂ![) +4(2?’L* Z)FY

IA AN IA

14



But by definition, Uj(z1,...,21) + 4(2n - )y = UP™(ay, ..., ).

Condition {b):
In order to apply Lemma 2.9 put

e vip e eyt

ﬁ = min[V;(yh . wyl—l)l))m(yla sy Y- I:O)]
and

g :miﬂ[T(.Uh---ayl—1,1)1T(?J1,---,yl—ho)]- . TR BT B
Using (19) we have.

|fi— ol <2y
foralll =1,...,n. Since, if1,..., fn i8 monotonely decreasing, Lemma 2.9 1mphe% that the
sequence (U mm) possesses the safme propelty T i Coe aal

Voo

Conchtlon (c): R TR
- With. condition (b), using, m1n(V1(1) Vl(O)) < Vo a,nd (13) we get

'Uinm(mi) Te= Ti(z1) + To(m1) 4+ 4(2n - 1)y
Cmin(Vi(1), VA(0)) -+ 27 + 4(2n — 1)y
Vo + 29 +4(2n — 1)y
s v p oy - 1y
< T e 2y 1420 - 1)y
1.

R i ;AT
i I

We are done, if we can show an overall running time of O(mn?log 22). Let us ﬁx

1 < < n and consider the Taylor approximation for Vt( ) The a1gumentat10n for Vt( )
goes similar. First note that

; 1 1 1 g .
VI, .. = T"z{_%(yn---,yz—l)mew”y“ oL, (20)

According to Lemma 2.7 (i) and with N as in (14) we can compute ¢1, IB(T(aye1)) and
(T(wuylgcl)) in O N) = O(nlogn + log )-time. In the first step the approximation of

(¢1)+}‘)11151H;Le“‘1111n31+1 #;]
=1
requires the computation of n + 1 Taylor polynomials. This takes O(n[nlogn + log %])
time. Then by induction and using the recursion (20) the total time for the computaion
of Uy(zy,..., %) is

n

0 (n [n]ogn+log H + Z (nlogn-l—lo‘g —i—)) =0 (n210g E) .
. _ | €

=2 ™
Case 2 m B2

iu il”

a Note tha,t f01 dlbltrary m the same ploof goes through, if we replace e by a,nd fdeﬁne

(R

Uiyts 1) = (To 4o+ T (911, 0) + 2m(20 — Dy,

15



Then we get a worst case running time of
O(mn[nlogn + log ]) = O(mn®log ——)

and the theorem is proved.
O
The algorithmic version of the Chernofl-Hoeffding-Bernstein bound can.be derived
similarily.

Theorem 2.11 (Algorithmic Chernoff-Hoeffding Inequality) Let 0 < e < 1 and Fy,. .., £y
be events estimated by the Chernoff-Hoeffding inequality. Suppose that (8) is satisfied. Then
P2, E;) > ¢ and a vector © € (Viey F; can be constructed in O (mn[n + }og ]) tzmc

Proof. We follow the-ar gumenta,tlon in the proof of the algorithmic Anglumv\fahant in-

equality. Let the events F; be as there. The Chernoff-Hoeffding bound is

2,
n

According to the proof of the Chernoff-Hoeffding inequality (Theorem 2.1) as given in
[18] the parameters ¢; are ¢; = éi\* Therefore we do not have to compute logarithms and

can spare a log-factor. Because tnvm,]ly A < m, we have O(t;\; + nt;) = O{n), thus the
exponent of

f(Aq) € exp(~

—1; )\z]]“(et T.bz)

is Ofn). So due to Lemma 2.7 (11) the degree of the approximating Taylor polynomla,l as
well as the time to evaluate such a polynomial is only O(n + log(™®)) = O{n+ log(™
The rest of the proof can be carried out as in Theorem 2.10.

2.4 The Case Q =]} AL =25, -5}

In this subsection we consider the Alon-Spencer bounds. We can argue as m t.he section
above, with minor modifications of the notation. We are given n mutually 111dependent
random variables defined through Prob(:X; =1 — &;) = Z; and Prob(X; = —&;) =1~

for some rational numbers 0 < &; < 1. Forl <i< m, 1 <7 < nlet w; be ra,tiona,]
weights from {0, 1} and denote by %; the random variables

n
;= Z wi; X
i=1

Put p; = E(ip,)/nt where i = 2oi=1 wi; and let A; > 0 be rational numbers. Tor 1 <7 < m
let L'(+) be the event “tp; < +A;” and let }_u{ } dencte the event “ohy > —A;". Parthermore
set. & = (2, E; where F; is either F( ) or E( 7). For each event F; let f(A:) be the upper

_bound for P(EY) as given by the conespondmg large dewa,tlon inequalities in Theorem

C 23 0r 2.4, 50 f(A) = exp(=25) or F(A) = exp(~ zpmi i+ giye) o (X)) = edp(= 5ae)-
Suppose that for some 0 < ¢ < 1

R

i_f()\i) <1l-—e (21)

=1
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- for soTle cons’gé,nt kg > 1 and -

Furthermore, we need again some techni’c-a.l_ assumption to avoid singularities of parameters
used in the proof of the underlying botindé" ! '

SR

Deviation Parametgy;in.the Alon-Spencer Bound:

_"fIWe need to considey ‘Theorem 2.4 (a.) only If 377 ; w;; > 0, then we assume t_‘liat

vyt

E;l‘jlilz ' z w‘lj‘al.:' = ﬁﬁg i - (22)

i

3 vyt
FTE B

MOy (29)

for some constant Fa}g > 1. The derandomization result is:

Theorem 2.12 Let 0 < € < 1 and Ey,..., By be events satisfying (22), (23) and (21).
Then (L1 B) 2 ¢ and a vector & € (V2 F; can be constructed in O (mn? log %:)-time.

Proof: In view of proof of Theorem 2.10 it is sufficient to consider the case m = 2.

Let 1 <! <nandwy,...,u with 3 € {1— &;, —&; .
The basic Tunctions Vi, Vs here are:

The event “ih; < A7
Let {1 > 0 and define for I > 1

I T
Vz{i)(yla- L) = emil)‘iezjil WYt H {:Ejewlj(l 7)t1 +{1- ) 'wls,rjil]
g=i41
The event “ > —A":
Let by > 0 and define for{ > 1

VP g, ) = e Bt 2ojt WaiYita I [#7e w21~ Bi)la (1 . ;) W2itite),
j=l41

With the following minor modifications the proof can be carried out as in the 0-1 case.
The parameters t; can be choosen according to the proof of Corollary A.7 (respectively the
proof of Corollary A.10/Theorem A.13 in (1}): In case of Theorewi 2.3, ¢; = i for i = 1,2

and in the proof of Theorem 2.4 (b), t2 = fr“'z—— Therefore the exponen’es -above are
Wajdy

rationdl fiumbers and in view of Lemma 2.8 we don’t have to compute Iogartthms In case

of Theordm 2.4 (a) ¢, = In(1 + Zn ) and by restriction (22), —n—l"— < Agn?

This will give us according to Lemma, 2. 8 takmg ) = 1+ Ayn™ and w1th ')' as in the proof
of Theorem 2.10 a running time of O(ngnz log %21, With Ay = O(n*®) as in restriction
(23) and since the x’s are constant, we are done.

0
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2.5 Multivalued Random Variables

Finally, we consider multivalued random variables, especially » mutually independent
dice. We investigate a situation in which the random variables under consideration have,
Biomial distribution and thus may apply the tools developed so far. Let n, N be non '
negative integers. We are given 7% mutually independent random variables X; with values
in {0,..., N} and probability distribution Preb(X; = k) = & forall j = 1,...,n, & =
1,...,N and ny:l &5 = 1. Suppose that the £;; are rational numbers with 0 < 27 < 1.
Let X;i denote the random variable which is 1, if X; = & and is 0 else. The probability
space is '

7 N
Q:{(yls“‘ayﬂ)e H{O?l}N}yj E{O}I}Ns Zygkzl}
=1 k=1

Fori<hk<N,1<i<m,1<j<nlet ’wgf) be rational weights with 0 < wg:) < 1. For
i=1,...,mand k= 1,..., N .define the sums ¥;; by .

hig = D wll Xjp. J(24)
- ‘.:1. i .

Let A;p > 0 be rational numbers. Denote by Et(;r ) the event

Vi < E(Pix) + A o (28)
and by Eﬁ-(k_) the event

ik > TE(hir) — Ai | (26)

Let (£:) be a collection of mNV such events. We invoke the Angluin-Valiant incquality. As
in the 0 — 1 case let f(Aix) be the upper bounds for IP(ES, ) given by the inequality under
consideration. We suppose that :

m N
YD M) <l-e (27)

=1 k=]
for some 0 < ¢ < 1 and assume that the events satisfy condition 9.

Theorem 2.13 Let0 < € < 1 and Ey be as above satisfying (9)'and (27). Then IP({\4 N, Ei) >
¢ and a vector x € (%, NN, Eix can be constructed in O (N mn? log M%""—])—iime.

Proof: For 7 =1,...,n let Q; be the j-th copy of the set

N
{w € {0, 1}N;ijk =1}

k=1

The only difference to the proof of Theorem 2.10 is that in each step of the eonditional prob-
ability method we have to choose a vector y € §}; instead of an integer. This c&n,he done
as in the proof of Theorem 2.10, but would give us a running time of O (N Zmntlog N-}%])
as there are Nm events, n random variables, and - this increases the-running time - for
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each random variable we have ¥ choices. But in our context a simple observation reduces
the rTunning time to O (N mn? + log @]) consider the first step of the computation of
the pessimistic estimator. Let ¢ € £ be the vector we are going to-select in the first skep,
in other words, we wish to determine the outcome of the first die. Let E;; be arbitrary,
but for a moment fix. Then, because 1 is a sum of independent Bernoulli trials,
is either 377 wg-g)Xjk + wgc) oritis 3°7 o wg)Xjk. So, for this 4 we have to approx-
imate only two upper bounds for the conditional probabilities. Each such bound is the
product of O(n) factors of the form exp(e;ln b;) for some rational numbers a;, ;. For each
of these factors the approximation time is O (n logn 4+ log NTm), thus for the product we

A m]) time. (see also the proof of Theorem 2.10. We do this for all

<
events Iy, and get a time of O (N mn[nlogn + log A2—”1]) In the second step, after having
selected the first vector from €y, we can use the update argument at the end of the proof
of Theorem 2.10 and get a time of O (Nm[n logn + log N—;'i]) Summing up over all the'n
steps, we get a overall running time of B

need O (n[n log n + log

T

0 (N mn[nlogn + log A

€ ¢

m]) =0 (]\T?rm2 log Nnm]> . |

3 Integer Programming

3.1 A General integer Program of Packing Type

Lel %, be the set of non-negative integers and let  be the set of non-negative rational
numbers, Let us consider the following integer program:

max{c’z ; Az < b,z € v/ A

where b € QF, A is a m X n matrix with rational components a;; € [0,1]® and ¢ is a
rational vector ¢ € [0, 1]". _ _

Let us denote by P the polytope {z € Q%; Az < b} and by Py its infeger skeleton
PnZY . The LP relaxation, where the componets z; of 2 can take arbitrary non-negative
rational values, can be solved in polynomial-time with standard linéar programming algo-
rithms. Let 4 > 0,y € Q7 be an optimal solution vector found by linear programming. If

"we try fo apply the known 0 — 1 randomized rounding method directly, we get problems
due to the fact that we are rounding to arbitrary integers and we must guarantee that
the rounded vector is in Pr, with positive probability. There arc two more or less obvious
randomized rounding methods for rounding the components y; to an integer, but both
have drawbacks:

(a) The perhaps most obvious rounding procedure is to round y; to [y;] or to |y;]. This
can be done in a randomized way performing n independent Bernoulli trials £;, defined
. through Prob(£; = 1) = y; — ly;] and Prob(& = 0) = 1—y; + |y;]. Let ' be the rounded
vector with components '|y;| 4 £; and denote by |y] the vector with components |y;].
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Invoking the Angluin-Valiant inequality we can prove ' € P; as follows. Let 67 ¢ Q™
- be the decreased vector with components 7 := b; — (A|y]);. Then with Theorem 2.2 (a)

Prob(y' ¢ Pr) = Prob(3 i Ay > b;)
= Prob(3i (AE); > b; — (Aly|)i)
= Prob(Ji (48); > (1 + l,)llﬂ"’d

92 ]
i pred
< e
i=1

and we can conclude that Prob(y’ ¢ Pr) > 0, if the last inequality is strictly less than 1.
This indeed is the case under the typical assumption of randomized rounding in integer
programming, i.e. if 57°¢ = Q(In m) for all ¢ (the constant here is 12). See also (23], analysis
of k-matching. But even if b; = Q(In m), it may happen that the decreased right hand side
b7e? drops below the lower bound for 4; and the analysis fails. This is the reason why the
0 — 1 randomized rounding scheme of [23] cannot be applied directly.

(b) An intuitive better idea is to perform a more flexible rounding in which by chance some
y; can become much bigger or smaller than [y;]. One extreme way to do so is to split off
each y; into 2| y; | “segments” of value 0.5 and one segment of value y; —|y;]. This complete
splitting enforces b{ed = b; and the 0 — 1 randomized rounding scheme is applicable: for
each y; randomly round the values of the segments to 0 or 1 with probabilities equal to
the segment values. The j-th entry of the rounded vector ¥’ thén is the sum over all
the rounded segments corresponding to y;. Ilence we have reduced the problem 10’0 —1
randomized rounding, and since b:fe‘i = b;, we have Prob{y! € Pr) > 0, provided that
b; = Q(Inm) for all 4. Unfortunately, this is not a polynomial-time rounding algorithm,
because the number of random variables depends on the magnitude of numbers appearing
in the fractional solution.

Our strategy is to compromize between these two extreme roundings. Let 0 < ¢ < 1.
The goal is to derive an (1 —¢)-factor approximation of the integer optimum. It is achieved
in 3 steps.

¢ {Randomized Rounding) First we split off each y; in a fixed integer part y.J-r % and a

J
sufficiently big roundable part ;" with y; = y; "y y?%" (Algorithm Split{e}}. The
sizes of the roundable parts ;"" are responsible for the number of random variables
we use. In Lemma 3.1 we show that at most O(—m—lﬂﬁm) 0 — 1 random variables are
needed to cnsure that for alt 4, b75¢ = Q(lﬂiﬂ), whenever b; = ﬂ(l-c’féﬁ) Then for
each 7 = 1,...,n we set k; = [y;-"”J and define 2&; + 1 independent 0 — 1 random

variables X1,. .., Xak,+1. The rounded vector z > 0, 2 € Z™ will have components
2k +1
2=y 4+ > X,
=1
7 =1,...,n (Algorithm ROUNDING).

¢ (Analysis) In Theorem 3.2 we show with the Angluin-Valiant inequality (Theorem
2.2} that o satisfies Az < b and f'e > (1 — €)cT 'z o with probability at least ;i—,
where z,,4 is an optimal integer solution.
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o {Derandomization) Finally, we will derandomize the algorithm via the algorithmic
Angluin-Valiant inequality.

In the whole analysis we need two important parameters, b, and e.:

b, = f6(2 6).” 16

log(2m)| and ¢ := 2 (28)

Algorithm SPLIT(¢)
INPUT: The fractional optimal solution y = (y1,...,%n) with 3; > 0 and 0 < € < 1.

OUTPUT: For each y; an integer 'yf > 0 and a rational number yJ*" > 0 with y; =
f T var
+;

begin
Initialization: Set forall j = 1,...,n
v =yl
¥t =y - il
for eachi¢=1,...,mdo
While b, — (Ayfm) < b do
choose yJ € {yr1 v i) with ai; > 0 and y; > 1.
set ] = yj”‘ 1 and Y=gt 1
end
While ¢y — ¢Ty/* < ¢, do
choose y; € {’yl- Y ,y,{ic”} with ¢; > 0 and y; > 1.
sel y{ T y;”’ Land y7* ==y + 1.
end
end

The next lemma follows immediately.

Lemma 3.1 Let b, = fﬂ?'-_—fl] [log(2m)] and c. = 1§ as in (28). If b > b, for all i =
L..,mand 307 ¢jy; > ¢, then SPLIT(¢) generates for each b; at most O(—Qg—m—) mmlom
mrmbles and computes v/ in O(ﬁlg’ﬁ—) time such that

b; — (Ayﬁ”’),; > b, and ¢y — L y™" > e, (29)

foralli=1,...,m
7 [
Now we can define the randomized rounding procedure. For each § = 1,...,7n set

k= [y;!ﬂ'fJ and define 2k; 4 1 independent 0 — 1 random variables x1,...,X2k,41 by

Prob(xy=1) = ! (1 - E)

Prob(x; =0) =



f-)ﬂ’)br (X2k5+1 = 1)

5 - L) (1 5)
(v — LyJJ) ( )

Prob (sz,--H = 0)

1< 1< 2%
Algorithm ROUNDING

L. Foreach ! =1,...,2k; + 1set independently x; to 0 ot 1 with probabilities defined
as above, . _ _ . ' :

2. Output is the rounded vector 2 > 0, x € IN™ with components
P

2ki+1
Z5 :y‘:{w‘l' Z Xis
1=

(]

Theorem 3.2 Let 0 < ¢ < % and b, [5@6;—611 [log(2m)]. Suppose that b; > be for all

t=1,....mand ey + ...+, > 13 Then an integer vector ¢ € X",z > 0 with Az < b
can be constructed in polynomial-time such that .

Lz > (1- ﬁ)cTy > (1- E)CT%pt-

Proof. Note that the somewhat strange restriction e < {5 Is necessary to satisfy condition
(9}, but has no infiuence on the guality of appromma,tlon since we want {o approximate a
maximum. We divide the proof into 3 steps. First we show that the vector z is in" 7 with
probability at least 1 Then it will be proved that with probahility at least 3 CT’l is an
(1—¢€) approxlmatmn of T Zopt- Hence with probability at least 1 both is true a,nd in the
third and last step we derandomize using the algorithmic Angln1n—Vahant mcquahty

Clatm 1: P(Az < b) 2
Proof, Let 7% be the reduced right hand side with

yied = b, — (Ayf™®);

For each j = 1,...,n let §; be the random variable

and let £ € %} denote the vector with components &;. For ¢ = 1,...,m define ¥; by

U, = (AL);.
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Then

E(T:) = (Ay™")(1-3)
= Z:am(y;, v 1= 2)

1z ¢
< (b — Zaijyj J(1 - 5)
=1
E .
= (1= 5)(bi = (Ay"))
— _ £ red
= (1 2)b, .
Taking f; = 3% for all 7 we get by the Angluin-Valiant inequality {Theorem 2.2 (a))

P > B = (W > (14 B)(1- 5B

2(] — £ bi_‘ed
S exp (_ﬁz( 2) i )
3
< exp(—log2m)
1
= . 30
T (30}

Hence foralli=1,...,m
(Az)i = [Ay"™ + V)
= (Ay")i+ ¥,
< (AyfE) 4 67
with probability at least %
Claim 2: (T2 > (1 - €)cTy) » 2.
Proof. Deline the reduced objective function value by

rd = y_cTyfn

Then the random variable z := ¢’ £ satisfies (2) = e’ y”*" (1 — s
The vector with 1 in the first . components and 0 elsewhere is feasible, because on
the one hand b; > b, and on the other hand ey + ...+ ¢, > i—E, hence 7y > i—{?. According

to Lemma 3.1 we have 2"°¢ > %g@ and setting fg =,/ (—2%}2,3 it is easily verified that

(1= p)ari(1~ “)>(1 0)z"?.

Hence by the Angluin-Valiant inequality

Pz < (1 -6z <Pz < (1-p)(1 - Ted) i (31)

23



and Claim 2 is proved. Combining Claim 1 and 2 we conclude that the assertion of
the theorem holds at least with probability 41. In order to derandomize this result, we
apply the algorithmic Angluin-Valiant inequality (Theorem 2.10). The total number of
random variables .after the execution of the algorithm SPLIT(e) is N = n + N; with
N, = O(’—”‘—le%m) Recall that for i = 1,...,m, By = ,fﬁm and f; = 3%, Let E; be
the event “U; < 574" which can be written as “¥; < (1 — 8;)(1 — %)b}'ﬂd” and let Eg be
the event “c¥'¢ > (1 — Bo)(1 ~ £)2"*%”. (30) and (31) imply

kil gu=gared T pa-gpured
P(E§) + Y P(E) S et 4 e <,
1==1 =1

and condition (8) is satisfied with constant probability strictly less than 1. In order to
apply Theorem 2.10 we must also ensure that the restriction (9) is satisfied which

1
Nm

fo <1~

for some constant x; > 0. Using 2"%¢ > 162, e < 19—0 and assuming N > 2 (which always is

true) we get
Bo<1—t<i L
- 4 N?
, (]
In case of all ¢; = 1, we trivially have ¢y + ... 4 e, = b.. Furthermore,if Aisa 0 -1
matrix, then the corresponding finear program can be solved in strongly polynomial time
by the I.P algorithm of Tardos [30] and we have

Corollary 3.3 Let 0 < ¢ < 1 and b, = fﬂi—z_ﬂ] [log(2m)]. Suppose that c; = 1 for all
j=1,...,n, Ais a0 —1 matriz and b; > b, for alli = 1,...,m. Then an integer vector
x & Z v >0 with Az < b can be constructed in strongly polynomial time such thal

x> (1 - E)CT’y >(1- E)CTIBOW.

3.2 Resource Constrained Scheduling

An instance of the resource constrained scheduling problem with start times consists of
([13}, p. 239):

o Aset J = {J,...,J,} of independent jobs. Fach job J;, needs a time of one time unit
{or its completion and cannot be scheduled before its start time-r;, r; € {1,...,n}

e Asel P={P,..., Pm} of identical processors. Fach job needs one:processor.

s Aset R = {Ry,..., H:} of renewable, but limited resources. This means that at any
time all resources are available, but the available amount of each resource R; is bounded
by b; € IN. For 1 <4< s, 1 <7 <mnlet Rij) € [0,1] be rational resource requirements,
indicating that every job J; needs R;() amount of resource R; in order to be processed.

The combinatorial optimization problem is:
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e Find a schedule (or assignment) ¢ : J +— IN of minimal time length subject to the
starting times, processor and resource constraints.

Since the processor requirements can be decribed by introducing an additional resource
Rgy1 with upper bound b,41 = m and defining R,y1(7) = 1, the resource constraints are
briefly formalized as

VzeWNie{l,...,s+1}: > R(5) < by,

{i:0(3)=z}
where {j : o(4) = 2} is the set of jobs scheduled at time 2. The problem is N P-hard in
the strong sense, even if r; =0forall j=1,...,n,s=1and m = 3.

According to the standard notation of scheduling problems the unweighted (i.e. B;(7) =
0, 1) version of our problem can be formalized as P|res --1,7;, p; = 1|Cmax. This notation
means that the number of identical processors is part of the input (— P| —) that resources
are envolved (-— res —) that the number of resources and the amount of every resource are
part of the input, too (——res -+ —), that every job needs at most 1 unit of a resonrce (—
res -- 1), that start times are envolved (— »; —) and that the processing time of all jobs
is equal (— p; = 1 —) and that the optimization problem is to finish the last scheduled
job as soon as possible (— |Crae —). Note that we consider the rational weighted version
with :(5) € Q nJo,1}.

The best known approximation algorithm for the problem class Plres -+ ,7; = 0,p; =
1|Craax, where the jobs can be processed at any time (r; = 0) and the maximal resource-
usage of a job is part of the input, is due to Réck and Schimidt {24]. They showed, employing
the polynomial-time solvability of the simpler problem P2res --- ,7; = 0,p; = 1[Ciax,
where only 2 processors are given, a [ 2]-factor approximation algorithm. Note that Rock
and Schmidt’s approach is based on the assumption that no start times are given, i.e.
r; = 0 for all jobs J; € 7. In fact, their algorithm cannot be used, when starting times are
given, since the problem P2|res - -1,7;,p; = 1|Ciay is 2lso N P-complete, so their hasis
solution cannot be constructed in polynomial-time,

Furthermore, for zero start times Garey ef al. constructed with the First-Fit-Decreasing
heurislic a schedule of length C'ppp which asymptoticallyis a (s+ %)—fa.ctor approximation,
i.e. there is an non negative integer N such that for all Cop > N :

1
Crrp € Cop(s + g)-

de Ja Vega and Lueker [32] improved this result presenting for every € > 0 a linear time
algorithm with asymptotic approximation performance d -+ e. N

Given arbitrary starl times in {1,...,n} we will show the first polynomial-time 2-
factor approximation. Let Copt be the integer minimum of our scheduling problem and let
the integer ' denote the size of the minimal schedule, if we consider the LP relaxation,
where fractional assignments of the tasks to scheduling times are allowed. We briefly call
solutions to the LP relaxation “fractional schedules” and solutions to the original integer
problem “integral schedules”. This should not cause any confusion: € is always an integer,
only the assignments corresponding to € are fractional.

Theorem 3.4 For the problem Plres --1,7r;,p; = 1|Cmax with rational resource require-
ments, i.e. B;(7) € QN[0,1] a schedule of size at most 2C,p; can be found in deterministic
polynomial time, provided that b; > 6{log(4C(s+ 1)) foralli=1,...,5+ 1.
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Remark

¢ Note that C is at most the sum of » and the maximal start-time, hence the factor
log(C's) is within the size of the problem input.

o Our results are related to the results of Lenstra, Shmoys and Tardos [17], who gave
a 2-factor approximation algorithin for the problem of scheduling independent jobs with
different processing times on unrelated processors. Their algorithm is essentially a combi-
natorial rounding procedure rounding the solution of the associated LP. Moreover, they
showed that there is no p-approximation algorithm for p < 1.5 , unless P = NP, Un-
fortunately their rounding procedure does not apply to the case, when arbitrary resource
constraints are given. The reason is that given arbifrary resource constrainis, the LP might
loose essential combinatorial structures, for example the polyhedron is not pointed any-
more {see [17]). This is a typical situation where randomization might be helpful. The
significance of the 2-factor approximation is emphasized by the most probable intractabil-
ity of the problem of finding approximations better than 1.5 in polynomial-time.

Theorem 3.5 Even if b; € Q{log(C's)) for all constraint bounds b;, there is no polynomial-
time p-approzimation algorithm for Plres --1,7;,p; = 1|Cmax for any p < 1.5, unless
P=NP

Before going into details, we give an outline of the proof of Theorem 3.4, First we must
generate a fractional solution, then we have to define randomized rounding. While the
first problem is easily solved by standard methods solving at most log 7' linear programs,
where 1" == 1 + Tar and Tnae 18 the maximal starting-time, in order to find the minimal
fractional completion time C, the second problem is non trivial: for each job J; let =z,
be the 0 — 1 variable indicating whether or not the job J; is processed at time z. Then,
because we wish to process the job J;, we must require 25:1 zj, = 1. Suppose that we
have found the fractional completion time ' corresponding to #;,, 0 € &;, < 1 (the
fractional optimal assignments of the jobs to the scheduling times) with 35, #;, = 1. A
possible and suggestive randomized rounding procedure would be to cast for each job J;
independently a C-faced die with face probabilities #,,, where the z-th face répresents the
choice of the time z for job J; for all 2 =1,...,C and j = 1,...,n. Unfortunately, since
we have a packing problem it may happen that simple dice casting produces a schedule
in which too many jobs are scheduled at the same time requiring more resources than
available. _

To avoid such problems we enlarge the time interval {1,...,C} to {1,...,2C} and
consider for each job J; a die with 2C faces, where for each z € {1,...,C} the faces z and
z + € occur with probability %ﬁ In this fashion we will generate a schedule within 2C
and at each time the expected amount of resource R; will be only %L

Proof of Theorem 3.4:

Let rpue 1= maXj—y, o 7; and T = 7, + n. Then obviously
C <l T < 2n.

C can be found as follows: Start with an overall deadline €' € {1,...,T} and according to
[17] check, whether the LP
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Y REG)T < ok YR; € R,
ze{1,...,T}
Yoo = 1 VI, e¢J
T, = 0 Vz <r;j€4{l,...,n}
2 = 0 VI, € T,2>C
z;. € [0,1].

has a solution. Using binary search it is clear that we will find C' having solved at most

o logT such LPs. Let X1,..., X, be mutually independent random variables taking values

in {1,...,2C}, where for each z € {1,...,C}

1

P(X;j=2)=P(X;=2+C) = %

For z € {1,...,2C} and 7 = 1,...,n let X;, be the 0 — 1 random variable, which is 1, if
X; = zand zero clse. Fori = 1,...,s+1let F;; be the event that at a time z € {1,...,2C}
the é-th resource constraini b; is not violated:

SR < b7
J=1

Obviously

B3 B = Y Rl
i=1 =1

b
-2
for all ¢ and 2. By the Angluin-Valiant inequality (Theorem 2.2 (a)) and using the as-

sumption b; > 6[log{4C(s+ 1))} forall = 1,...,5+ 1 we have

R

PIEL] = P[] Ri(5)Xj2 > by

j=1 ,
2% . 7 R 1

= PR ()X > (14 1)35]
j=1
b

< expf{—_

< exp(=)
1

<

T 4C(s+1)

We only have events of the form E{), thus we don’t have to care about restriction (9) for
the deviation parameters, and Theorem 2.13 concludes the proof.
£l

The negative result is:

Theorem 3.6 Even if all start limes are zero and b; € Q(log(ns)) for all
t=1,...,8+ 1, it is NP-compleie to determine, whether or-not the scheduling pmblem
Plres - 1,7, = 0,p; = 1|Cax has @ solution with Cup = 2.
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Remark Note that Theorem 3.6 implies Theorem 3.5, since it is a special case of problems
considered in Theorem 3.4: We have zero start times, hence T' = n and C < n. Therefore
the N P-completeness of problems with b; ¢ }(log(ns)) implies the completeness of prob-
lems with b; € 2(log(Cs)). And finally, an approximation better than a factor § would
contradict Theorem 3.6: W.l.o.g. assume that Cope > 1. If' a p-approximation algorithm
with p < % outputs 2, then Cop = 2, and if its output is greater or equal 3, then Cyp > 3
(because p < %) Hence we would be able to decide in polynomial-time whether or not
Clopt = 2.

Proof of Theorem 3.5

We give a reduction to the problem of decomposing a graph into two perfect matchings,
which is known to be NP-complete [13]. Let G = (V, E) be a graph with |V| = n'. For a
moment let K > 0 be an arbitrary integer. We will define a scheduling problem associated
to G with n jobs, m processors and s constraints. First we define an auxilliary graph
H=(V(H),E(H)):

For each node in G introduce K red copies and 2K blue copies and let V(H) be the set of
these red and blue nodes. Whenever {v,w} € E, put an edge between the corresponding
to red copics {v;, w;} of v and w for 1 <@ < K. Let us call all the red copies corresponding
to the same node in 7 a red set. We identify each node of H with a job, so n = 3n'K.
Considering m = 3n’ K identical processors, we get rid of the processor constraints.

y
',' red rodes

) red nodes

Let us define three type of resource constraints A, B and C corresponding to subsets
of V(GY) and V(H) as follows:

Type A: _

For each set of three nodes {w,»,w) of G with at least {wo induced cdges define a
resource Ry 4 .,) with upper bound 2K and suppose that any job associated to a red copy
of one of this three nodes (u,v,w) needs one unit of &, , . in order to be processed.

w

type A

u ¥

Figure 2: Type A resources

Type B: Whenever v is a node of G with degree two or more, define a resource R,
with upper bound K{deg(v)— 1). Suppose that any job associated with a red copy of one
of the neighbours of v needs one unit of K, in order to be processed.
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Figure 3: Type B resources

Type C: Define for every red node v; and every set Sp with K of its corresponding
blue nodes a resource R(v;, Sk) with bound K, and suppose that each job in Sx U {v;}
needs one unit of B(v;, Si).

Figure 4: Type C resources

Due to the resource constraint of type C the key observeiion is that in a feasible
schedule of length 2 all the red copies of the same node u € G must be scheduled at the
seme lime. This can be scen as follows. Let us assume for a moment that this is not true.
Then there is a v € V with al least one red copy »' scheduled at the time 1 and at least
one red copy v scheduled at time 2. We can schedule, due to resource constraint of type
C with bound ¥, at most & — 1 blue copies of v at time 1 and therefore must schedule
the remaining blue copies of v at time 2, violating some resource constraints of type C.

Hence the problem is whether or not the red jobs can be scheduled in fwo times without
splitting off the red sefs.

‘We show: There is a partitioning of G into 2 perfect matchings if and only if there is a
feasible schedule of size 2.

(a) If there is a feasible schedule, put the nodes of G corresponding to red nodes (or jobs)
being scheduled at time 1 in a sel V4, and the remaining nodes of G in a set V3. Since a
feasible schedule does not split off the red sets, Vj and V bulld a partition of the nodes
of G, They induce 2 perfect matchings: Every resource constraint of type B ensures that
at least one neighbour of a node » € V; is in the same set:as v itself, while the constraints
of type A ensure that for every node v € V; at most one ncighbour is in the samé set as v
itself. Hence the induced degree of v is one and we have constructed two perfect maichings.

(b} Let V1, V, be a partitioning of & into two perfect matchings. (If there are isolated
nodes in G, then there are no perfect matchings. Pairs of nodes with degree 1 we put into
V1). Schedule the red copies of nodes in V3 at time 1 and its blue copies at time 2. Schedule
the red copies of nodes in ¥ at time 2 and its blue copies at time 1. Using the ma,tchmg
property it is easily verified that this i is a feasible schedule.
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‘The proof is complete, if we can show the logarithmic growth of the constraint bounds
m and &; for ¢ = 1,...,r. For this we must spemfy K. Taking K = logn’ it is easily verified
that the number of constramts s is

O((w)* 4 + (ﬁl‘f’l)l og ) = O((x'))

for some constant ¢. Since all our constraint bounds are §2(X'), we finally can show by a
straight forward computation that K > alog(ns) for some constant o > 0.
a
Remark Theorem 3.5 says that there is no polynomial-time approximation algorithm
within a factor p < 1.5, unless P = N P. This should not be misinterpreted. Theorem
3.6 makes clear that the pathological instances here are instances whose optimal schedule
is 2. But it might be possible that for instances with larger optimal schedules better
approximation factors can be achieved. Indeed, meanwhile we could prove this. Tor a
comprehensive discussion of the complexity of resource constrained scheduling see [29].

4 Conclusion

(a) The running time of the algorithmic Chernoff-Hoeffding inequalities is O(mn? log B2,
while the basic conditional probability method runs in O(mn)-time. It is an interesting
problem to close this gap as much as possible.

(b) In our applications to integer programming we had to assume that the constraint
vector b = (by,..., by, ) posseses components in (logm). It remains an open problem, if
approximation algorithms can be given, even if b; = O(log m).

(c) For resource constrained scheduling we showed a polynomial-time 2-factor approxi-
mation algorithm and also that there does not exist a substantially better approximation
algorithm, unless P = N P. Extension of this result has been given in [29].
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