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Abstract

This paper deals with questions from convex geometry related to shape matching�
In particular� we consider the problem of matching convex �gures minimizing the
area of the symmetric di�erence� The main theorem of this paper states� that if we
just match the two centers of gravity the resulting symmetric di�erence is within a
factor of ��	
 from the optimal one� This leads to e�cient approximate matching
algorithms for convex �gures�
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� Introduction

A very common problem arising in application areas like computer vision or pattern recog�
nition is that two 	
gures	 F� and F� are given and the question is� how much these 
gures
	look alike	� In other words� we want to match F� and F� as good as possible and somehow
measure the quality of this match� More precisely� assume that F� and F� are subsets of
the plane� whose boundaries are simple closed curves� that there is a certain set T of fea�
sible transformations that may be used for matching� and that there is a certain distance
function � measuring the quality of the match� Reasonable sets of matching transforma�
tions could be for example translations� rigid motions i�e� compositions of translations and
rotations� similarities� or arbitrary a
ne mappings� The problem of matching F� to F�
optimally then means to 
nd a transformation topt minimizing ��F�� t�F��� for all t � T �

Most of the previous work has concentrated on the Hausdor� distance as a distance
measure �ABB���AST���CGH����HKS���AAR���� Since solving the optimization prob�
lem exactly turned out to be rather di
cult� more e
cient approximation algorithms have
been developed� These algorithms do not necessarily 
nd the optimum but a solution
whose quality is within a constant factor of the optimal one� In particular� approxima�
tion algorithms have been found using so�called reference points� This means that for
each 
gure a characteristic point can be computed with the property that if two 
gures
are matched optimally� their reference points lie close together� Conversely� if we restrict
to matching transformations that map the reference point of F� onto the one of F� and
optimize with respect to this restricted set� the solution cannot be much worse than the
optimal unrestricted one� On the other hand the restricted set has fewer degrees of freedom
and the optimization problem is easier to solve� For example� in the case of translations
the restricted optimal translation is directly available� namely the vector between the two
reference points� In the case of rigid motions� the two reference points are matched and
then the optimal position of F� is sought among rotations around this point�

Formally we shall call a map that assigns to each 
gure a point in the plane a reference

point for T �with respect to a distance �� if there is a constant c � � such that for any two

gures F�� F� there exists r � T that maps the reference point of F� onto the reference
point of F� such that for all t � T

��F�� r�F��� � c � ��F�� t�F����

Two reference points with respect to Hausdor� distance and rigid motions �and also
more general classes of transformations� have been found� the centroid of the boundary
of the convex hull �ABB��� and the so�called Steiner point �AAR���� Considering very
long rectangles on the one hand and one of the triangles obtained from the rectangle by
cutting along the diagonal on the other hand it is easily seen� that the center of gravity or
centroid is not a reference point with respect to the Hausdor� distance�

Here we will consider a di�erent distance measure between 
gures� namely the area

of the symmetric di�erence which in the sequel we will denote by ��F�� F��� � has been
investigated only in a few papers so far including �ABGW���� where simpli
cation problems
are addressed� and a recent paper by de Berg et al� �dBDvK���� which is also concerned
with matching problems under translations�

We believe that � is a quite natural distance measure and in some applications is more
appropriate than the Hausdor� distance� On the other hand it seems more di
cult to
handle� So in this paper we will restrict to convex 
gures but for them we can show that
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the centroid is a reference point for translations� rigid motions� and some other sets of
transformations� In particular� we will show for convex 
gures F�� F� that if we translate
F� so that its centroid matches the one of F� the resulting symmetric di�erence is at most
���� times as large as the optimal one under translations� On the other hand we will give
an example where this constant is assumed� so it is tight� We believe� that this result is
already interesting by itself from a convex geometry point of view�

Finally� we will give approximate matching algorithms based on this reference point
for various sets of transformations�

� A reference point for translations

Lemma � Consider a convex body C in the plane and a line e passing the centroid s of C�
Denote by �� and �� the �lengths of the� two line segments of e inside C separated by s�
Then �� � ���� in other words� each of these segments has length at most ��� times the

length of the part of e inside C�

Proof� Denote by P and Q the intersections of e with the boundary of C� Let g be
the tangent to C through P and h the line through s parallel to g� Consider the smallest
triangle T containing Q and C �h� that has one side on g� As can be seen in Figure � the
centroid of T must lie between h and g� Denote by ��� and ��� the segments of e given by

e

��

��

��
�

s
centroid�T �

Q

P

g

T

C

h

Figure �� Proof of Lemma �

the projection of T �s centroid parallel to h �or g�� Then �� � ��� � ���� � �����

Convention�

For simplicity� we use the same notation for subsets of R� and their area� It should be
clear from the context� which one is meant�
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Lemma � Let F � R
� be convex� f � F be measurable and sF � sf their centroids� Let w

be the length of the projection of F onto a line perpendicular to the vector sF � sf � Then

w � jsF � sf j �
�

�
�F � f��

Proof� We assume w�l�o�g� that sF and sf have the same x�coordinate so that w is the
width of F in x�direction� We also assume that the y�coordinate of sf is the larger one�
We will transform the sets f and F in four steps into more special sets �see Figure ��� For
simplicity the sets will be called f and F throughout the process although their shapes
may change� Their area and the width of F in x�direction will not change� The centroids
will move� but in each step the distance of their y�coordinates will not decrease� After the

nal step their x�coordinate will again coincide and we will be able to prove the inequality
directly�

� �

L RL R

�

�

sf

sFL
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sF sF

sf

sF

sf

sF

Figure �� Transformations of F and f

Step �

is a shearing that preserves x�coordinates in general and transforms F and f so that the
�one� leftmost and �one� rightmost point of F � L and R� respectively� have the same y�
coordinate�
Step �

We apply Steiner Symmetrization �see �BW���� x�� to make F a convex body symmetric
to some vertical axis s� This operation can be imagined as cutting F into in
nitesimally
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�at horizontal slices and arranging these slices symmetrically to s� The y�coordinates
of sf and sF do not change in this step�
Step �

Let g be a horizontal line and H� and H� the upper and lower halfplane� respectively�
de
ned by g� Let f � F nf and choose g such that the areas H��f � H��f � Change f
to f n �H� � f� 	 �H� � f�� The new f lies completely above g� in fact� f � F �H��

Now assume that the line segment LR does not intersect f � if not� we can just exchange

the roles of f and f � since the formula sF � f
F
sf � f

F
sf implies that

sF � sf
F � f

� �
�sF � sf �

F � f
�

So we have to show the upper bound of the lemma only either for f or for f �
Step �

The region above LR is transformed into a triangle� To this end we consider the line
segment e from L to some point A on the symmetry axis s with the property that the
portion f� of f left of e has the same area as the region f� between e and s that lies outside
of F �see Figure ���

s
e e�

F�

f�

f�

f �

�

F �

�

RL
F�

A

Figure �� Step �

Likewise we have symmetric objects e�� f ��� and f �� on the right hand side of the 
gure�
In addition� let F� be the portion of F left of e and F �

� the set symmetric to F� on the
right� Now we create the triangle by �moving	 f�� f

�

� into f�� f
�

�� respectively� F�� F
�

� are
moved into a rectangle F� just below LR and the part of F below LR is attached below
the rectangle� Moving f� 	 f �� into f� 	 f �� increments the y�coordinate of sf by some

amount � � � and the y�coordinate of sF by f
F
� �� Moving F� 	 F �

� into F� �at most�
decrements the y�coordinate of sF � so the di�erence jsf � sF j is at most incremented�
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For the 
gure remaining after step � we show the claim of the lemma directly� Let r� t� d� b� B
as in Figure �� Then

B

A

sf

b

d

RsF

w

L

r

t

Figure �� Figures after step �

F �
�

�
wd ���

since the right hand side is the area of the quadrilateral ARBL� By Lemma � we have r�t �
�
�d� so by ���

r � t �
�

�
�
F

w
���

since the area of the shaded triangle is f � �
�
�
� tb �

�
	 tw we have

t �
�

�

f

w
���

by ��� and ��� wr � 	
��F � f���

Before we get to the main result we note that by straightforward set theoretic consid�
erations for arbitrary sets A�B�C

A
B � �A
 C� 	 �B 
 C�

and hence for measurable sets using the notational convention�

A
B � �A
 C� � �B 
 C�� ���

Consider convex bodies F� and F� in the plane� �opt�F�� F�� denotes the minimal area
of the symmetric di�erence between translates of F� and F�� �

H�F�� F�� denotes the area
of the symmetric di�erence between translates of F� and F� whose centroids coincide�
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Theorem � Let F�� F� be convex bodies� Then

�H�F�� F�� �
��

�
�opt�F�� F��

Proof� We 
rst assume that F� � F�� so �opt�F�� F�� � F��F� � F�
F�� Let s�� s� be
the centroid of F�� F� respectively� Now suppose that F� is translated by the vector s��s�
from F� the optimal position into the heuristic position F �

� where s�� s� are matched �see
Figure ��� The symmetric di�erence F �

�
 F� is bounded by the area c that is �swept	 by

w

c

s� � s�

F�

F�

F �

�c

Figure �� Di�erence between optimal and heuristic position

the boundary of F� during the translation� By Cavalieri�s principle c is bounded by twice
the length of the translation vector s� � s� times the width of the projection of F� onto a
line normal to this vector� So we have

�H�F�� F�� � F� 
 F �

�

� �F� 
 F�� � �F� 
 F �

�� by ���

� �F� 
 F�� � � � js� � s�j � w

� �F� 
 F�� � � �
�

�
� �F� � F�� by Lemma �

�
��

�
�opt�F�� F��

where w denotes the width of the projection of F� onto a line normal to s� � s��

Next let us consider the general case� Assume that F�� F� are in optimal position and
let I � F� � F�� Applying ��� to translates of F�� F� and I with coinciding centroids we
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get

�H�F�� F�� � �H�F�� I� � �H�F�� I�

�
��

�
�opt�F�� I� �

��

�
�opt�F�� I� by the 
rst case

�
��

�
�opt�F�� F��

which proves the theorem��

Theorem �

sup

�
�H�F�� F��

�opt�F�� F��
� F� and F� are convex bodies� �opt�F�� F�� � �

�
�

��

�

Proof� In Theorem � we have shown that ���� is an upper bound of the set on the left
side of the equation� Thus we only have to construct examples which show that ���� is
approached arbitrarily close by this set� Denote by F� an isosceles triangle whose base and
the corresponding height have unit length� For � � � denote by F� the trapezoid obtained
from F� by cutting o� a tip of height �� �Fig� ��� Clearly�
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Figure �� �opt�F�� F�� and �H�F�� F��

�opt�F�� F�� � ����� ���

The cut moves the centroid by �
�

��

���
towards the base� The area of the symmetric di�erence

of translates of F� and F� with the same centroid is shown in Fig� �� Simple computation
yields

�H�F�� F�� � ��
�� � ���� ����

���� � ���
� ���

It follows from ��� and ����

lim
���

�H�F�� F��

�opt�F�� F��
�

��

�
� �
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� Transformations other than translations

In many applications more general matching transformations than just translations are
considered� These include� for example�

� rigid motions� i�e� combinations of translations and rotations�

� homotheties� i�e� mappings of the form x �� a � 	�x� a�� for some 
xed 	 � R and
some 
xed center a � R�

� similarities� i�e� combinations of homotheties and rigid motions or

� arbitrary a�ne mappings�

For an arbitrary set T of transformations� we de
ne the matching problem as follows�

Given two 
gures F�� F�� �nd a transformation topt � T minimizing ��F�� t�F���
for t � T �

Our heuristic approach for 
nding approximate solutions to this matching problem is
to consider only those transformations in T that map the centroid of F� onto the one of
F�� Let tH be an optimal transformation of this kind� Hence the centroid is a reference
point for T if there is a constant c � � such that for any two 
gures F�� F�

�H�F�� F�� � c�opt�F�� F���

where we de
ne �H�F�� F�� � ��F�� t
H�F��� and �opt�F�� F�� � ��F�� t

opt�F����
Now the following can be shown�

Theorem � If a set of transformations T has the following properties	

�i� Equivariance with respect to the centroid� i�e� t�cg�F �� � cg�t�F �� for all �gures F
and all t � T �

�ii� T is closed under compositions with translations

Then the centroid is a reference point for T and the corresponding constant c is �����

Proof� Let F�� F� be two 
gures and F �

� �� topt�F��� Translate F �

� so that the resulting

gure F ��

� has the same centroid as F�� Then by Theorem �

��F�� F
��

� � � c��F�� F
�

�� � c�opt�F�� F��

with c � ����� F ��

� � t��F�� for a transformation t� which is a composition of topt and a
translation� By condition �ii�� t� � T � and by condition �i�� cg�F�� � cg�F ��

� � � t��cg�F����
Since tH is the optimal match of F� and F� under transformations satisfying these condi�
tions� we have

�H�F�� F�� � ��F�� t
��F��� � ��F�� F

��

� � � c�opt�F�� F��� �

Observe� that many natural sets of transformations satisfy conditions �i� and �ii� of The�
orem �� for example rigid motions� homotheties� similarities� a
ne transformations� and
rigid motions where only a restricted set of rotations is allowed� So for all these sets of
transformations we obtain a simpli
ed and �hopefully� easier to solve matching problem�
whose optimal solution is an approximate one for the original problem�

We will consider algorithms based on this idea in the next section�
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� Algorithms

The results of the previous sections can be used to design e
cient approximately optimal
matching algorithms for convex polygons under various sets of transformations� These
algorithms will produce a solution which is at most by a factor of ���� worse than the
optimal one� Throughout this section we assume that we are given two convex polygons F�
and F� �by a sorted list of their vertices� which are to be matched� Let n be the total
number of vertices of F� and F��

��� Translations

In the case of translations we just have to compute the centroids s� and s� and then to
translate F� by the vector s�� s�� The computation of the centroids can be done in linear
time by triangulating each 
gure� determining the centroids and areas of all triangles� and
then determining the total centroid as the weighted sum of the triangle centroids�

This gives a matching algorithm of runtime O�n�� which is as far as asymptotic runtime
is concerned not too big an improvement over the algorithm by de Berg et al� �dBDvK����
which computes the optimal match under translations in O�n logn� time� But our algo�
rithm may be a viable alternative in practice since it is much less complicated�

Usually� after the two 
gures have been matched� one also wants to compute the re�
sulting area of the symmetric di�erence� This can be done by a straightforward sweepline�
algorithm� The sweepline is a ray emanating from the centroid which visits the vertices of
both polygons in �say� clockwise order� Observe that from the two sorted lists of vertices
we can compute the order needed by the sweepline in linear time� The sweepline algo�
rithm also determines all intersection points of both polygons� Between two event points
�vertices or intersection points� the symmetric di�erence is a triangle or trapezoid and�
therefore� can be determined in constant time� Consequently� measuring the total area
takes time O�n��

��� Homotheties

According to Theorem � we get an �����approximate solution by 
rst computing the two
centroids s� and s�� then translating F� by s�� s� obtaining F �

�� and 
nally stretching F �

�

about s� by a factor minimizing the symmetric di�erence�
It remains to explain the last step� Suppose w�l�o�g� that s� is the origin� Consider

the �wedges� that are obtained by drawing a ray from the origin through each vertex
of F� and F �

�� Within a wedge W the boundary of each of the two 
gures consists of
a line segment� Now� suppose that F �

� ist stretched by some factor 	 � � which is �
in the beginning and then is continuously increased� Thus we obtain� consecutively� the
con
gurations a�� b�� and c� of the edges e� of F� and e� of 	F �

� shown in Figure �� In each
case the symmetric di�erence within W is a quadratic function� The symmetric di�erence
within the i�th wedge� which we denote by qi�	�� is thus a piecewise quadratic function
with three quadratic pieces� The total symmetric di�erence q�	� is the sum of these n
functions qi�	�� It is piecewise quadratic with �n breakpoints�

The minimizer 	� of this function can be determined in O�n� time by the prune�and�
search technique� We search for the quadratic piece in which 	� lies by performing a
binary search among the �n breakpoints� successively narrowing down the interval �	�� 	��
in which 	� is known to lie� The decision whether 	� is bigger or smaller than the current
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Figure �� Con
gurations of two edges

�
��

�

��
��
 a

s
c

F �
�j�

Figure �� Computing the minimal symmetric di�erence under rotations

decision point 	 depends just on the sign of the derivative q��	� at this point� When the
interval �	�� 	�� contains only k breakpoints� there are at most k functions qi for which the
de
nition changes inside the interval the remaining functions are �purely quadratic	 and
their sum can be accumulated in one quadratic function� This means that q�	� and the
derivative q��	� can be evaluated in O�k� time� The next trial value for the binary search
is the median of the k remaining breakpoints and can also be computed in O�k� steps�
Thus� in time

O��n� � O�n� � O�n��� � � � � � O�n��

the interval in which 	� must lie is narrowed down to one quadratic piece of the function q�
The optimum 	� is then found by solving q��	�� � ��

��� Rigid Motions

As in the previous case we will 
rst perform a translation such that w�l�o�g� the centroids
of F� and F� coincide� Now we have to rotate F� around the common centroid to minimize
the symmetric di�erence�

We consider the same wedges as before� By distinguishing several cases we reduce the
problem of computing a formula that computes the symmetric di�erence as a function of
the rotation angle 
 to the simple case shown in Figure �� s is the center of the rotation�
the distances a� c and the angle � are 
xed constants� We get

F �
� �
�

�

�
c�

a

sin�
�

�� sin�
� sin���

sin�� � 
�

The symmetric di�erence !�
� of F� and F� is the boolean combination of areas of
the form F �� 
 
� for some �� hence the area can be computed as a linear combination
of O�n� terms of the above form� The process of minimization mimics the rotation�
while we determine all local minima� During this process there occur O�n�� event points�
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whenever one of the spokes of F� sweeps over one of the spokes of F�� As above we have
to update the formula at each event point� Between any two consecutive event points we
have to determine all local minima of !�
�� i�e� the zeroes of the derivative !��
�� This
problem can in principle be approached by exact computation� since it can be formulated
in such a way that only computations with algebraic numbers are required� see below�
However� this approach is very expensive and moreover� it does not make sense in the
present context� where the computed value is only a rough approximation� Therefore
the minimum must be computed numerically which involves highly nontrivial numerical
problems� whoses detailed investigation goes beyond the scope of this paper� Just to
get an idea of the number of computational steps necessary let us use t � tan�
��� as a
parameter instead of 
� Then sin�
� � �t����t�� and cos�
� � ���t������t��� so between
any two event points ! can be written as a rational function in t whose enumerator and
denominator have degree O�n�� Consequently� between two event points ! has O�n� local
minima� Suppose that we determine these zeroes of !� by Newton iteration� Each step
involves evaluating ! and !� which costs O�n� arithmetic operations� This gives O�n	�
arithmetic operations but we have to multiply this number with the number of iteration
steps performed by one application of the Newton iteration� This number depends on the
coe
cients of the rational function and the desired precision of the result and is together
with the problem of 
nding suitable starting points for the iteration part of the numerical
problems mentioned before� For an intensive treatment of this problem with respect to
bit complexity see �Sch����
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