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Abstract

Within the last decade, many new approaches have been developed towards a
shift from the “classic” web, which is designed primarily for human use, to a
machine-processable web, which can be used by heterogenous systems to cooperate
in an independent and scalable manner. These approaches include new technologies
for modeling semantic data to be commonly understood by applications such as data
miners, web service clients, autonomous software agents, or reasoning tools, as well
as new coordination models for a loose and scalable coupling of independent systems,
varying from high-end servers to small embedded applications in PDAs, cell phones, or
sensor nets.

Especially the combination of semantically modeled domain knowledge and common
web services to become semantic web services seems to be a promising technology in
the respect of an internet-scale integration model. They overcome the tightly coupled
message exchange pattern which is used in classic Web Services, but use Tuple Spaces
instead, which accompany the Word Wide Web’s core paradigm of information exchange
via persistent publication [1].

As those technologies imply internet-scalability, it is essential to investigate how
decentralized and fully distributed architectures can be realized without significant
performance impacts. Observing natural societies like swarms, flocks, or hives, they
seem to provide many of the desired characteristics, such as scalability, dynamism, failure
tolerance and simplicity.

Swarm strategies are already successfully used in the field of peer-to-peer networking
and special cases of linear optimization. This thesis implements and evaluates
swarm-based approaches for semantic Tuple Spaces, based on the previous work of
Daniel Graff, who implemented a LINDA Tuple Space system called SwarmLinda [2]. It
extends this space with semantic triple clustering and retrieval by adapting common
similarity measures for a distributed swarm-based architecture and by developing
research strategies inspired by ant routing algorithms.
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Chapter 1

Introduction

1.1 Scientific Context

“The Semantic Web is not a separate Web but an extension of the current one, in which information
is given well-defined meaning, better enabling computers and people to work in cooperation.
[. . . ] In the near future, these developments will usher in significant new functionality as
machines become much better able to process and understand the data that they merely display
at present” [3].

In today’s World Wide Web (WWW), resources such as web pages and their relations
are analyzed mainly by their internal structure. Word frequencies provide information
about the content of a page, headers and links provide information about its context. This
approach lacks a common technique which allows content and context to be expressed
and processed in a semantic way. Yet, such a facility is necessary to exchange semantic
information seamlessly between heterogenous services, applications and enterprises.
Furthermore, software agents could use semantic data and services in order to perform
highly integrative tasks through a variety of systems across the web.

The Semantic Web Community [4, 5] assembles different technologies like the
Resource Description Framework (RDF), the SPARQL Protocol and RDF Query Language
(SPARQL) or the Web Ontology Language (OWL) in order to establish semantics in the
web. These technologies allow the modeling of domain knowledge and taxonomies by
describing concepts (classes) of resources, their properties, restrictions and inter-concept
relations by so called web ontologies. Such an ontology may also include rules that
afford artificial intelligence engines to conduct reasoning and to perform automated
knowledge interference within a given domain. The World Wide Web Consortium
(W3C) recommends the RDF as a metadata facility for describing web resources and their
relations, using machine-processable triples of the form (subject, predicate, object). Thus,
the RDF specifications provide a lightweight framework that can be used to describe
ontologies for various application scenarios. As the set of triples needed for a complete

11



Chapter 1. Introduction 1.2. Research Objectives

domain description may become very vast, it raises the issue of efficient storage and
retrieval.

In his work “Generative communication in Linda” (1985) [6], David Gelernter from Yale
University introduced a coordination language for multi processor computation called
LINDA. He suggested that process coordination and data exchange could be established
using a virtual associative memory - a Tuple Space, where data, represented as n-Tuples,
can be accessed via simple primitives like OUT, IN and RD. These tuples contain values
of primitive types (like numbers or strings) and are retrieved using templates that contain
values, value types or wildcards.

Daniel Graff combined this architecture with swarm-based strategies to create a
distributed LINDA Tuple Space [2]. In his approach, the tuple clustering and retrieval
is achieved by a swarm of virtual ants using special pheromones for each value type.
He implemented this system using NetLogo, a Java-written network simulator. By
evaluating the spatial triple entropy, he showed that swarm approaches are capable
of dynamically congregating triples by kind and can increase the level of order in the
triple set. Concurrently to this thesis, the bachelor thesis of Anne Augustin investigates
a clustering of RDF-triples, which bases on the Uniform Resource Identifier (URI) of
resources [7].

1.2 Research Objectives

The primary motivation of this thesis is to extend the implementation of Daniel Graff to
store RDF ontologies. Instead of n-tuples, which contain values of pre-defined primitive
types, RDF-triples contain resources of semantically interlinked classes and properties.
Therefore, a clustering of RDF-triples must regard the underlying ontological structure
and consider the semantic similarity of their resources.

Daniel Graff’s work is extended in the bachelor thesis of Anne Augustin, who
investigates the possibility of clustering RDF-triples by resource URI [7]. This approach
bases on the assumption that resources with similar URIs are also semantically related.
Although this assumption may be completely valid in some specialized ontologies, in
general it must be considered merely as a heuristic. Moreover, since basic ontologies,
having specific namespaces, are often shared for interoperability, the inversion of the
assumption is generally not true. If, for instance the following triples are considered,

(http://inf.fu-berlin.de#tolk,rdf:type,http://general#lecturer),
(http://physik.fu-berlin.de#brewer,rdf:type,http://general#lecturer),
(http://inf.fu-berlin.de#cafeteria,rdf:type,http://general#refectory)

the lecturer instances should be considered more similar due to their common class.

12



Chapter 1. Introduction 1.3. Outline

Figure 1.1: Spatial triple distribution in SwarmLinda URI-Extensions.

As a result, URI-clustering fails to identify related resources with different identifiers
and may result in a very poor semantic clustering. Figure 1.1 illustrates how triples,
corresponding to resources of the same type, may spread all over the network using
URI-clustering.

Consequentially, triples clustered by URI cannot efficiently be retrieved by type – yet
tuple retrieval via typed templates is not only part of the original LINDA model, but is
also essential for semantic services and must therefore be considered to be indispensable.

In order to provide support for a typed triple retrieval (via typed templates), it
becomes inevitable to group statements about similar resources together, to form semantic
neighborhoods within the space (see Figure 1.2). Therefor this thesis investigates the
possibility of distributing and utilizing the very contents of the ontologies to dynamically
infer the semantic similarity of resources. It introduces, implements, and evaluates
adaptive swarm-based approaches for creating and maintaining semantic neighborhoods,
allowing a scalable and yet efficient typed triple retrieval.

1.3 Outline

This thesis is divided into six chapters. While the first chapter consists of this introduction,
the second chapter gives a detailed overview of the current state of research. It explains the
basic features of RDF and RDF-Schema (RDF-S) and describes the LINDA coordination
model. It also provides an overview of Triple Space Computing and describes the
efforts towards semantic web services. As semantic clustering requires a quantification
of similarity, common similarity measures are discussed and compared towards their
suitability for a possible usage in a distributed system. Furthermore, this chapter
examines applied swarm intelligence in the field of linear optimization and describes
how it is used to find fair solutions for the Traveling Salesperson Problem (TSP). It also

13



Chapter 1. Introduction 1.3. Outline

Figure 1.2: Spatial triple distribution in Semantic SwarmLinda.

contains comprehensive surveys of the previous works of Daniel Graff and Anne Augustin
as well as further related works in the field of clustered Spaces.

The third chapter provides detailed explanations of the semantic clustering and
retrieval approaches. It discusses the necessity to distinguish between the different
layers of RDF and introduces appropriate strategies. Furthermore, the overall
cluster architecture is explained, including all participating processes and underlying
calculations.

The system implementation is described in chapter 4. It includes a manual
of the simulator interface, explains its functionality and addresses the most crucial
implementation details.

Chapter 5 covers the system evaluation. For this purpose, appropriate quality
indicators of the semantic clustering and retrieval are introduced. These indicators are
applied in a variety of tests conducted on the different aspects of the system. Their results
are presented and discussed in detail in this chapter as well.

The sixth chapter presents the final conclusions of this thesis and contains suggestions
for possible future works.
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Chapter 2

State of Research

This chapter provides the scientific expertise which is used in this thesis. It describes
the semantic modeling languages RDF, RDF-S and OWL and introduces the LINDA
coordination model. Furthermore, it contains an introduction of common similarity
measures, in which their characteristics and features are analyzed and compared. It also
describes the efforts of Daniel Graff and Anne Augustin, which are extended and utilized
in this work, and gives an overview existing Triple Space implementations.

2.1 Semantic Modeling Languages

2.1.1 RDF

Regarding its specification, the RDF integrates a “variety of applications from library
catalogs and world-wide directories to syndication and aggregation of news, software,
and content to personal collections of music, photos, and events using XML as an
interchange syntax” [8]. RDF expressions are formed by a set of triples, each consisting of
a subject, a predicate and an object. These triples define an RDF graph, in which classes,
instances of such and values are represented by nodes and properties are represented by
directed arcs [9]. Figure 2.1 shows how domain knowledge can be represented by such a
graph.

Within RDF, resources are either identified by a URI with an optional fragment
identifier, a literal value, or blank. In standard RDF, all literals are XML Literals,
thus typed literals are expressible via XML-Schema fragments (e.g. <xsd:boolean,"true">)
[11–13]. Although not enforced, it is common to use URI-schemes that start with a specific
namespace. The RDF recommendation uses special namespaces for its set of standard
vocabulary, which is described next.
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Figure 2.1: RDF graph, derived from S-P-O triples [10]

2.1.2 RDF-S

The predefined RDF-S vocabulary is used to express domain ontologies by class
hierarchies, properties, class instances (individuals) and values. In the following sections,
the namespace prefix rdf is used for the the official RDF namespace1 and rdfs is used as
a substitute for the RDF-S namespace2, as suggested by the W3C. The next paragraphs
introduce the most important constructs [14].

Class Definement

rdfs:Class A standard resource that represents the general class construct. It is the base
class of all resources that are RDF-classes and is an instance of rdfs:Class itself.

rdfs:Resource A standard resource that represents the top level class of all resources,
hence all resources are instances of rdfs:Resource. It is also an instance of rdfs:Class.

rdfs:Literal This subclass of rdfs:Resource states the base class of all literal values, plain
such as strings and integers, or typed (custom or via XML-Schema). Hence, all literal
values are instances of rdfs:Literal. Typed literals are instances of the rdfs:Datatype

class, yet RDF-S does not define a special class of plain literals.

rdfs:Datatype is the top-level class of data types and a subclass of rdfs:Literal.

rdf:XMLLiteral is the base class of XML literal values. It is an instance of rdfs:Datatype and
a subclass of rdfs:Literal.

rdf:Property represents the base class of all RDF properties.

1http://www.w3.org/1999/02/22-rdf-syntax-ns#
2http://www.w3.org/2000/01/rdf-schema#
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Property Definement

In RDF, properties are defined using the following instances of rdf:Property.

rdfs:range (P, rdfs:range, C) states that all values of property P are instances of class C.
Hence, in any triple of the form (?, P, X), X is an instance of C. If more than one
definition of the kind (P, rdfs:range, Ci) is given for P, the values of P must be an
instance of all classes C1 . . .Cn.

rdfs:domain (P, rdfs:domain, C) states that any resource which has a property P, is an
instance of class C. Hence, in any triple of the form (X, P, ?), X is an instance of C. If
more than one definition of kind (P, rdfs:domain, Ci) is given for P, any resource with
property P must be an instance of all classes C1 . . .Cn.

rdf:type (R, rdf:type, C) states that the resource R is an instance of class C.

rdfs:subClassOf (A, rdfs:subClassOf, B) states that all the instances of class A are also
instances of class B, letting A become a subclass of B.

rdfs:subPropertyOf states that all resources related by one property are also related by
another. Given the triples (P2, rdfs:subPropertyOf, P1) and (R1, P2, R2), it means that
resource R1 is related to R2 by P2 and therefore also by P1.

rdfs:label may be used to provide a human-readable name of a resource.

rdfs:comment may be used to provide a human-readable description of a resource.

Predefined Classes and Properties

RDF-S provides a set of predefined classes for general purpose use. Among them, there
are four container classes to define different kinds of collections. A collection is
defined by introducing an instance of a container class and by a set of RDF-triples
defining its elements. The containers provided are [10, 14]:

rdfs:Container is the super-class of all container classes.

rdf:Bag A bag represents a group of resources or literals, possibly including duplicate
members, where there is no significance in the order of the members.

rdf:Seq A sequence represents a group of resources or literals, possibly including duplicate
members, where the member order is significant.

rdf:Alt An alternative represents a group of resources or literals that are used alternatively
(typically used for a single value of a property). For example, an alternative might
be used to describe alternative language translations for the title of a book, or to
describe a list of alternative internet sites at which a resource might be found.
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Figure 2.2: RDF container membership represented by S-P-O triples [10]

Container membership can be declared using special pre-defined instances of
rdfs:ContainerMembershipProperty, which are sub-properties of rdfs:member and have
names of the form rdf:_n. There, n is a decimal integer greater than zero, e.g. rdf:_1,
rdf:_2, and so on [10]. Figure 2.2 gives an example of a possible container membership
definition. Yet, as those membership definitions are open and unbound, there is no way
to state the final element of a container. For this purpose, RDF-S provides linked lists
which have a common head and tail structure and are terminated by the rdfs:nil resource.
Figure 2.3 gives an example of a possible list definition. The constructs provided for
list-like constructions are [10, 14]

rdf:List is an instance of rdfs:Class and the base class of all lists and list-like structures.

rdf:first is an instance of rdf:Property and defines the head element of a list.

rdf:rest is also an instance of rdf:Property and defines the tail of a list.

rdf:nil is an instance of rdf:List and represents an empty list or list-like structure.

2.1.3 OWL

The Web Ontology Language (OWL) is a family of languages based on RDF and RDF-S.
It “has more facilities for expressing meaning and semantics than XML, RDF and
RDF-S and thus OWL goes beyond these languages in its ability to represent machine
interpretable content on the Web” [15]. OWL provides the following three levels of
expressiveness [15–18].

OWL Lite is the least complex sub-language. It provides mechanisms for defining
property cardinalities (0 or 1 only) and is designed for modeling simple taxonomies
and to allow basic inference.
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Figure 2.3: RDF List definition represented by S-P-O triples [10]

OWL DL provides the maximum amount of expressiveness that guarantees all conclu-
sions to be decidable and computable in finite time. Therefore, it allows the usage
of the same language constructs as OWL Full, but under certain limitations. For
example, classes cannot be instances of other classes and properties cannot be
individuals or classes. Due to its completeness and expressiveness OWL DL is
the most commonly used sub-language of OWL.

OWL Full allows the full usage of RDF-S without restrictions. Expressions in OWL Full
may me contradictions and conclusions may not be computable.

2.2 Space-Based Coordination

2.2.1 LINDA

LINDA was introduced by David Gelernter as a loosely coupled process coordination
model [6]. He suggested that data exchange could be accomplished through an associative
memory (Tuple Space), where processes could put and retrieve n-tuples asynchronously
via pre-defined primitives, as shown in figure 2.4. Though very simple, this model
provides some profound advantages related to parallel process decoupling and building
reusable, distributed, heterogenous and agile communicating applications [1, 19]. These
advantage are explained in the following.

Reference Independency

Coordinated by just the Tuple Space as a middleware, processes do not have to directly
know each other. Tuple production and consumption are completely independent and it
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Figure 2.4: A simple one-to-one communication pattern [20]

is not required for participating processes to explicitly register or synchronize with each
other, since they only communicate via tuple exchange.

Time Independency

As the Tuple Space guarantees persistent data storage, process communication can be
performed in a complete asynchronous manner. Tuple producers and consumers may
access the space at any time and in any order. The only time dependency is, of course,
that a triple has to be published before it can be retrieved.

Space Independency

As long as different processes have access to the same Tuple Space, they can run in
completely different environments of hardware or operating systems.

Primitives

To access the space, Gelernter proclaimed the following LINDA primitives.

OUT A tuple is stored in the space using the primitive out(c1, . . . , cn). As a result, the
tuple (c1, . . . , cn) becomes available for all other processes.

IN Tuples are retrieved using the IN-primitive with tuple templates (or anti-tuples) as
parameter. A template may contain values, types or wildcard variables. A tuple t
matches a template t̄ if they have the same number of components and each
component ci matches the component c̄i of the template. A component ci matches
c̄i if c̄i is a wildcard variable (in which case the variable is bound to ci), if c̄i is the
type of ci, or if c̄i = ci. This primitive blocks the requesting process until a matching
tuple is found. It also removes the found tuple from the space. If more than one
match exists, only one of them is returned.

INP The non-blocking version of the IN-primitive, indicating a failure if no tuple was
found.

RD The RD-primitive works like the IN-primitive, but without removing the found tuple.
In this respect is a non-destructive version of the IN-primitive.
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RDP The non-blocking version of the RD-primitive, that also indicates a failure if no
tuple was found.

EVAL This primitive is used to create new processes that evaluate triples and write the
results back to the space.

Insufficiencies

The LINDA coordination model has three major insufficiencies [20–22]. The first
shortcoming is that the paradigm allows tuples to only hold primitive values. The
types of these values have to be commonly agreed on by all participating processes, since
there is no facility to dynamically state the semantics of tuples (data scheme dependency).
Furthermore, the LINDA model lacks a sophisticated tuple selection facility, as matching
is conducted only by the value or by the type of the tuple components. In later
implementations, see section 2.6 (Related Work), page 36, tuples are also allowed to hold
complex objects and custom matchings are supported as well. The third insufficiency is
scalability. Originally, there was only one global space proposed, foiling a distributed
architecture. In later works, clusters of Tuple Space have been suggested to cooperate in
tuple hosting.

2.2.2 Triple Space Computing

Given the described technologies of semantic modeling languages like RDF and
OWL, and a loosely coupled coordination model such as Tuple Spaces, the next step
towards a semantic web is the introduction of semantic services for the web – called
semantic web services. Although the name may imply that this addresses only semantic
extensions to common web services, is goes beyond just that as it is also about a change
of the current paradigm of web services [1, 19, 22].

Although sharing the term web, the WWW and web services currently differ in
their very basic principles. While the WWW follows the paradigm of Representational
State Transfer (REST), which decouples content provider and consumer, web services
are basically designed for data exchange by tightly coupled SOAP-message exchange,
generally using synchronous HTTP transactions. Since the WWW gains its vast scalability
from following the REST principle, it seems to be compulsory for services targeting
a sematic web to also coordinate via Representational State Transfer. Hence, the
combination of space-based coordination technologies and semantic modeling facilities
is a promising approach towards real semantic web services (see figure 2.5). Those
efforts have been increased within the last years and form a new field within the area
of distributed computing called Triple Space Computing. With semantic extensions, tuple
spaces might also overcome data scheme dependency, since descriptions of tuples types
and contents can be processed and understood dynamically by all clients. Furthermore,
sophisticated semantic-aware matching rules could be defined to find tuples not only
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by their structure, but by using high-level semantic queries expressed in an RDF query
language such as SPARQL or the RDF Data Query Language (RDQL) [1].

Figure 2.5: The four major stages in the development of semantic web services [19]

2.3 Semantic Similarity and Relatedness Measures

Before sematic modeling languages were introduced, similarity measures were mostly
restricted to context-free, non-semantic word comparison. Hence, these measures
basically addressed string similarity, though there were also other approaches like
phonetic similarity analysis. For a better understanding of the limitations of these
approaches, the most commonly used measures for string similarity are briefly described
in the following.

Longest Common Subsequence This measure compares two or more strings si by the
longest character sequence they have in common. This sequence is typically
identified using the Z-Algorithm or the algorithm of Boyer-Moore. The longer
that sequence is, the more similar the strings are assumed to be.

Levenshtein Distance This is a measure for the shortest editing distance between two
strings. An editing step can be an insertion of a gap, a character alteration or a
character deletion. Depending on the editing step penalties defined, the length of
the shortest editing distance (Levenshtein distance) between two strings defines
their similarity.

Vector-Based Measures consider strings as vectors of characters. Using a certain
character distance function d, it is possible to use the vector distance (for instance
the euclidic distance) or the vector angle cosine as a similarity measure.

Pattern Matching There are numerous methods of finding patterns and matches for
regular expressions in strings. Most of them make use of data structures like
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Suffix Trees or Suffix Arrays. In these approaches, strings are considered similar if
they include similar patterns. This method is, for example, applied to a large extend
in the field of gene sequence comparisons.

The problem is of course, that real-world concepts are generally represented by
multiple strings. They are expressed in different languages and in many cases by sets of
synonyms. As concept similarity is also almost never reflected by word similarity, the
described approaches generally fail to derive any semantic context. This necessitates to
establish completely different strategies to define semantic similarity in web ontologies,
which utilize the very modeled information.

For the purpose of discussing some of these semantic similarity measures in the next
sections, the general needs for a similarity function sim must de defined first. Let C be
the set of concepts of a given ontology O, we define

sim : C × C 7→ [0 . . .max]
∀c ∈ C : sim(c, c) = max

∀c1, c2 ∈ C : sim(c1, c2) = sim(c2, c1)

where max is a measure-specific value that states the maximum similarity of two concepts
c1, c2 ∈ C. In order to enable the combination and comparison of different measures, they
should be normalized that way max = 1.

2.3.1 Distance-Based Measures

An ontology O defines a set of classes C and a set of interlinking properties P, which can
be translated to a directed graph. As illustrated in figure 2.6, these graphs are divided
into different levels of abstraction. The RDF-S-Level contains all classes and properties
pre-defined in the RDF specification. The domain-specific classes and properties define
the Schema-Level. The unification of both levels is also called the T-Box of O. The Data-Level
consists of class instances (individuals) and values and is also called the A-Box of O.

Semantic similarity of concepts is formed by their relationships, which are expressed
via properties. Regarding the different abstraction layers, not all properties are suitable
for semantic considerations in any case. Individuals either refer to one or more classes
via the rdf:type property, or they implicitly belong to rdfs:Resource. Thus, in this case, the
rdf:type property is similarity relevant. In the T-Box, rdf:type is used to define classes and
properties. Since the simple fact that two resources are classes or properties does not
imply semantic similarity, rdf:type is not similarity relevant in this abstraction level.

Most common graph distance-based approaches are restricted to the rdfs:subClassOf

or rdfs:subPropertyOf hierarchy among resources. They argue that RDF types (classes and
properties) are similar if their least common type within the ontology is close to both of
them. This restriction has certain limitations. Although the similarity detected between
concepts like apple and orange is intuitively appropriate, since they are both a fruit, it
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Figure 2.6: Abstraction levels in a typical RDF-S ontology [23, page 3]

does exclude similarity formed by other describing properties that represent relations
like has part, part of, contains or uses. Though one can argue that oil and car are not similar
concepts, they are certainly related. If the observed concept is motor, this relatedness
becomes comprehensible.

In the next sections, some of the most important distance-based algorithms are
discussed. Unless stated otherwise, they are restricted only to the type hierarchy of
resources [24].

Rada, Mili, Bicknell, and Blettner

In [25] Rada et al. introduce a basic distance measure Ds between two concepts c1 and c2.
They use the length of the shortest path within the ontology graph between c1 and c2

(edge counting) as similarity indicator. If such path does not exist, Ds is 0. Since the
similarity is anti-proportional to the graph distance, it is defined as

simRada(c1, c2) =
1

1 + Ds(c1, c2)

Adding 1 to the length of the shortest path prevents an infinite self-similarity of
concepts, as Ds is zero in this case.

The disadvantage of this measure is that it is unaware of the root distance of concepts.
In an exemplary ontology, this measure states the same similarity between the two
assumed top-level classes Thing and Living Being as between a Self-Sealing Stem Bolt and
a Conventional Stem Bolt, both being Stem Bolts and located much deeper in the ontology.
Since deeper concepts are generally more specific, a larger root distance of the least
common subsumer (LCS) of two concepts should be reflected by an increased similarity.
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Castano, Ferrara, Montanelli, and Racca

Castano et al. extend the measure of Rada et al. by considering not only is-a relations [26].
They call their measure affinity and let affinity weights ranging from 0 to 1 be defined for
any property. The total affinity of a path is computed by multiplying the weights of its
edges. Hence, their measure is

simCast(c1, c2) =

maxi=1...k(Wt7→ n
i c2

) if k ≥ 1

0 otherwise

There, k is the number of paths between c1 and c2, and t 7→ n
i c2 denotes the ith path

of length n ≥ 1. Wt7→ n
i c2

=
n∏

j=1
wi, j, where wi, j ≥ 0 is the affinity weight of the jth property

in path i. Though not explicitly stated, it is assumed, that a path from c to itself has a
length and affinity weight of 1. Their measure is normalized, as all multiplied weights
are within range [0 . . . 1] and therefore maxsimCast = 1.

Haase, Siebers, and Harmelen

Haase, Siebers, and Harmelen take the concept depth into account and suggest the
following similarity measure, where l is the length of the shortest path between c1 and c2

and h denotes the height of the LCS of c1 and c2 [27].

simHaas(c1, c2) =

e−αl · eβh − e−βh

eβh + e−βh
if c1 , c2

1 otherwise

The measure provides the two scaling variables α, β ≥ 0 to adjust the influence of the
concept distance (α) and the LCS height (β) independently. Based on their benchmarks3,
they find α = 0.2 and β = 0.6 to be the optimal values [28, 29]. The maximum similarity
of Haase-Siebers-Harmelen is 1 as shown (2.3), therefore the measure is normalized.

∀α, l ≥ 0 : 1 ≤ eαl ⇒ 0 ≤ e−αl ≤ 1 (2.1)

∀β, h ≥ 0 : eβh − e−βh ≤ eβh + e−βh ⇒ 0 ≤ eβh − e−βh

eβh + e−βh
≤ 1 (2.2)

(2.1) ∧ (2.2) ⇒ simHaas 7→ [0 . . . 1] (2.3)

3They used the measure for an evaluation of the Association for Computing Machinery, Inc. (ACM) Computing
Classification System.
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Leacock and Chodorow

Leacock and Chodorow also define a measure that is based on the length of the shortest
path between concepts [30]. In contrast to Haase, Siebers, and Harmelen, they use a
logarithmic scale to flatten similarity decrease caused by increased distance.

simLC(c1, c2) = − log
length(c1, c2)

2D

In this definition length(c1, c2) is the number of distinct nodes on the shortest path
between c1 and c2 and D is the maximum depth of the ontology. Although the upper
bound of this measure is constant within a given ontology, it is not 1. Since the maximum
similarity occurs between a concept and itself, it is

maxsimLC = − log
1

2D
= log(2D).

Hence, a normalized version of simLC can be constructed using maxsimLC as scaling factor.

sim∗LC =
simLC

maxsimLC

=
− log

length(c1, c2)
2D

log(2D)

=
log(2D) − log(length(c1, c2))

log(2D)
= 1 − log(length(c1, c2))

log(2D)
= 1 − log2D length(c1, c2)

Wu and Palmer

Wu and Palmer also face the issue of normalization in [31]. Their measure is based on the
depth of a concept, which is the number of nodes on the path to the root (see figure 2.7).

simWP(c1, c2) =
2 · depth(lcs(c1, c2))

depth(c1) + depth(c2) + 2 · depth(lcs(c1, c2))

In [32] Resnik reformulates this measure to

simR
WP(c1, c2) =

2 · depth(lcs(c1, c2))
depth(c1) + depth(c2))
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Figure 2.7: The conceptional similarity measure of Wu and Palmer (example) [31, page 136]. The similarity

between C1 and C2 is simWP(C1,C2) =
2 ·N3

N1 + N2 + 2 ·N3

Hirst and St-Onge

Hirst and St-Onge suggest a measure which considers any property [33]. They classify
property relations by their direction: horizontal, upwards and downwards.

Upward Relations are generalizations such as between apple and fruit (via is-a).

Downward Relations are specializations and the inverse to upward relations.

Horizontal Relations other relations that express relatedness are considered horizontal
(e.g. successor, predecessor, causes-effect).

Moreover, Hirst and St-Onge define that legal paths must only contain the allowed
changes of directions (see figure 2.8), which are

R1 No other direction may precede an upward relation – once a link that narrows down
the context (downward or horizontal) has been used, it is not permitted to enlarge
the context again by using an upward link.

R2 At most one change of direction is allowed, except that it is permitted to use a
horizontal link to make a transition from an upward to a downward direction.

Using the constants C and k ≥ 0, the similarity of two concepts is defined as

simHO =
1

C − path length + k · number of changes of direction
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Figure 2.8: (a) Patterns of paths allowable medium-strong relations and (b) patterns of paths not allowable.
(Each vector denotes one or more links in the same direction.) [33, page 6]

2.3.2 Information-Theoretic Measures

A common problem of distance-based measures is that they imply uniform links, which
means that a link always counts for the same distance, disregarding of the specificity the
connected concepts. This is generally not appropriate, since links between more specific
concepts should be considered semantically shorter than those between general concepts.
The following section describes approaches of similarity measures that do not rely on
edge counting, but on the information theoretic evaluation of an ontology [32, 34–37].

These measures derive the similarity of two concepts from the specificity (informa-
tion content) of their commonalities. The specificity of a concept c is determined by the
probability p to find an instance of that concept in the overall set of instances R. The
higher this probability is, the lower is its information content and the more general it is
considered to be. If the ontology has a unique root c0, then p(c0) = 1, meaning c0 is the
most unspecific class. The information content I(c) of a class c ∈ C is defined as

I(c) = − log(p(c))

p(c) =
|R(c)|
|R|

R(c) =
{
i ∈ I | ∃ c′ ∈ C(c) : i (typeOf) c

}
C(c) =

{
c′ ∈ C | c (subtypeOf)* c′

}
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Figure 2.9: A fragment of the WordNet taxonomy with probabilities and information content assigned [32]

As an example, figure 2.9 shows a fragment of the WordNet taxonomy with assigned
probability and information content values [32].

Lin

In his work “An information-theoretic definition of similarity” [34], Lin introduces a
formal definition of concept similarity, which it is based on the following intuitions.

Intuition 1 The similarity between two concepts c1 and c2 is related to their commonali-
ties. The more commonalities they share, the more similar they are.

Intuition 2 The similarity between two concepts c1 and c2 is related to the differences
between them. The more differences they have, the less similar they are.

Intuition 3 The maximum similarity between two concepts c1 and c2 is reached when c1

and c2 are identical, no matter how much commonalities they share.

Beside these intuitions, Lin makes the following reasonable assumptions in order to define
a general similarity measure:

Assumption 1 Let I(common(A,B)) be the measure of A’s and B’s commonalities, where
common(A,B) is a proposition that extracts A’s and B’s commonalities and I(s) is
the amount of information a proposition s has. If, for instance, A is "apple" and B
is "orange", common(A,B) would be ( f ruit(A), f ruit(B)). In information theory, the
information contained in a proposition is measured by the negative logarithm of its
probability. Therefore, I(common(A,B)) = − log(P( f ruit(A), f ruit(B))).
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Assumption 2 The differences δ between A and B are given by

δ(A,B) = I(description(A,B)) − I(common(A,B))

where description(A,B) is a proposition that states all information about A and B.

Assumption 3 The similarity sim(A,B) between A and B is a function of their commonal-
ities and differences: sim(A,B) = f (I(common(A,B)), I(description(A,B))). The range
of f is {(x, y)|x ≥ 0, y ≥ x} and f : R≥0 × R≥0 7→ [0 . . . 1].

Assumption 4 As the similarity of a pair of identical concepts is 1, f must have the
following property: ∀x ≥ 0 : f (x, x) = 1.

Assumption 5 If the commonality between A and B is empty, their similarity must always
be 0: ∀x ≥ 0 : f (0, y) = 0.

Assumption 6 As objects generally can be viewed from different perspectives, their
similarity can be computed separately for each perspective. It is assumed that the
overall similarity is a weighted average of the similarities of all observed aspects.
The weights are the amount of information of the aspect descriptions. This leads to

∀x1 ≤ y1, x2 ≤ y2 : f (x1 + x2, y1 + y2) =
y1

y1 + y2
f (x1, y1) +

y2

y1 + y2
f (x2, y2)

Based on these assumptions, a general similarity measure definition can be derived:

let x = I(common(A,B)) and y = I(description(A,B))

simLIN(A,B) = f (x, y)

= f (x + 0, x + (y − x))

=
x
y
· f (x, x) +

y − x
y
· f (0, y − x)

=
x
y
· 1 +

y − x
y
· 0 =

x
y

=
I(common(A,B))

I(description(A,B))

=
2 · log(P(lcs(A,B)))
log P(A) + log P(B)
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increases with commonalities - - + - + - + +

decreases with differences + + + + + + + -
sim(c, c) = max + + + + + + + -

sim(c1, c2) = sim(c2, c1) + + + + + + + +

max(sim) = 1 + + + + + - + +

supports any properties - + - - - + * *

* properties are not considered

Table 2.1: Feature comparison of semantic similarity measures

Resnick

Resnik also introduced an information-theoretic similarity measure, which simply
considers the most informative subsumer (MIS) [32].

simRES(c1, c2) = max
c∈S(c1,c2)

(− log p(c)
)

There, S(c1, c2) is the set of concepts that subsume c1 and c2. The maximum similarity of
this measure is the maximal information content of a concept c ∈ C, which is the concept
with the lowest probability of finding an according individual i ∈ I. This maximum can
be used to normalize the measure.

maxsimRES = − log
1
|I| = log |I|

2.3.3 Comparison

The intuitions of Lin provide a fair basis for a comparison of the previously discussed
approaches. As graph distance reflects the differences of concepts, all distance-based
measures tribute to Lin’s second intuition. The ontological height of the LCS, on the other
hand, reflects commonalities. Since all distance-based measures except simHaas do not
take this height into account, they do not comply with Lin’s intuition 1.

Regarding the information content based approaches, just the measure Lin meets all
intuitions. Resnik considers the maximum information content of common subsumers.
As they reflect commonalities, this measure does fulfill Lin’s intuition 1. Nonetheless,
possible differences are not reflected, since Resnik’s formula does not consider the distance
of the concepts to their MIS. Therefore, the measure of Resnik does not comply with
intuition 2. A complete comparison of the key characteristics of the different approaches
is given in table 2.1.
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2.4 Swarm Intelligence

Swarm Intelligence denotes a field of artificial intelligence that investigates the behavior,
the organization and the strategies of natural social societies, such as formed by insects,
birds, fishes or humans, in order to adapt them for various kinds of computerized problem
solving. These societies are characterized by a high frequency of local interactions
between relatively simply agents, which do not follow a designed leader but act highly
independent, local and asynchronously [38]. Though the interactions are very simple,
social societies have proven to be capable of solving complex problems, like work
balancing or routing, and, at the same time, to be highly scalable and adaptive to
environmental changes. By cooperation of millions up to billions of individual beings,
termites and ants, for example, form and maintain impressive structures (ant hills, termite
mounds), coordinate food supply, maintain temperature and organize colony protection
and attacks. The largest known single connected ant colony was found in South Europe
spanning over 5760 kilometers from the Italian Riviera to the north west of Spain4. Being
over 700 kilometers longer than the Chinese Wall, it is also the largest known building of
any kind on earth.

One example of a highly distributed multi-agent system, which makes use of swarm
intelligence, is the Ant Colony Optimization (ACO). It is used to obtain fast near-optimal
solutions for shortest path problems of various kinds, like scheduling, sequential ordering,
vehicle routing, personnel dispatch or the Traveling Salesperson Problem (TSP).

The ACO generally simulates ant behavior studied in the double bridge experiment [39].
There, ants were given two possible paths of different length from their nest to a source
of food. They managed to always pick up the shorter path in the long run by constantly
dropping pheromones on their way. While at first the two paths were picked randomly,
the shorter path increased its pheromone concentration as ants returned earlier than those
who chose the longer path. It was observed that the higher pheromone concentration
animated following ants to pick the shorter path more frequently, thus increasing the
concentration even more. Figure 2.10 illustrates a pseudo-code adaption of that behavior
for a computerized solution of the TSP with virtual ants and pheromones.

The key characteristics of these biological collectives - scalability, simplicity, robustness,
decentralization and parallelism - are also demands for distributed computing and are
therefore being studied and adapted. The next chapter describes the approach of using
swarm intelligence to implement a distributed RDF Triple Space with swarm-based
semantic clustering.

4http://www.3sat.de/3sat.php?http://www.3sat.de/nano/news/31769/index.html, 18.09.2008
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Figure 2.10: Pseudocode for a swarm-based solution of the TSP [39, page 6127]

2.5 SwarmLinda

SwarmLinda is a simulation of a distributed Tuple Spaces. It was implemented
as a NetLogo-Extension by Daniel Graff in his master thesis at the Freie Univer-
sität Berlin in 2008 [2].

2.5.1 NetLogo

NetLogo is a general purpose network simulator developed by the Center for Connected
Learning and Computer-Based Modeling of the Northwestern University, Chicago [40]. It
provides mechanisms to build environments of graph- or patch-based worlds and allows
to define application-specific patch-, graph- or link-properties. Moreover, it includes
various visualization facilities such as a 2D- or 3D-View and flexible user defined plots,
which can be used for activity and state monitoring. By using the NetLogo modeling
language, it is possible to create different agents breeds as well as to implement their
behavior in the environment. NetLogo updates all agents and the environment in a round-
based way (using time ticks) and takes responsibility of the internal synchronization.

NetLogo is programmed in Java and allows to write custom extensions in Java as
well, using the NetLogo Extension API. Bundled as a Java archive (JAR) file, these
extensions can be imported and called as procedures from a regular NetLogo model.
An overview of the most important applied features of NetLogo and their usage is given
in section 4.2 (User Manual), page 70.
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2.5.2 SwarmLinda Extensions

The NetLogo extensions and models implemented by Daniel Graff consist of a network
generator and the actual Tuple Spaces simulation. The environment is defined by a graph,
the nodes of which represent single tuple spaces and the edges of which represent the
Tuple Space network connections. The basic IN and OUT primitives are performed by ant-
agents that move tuples and templates between nodes, based on strictly local decisions.
Along the way, they spread pheromones indicating which kind of tuple or template they
carry. Next, the basic system functionalities are described. For further explanations on
implementation details and evaluation results of the models and extensions, refer also to
the original document [2]. Figure 2.11 shows a screenshot of the simulator main view.

Figure 2.11: Control elements and visualization area of the SwarmLinda simulator [2, page 50]

OUT - Ants

When a tuple is stored in the space, an OUT-Ant is created which picks it up and tracks
existing pheromones to find similar tuples to store it at that location. Following its path,
the ant drops pheromones that match the types of its tuple on each visited node. Also, it
gets older with each node transition it makes. If the ant decides to drop the tuple - because
the current location seems suitable enough or because its time-to-live (ttl) became zero - it
drops pheromones on the surrounding neighbors as well. After the ant has dropped its
tuple, it dies in any case. The drop probability depends on the concentration c of matching
tuples at the current location and the ant’s time-to-live.

Pdrop =
( c
c + ttl

)2

The path selection probability from node i to node j is defined as

Pi, j =
c j + Ph j∑

n∈NH(i)
(cn + Phn)
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where NH(i) states the neighborhood of node i and Phi the local amount of scent that
matches the actual tuple or template.

IN / RD - Ants

Finding tuples for templates in the space works quite similar to tuple storage. At the
requesting node, an IN- or RD-Ant gets born and follows the scents of its template to
find a match. If it finds one at its current location, the matching tuple is returned to
the requestor and, in case of an IN, removed. By returning on the visited path, the ant
again spreads its pheromones. If there is no matching tuple present, the ant chooses one
of the neighboring nodes the same way like OUT-Ants. IN- and RD-Ants also have a
pre-defined time-to-live and age while traversing the network. If an ant dies, the request
fails, assuming that the probability of finding a match at one of the unvisited nodes is
very low.

Scout - Ants

Scout-Ants are created at random and move tuples to create a higher degree of order in
the space. Technically, they are a combination of OUT- and IN-Ants, as they pick up a
tuple which seems to be misplaced at its current location (this decision is based on the
concentration of matching co-located tuples) and try to again store it in the space.

Conclusions

In his work, Daniel Graff shows how swarm intelligence can be used for collective sorting
and clustering in Tuple Spaces. Although his system only supports limited kinds of
tuples and templates, the achieved results successfully demonstrate how self organization,
performed by agents making local decisions, can form a dynamic, adaptive, robust,
decentralized and highly asynchronous LINDA implementation.
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2.6 Related Work

2.6.1 JavaSpaces

JavaSpaces™ is a Sun Microsystems specification and reference implementation for
the LINDA Tuple Spaces coordination model in the Java programming language. It
is part of the Java Intelligent Network Infrastructure (JINI) Technology Core Platform
Specification [41, 42]. In contrast to LINDA, JavaSpaces allows tuples (called Entries) to
contain any serializable Java object and provides service implementations for accessing
a single centralized Tuple Spaces (entry space). Those services are deployed in a
conventional web server, where a minimal one is part of the project distribution [21].

JavaSpaces supports all the basic LINDA primitives (but EVAL) - although their names
differ to match standard Java conventions (e.g. read, write and take). The matching of
tuples with anti-tuples is done by byte-level comparisons [21], using a non-standard form
of serialization of only public fields. JavaSpaces also extends the LINDA programming
model with a concept of transactions, which is intended for commercial use, and an event
registration mechanism to inform clients of tuple insertions. Furthermore, entries with
the same values may exist multiple times in the space. Figure 2.12, which was taken from
the Sun Microsystems JavaSpaces web page [41], illustrates a general application layout
using JavaSpaces.

Figure 2.12: An illustration of a general JavaSpaces™ application. Clients perform operations that map
entries or templates onto JavaSpaces services. These can be singleton operations (as with the upper client),
or contained in transactions (as with the lower client) so that all or none of the operations take place. A single
client can interact with as many spaces as it needs to. Identities are accessed from the security subsystem
and passed as parameters to method invocations. Notifications go to event catchers, which may be clients
themselves or proxies for a client (such as a store-and-forward mailbox) [41].
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2.6.2 GigaSpaces

The GigaSpaces eXtreme Application Platform (GigaSpaces XAP) is a commercial
implementation and extension of the JavaSpaces specification. Among the extensions,
there are operations on multiple tuples like updating, deleting, or tuple counting. It is
designed as a scalable application server and does not only provide a Java API, but also a
framework for .NET and C++. It supports a SOAP-over-HTTP access for other non-Java
clients as well.

The GigaSpaces XAP core Java development framework is called OpenSpaces and
is published as open source. OpenSpaces is supposed to simplify the development
and deployment of distributed applications on top of the GigaSpaces XAP run-time
platform: “OpenSpaces supports several of the popular Java development frameworks,
such as Spring, Mule and Hibernate. This integration enables seamless high availability
and scalability for applications written in using these frameworks. Using OpenSpaces
for example, Spring applications can seamlessly plug-in GigaSpaces XAP’s remoting,
messaging and data components to achieve high availability and scalability” [43].

Besides the extensions mentioned above, GigaSpaces functionality is quite similar to
JavaSpaces as they implement the same specification [21, 43].

2.6.3 TSpaces

TSpaces is a product of IBM and based on Java technology as well. It is focussed on
integrating database functionality to tuple spaces [44]. Like in JavaSpaces, TSpaces extend
and rename the original Tuple Space primitives and establish methods like delete, scan,
countN, consumingScan, deleteAll, multiWrite or multiUpdate. Furthermore, tuples can be
addressed by a primary key (tuple id) - a common database concept - via methods like
readTupleById or deleteTupleById [21]. Also there is an event notification mechanism for
insertions and deletions of tuples and these tuples may contain any Java object. Unlike in
JavaSpaces, tuple-template-matching is performed using the equals() or compare() methods
of the contained objects (the latter in case java.lang.Comparable is implemented) instead of
byte-level comparisons.

As in most commercial space implementations, TSpaces does support transactional
space access and enforces security by a concept of users, user groups, rights and password
protection. Another interesting feature of TSpaces is its aging mechanism, where tuples
can have an expiring time after which they automatically vanish from the space.

2.6.4 XMLSpaces.NET

XMLSpaces.NET is a LINDA implementation in the Microsoft .NET framework that
adds support for XML [45]. In XMLSpaces.NET, tuples and fields are modeled in XML,
which allows a complex tuple structure, possibly containing sub-tuples. It implements
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sophisticated matching enhancements, which evaluate the XML content, and allows the
usage of XML query languages like XQuery [46] or XPath [47]. XMLSpaces.NET also
includes support for a fully distributed space.

2.6.5 eLinda

eLinda is another Java implementation of the original LINDA programming model. The
three major extensions of eLinda are a broadcast output operation, support for multimedia
applications, and a Programmable Matching Engine that allows to use flexible criteria for
tuple-template-matching [21]. This engine can, for instance, be used to find a tuple with
a value closest to a given one or within a given range, or to evaluate tuple aggregations.
It is also possible to define custom matchers with the help of the eLinda framework (for
instance to evaluate XML content like in XMLSpaces.NET).

2.6.6 Tripcom Project

The Tripcom Project started in April 2006 and is currently planned to run until March 2009.
It is a cooperation of 9 partners, situated in 7 different countries (Freie Universität
Berlin, National University of Ireland, Technische Universität Wien, and Universität
Stuttgart, just to mention some). Its objectives are to investigate how the combination of
technologies like web ontologies and web services can form semantic web services, or
how web ontologies and Tuple Spaces can form semantic Tuple Spaces. Altogether, these
technologies can evolve into the next generation of the Semantic Web, which includes
secure publication of semantic data, resource retrieval by semantic matching and trustful
semantic mediation between heterogeneous services [22, 48, 49].
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Approach

In this chapter, the major research objectives of this thesis are presented. It contains
analyses on the previous works of Daniel Graff [2] and Anne Augustin [7] and provides
an outline of the proposed SwarmLinda extensions to form a semantically clustered
Triple Space. Furthermore, all relevant aspects of the introduced swarm approaches are
discussed in detail through the next sections.

3.1 Previous Works and Objectives

In his Master Thesis [2], Daniel Graff developed a swarm-based LINDA implementation,
where tuple clustering and retrieval is accomplished by simulated ants using virtual
pheromones for path selection and making strictly local decisions, like whether to drop
a tuple at the current node or to transit to the next one (see section 2.5 (SwarmLinda)).
There, the tuple drop probability as well as the node selection probability depend on the
concentration of matches in the local set of tuples or in the scent-lists respectively. In his
extension, Graff supports the usage of four explicit tuple kinds1 only. By using a separate
scent for each possible template, the maximal length of the scent-lists is limited to four
as well. Consequentially, also concentration and entropy calculations presume the usage
of just these distinct tuple kinds. Swarm-based approaches for a general semantic triple
clustering and retrieval can evidently not rely on such restrictions.

Instead of just simple basic types, in the field of typed RDF Tuple Spaces, there
exist semantically interlinked classes and properties that form ontologies. Instances
of classes (individuals) can be instances of other classes at the same time, and moreover,
these classes may subclass an arbitrary number of other classes themselves. Therefore,
a typed matching of resources must consider the underlying ontological structure
and derive the semantic similarity and relatedness of the concepts. As a result,
these matchings can, unlike in SwarmLinda, not be modeled in a discrete or disjunct

1(string,string), (string,int), (int,string), and (int,int)
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way. Instead, they are generally overlapping and represented as fuzzy values. This
thesis introduces extended and generalized approaches for concentration, probability,
and entropy calculations, which take multi-instancing, multi-inheritance, class- and
property-similarity, and overlapping matches into account.

Daniel Graff’s work is extended in the bachelor thesis [7] of Anne Augustin, who
implements resource clustering by URI. Therefore, she analyzed namespace hierarchies
of the most common URI schemes and introduced an adequate similarity measure for
namespace comparison. In her extension, she establishes a tripled clustering, indexing
triples by their subjects, predicates and objects.

Since this approach groups resources by similar URIs, it does not evaluate their
semantic context and accordingly disregards the information provided by the ontologies.
As URIs generally do not reflect the classes their resources belong to, triples clustered in
this manner cannot efficiently be retrieved by type. In the next sections, swarm-based
approaches are introduced, which provide support for typed templates (allowing typed
triple retrieval), as they cluster statements semantically and form thematically confined
areas within the Triple Space.

3.2 Overview

This section provides a brief outline of the approached strategies and depicts the
Triple Space architecture. Regarding to the different abstraction levels of RDF ontologies
(see section 2.1.1 (RDF) and 2.3.1 (Distance-Based Measures)), the clustering is divided
into the A-Box- and the T-Box Clustering.

3.2.1 A-Box Clustering

The A-Box of an ontology contains all statements about class instances and values. A-Box
clustering addresses the adaptive and type-based distribution of these statements among
the Triple Space network. To gain web-scalability, every node of the Triple Space must
only be responsible for A-Box statements referring to a subset of all existing resources.
Semantic clustering implies that the responsibility for similar types must be assigned to
nodes within the same network area. Furthermore, the assignment of this responsibility
must be dynamic and adaptive to ontological and environmental changes (mainly changes
in network topology).

These goals are achieved by utilizing the self-energizing aspects of swarm intelligence.
The conceptual responsibility of a node can be dynamically derived from the type
distribution of its triple resources. Using an appropriate similarity measure, the semantic
concentration of a given type in this distribution can be calculated. Since this concentration
can indicate the semantic suitablity of a node towards the resource of a passing ant, it is
used to decide, whether to drop the triple at the current node or to continue the search.
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Thus, a high concentration of a certain type leads to a increased probability of aggregating
statements about similar resources, whereby the concentration increases even more.

Similar to the ACO, the locating of suitable nodes is supported by a system of semantic
trails. These trails are formed dynamically by ants spreading and following typed
pheromones. Analogously to the drop probability, the path selection probability is derived
from the semantic concentration of a given type within these pheromones.

The A-Box-Cluster consists of three different incarnations, in which all triples are
indexed by their subject, their predicate, and their object respectively. Hence, anytime
a triple is inserted into the cluster, an OUT-Ant is created for each statement resource
(subject, predicate and object) and being placed in the corresponding cluster incarnation.
Each OUT-Ant carries the original statement, an indicator of which resource it is
responsible for, and a local type hierarchy. This hierarchy initially consists only of
the types of its primary resource. While an ant traverses the network, it learns more
about its resources, by merging its own type hierarchy with the hierarchies of the visited
nodes. Moreover, ants on the same node may also learn from each other by merging
their type hierarchies as well. This refining knowledge is then used to determine the
semantic suitablity of the current node. If the local triples are similar to the carried
statement, the ants adds it to the local A-Box and returns. Otherwise, it decides which
neighbor to pick next, depending on the present scents.

3.2.2 T-Box Clustering

The T-Box consists of two different sub-levels - the RDF-S-Level and the Schema-Level.
As the RDF-S-Level is a pre-defined fixed set of triples, it is not necessary to deal with
RDF-S-Level insertions or deletions. Hence, its triples are available by default on each
node for general ontology processing.

The Schema-Level contains all custom class and property definitions. It furthermore
defines their relations, describes their meanings and is therefore the basic source of
information about resource similarity and relatedness. Distributing the Schema-Level
among the Triple Space nodes is essential, as a web-scalable system cannot provide the
details of all ontologies on every node. Yet, Schema-Level clustering must provide each
node with a partial knowledge that is rich enough to understand the semantics of its
resources.

A complete class or property definition in RDF does not only consist of a single triple
defining the class or property itself, but also of those defining subclass/subproperty-
relations as well as those assigning possible members. Hence, the member definitions
with restrictions, ranges and domains are also needed as are the definitions of ranges
and domains as well and so on. As a result, a full class or property definition can hardly
be limited to a few triples, but is instead highly transitively interlinked with other class
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and property definitions. A complete partitioning of the T-Box among the network is
therefore rather impracticable.

Therefore, the distributed T-Box is restricted to the very definitions that are necessary
for similarity determination, while all other Schema-Level statements are clustered like
regular A-Box statements. In the following, this similarity-relevant T-Box subset will be
referred to as Schema-Box (S-Box). The statements required for similarity determination
are those defining resources as classes or properties and those expressing subclass and
subproperty relations.

To provide the necessary partial ontology knowledge of a node, which is defined by
the types of the hosted resources and the types in the scent-lists, some S-Box definitions
must be available on more than one node. For this purpose, these definitions are partially
replicated on-the-fly by the active ants, which automatically extend the local S-Box of a
node with the (ant-local) type hierarchy of their resources, anytime they drop a triple
or spread their pheromones. To prevent the node-local S-Boxes from growing too large,
they are periodically cleaned. This cleaning removes all definitions that are not needed
any longer - because statements have been removed or relocated, or corresponding scents
have vanished.

3.2.3 Triple Retrieval

The triple retrieval is performed by IN-Ants, which use the resource types of their tem-
plates and the previously spread scents to find matching statements. Besides templates
containing plain resources, which are also supported in Augustin’s implementation, this
work additionally allows typed templates. A special URI-scheme rdf-typed:// is used to
mark a triple resource as typed request, where the scheme-specific part consists the original
resource URI.

Since there are three cluster incarnations, template matchings can be conducted
concurrently by subject-, predicate- and object- IN-Ants, which independently follow
the types of their resource. In case of competing deletes, a special distributed locking is
performed by Locking Ants, which is described in section 3.8 (Triple Retrieval), page 61.

Regarding templates that contain only plain resources, it would be possible to re-use
the approach of Anne Augustin. Yet, this work uses URI-clustering for the resource
type identification step only (which is described in the next section). The first reason is
that, in this manner, the cluster can handle all requests consistently and execute plain
request semantically in the same way as typed and mixed requests. More importantly,
anticipating future works, a semantic processing of plain resources allows possible fuzzy
searches, which can retrieve triples within a certain similarity range of a given resource.
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3.2.4 Triple Space Architecture

The Triple Space consists of two different cluster layers - a reduced version of the
URI cluster of Anne Augustin, which is restricted to storing resource type, subclass,
and subproperty definitions, and the Semantic Cluster, where all triples are stored in
semantic neighborhoods, as shown in figure 3.1.

Figure 3.1: The triple Space architecture

The Semantic Cluster is a network of nodes, where each node for each cluster
incarnation contains an A-Box, an S-Box, and a scent-list for each neighboring node.
To operate the Triple Space, every node runs the following set of processes:

Triple and Template Processing This process continuously takes new triples and tem-
plates from the pending triple list of the node and creates the appropriate IN-,
OUT- and RD-Ants. Having a pending list and a configurable maximum ant count
prevents the Triple Space from ant cascades and provides a facility for activity
balancing.

Cluster Maintenance The cluster is continuously maintained by this process, which picks
up the local most dissimilar statements and creates OUT-Ants to relocate them.
This increases clustering quality by decreasing the spatial sematic entropy of the
Triple Space.

Template Generation In order to maintain scents and keep the cluster adaptive, this
process creates random templates for present statements and assigns them to special
RD-Ants, which first perform a random walk and then try to retrieve a match from
their random starting point. By spreading pheromones like regular IN- or RD-Ants,
they ensure that the scents are kept up-to-date, even if there are no active external
requests (in which case all scents would completely vanish after a certain amount
of time).

Pheromone Decrease This process continuously decreases the amount of pheromones in
the local scent-lists by a configurable degree.
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Garbage Collection As the states of the triple distributions and scent-lists may change
permanently, this process removes any definitions in the local S-Box, which are
not related to local resources or scent-list entries any longer. This ensures that the
S-Boxes are kept as small as possible and contain only the relevant subset of classes
and properties.

This concludes the general system outline. The following sections provide in-depth
explanations of each aspect describing all used assumptions, strategies and calculations.

3.3 Type Identification

In order to cluster and retrieve triples by the types of their resources, these types must
be identified prior to any subsequent activities. As initially a resource, represented as
URI, does not contain any information about its semantic context, the type identification
is conducted using URI-clustering. For this purpose, the URI-Cluster is limited to storing
type relevant triples only, which are those having a predicate of rdf:type, rdfs:subClassOf,
or rdfs:subPropertyOf. As the relevant resource in these triples is always the subject, the
predicate and object index of the URI-Cluster are omitted and only its subject incarnation
is used. Anytime a type-relevant triple is added or deleted, the URI-Cluster is updated
as well.

The type identification of any triple or template is performed using regular URI-RD-
Ants. For each resource r, these ants identify its types by following the URI of r in the
subject cluster, looking for triples matching the template (r,?,?). The returned matches
allow to determine whether the resource is a class (having (r,rdf:type,rdfs:Class) in the
result set), a property (having (r,rdf:type,rdf:Property) in the result set) or an individual
(otherwise). In case the resource is a class or property, its direct super classes or super
properties are identified by processing the result set for matches of (r,rdfs:subClassOf,?)
or (R,rdfs:subPropertyOf,?). If the resource is an instance of a class, its direct parent classes
are determined by examining the matches for (R,rdf:type,?). Figure 3.2 illustrates a triple
type identification achieved concurrently by three different subject RD-Ants.

Using the URI-Cluster for type identification in the described way does not necessarily
provide a full transitive type hierarchy. This would require to create RD-Ants repeatedly,
which is considered to be too inefficient. Instead, building up the complete upwards type
hierarchy, which is needed for similarity determination, is accomplished in two ways.
First, URI-Ants are created sporadically to search for referred super class definitions.
These definition are then replicated at the node, which hosts the subclass. Additionally,
the ants’ learning capability allows them to complete their knowledge about their
resources dynamically while traversing the cluster.
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Figure 3.2: Using URI-clustering for type identification

3.4 Similarity Measure Evaluation

The most crucial factor of semantic clustering is the determination of type similarity.
In order to select appropriate similarity measures for the cluster implementation, their
different characteristics are compared and pre-evaluated in this section. As their gradients
depend on various factors like concept distance, the height of the least common subsumer
(LCS), or the information content of the most informative subsumer (MIS), the analysis is
performed on three different types of ontology graphs, which are shown in figure 3.3.

There, example 1 is a graph with a low height and a high average degree containing
92 classes, example 2 is a graph with a high depth and a low average degree containing
38 classes and example 3 is a mixture of both containing 64 classes. These graphs are
considered be representative enough for typical ontologies to perform an appropriate
evaluation of the given measures. In these evaluations, Haase-Siebers-Harmelen was
configured withα = 0.2, β = 0.6 and, to meet the requirements of the information-theoretic
measures, a number of 10 instances was assigned to each class.

Figure 3.4 shows the average similarity results of the evaluated measures2 for each
graph, grouped by concept distance. It can be observed that, although all measures
decrease with graph distance, their actual results differ quite much.

2The following measures were omitted in this evaluation: the measure of Hirst and St-Onge because of its
counterintuitive path direction restrictions, the measure of Castano, Ferrara, Montanelli and Racca because
it is not intended to add an affinity weight facility to the Triple Space, and the measure of Jiang and Conrath
because it cannot be normalized
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Figure 3.3: The example graphs used for similarity measure evaluation

3.4.1 Distance-Based Measures

At small distances (0-5), Rada-Mili-Bicknell-Blettner gives the lowest similarity results, as
it initially decreases very fast. Wu-Palmer states the highest values, while Haase-Siebers-
Harmelen’s similarity is generally closest to the average. Rada-Mili-Bicknell-Blettner
is also the most stable measure as it does not depend on the LCS height and gives
the same results in all example graphs. While Wu-Palmer and Haase-Siebers-Harmelen
decrease slower than Rada-Mili-Bicknell-Blettner at small distances, the situation changes
at higher distances (>5). Furthermore, as their decreases do depend on the LCS height,
they also differ among the example graphs and become more flat the deeper the graph is
(see figure 3.4).

A second measure being unaware of the LCS height is Leacock-Chodorow, yet this
measure is normalized by the diameter of the ontology graph and thereby decreases
slower with an increased overall height. Moreover, it decreases generally slower than
Rada-Mili-Bicknell-Blettner because of its logarithmic nature.

The overall average similarity for each graph and measure is displayed in figure 3.6.
Surprisingly, while all other measures show a decrease of average similarity with
increasing ontology height, Rada-Mili-Bicknell-Blettner does not. It even posts the highest
average similarity at example graph 1, which actually has the lowest height. This is due
to the fact, that Rada-Mili-Bicknell-Blettner is yet distance-, but not height-based and
example 1 has the highest average degree, which results in the lowest average concept
distance.

Wu-Palmer and Haase-Siebers-Harmelen tend to be quite similar, as their similarities
progress very much alike within the observed cases (where the results of Wu-Palmerare
slightly higher than those of Haase-Siebers-Harmelen). Figure 3.5 shows a comparison
of the different similarity decreases of among the example graphs for each measure.
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Figure 3.4: Average similarity results for example graphs
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Figure 3.5: Similarity measure decrease in example graphs
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3.4.2 Information-Theoretic Measures

A pre-evaluation of the information-theoretic measures of Lin and Resnick is not that
straightforward, because the information content is quite independent of concept height
or distance. Instead, the determining factor is the distribution of instances, which cannot
generally be predicted. Therefore, the analysis in the example graphs, where individuals
are equally distributed, can only be considered as a hint for the general behavior of these
measures, but not to be representative.

Figure 3.6: Average similarity in example graphs

3.4.3 Conclusion

Considering the made observations, the following measures are used or rejected for the
Semantic Cluster implementation:

• Rada-Mili-Bicknell-Blettner is not used because it does not fully comply with
similarity intuitions, as it does not increase with commonalities and may designate
an increased average similarity in graphs with high degrees. In a clustering scenario
this is a major disadvantage as a high average similarity between concepts may
thwart clustering quality.

• Haase-Siebers-Harmelen is used because it fully complies with similarity intuitions
and its results are generally closest to the average distance-based similarity. Besides,
it provides the scaling variablesα and βwhich allow to control the influence of height
and distance independently.
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• Wu-Palmer is not used because its gradient is rather similar to Haase-Siebers-
Harmelen. In fact, a fair approximation of Wu-Palmer can be achieved using Haase-
Siebers-Harmelen with α = 0.14 and β = 0.7, which is shown in figure 3.7.

• Leacock-Chodorow is used as a second distance-based measure as it almost fully
complies with similarity intuitions and states an upper bound of similarity in
comparison with Haase-Siebers-Harmelen and the information-theoretic measures.

• Lin as information-theoretic measure Lin is used because it also fully complies
with similarity intuitions and its results are in between those of Resnick and the
distance-based approaches.

• Resnick is not used as it does not fully comply with similarity intuitions and
generally states very low similarities compared to the other measures.

Figure 3.7: Wu-Palmer-approximation using Haase-Siebers-Harmelen

3.4.4 Measure Modifications

Degree Normalization

Figure 3.8 shows the accumulated similarity results (normalized, so that the values sum
up to 1) for each measure and example graph, grouped by distance. Evidently, due to the
fact that no similarity measure considers the degree of the nodes, these results do not have
their maximum at zero distance. Since the amount of concepts within a certain distance
generally increases faster than their similarity decreases, the accumulated similarity of
concepts within distance 1, for instance, is in all cases higher than their self-similarity
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(distance 0). As a result, when using these similarities in probabilistic decisions, like
whether to drop a triple at the current node or to choose the next to visit, the overall
probability of picking a node that hosts a concept within distance 1, might be higher than
the probability of picking the node that hosts the concept itself. Therefore, an optional
degree normalization can be applied in these calculations, which divides the original
similarity by the number of concepts within the same distance:

simnormed(c1, c2) =
sim(c1, c2)

|{ci|d(c1, ci) = d(c1, c2)}|
where d(c1, c2) states the graph distance of the concepts.

Figure 3.9 shows the degree-normalized similarities of the chosen measures. After
normalization, the overall similarity gradient has its maximum at distance zero and also
decreases monotonically. The actual effect of degree normalization on clustering quality
is evaluated in chapter 5 (Evaluation), page 85.

Measure Scaling

As the similarity distribution has a major influence on clustering, it is important to
have a scaling facility. Using the unscaled measure might result in a rather too flat
similarity distribution, stating too much average similarity between concepts for a proper
clustering. Haase-Siebers-Harmelen already provides the scaling variablesα and β, which
control the influence of height and distance on similarity. A scaling Leacock-Chodorow
and Lin is achieved by introducing the scaling variable γ and δ and applying them on the
results as a scaling exponent: simγ

LC and simδ
LIN. Figure 3.9 shows how the appliance of

α = 0.8, β = 0.6, γ = 32.0, and δ = 3.0 can be used to de-flatten similarity decrease.
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Figure 3.8: Similarity distribution in example graphs
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Figure 3.9: Similarity distribution in example graphs with applied degree-normalization
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3.5 Notation

Next, the semantic clustering and retrieval are explained using the following notation:

symbol meaning
N the set of Triple Space nodes
Θ the overall un-clustered ontology
Ω the set of triples (statements) in Θ

K the set of cluster indicatorsK = {S,P,O}
R the set of resources in Θ

Rκ the set of resources appearing as subject, predicate
or object (depending on κ ∈ K )

T the set of type-resources (classes and properties) in Θ

r ∈ T ⇔ (r, rdf:type, rdfs:Class) ∈ Ω ∨ (r, rdf:type, rdf:Property) ∈ Ω∨
∃t ∈ T : (r, rdfs:subClassOf, t) ∈ Ω ∨ (r, rdfs:subPropertyOf, t) ∈ Ω

I the set of all non-type-resources in Θ

I = R \ T
A the set of ants

T 4t the set of super-types of a type t ∈ T
ti ∈ T 4t ⇔ (t, rdfs:subClassOf, ti) ∈ Ω ∨ (t, rdf:Property, ti) ∈ Ω∨
∃t j ∈ T 4t : (t j, rdfs:subClassOf, ti) ∈ Ω ∨ (t j, rdf:Property, ti) ∈ Ω

Tr the set of direct parent types of a resource r ∈ R
t ∈ Tr ⇔ r ∈ I ∧ (i, rdf:type, t) ∈ Ω ∨ r ∈ T ∧ r = t

T ∗r the set of parent types of a resource r ∈ R
T ∗r =

⋃
t∈Tr

{t} ∪ T 4t
Nn the set of nodes neighboring a node n ∈ N
Rt the set of resources in R having t ∈ T as direct parent type
R∗t the set of resources in R having t ∈ T as parent type

AO,AIR the set of OUT-Ants and the set of all IN- or RD-Ants

x j for any vector x, its value at index j is stated by x j

x j for any matrix x, its column j is stated by x j

xi for any matrix x, its row i is stated by xi

xi
j for any matrix x, its value at row i and column j is stated by xi

j

Furthermore, any restrictions of a variable or set X to a certain node n ∈ N , ant a ∈ A,
cluster indicator κ ∈ K , type t ∈ T , resource r ∈ R or time τ are indicated as Xn , Xa ,Xκ,
Xt ,Xr , or Xτ respectively, and their combinations.
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3.6 A-Box Clustering

3.6.1 Similarity Distribution

This section introduces the similarity distribution of a type as a measure of how its
semantic similarity distributes over an ontology. It is derived from the regular or
degree-normalized similarity of a type towards all other types ti ∈ T , which is calculated
by any of the similarity measures described in section 2.3 (Semantic Similarity and
Relatedness Measures), page 22. The similarity distribution is used by ants in probabilistic
decisions - like whether to drop a triple or which node to pick next - and to determine the
spatial sematic entropy of the Triple Space, which indicates the clustering quality.

Definition 3.1 (Similarity Distribution) The similarity distribution simdt of a type t ∈ T
is a vector containing the similarities of t to all other types. It is normalized by the total amount
of similarity, so that its componentwise sum equals 1.

simdt =

 sim(t, ti)∑
t j∈T

sim(t, t j)

∣∣∣∣∣∣ti ∈ T


∀t ∈ T :

∑
t j∈T

simdti
t = 1 (3.1)

Figure 3.8 shows the average similarity distribution of all types in the example ontolo-
gies used for similarity measure evaluation. There, the distribution is calculated without
degree normalization, while figure 3.9 displays the results with degree normalization
applied.

3.6.2 OUT-Ants

The semantic A-Box-Clustering is conducted by a swarm of OUT-Ants. In this swarm,
every OUT-Ant retains this information:

• the assigned triple ω

• a cluster indicator κ ∈ K , indicating which of the triple resources it is responsible
for (this resource is also referred to as the primary resource or ωκ)

• a local type hierarchy Ta , representing the ant’s ontological understanding

• the similarity distribution simda for the types of its hierarchy

• its home-node na , its time-to-live ttl, and a path-memory

All ants’ activities are divided into seven distinct phases, which are described next.
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3.6.3 Initialization

This is the initial phase of newly created ants, where their statementω and indicator κ are
assigned as well as their type hierarchy Ta , their home-node na , and their time-to-live ttl.

3.6.4 Learning

In this phase, the ant merges its own type hierarchy Ta with the type hierarchies of the
current node n ∈ N and all other present3 ants, gaining additional knowledge about the
semantic context of its resources.

Taτ+1 = Taτ ∪ Tnτ
⋃

ai∈ An
Tai

τ

When the merging is complete, the ant applies the configured similarity measure on
its new knowledge and re-calculates its similarity distribution simda .

3.6.5 Task Fulfillment

In the task fulfillment phase, OUT-Ants determine the probability of dropping their
statement at the current node. The drop probability arises from the concentration of the
types of the ant’s primary resource in the local triple distribution of the current node.

Definition 3.2 (Triple Distribution) The triple distribution tdn κ of a node n ∈ N and
a cluster indicator κ ∈ K is a vector which, for each type t ∈ Tn , contains the number of
triples ω ∈ Ωn κ having a primary resource with t as direct parent type. If a primary resource has
more than one direct parent types, the triple’s count is equally divided among these types. Hence,
the component-wise sum of the triple distribution equals the number of triples located at n.

tdn κ
t =

∑
ω∈ Ωn κ

typecount(ω, t, κ)

typecount(ω, t, κ) =


1∣∣∣ Tn ωκ

∣∣∣ t ∈ Tn ωκ

0 otherwise

∀n ∈ N , κ ∈ K :
∑

t∈ Tn
tdn κ

t =
∣∣∣ Ωn κ

∣∣∣ (3.2)

Definition 3.3 (Type Concentration) The type concentration Cn κ
t of a type t ∈ Tn at a

node n ∈ N for a given cluster indicator κ ∈ K is the component-wise sum of the similarity-
distribution-weighted values of the node’s triple distribution tdn κ, divided by the overall local
triple count.

3Technically, ants are considered to be present at a node until they arrive at another one.
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Cn κ
t =

∑
ti∈ Tn

tdn κ
ti
· simdti

t

| Ωn κ| , | Ωn κ| , 0

Taking the local concentration of the types of its primary resource, the ant can determine
the drop probability for its statement.

Definition 3.4 (Drop Probability) The drop probability pdn κ
ω of a tripleω ∈ Ω at a node n ∈

N for a cluster indicator κ ∈ K is the summed type concentration of all direct parent types of the
primary triple resource, divided by the number of direct parent types. If there are no statements
located at n or the ant’s time-to-live ttl is zero, the drop probability is 1.

pdn κ
ω =


∑

t∈ Ta κ
ω

Cn κ
t∣∣∣ Ta κ

ω

∣∣∣ | Ωn κ| , 0 ∧ ttl , 0

1 otherwise

In order to randomize the ant’s decision, the effective drop probbalility is calculated by
adding a probabilistic component.

Definition 3.5 (Effective Drop Probbalility) The effective drop probbalility pden κ
ω is a

randomization of the drop probability, which is configured by a system variable ϕd ∈ [0 . . . 1].

pden κ
ω = pdn κ

ω · (1 − ϕd) + 0.5 · ϕd

In the extreme cases, the decision is made by considering the concentration only
(ϕd = 0) or totally at random (ϕd = 1). If the ant decides to drop its statement at the
current node, it furthermore integrates the type hierarchy for its resources into the type
hierarchy of the current node and updates the scent-lists of the surrounding neighbors.
The pheromone updates are similar to those described in section 3.6.7 (Transition).

Ωn κ
τ+1 = Ωn κ

τ
⋃{s} Tnτ+1 = Tnτ ∪ ⋃

κ∈K
Ta ∗

τ ωκ

3.6.6 Path Selection

Unless the ant drops its statement, it chooses the next node to visit depending on the
entries in the scent-lists of the current node.

Definition 3.6 (Scent-List) The scent-list scn,n κ at node n ∈ N for a node ni ∈ Nn and a
cluster indicator κ ∈ K is a vector which contains the pheromones spread by ants who previously
made a node transition from n to ni. The entry (scent) for type t ∈ T at node n for node ni will be
referred to as scni,n κ

t .

Based on the scent-list content, the ant evaluates the semantic suitablity of each neighbor.
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Definition 3.7 (Semantic Suitablity) The semantic suitablity stbni,n κ
t for a type t ∈ T

and a cluster indicator κ ∈ K from node n ∈ N to node ni ∈ Nn is the sum of the similarity-
distribution-weighted amounts of pheromones in the scent-list scni,n κ.

stbni,n κ
t =

∑
ti∈ scni ,n κ

scni,n κ
ti
· simdti

t

The transition probabilities arise from the suitabilities of the neighbors, as defined next.

Definition 3.8 (Transition Probability) The transition probability ptni,n κ
ω for a tripleω ∈ Ω

and a cluster indicator κ ∈ K from node n ∈ N to node ni ∈ Nn is the summed suitablity of ni

towards all direct parent types of the primary triple resource ωκ, relative to the overall suitablity
of all neighbors.

ptni,n κ
ω =

∑
t∈ Ta ωκ

stbni,n κ
t∑

n j∈ Nn
∑

t∈ Ta ωκ

stb
n j,n κ

t

In case
∑

n j∈ Nn
∑

t∈ Ta ωκ

stb
n j,n κ

t = 0, the transition probability is
1
| Nn | , meaning that if there is no

suitable neighbor, the ant picks the next node uniformly at random.

Analogously to the drop probability, also the transition probability is extended by
a configurable randomized component, which contributes to the adaptiveness of the
Triple Space and allows ants to explore nodes that have not been previously visited by
similar ants.

Definition 3.9 (Effective Transition Probability) The effective transition probability pteni,n κ
ω

is a randomization of the transition probability, which is configured by a system variable
ϕp ∈ [0 . . . 1].

pteni,n κ
ω = ptni,n κ

ω · (1 − ϕp) +
ϕp∣∣∣ Nn ∣∣∣

Similar toϕd,ϕp scales the influence of randomization continuously between the extremes
of ϕp = 0, which bases the ants’ decision on scents only, and ϕp = 1, which lets the ants
pickup the next node uniformly at random.

3.6.7 Transition

At the beginning of each transition phase, the ant cleans its known type hierarchy by
removing all types that do not belong to the type hierarchy of its primary resources ωκ
and have a similarity below a certain level σ towards these types.

Taτ+1 =

t ∈ Taτ
∣∣∣ max

ti∈ Ta ωκ

simdti
t ≥ σ

 ∪ ⋃
κ∈K

Ta ∗
τ ωκ
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Subsequently, it updates the scent-list towards the chosen neighbor with typed
pheromones. The pheromone update is modeled by adding 1 for each direct parent
type of the ant’s primary resource. In case they are not already present, these types, along
with their super types, are added into the local type hierarchy of the current node.

Tnτ+1 = Tnτ ∪ Ta ∗
τ ωκ scni,n κ

τ+2 ts
= scni,n κ
τ+1 ts

+

1 ts ∈ Ta ωκ

0 otherwise

After that, the transition to the next node is made. For better visualization, this phase
takes a randomized amount of time, where the ant is rendered at the current node link,
simulating its movement. When the transition is complete, the ant re-enters the learning
phase.

3.6.8 Returning

If an ant could successfully accomplish its task or if its time-to-live becomes zero, it
switches into the return phase. As real ants might be a little more excited and hasty
to return home in case they found something, successfully returning virtual ants run
20 percent faster and spread twice as much pheromones as regular ones. On the contrary,
unsuccessful ants run 20 percent slower and do not drop any pheromones on their way
back4.

As semantic scents only lead to resources but not to their requestors, ants generally
have no way of knowing the shortest path home. Yet, to establish short semantic trails,
their path home should not be unnecessarily long. This extension provides the following
two return strategies.

Taken Path Strategy

This is the default strategy, which suggests that ants return the previously taken path
home, omitting possible loops for efficiency. It is supposed that, in the long run, short
trails will emerge since ants use a randomized path selection probability. If, by chance,
an ant discovers a shorter route to a resource, this route is enforced as ants taking this
path will generally return faster, which causes the pheromone concentration to raise more
rapidly and to maintain at a higher level. However, this effect is highly dependent on the
optimal adjustment of the pheromone decay rates, the nature of the pheromone stimulus
and the decision randomization. If the stimulus is too high, ants might easily reject
shorter, yet later discovered routes. If it is too low, they might end up running randomly.

4The reason why they return at all is that nodes keep track of how many ants they produced for load
balancing. In case no pheromones are spread, the decrease of the returning speed does not serve any technical
purpose - its just meant as a way of visualizing demoralization.
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Shortest Path Strategy

Therefore this second strategy is provided, which suggests that ants simply take the
shortest path home. This strategy is non-distributed, and intended to be used only
for a comparison with the first strategy during the system evaluation. It makes use of
the NetLogo internals that allow the determination of the shortest path between any
nodes from a system-global perspective. Nonetheless, a distributed version could be
implemented later by an adaption of the ACO, which uses node scents.

3.6.9 Completion and Death

This phase is entered when an ant has returned home. It is meant to return possible
user feedback (success / failure), to update statistics and node records, and to clear any
references to the ant so that it can be removed in its final dying phase.

3.7 S-Box Clustering

The S-Box clustering is conducted by a combination of node processes and OUT-Ants.
As described in the previous section, any node gains its partial ontological knowledge by
its visiting OUT-Ants, as anytime they drop a triple, they add the type hierarchy of their
resources to the local S-Box of the node. Besides, when updating the scent-lists, they also
add this hierarchy, so that other visiting ants may understand how this new scent relates
to the others.

To prevent the local knowledge from growing too large, which would compromise
scalability, resources are continuously examined towards their local semantic suitability
by a special background process. This process can create OUT-Ants for unsuitable
resources, so that the corresponding triples are re-located. Analogously, another process
periodically removes all entries below a certain local similarity from the local scent-lists.
All types that are not refrenced by any resources or scent-list entries, are periodically
removed by a third process, which guarantees the node S-Boxes to stay minimal. These
and all other node processes are described in detail in section 3.9 (Node Processes).

As S-Box information is partially replicated among the nodes and ants, any S-Box
insertions or deletions must be replicated as well. While insertions spread on-the-fly
by new OUT-Ants, the only way to conduct deletions is to replicate them through the
entire network and all active ants via a message cascade. Though this is very costly, it is
reasonable to assume that S-Box deletions are generally very rare and the vast majority
of S-Box operations are inserts or updates5.

5Yet, updates are not part of the LINDA model and therefore not implemented in this thesis, but they can
easily be realized as a minor modification of the RD-primitive.
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3.8 Triple Retrieval

The semantic triple retrieval is conducted by a swarm of IN- or RD-Ants, which retain
this information

• the assigned template ω

• a cluster indicator κ ∈ K , indicating which of the template resources it is looking
for (primary resource).

• a local type hierarchy Ta , representing the ant’s ontological understanding

• the similarity distribution simda for the types of its hierarchy

• its home-node na , its time-to-live ttl, and a path-memory

• three additional path-memories for locking

• a request-id

In addition to the previous URI-Cluster implementation by Anne Augustin, a seman-
tic cluster allows support for typed triple retrieval. To distinguish a plain template entry
from a typed request, a special URI-scheme is introduced, where, to mark a template
entry as type-request, the type’s URI is used as scheme-specific part and the namespace
rdf-typed is preceded. So, to find any resource of a fictional type ns://StemBolt , the template
entry would be rdf-typed://ns://StemBolt . Irrespective of whether a template contains plain
or typed entries, its matches are found concurrently by IN- or RD-Ants following the
types of their primary resource.

3.8.1 Concurrent Matching

For each template which gets inserted into the Semantic Cluster, three IN- or RD-Ants are
created - one for each template resource. Furthermore, a Universally Unique Identifier
(UUID) is created for that request and assigned to the ants in their initialization phase.
This id is also maintained at the current node, to keep record of the incoming results.
Only the first result is returned to the requestor and, in case of an IN-request, only this
result is removed from the Triple Space, ignoring the results of subsequently returning
ants.

Unless the resource equals a wildcard, the ants follow the types of their resource to
find a template match, in other case they perform a random walk. On their way, IN- and
RD-Ants run basically through the same phases like OUT-Ants, yet their differ at the task
fulfillment and completion phase.
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3.8.2 Task Fulfillment

The task fulfillment phase of IN- and RD-Ants is completely different from that of OUT-
Ants, as they do not drop a triple, but search for one to match their template. This
match-making, plain or typed, is conducted by looking through the local set of triples
at the current node. In the process, every ant evaluates these triples to fully match their
template, not just their primary resource. Since the implemented A-Box data structure
indexes triples by their primary resource and the S-Box implementation indexes resources
by their direct parent types, the set of possible matchings can be limited to a great deal.
This prevents the ant from having to look through all present triples, which would be very
costly. In case the template resource is plain, this set is restricted to just the statements
which have the desired resource as primary resource. In case the template entry represents
a type, it is restricted to those triples which have the desired type or one of its subtypes
as direct parent type of their primary resource.

If the ant’s primary resource is a wildcard, it apparently must consider all local
statements. Therefore, the creation of wildcard ants is omitted as long as the template
contains plain or typed entries. As non-wildcard ants have a type information to follow
and a resource to limit the search space, they can find matches faster and more efficiently.
In fact, wildcard ants are only created when the template consists only of wildcards, and
then just one subject IN- or RD-Ant is created. As any statement matches in this case,
these ants can find their result quickly and will not comprise the system performance.

To increase performance at another spot, IN- and RD-Ants which by chance come
along their home node, look up the local record for their request in their learning phase,
to find out if the request has already been fulfilled by another ant. If this is true, they
switch to the completion phase immediately.

While RD-Ants can simply carry home a copy of a found match, an IN-primitive
requires the found match to be removed and to be returned only once. To ensure this,
IN-Ants have to apply a concurrent and distributed locking strategy, which is described
next.

3.8.3 Distributed Locking

Anytime an IN-Ant finds a match, it must ensure that it returned and removed only once.
Therefore, it creates three locking ants - one for each resources of the match. These ants
behave like RD-Ants themselves, except that their only task is to atomically lock the match
in their cluster incarnation. Since the locking ant that is created for the cluster incarnation
of its parent, can find its triple at the very same node, it does not have to traverse the
network. Hence, for efficiency reasons, the parent IN-Ant simply locks the match directly
and creates locking ants only for the other two incarnations. These ants generally have to
conduct a search to find the duplicates of the match.
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In contrast to RD-Ants, locking ants return the request-id of the IN-Ant that has
acquired the triple lock. This might be the request-id of the IN-Ant which created them - in
case the triple has not been locked before - or the request-id of any other IN-Ant that is
concurrently trying to lock the triple. If a locking ant cannot find the triple in the cluster
within its time-to-live, because the triple might have been removed concurrently, it simply
returns nil.

When all locking ants have returned, the competing IN-Ants have to make a consistent
and distributed decision of who gets the permission to retrieve and remove the triple.
Unlike in the cluster implementation of Anne Augustin, where locking attempts were
randomly repeated until an ant could acquire the lock in all three cluster incarnations,
this thesis implements a strategy to consistently grant the remove permission instantly
right after the first attempt. In doing so, the common agreement is established, that this
permission is always granted to the IN-Ant that acquires the lock in the subject cluster.
This guarantees that at most one IN-Ant gets the triple access, since the subject lock can
only be acquired once and loosing IN-Ants dismiss the match and continue their search.
If an IN-Ant gets the triple access, it returns home carrying a copy of the match.

This strategy bases on the invariant of the LINDA model that all triples exist exactly
once. If this invariant is violated, triple deletions could cause inconsistencies between the
cluster incarnations. If, for instance, a triple exists multiple times in one incarnation and
only once in another, a deletion of that triple could leave stale copies in the cluster.
The original LINDA model describes a non-distributed associative memory. There,
subsequent insertions of existing triples have no effect as similar triples are mapped to the
same memory address. In a distributed space, it is not possible to instantly merge similar
triples as their is no global memory and these triples might be inserted at completely
different locations. Yet, if similar triples cannot be merged instantly, the invariant is
violated. For this reason it is inescapable to base deletions on triple identity. This identity
is created by assigning a unique id to each triple and its replicas, which is a technique that
is also used in some commercial triple space implementations like TSpaces or GigaSpaces
(see section 2.6 (Related Work), page 36). As a result, identical triples exist only once
in each incarnation, but similar triples may exist multiple times. In this respect, the
implementation deviates from the original LINDA model.

3.8.4 Completion

After they come back, IN- and RD-Ants check the record for their request at their home
node. If the ant turns out to be the first, it returns the match and, in case of an IN-Ant,
removes the triples and its locks in all three cluster incarnations. Therefore it keeps a
memory of the paths of its locking ants as well. Later arriving ants for that request simply
terminate their (meaningless) existence. Yet, in case of IN-Ants that found a different
match, they remove their locks first without removing the triple itself.
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3.9 Node Processes

3.9.1 Triple and Template Processing

As mentioned earlier, every node contains a pending lists for new triples and templates.
Any entries are removed from these queue by this process as long as the number of
ants stays below the configurable maximum ant count. Then the process creates the
appropriate IN-, OUT- and RD-Ants for each removed item.

3.9.2 Cluster Maintenance

This process continuously examines the local resources to remove the most dissimilar
ones.

Definition 3.10 (Most Dissimilar Resources) The set of most dissimilar resources Rn κ
� at a

node n ∈ N for a cluster indicator κ ∈ K is defined by all resources r ∈ Rn κ, with a local similarity
lsimn κ

r , that is below the node local similarity ςn κ multiplied by the minimum similarity bound
msb (system variable).

Rn κ
� = {r ∈ Rn κ | lsimn κ

r × msb < ςn κ}

Definition 3.11 (Local Similarity) The local similarity lsimn κ
r of a resource r ∈ Rn κ at a

node n ∈ N and for a cluster indicator κ ∈ K is defined as the average local similarity of its
direct parent types. The local similarity of a type is the sum of all similarity-weighted values in
the similarity distribution at that node, divided by the local statement count.

lsimn κ
r =

∑
t∈ Tn r

∑
ti∈ Tn

tdn κ
ti
· simdti

t∣∣∣ Tn r

∣∣∣ · ∣∣∣ Ωn κ
∣∣∣ ,

∣∣∣ Ωn κ
∣∣∣ , 0

Definition 3.12 (Node Local Similarity) The node local similarity ςn κ of a node n ∈ N and
a cluster index κ ∈ K is the average triple-count-weighted pairwise similarity of all types in the
local triple distribution Ωn κ.

ςn κ =

∑
ti∈ Ωn κ

∑
t j∈ Ωn κ

Ωn κ
ti
· Ωn κ

t j
· sim(ti, t j)

| Ωn κ|2

The maintenance process picks up one of the most dissimilar resources r, removes all
unlocked triples ω ∈ Ωn κ that have r as primary resource and assigns them to OUT-Ants
to relocate them.

Ωn κ
τ+1 = Ωn κ

τ \ {ω ∈ Ωn κ
τ | ωκ = r}
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3.9.3 Pheromone Decrease

At the end of each time step, this process decreases the entries of all scent-lists by the
pheromone decay rate θ ∈ [0 . . . 1], simulating the natural evaporation of scents. Besides,
any pheromones below the minimum pheromone levelψ are automatically removed from
the lists.

scni,n κ
τ+1 t =

 scni,n κ
τ t · θ scni,n κ

τ t ≥ ψ
nil otherwise

3.9.4 Template Generation

As described in section 3.2.4 (Triple Space Architecture), page 43, this process creates
random templates for present triples and assigns them to special RD-Ants. These ants
first perform a random walk and then start the retrieval. As the generated ants spread their
pheromones just like regular ants, they keep the cluster trails up-to-date and prevent the
semantic trails from disappearing completely, even if there are no active external requests.
In the simulator, the template generation rate for all nodes is globally configured6.

3.9.5 Garbage Collection

To ensure that the S-Boxes of the nodes stay minimal, this process continuously updates
the local S-Boxes by removing any class or property definitions that are no longer related
to any local resources, due to triple operations like deletions or relocations, or because of
scent-list updates.

Tnτ+1 = Tnτ \ {t ∈ Tnτ | ∀κ ∈ K : @ω ∈ Ωn κ
τ : t ∈ Tn ∗

τ ωκ ∧ t < scn,n κ}

This concludes the theoretical semantic clustering and retrieval approaches. The next
chapter describes their implementation and the assembled simulator software.

6A possible improvement to a global configuration could be self-adjusting template generation rate,
depending on the actual scent level. Nonetheless, this is not implemented as a part of this thesis

65



Chapter 4

Implementation

In this chapter, the installation and build of the Triple Space implementation is described.
It includes a complete manual of the simulator user interface and its functionalities and
additionally explains the most crucial implementation details.

4.1 Installation

4.1.1 Requirements

Java

The Semantic Cluster implementation consists of the NetLogo application framework, a
NetLogo model which is programmed in the NetLogo modeling language, and a variety
of NetLogo extensions written in the Java Programming Language. Thus, a minimal
installation of the Java Runtime Environment (JRE) is required to run the program. Yet,
it is recommended to use a Java Development Kit (JDK) installation, which provides the
-server option for better performance.

The extensions were implemented and tested under the 32-bit JDK version 1.6.0_11
and the 64-bit JDK version 1.6.0. The 1.6 versions of the JDK or JRE for Windows, Solaris
and Linux are available at the official Java website by SUN Microsystems[50]. The JDK
version 1.6 for MacOS X 10.5 can be obtained at the Apple update site1.

Eclipse

Eclipse is an Integrated Development Environment (IDE) used in the implementation
process. It can be downloaded from the Eclipse Foundation website [51] (version 3.3 or
above is recommended).

1http://www.apple.com/support/downloads/javaformacosx105update1.html
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The Eclipse Projects, which contain the models and sources, are available on the
appended CD. They can also be downloaded from the Subversion Repository of the AG
Netzbasierte Informationssysteme of the Freie Universität Berlin2. If the Eclipse IDE is used,
it is recommended to use its Subversive plugin as a subversion integration3. Alternatively,
arbitrary stand-alone subversion clients can be used to download the projects directly to
the local file system.

Ant

Apache Ant is a Java-based build tool that can be used to compile and assemble the
simulator. Though Ant is not essentially required, the projects contain certain Ant scripts
that simplify the build of the system. The Eclipse IDE is bundled with a complete Ant
distribution, hence there is no need for a separate Ant download when using Eclipse.
Otherwise, it can be downloaded from the Apache Ant website4 and extracted into a
directory of choice. In order to execute the provided scripts, this directory must be
included in the default search path of the operating system.

Maven

Apache Maven is a sophisticated build management tool for Java projects, which is
required for a build of the system from scratch . Properly configured, Maven automatically
compiles the sources, creates the appropriate JAR files, includes the necessary NetLogo
manifest entries, obtains all referenced libraries and creates the API documentation.
Maven requires a description of each project in the form of an XML document called
Project Object Model (POM). After downloading Maven from the Apache Maven website5,
it is installed by extracting it into an arbitrary directory and adding M2_HOME/bin to the
default search path of the operating system.

4.1.2 Software Overview

Projects

The simulator consists of five different projects:

SwarmLindaExtensions contains the previous Java-Extensions by Daniel Graff, which
basically include numeric utility classes like random number generators.

RDFExtensions provides shared classes with general RDF-related functionality (e.g.
importing ontologies from files, utility classes for using the Jena API or data

2Contact information is available at http://www.ag-nbi.de.
3Download and installation instructions available at http://www.eclipse.org/subversive/.
4http://ant.apache.org/
5http://maven.apache.org/download.html
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Figure 4.1: Dependencies of the simulator projects

structures to store and index triples by their primary resources). It is used by
both, the URIClusterExtensions and the SemanticClusterExtensions project. Besides
Jena, it utilizes the generic version of the Apache Collections Framework and the
Google Collection Library.

URIClusterExtensions gathers all Java sources of the URI-Cluster extensions imple-
mented by Anne Augustin. It imports the SimMetrics library, which includes
implementations for string edit distance calculations.

SemanticClusterExtensions contains the extensions of this thesis. It uses the Apache
Collections Framework, the Google Collection Library, the Jena API, and the Jama
library.

SwarmLinda is the main project. It includes build scripts, various POMs and
the overall NetLogo model, which contains the code written in the NetLogo
programming language and calls the Java extensions. The model itself is divided
into several files - the network simulator (network-generation.nlogo), the main
model (swarm-linda-simulator.nlogo), the URI-Cluster model (URI-C.nls), and the
Semantic Cluster model (SEM-C.nls). The compiled system is assembled in the
build subdirectory of this project.

A tree representation of the relations and dependencies of the projects is shown in
figure 4.1. It is derived by the Maven Overview Plugin6. A brief explanation of the
used external libraries is given next.

6http://code.google.com/p/maven-overview-plugin/
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Libraries

NetlogoApp provides all NetLogo Java classes and allows to start the simulator as a
stand-alone application. Through this library, it is possible to access the state of
the simulator and certain NetLogo internal functionalities, like agent creation or
shortest path determination, from within the Java extensions.

Log4J The Apache Log4J library contains a sophisticated Java logging facility. It is used
by all extensions.

Apache Collections Framework and the Google Collection Library The Google Collec-
tions Library and the collections15 project from Larvalabs provide a variety of
multi-purpose data structures additional to the java.util.* and java.concurrent.* classes.

Jena Semantic Web Framework provides support for processing RDF, RDF-S and OWL
ontologies. Furthermore, it contains a SPARQL search engine as well as several
rule-based reasoner implementations. It is developed by the Hewlett Packard
Development Company, LP.

SimMetrics is an open source library developed by the Sheffield University, which
provides string comparison algorithms, such as the Levenshtein Edit Distance or
Cosine Similarity.

Jama is a basic linear algebra package for Java that includes a facility for solving linear
equations. It is provided by the Mathematical and Computational Sciences Division
of the National Institute of Standards and Technology (NIST), Gaithersburg, USA.

4.1.3 Simulator Build and Launch

Each project can be built by executing the Maven install command (mvn install) in its base
directory. The SwarmLinda project contains an additional POM, defining a multi-module
project that envelops all other projects. It allows a combined build, which is triggered
by executing the Maven install command from SwarmLinda/poms/multimodule. During
the execution, all sources are compiled and bundled into JAR-files. For each JAR, a
manifest file is created that designates the extension class manager, which is required
by NetLogo for proper initialization. Thereafter, these bundles are copied to the
output directory (SwarmLinda/build) as are the libraries they depend on. The required
external libraries are, if not already present in the local Maven repository, automatically
retrieved from remote repositories defined in the project descriptions. At last, the API
documentation of all projects is generated and copied into the output directory as well.
The definitions and configurations of all projects derive from a single base POM, located
at SwarmLinda/poms/multimodule/base-pom.

When the build is completed, the simulator can be started by executing the following
command from the SwarmLinda/build directory:
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java -jar Main/SwarmLinda-1.0-SNAPSHOT.jar -Dfile.encoding=utf8.

To improve performance, it is recommended to also apply these additional VM options:

-Dsun.java2d.noddraw=true -Xmx1024m -XX:PermSize=32m -XX:MaxPermSize=128m -server .

There are several batch files included in the build directory to start the program under
Windows. They can be examined for further options and adapted for other operating
systems.

In order to configure the projects to work in Eclipse, an additional Eclipse classpath
variable M2_REPO has to be defined, pointing at your local Maven repository (which
is USER_HOME/.m2/repository, unless manually configured otherwise). The variable is
added under Windows/Preferences/Java/Build Path/Classpath Variables. The sources of the
external libraries can be downloaded and attached to the classpaths of the projects by
running the Maven Eclipse Plugin (mvn eclipse:eclipse) in the base directory of the multi-
module project.

4.2 User Manual

4.2.1 Network Creation

Figure 4.2: The Network Generator interface

The Network Generator was originally implemented by Daniel Graff as a part of
SwarmLinda. Besides being ported to the latest NetLogo version 4.0.2, which includes
some changes in the modeling language, it was basically left unchanged and can be
used to create networks for the Semantic Cluster. Its interface (see figure 4.2) is quite
self-explanatory. It basically allows the creation and deletion of nodes and links and
layouts them appropriately. A complete description of the generator is given in the work
of Graff [2].
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4.2.2 Simulator

The simulator interface consists of the Main View and a variety of sections which allow
to configure, control, monitor, evaluate and interact with the system. Figure 4.3 shows a
screenshot of the complete interface. Its functionalities are described in the next sections.

Main View

The Main View displays the cluster nodes and their
links. It furthermore shows the locations of all active
ants. The ant coloring indicates its kind – OUT-Ants
are colored blue, IN-Ants are green and returning ants
appear grey. The different shades of the coloring
represent the ants’ cluster incarnations. NetLogo
provides scaling and rotating functionality as well as a
context menu that allows the selection and inspection
of single nodes and ants. A very useful feature is the
"follow agent" functionality which eases isolated ant
observations.

Layout Settings

The Layout Section allows to display additional ant and node information
in the Main View, such as the ants’ time-to-live or the number of triples
located at the different nodes. It furthermore contains features to resize
the nodes according to their degree and to define the background color
of the Main View. It is also possible to assign one of three different
shapes to the semantic ants.

URI-Cluster Configuration

This section contains the controls of the URI-Cluster. Both, the URI-Cluster
and the Semantic Cluster, can be switched on and off independently. As they
were developed in parallel, the URI-Cluster implementation was not fully
completed at the time of the simulator development. Therefore, in order to
conduct the type identification, the Semantic Cluster simulates the results of
the URI-Cluster, by assembling the type hierarchy of the inserted triples and
templates accordingly. The conceptual approach for the integration of both
clusters is described in section 3.3 (Type Identification). At this point, the
URI-Cluster has to be turned off to let the Semantic Cluster work correctly.
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Figure 4.3: The simulator main view
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Semantic Cluster Configuration

The Semantic Cluster provides these configuration options:

S-Box Clustering Strategy allows to select one of three S-Box clustering strategies. If
the Full Clustering is used, ants and nodes maintain their own S-Boxes as described
in section 3.2.2 (T-Box Clustering), page 41, and perform all similarity calculations
themselves. If the Full Replication strategy is chosen, the ants use the global S-
Box, which is maintained for evaluation purposes. The Experimental strategy is a
modification of the Full Clustering. It likewise distributes the S-Box, but lets the
nodes run the similarity calculation periodically. The results are then used by all
visiting ants.

Pheromone Decay Rate controls the amount of pheromone decay per minute.

Minimum Similarity Bound defines the lower bound for type similarity in the node-
local S-Boxes. Types with a lower local similarity than the minimum similarity bound
× the average node local similarity are relocated by the maintenance process.

Minimum Pheromone Level defines the lower bound for pheromones within the scent-
lists. Entries below that boundary are removed instantly.

Degree Normalization turns the degree normalization on or off.

Similarity Measure allows to choose the underlying similarity measure.

Measure Scaling, Alpha, Beta adjust the scaling variables for the chosen similarity
measure. The measure scaling is used as γ or δ, depending on the selected measure,
alpha and beta apply only to Haase-Siebers-Harmelen (see section 3.4.4 (Measure
Scaling), page 51).

Ant Learning is only in effect if the S-Box clustering is activated, in which case it controls,
whether the ants learn from their visited nodes only (off) or other present ants as
well (on). If activated, the ants gain their knowledge more quickly, but the learning
phase becomes more costly, causing a general performance decrease.

Return Strategy provides the options Taken Path and Shortest Path.
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Pheromones enables or disables the pheromone dropping of the ants.

Process Balance Rate continuously adjusts the priority between the maintenance process
(left) and the template generation process (right).

Time-To-Live defines the initial time-to-live of all ants.

Maximum Ant Count the maximum number of ants in the Semantic Cluster.

Phi-D, Phi-P adjust the randomization of the ant decisions of whether to drop a
triple (Phi-D) or which node to visit next (Phi-P).

Input Area

The input area provides miscellaneous functionalities for
triple insertion and retrieval. The triples (or templates)
can be defined using the interface, or be loaded from
file. To import an RDF/XML ontology, the file is
chosen in the file dialog which is opened by the Import
RDF/XML button. During the import, the XML ontology
is decomposed into RDF-triples, which are stored in the
pending queue of the URI-Cluster.

Unless the auto-insert option is activated, the triples
must be manually entered into the URI-Cluster using
the Insert button. The URI-Cluster then stores the S-Box
triples for type identification and routes all triples to
the Semantic Cluster. There, the types of the resources
are identified and the appropriate OUT-Ants are created.
Furthermore, it is possible to import triple templates
from a file using the Import Templates button. These
templates are analogously processed and routed to the
Semantic Cluster.

Manual primitive executions are conducted using the three textfields to enter custom
subjects, predicates, and objects, and the primitive buttons IN, OUT and RD. The executing
node can be chosen specifically or at random in the chose-node combobox. To ease manual
triple definement, the input area provides various choosers containing already present
types, properties, and instances. The Set Selection button is used to assign any of these
predefined resources to a triple field, where the source chooser and the target triple field
are specified using the Source and the Target widget. Besides, it is possible to define
XSD-resources by selecting the XSD type in the XSD-type chooser and by entering the
string representation of the value in the XSD-value field. The Random button is used to
pick up a random triple in the cluster and generate a template (plain or typed). Finally,
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the results of the primitive executions and occurring time-outs are shown in the output
area at the bottom.

Cluster Control

This section controls the different
activities of the clusters. The Run and
Step buttons activate the progression

of time by one tick (Step) or continuously (Run). Furthermore, the ant creation can be
triggered independently for each ant kind (OUT and IN/RD). The template generation
and maintenance process can be activated separately using the Template Creation and
Maintenance buttons. A complete reset of the cluster is initiated using the Setup button.
The Change Network button opens a dialog to load a different network from a file.

Monitoring

The monitoring section is continuously
updated by a background thread to provide a
detailed insight of the current system state. It
is divided into four major columns - one for
each cluster incarnation and one for a total
view - with three subcolumns each. While the
first two lines provide information about the
active ants and their activities, the following
indicate the state of the cluster.

In each major column, the first line shows
the number of searching, returning and total OUT-Ants (including maintenance), while
the second line provides these figures regarding to IN- and RD-Ants. In the cluster
segment, each first subcolumn indicates the total number of A-Box-Triples in the ontology
(line 3), the number of pending OUT triples (line 4), the number of pending maintenance
triples (line 5), and the number of pending templates (line 6). Furthermore, the total
numbers of currently carried and located triples are given in line 7 and 8. For each of
these monitored triple fractions, the second subcolumn displays the number of distinct
primary resources of these triples, and the third subcolumn shows the number of the
distinct direct parent types of their primary resources.
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Evaluation

This part of the interface displays the results of
the cluster evaluations. The most important qual-
ity indicator is the spatial sematic entropy gain,
which is displayed in the Entropy Evaluation
area. There, the current values are given for
each cluster incarnation, showing the ontology
immanent entropy (first line), the spatial se-
matic entropy (second line) and their quotient,
the spatial sematic entropy gain (third line).
The chart below displays the progression of the
entropy gain for all incarnations.

In the Similarity Evaluation area, the progres-
sion of the node local similarity gain is displayed,
which is the average similarity of co-located
triples, relative to the average triple similarity of
the un-clustered ontology. The spatial similarity
evaluates the average similarity of triples against
their network distance to verify the formation of
semantic neighborhoods.

The Cluster State section provides a more
detailed insight of the current distribution of triples. In the upmost chart, it shows the
distribution of all triples in the selected cluster incarnation. The resource that is currently
selected in the Input Area can be chosen for the type specific evaluations below, using the
Set button. There, the first diagram shows the spacial triple distribution for the selected
type in the selected cluster incarnation. The concentration of these triple is displayed in
the Spatial Type Concentration chart below. Based on the current semantic trails and the
current value of Phi-P, the Node Inspection Probability for the selected type is calculated
and shown in the corresponding chart at the bottom of this area.

The node inspection probability is derived from the node transition probabilities of a
potential OUT-Ant carrying a triple of the selected type. These transition probabilities
are used to determine the stationary distribution of a Markov chain for the cluster network,
which is then displayed in the chart.

Markov chains model probabilistic walks in general graphs7. The model consists of a
vector πτ which, for each node, contains the probability of being there at the time τ, and
the matrix M, which contains the node transition probabilities. The progression of one
time step corresponds to the multiplication πτ+1 = M × πτ. As shown in [52], if all nodes

7Originally, Markov chains were used to model probabilistic transitions in state machines, which were
represented as graphs.
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are connected and all transition probabilities are greater than zero, a stable probability
distribution (stationary distribution) π̄ arises, independent of the initial distribution π0.
This stationary distribution can be determined by solving the linear equations of π̄ = M×π̄.
Using the JAMA library, the stationary distribution for the potential OUT-Ant is calculated
and displayed in the Node Inspection Probability diagram.

The quality of the sematic trails is investigated in the Scent Evaluation area. There, two
choosers allow to select a reference node - the triple distribution of which is shown in the
upper diagram - and one of its neighbors - the outgoing scent-list of which towards the
reference node is displayed in the diagram below. In both diagrams, the type-entries of the
distributions are consistently sorted left to right by their decreasing similarity towards the
type with the highest local similarity at the reference node. The bottommost chart shows
the average correlation between the triple distributions and the incoming scent-lists in
the cluster. This correlation indicates the quality of the semantic trails, since it quantifies
their appropriateness in the path selection process.

The triple retrieval is analyzed in the Retrieval Evaluation area, which contains five
charts. The upper left chart displays the average number of nodes visited by OUT-, IN-,
and RD-Ants, not counting repeated visits. In contrast, the upper right chart shows the
average search path length, which counts repeated visits. In both charts, these figures
span the time of the last 60 seconds and they are given relative to the network size. The
progression of the average search path length is displayed in the center chart. The average
time-to-live left at the moment of the ants’ deaths and the total IN-Ant success rate are
displayed in the two diagrams at the bottom.

Finally, the Evaluation Scenarios section allows to run automated tests, which are used
for the system evaluations. Their results and the complete descriptions of all calculations
are given in chapter 5 (Evaluation).
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4.3 Implementation Notes

4.3.1 Concurrency in NetLogo

The NetLogo programming language allows to define global, environment- and
agent-specific variables and instructions. By default, the instructions are executed
sequentially as a block for one agent at a time. This eases the implementation of simple
models and agent behavior without the need to consider synchronization issues. If the
execution time of these blocks is long, a sequential execution can cause an unrealistical
simulation of activities, since meanwhile all other agents are blocked. Therefore,
NetLogo allows instructions to be processed in an intermixing mode. Although the
language keyword ask-concurrent implies otherwise, this does not mean that they run
asynchronously. Instead, the included block is executed one instruction per agent, until
all blocks are completed. Hence, also in this mode the agent activities are processed
sequentially with mutual exclusion. In case an instruction calls a Java extension that is
long running (e.g. a complex calculation), all other agents are stalled as well and have to
wait until it is finished.

4.3.2 Concurrency in the Extensions

In a strict sense, both, the sequential and the intermixed code execution mode, are
inappropriate for a lifelike simulation of a swarm-based system. In a real Triple Space,
concurrent code execution is immanent as agents are created and disposed continuously.
The corresponding processes must be autonomous and independent of the execution time,
the data accesses, or possible runtime failures of other agents. Moreover, an asynchronous
code execution allows to run calculations concurrently on multiple processors, if present.
In contrast, NetLogo executes all instructions in a single worker thread.

For these reasons, this thesis evades the NetLogo execution modes and, despite the
increase of complexity, implements a real multi-threaded system and the corresponding
data access synchronization. Algorithms and shared data structures have therefore been
designed in a thread-safe way, with minimal mutual exclusion (mainly by using thread-
safe collections from the java.util.concurrent and Google Collections API, and by using
reentrant read- and write-locks for additional synchronization). The most important data
structures and their internal synchronization strategies are explained in the next section.

4.3.3 Main Data Structures

ABox

Each node contains an ABox for each cluster incarnation. Besides its set of triples, an ABox

also contains two indices. The first is used to index all triples by their primary resource,

78



Chapter 4. Implementation 4.3. Implementation Notes

while the second indexes them by their non-primary (secondary) resources. This allows
a fast triple matching for a given resource. Additionally, ABoxes keep records of all triple
locks. Listings 4.1 and 4.2 give a code extract of the ABox fields and their initialization.

For maximum throughput, all ABox read operations (like size, get_lock_id_for_a_triple
or get_triples_for_a_certain_resource) are thread-safe without synchronization, due to the
underlying collections. As returned collections of triples or resources may change
concurrently, all algorithms are implemented to handle such asynchronous modifications.
Either they work correctly with any collection state or, in some cases, they create a
thread-local defensive copy first.

All ABox write operations (add_triple and lock_triple) are thread-safe as well and execute
concurrently (in the case of locking, only one thread gets the lock, of course). Remove
operations are more complex, since they must be atomic to be consistent. They are
therefore mutually excluded against other remove or write operations for the same triple.
This exclusion is synchronized internally by locking the triple to define the critical scopes
(see Listings 4.3, 4.4 and 4.5). As concurrent operations for the same triple occur rarely,
all ABox operation run without any mutual exclusion most of the time.

S-Box

S-Boxes contain the set of their known types and three indices. One index is used to
store direct super-types, one is used to store direct sub-types, and the third index stores
the types of each present non-type resource. The latter index allows a fast conduction
of typed matching. The basic RDF types and their relations are, by default, contained
in all S-Boxes. Listing 4.6 shows the declaration of the fields and the used collection
implementations.

Anytime a triple is added to an SBox, it is determined whether it is a class-, property-,
subclass-, subproperty- or individual type definition and added to the indices accordingly.
As direct super-types may become indirect super-types due to later triple additions, the
indices are cleaned afterwards. This cleaning is conducted lazily when needed, since it is
rather costly and not necessary within bulk operations like multiple triple insertions or
SBox merging. Like ABoxes, SBoxes also provide concurrent read and insert operations,
while triple deletions are mutually excluded against other delete or write operations.
Listings 4.7, 4.8 and 4.9 show some excerpts of this mutual exclusion.

Since they require the determination of the height and distance, the LCS, and the MIS
of the involved types, similarity calculations are very costly operations. Hence, they are
always performed in background and, in case of the maintenance process, a defensive
copy is used to allow parallel updates of the original SBox.
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Listing 4.1: ABox Fields (ABox.java)

private final Field primaryResourceField;
private final Set<Triple> triples = new ConcurrentHashSet <Triple >();
private final ConcurrentSetMap <Node, Triple> primaryIndex = new ConcurrentSetMap <

Node, Triple >();

private final ConcurrentSetMap <Node, Triple> secondaryIndex = new ConcurrentSetMap <
Node, Triple >();

private final ConcurrentMap <Triple, UUID> lockedTriples = new ConcurrentHashMap <
Triple, UUID>();

private final ConcurrentWeakLockStore <Triple> lockStore = new
ConcurrentWeakLockStore <Triple >();

Listing 4.2: ABox Initialization (ABox.java)

public ABox(Field primaryResourceField) {
this.primaryResourceField = primaryResourceField;

}

Listing 4.3: ABox Triple Locking (ABox.java)

public boolean lockTriple(Triple match, UUID requestId) {
lockStore.lock(match);

try {
if (!triples.contains(match))

return false;
UUID oldLock = lockedTriples.putIfAbsent(match, requestId);

return oldLock == null || oldLock.equals(requestId);
}

finally {
lockStore.unlock(match);

}

}

Listing 4.4: ABox Conditional Triple Removal (ABox.java)

private boolean removeTripleIfNotLocked(final Triple triple) {
lockStore.lock(triple);

try {
return getLockId(triple) == null && removeTripleAndLock(triple);

}

finally {
lockStore.unlock(triple);

}

}
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Listing 4.5: ABox Unconditional Triple Removal (ABox.java)

public boolean removeTripleAndLock(Triple triple) {
if (!triples.remove(triple))

return false;
for (Field field : TRIPLEFIELDS) {

Node resource = field.getField(triple);

getResourceIndex(field).remove(resource, triple);

}

removeLock(triple);

return true;
}

Listing 4.6: SBox Fields (SBox.java)

private final ConcurrentSetMap <Node, Node> directSubTypes = new ConcurrentSetMap <
Node, Node>();

private final ConcurrentSetMap <Node, Node> directSuperTypes = new ConcurrentSetMap <
Node, Node>();

private final ConcurrentSetMap <Node, Node> resourceTypes = new ConcurrentSetMap <Node
, Node>();

private final ConcurrentSetMap <Node, Triple> customTriplesBySubject = new
ConcurrentSetMap <Node, Triple >();

private final ReentrantReadWriteLock internalLock = new ReentrantReadWriteLock();

Listing 4.7: SBox Locked Triple Insertion (SBox.java)

public boolean addTriples(Collection <Triple> triples) {
readLock(internalLock);

try {
return addTriples(triples, false);

}

finally {
readUnlock(internalLock);

}

}
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Listing 4.8: SBox Triple Insertion (SBox.java)

private boolean addTriples(Collection <Triple> newTriples , boolean flagRDFOnly) {
boolean changed = false;
for (Triple triple : newTriples) {

// reject non-tBox triples

if (!TBOX_LEVEL.evaluate(triple))
continue;

// reject triples that are already known

if (contains(triple))
continue;

// now the triple is considered

Node subject = triple.getSubject();

Node object = triple.getObject();

if (INDIVIDUAL_DEFINITION.evaluate(triple)) {
addIndividualDefinition(triple);

storeTriple(flagRDFOnly , triple);

continue;
}

if (TYPE_DEFINITION_TRANSITIVE.evaluate(triple)) {
types_all.add(subject);

setDirectSuperType(subject, RDFS_RESOURCE);

setDirectSubType(RDFS_RESOURCE , subject);

}

// link or type definition

if (!RDFS_RESOURCE.equals(subject) && !subject.equals(object)) {
setDirectSuperType(subject, object);

setDirectSubType(object, subject);

}

storeTriple(flagRDFOnly , triple);

changed = true;
cleaningInterrupt.set(true);
directTypesCleaned = false;

}

// ...

// }

Listing 4.9: SBox Triple Removal (SBox.java)

public void remove(Triple triple) {
writeLock(internalLock);

try {
// remove from the triple index

if (!customTriplesBySubject.remove(triple.getSubject(), triple))
return;

// remove individual types

if (INDIVIDUAL_DEFINITION.evaluate(triple)) {
removeIndividualTypes(triple.getSubject(), Collections.singleton(triple.

getObject()));

return;
}

// remove type definition

removeTypes(Collections.singleton(triple.getSubject()));

}

finally {
writeUnlock(internalLock);

}

}
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Triple Distributions and Scent-Lists

The triple distributions contain the number of present triples for each type. The scent-lists
contain the amount of pheromones for each type. As both cases are similar, their data
type representations are derived from a common base class (DiscreteTypeDistribution),
which is basically a concurrent map with type-resources as keys and instances of
AtomicDouble as values. The AtomicDouble class is not a part of the java.util.concurrent.atomic

package, but was taken from Java Threads [53]. It allows concurrent atomic increments,
decrements, and multiplications of shared floating point objects8. As a result, both,
the triple distributions and the scent-lists can be used completely without external
synchronization (see listings 4.10, 4.11 and 4.12 for a brief insight).

As the entries in the triple distributions and scent-lists are only used as calculation
weights, it not necessary to ensure any specific order of their updates. As long as any
increment, decrement, or multiplication is processed at all, the results are considered to
be fair enough for the, anyway randomized, algorithms, even if update permutations
occur. The gain from this loose synchronization is that all concurrent operations on these
distributions are executed remarkably fast.

4.3.4 Conclusion

This gives only a brief overview of the efforts that where taken towards synchronization
and minimal mutual exclusion. They not only made the simulation itself more realistic,
but they have also made a significant positive impact on the system performance
compared to the initial prototype stages, where only the NetLogo modeling language
was used. Yet, there were no numeric evaluations made specifically on that issue, since
the implementation evolved steadily. These efforts are also the prerequisite for a possible
migration from simulation to a real distributed system prototype.

This concludes the descriptions of the simulator and the implementation. For further
details, refer to the API documentation, which is available on the appended CD.

8In Java it is not possible to use primitive values in maps.

83



Chapter 4. Implementation 4.3. Implementation Notes

Listing 4.10: AtomicDouble Initialization, from [53] (AtomicDouble.java)

private final AtomicReference <Double> atomic;
public AtomicDouble() {

this(0);
}

public AtomicDouble(double initVal) {
atomic = new AtomicReference <Double >(Double.valueOf(initVal));

}

Listing 4.11: AtomicDouble Multiply And Get, from [53] (AtomicDouble.java)

public double multiplyAndGet(double multiple) {
double origVal, newVal;
while (true) {

origVal = atomic.get();

newVal = origVal * multiple;

if (compareAndSet(origVal, newVal))
return newVal;

}

}

Listing 4.12: AtomicDouble Atomic Compare And Set, from [53] (AtomicDouble.java)

public boolean compareAndSet(double expect, double update) {
Double origVal, newVal;

newVal = Double.valueOf(update);

while (true) {
origVal = atomic.get();

if (origVal.doubleValue() == expect) {
if (atomic.compareAndSet(origVal, newVal))

return true;
}

else return false;
}

}
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Chapter 5

Evaluation

This chapter presents the results of the evaluations conducted on the semantic clustering
and retrieval approaches. As these approaches are mainly experimental, self-energizing
and also inter-affective, the simulator provides a variety of options to adjust the clustering
and retrieval strategies. Thus, the total space of possible configurations is vast and
precludes a full covering analysis within a single thesis. Instead, to limit the configuration
space, the system evaluation concentrates on major aspects and argues about the
transferability of the results. The first object of investigation is the clustering quality.
The spatial sematic entropy is introduced as a measure of order in the system and
the spatial similarity distribution indicates the formation of semantic neighborhoods. The
second major aspect is triple retrieval. The quality of the sematic trails is evaluated by
correlating them with the triple distributions, and the average size of the covered cluster
fraction is used to appraise the retrieval performance.

5.1 Clustering Evaluation

5.1.1 Entropy Calculation

Semantic Entropy

In order to quantify the clustering quality, the spatial sematic entropy is introduced. This
measure generalizes the spatial entropy used in SwarmLinda and enhances it to regard
semantic similarity. In the approach of Daniel Graff, the spatial entropy considers
the distribution of only the four existing distinct templates. He applies the following
definition of the entropy H of a discrete random variable X with possible values x1, . . . , xn

H(X) = E(I(X)) = − ∑
x∈X

p(x) log p(x).
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where x1, . . . , xn are given by the different templates and p (X = x) is defined as the
probability of discovering a tuple that matches the template x at the given node.

Using this definition is problematic in terms of general Triple Spaces. Since it requires X
to be a discrete random variable, the following equation must be fulfilled

∑
x∈X

p (X = x) = 1 (5.1)

In case of a non-restricted template space (i.e. the values of X are all possible templates),
this is not the case anymore. When there is an infinite number of templates (n-triples) and
any tuple may match various of those templates at the same time, the summed probability
of all templates is generally higher that 1. Considering a possible usage of wildcards,∑

n∈N p(X = (?1, . . . , ?n)) is 1 already. Therefore, this approach of entropy calculation is not
generally applicable and can only be used for sets of templates with disjunct matches.

In order to quantify the semantic disorder of a general Triple Space, certain
modifications are applied. First, the necessity to deal with templates is eliminated.
Instead, triples are matched by their primary resource against the finite number of types
in the ontology, meaning {x1, . . . , xn} = T . Since the triples are indexed by subject,
predicate, and object, the spatial sematic entropy is calculated independently for each
cluster incarnation.

The second modification is to match resources semantically, regarding the similarities
of their types. The probability distribution of X is therefor re-defined in a way,
which at the same considers continuous and overlapping matches, and complies
with equation 5.1. For this purpose, the spatial sematic entropy integrates the
similarity distribution (see section 3.6.1 (Similarity Distribution), page 55) and the
triple distribution (see section 3.2 (Task Fulfillment), page 56).

Definition 5.1 (Semantic Entropy) The semantic entropy Hn κ
s of a node n ∈ N and a cluster

index κ ∈ K is the expected value of the information content of the discrete random variable X
with possible values t1 . . . tn ∈ T . The probability pn κ (X = t) is the similarity-weighted sum of
all entries in the local triple distribution tdn κ, divided by the overall local statement count.

Hn κ
s = − ∑

t∈T
pn κ

t log pn κ
t

pn κ
t = pn κ (X = t) =

∑
ti∈T

tdn κ
ti
· simdt

ti

| Ωn κ|

Lemma 5.2 Using pn κ as probability distribution, lets X become a discrete random variable
complying with equation 5.1.
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Proof 5.3 ∀n ∈ N , κ ∈ K :∑
t∈T

pn κ (X = t) =
∑
t∈T

∑
ti∈T

tdn κ
ti
· simdt

ti

| Ωn κ|

=
∑
ti∈T

∑
t∈T

tdn κ
ti
· simdt

ti

| Ωn κ| =
∑
ti∈T

tdn κ
ti
· ∑

t∈T
simdt

ti

| Ωn κ|

(3.1)
=

∑
ti∈T

tdn κ
ti
· 1

| Ωn κ| =

∑
ti∈T

tdn κ
ti

| Ωn κ|
(3.2)
=

| Ωn κ|
| Ωn κ| = 1 �

Spatial Sematic Entropy

While the semantic entropy is a measure for the resource disorder of a single node, the
spatial sematic entropy quantifies the resource disorder of the entire network.

Definition 5.4 (Spatial Sematic Entropy) The spatial sematic entropy Hκ
sp for a cluster

index κ ∈ K is the average triple-count-weighted semantic entropy of all nodes n ∈ N .

Hκ
sp =

∑
n∈N

Hn κ
s · | Ωn κ|
|Θ|

Spatial Sematic Entropy Gain

In SwarmLinda, the spatial entropy is used directly as a quality measure. Yet, this
is only appropriate if the clustered data is itself uniformly distributed, in which case
the original data entropy is 1. In general ontologies, resource occurrences can be quite
imbalanced. While resources tend to appear less frequent as objects than as subjects, the
set of predicate resource is generally the smallest. Hence, the subject set, which contains
many resources with only few associated triples, has generally a higher immanent entropy
than the object set, which contains fewer resources and yet the same number of triples.
Regarding to predicates, the immanent entropy is generally the smallest. Therefore, the
spatial sematic entropy gain is used as the effective cluster quality indicator. The lower the
gain, the more relative order is created and the better the clustering quality is.

Definition 5.5 (Spatial Sematic Entropy Gain) The spatial sematic entropy gain Hκ
g for a

cluster index κ ∈ K is the quotient of the spatial sematic entropy Hκ
sp and the ontology immanent

entropy Hκ
Θ

.

Hκ
g =

Hκ
sp

Hκ
Θ
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5.1.2 Test Scenarios

Before the results of the entropy gain evaluation for the different similarity measures are
discussed, a brief description of the test scenarios is provided. Each scenario is specified
by the following parameters:

Network This thesis includes three pre-defined networks, where network 1 consists
of 10 nodes, network 2 consists of 34 nodes and network 3 contains 50 nodes (shown in
figure 5.1).

(a) Network 1 (b) Network 2 (c) Network 3

Figure 5.1: Evaluation Networks

Ontology There are also three pre-defined ontologies included in the simulator project.
They were derived from the example graphs shown in figure 3.3, page 46, and use
rdfs:Class as root. Additionally, a number of seven custom properties was added to each
ontology and assigned to all classes. Two of these properties are defined to hold resource
references, while the others may hold integer values. The latter are established as two
plain top-level properties and one top-level property with two sub-properties.

Moreover, a number of ten instances was created for each class. Resource references
were added to each individual, with a 25 percent probability (for each of the two
properties). Also with a probability of 25 percent, an integer value was assigned for a
randomly selected integer property. At last, specific labels and comments were generated
for each resource via the default properties rdfs:label and rdfs:comment.

Similarity Measure Configuration The similarity measure configuration includes the
measure itself (Haase-Siebers-Harmelen, Leacock-Chodorow or Lin), the scaling variables α,
β, γ, and δ as well as the degree normalization option (on or off )

Cluster Options This includes the S-Box clustering option, the pheromone decay rate, the
minimum similarity bound, and the minimum pheromone level.
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S-Box Clustering Full Replication Maximum Ant Count 100
Ant Learning off Return Strategy Shortest Path
Pheromone Decay Rate 0.667 Time-To-Live 15 sec
Minimum Pheromone Level 0.9 φd 0.9
Minimum Similarity Bound 0.8 φp 0.9

Table 5.1: Settings for Spatial Sematic Entropy Evaluations

Ant Options The ant configuration includes of the maximum ant count, the time-to-live,
the ant learning option (on or off ), the return strategy and the randomization variables φd

and φp.

5.1.3 Entropy Evaluation

The spatial sematic entropy gain is evaluated in a series of specific test scenarios. To
isolate the entropy gain that actually results from the approached swarm strategies, they
are compared to a random walk situation. Therefore, each scenario starts with a random
triple insertion phase, in which the ants are configured with φd=φp=0. After all triples are
located, the default values of φd and φp are assigned, the maintenance process is started
and the entropy recordings begin.

Besides the variations of the similarity measure configuration, all tests are configured
with the settings given in table 5.1. The recorded results as well as their standard deviation
after a five-fold repetition are displayed in figure 5.2 and 5.3.

Figure 5.2a and 5.2c show that without scaling and degree normalization, the decrease
of the spatial sematic entropy is rather little, when using the distance-based measures
Haase-Siebers-Harmelen and Leacock-Chodorow. This is caused by their original flat
decrease of similarity (see section 3.4 (Similarity Measure Evaluation), page 45). The
more indistinguishable types are, the less additional order can be created via triple
redistribution. If the measures are scaled, the entropy decrease becomes more significant,
especially in the subject cluster, which is displayed in figure 5.2b and 5.2d. This
coherence can be observed more plainly in figure 5.3, which shows the increase of the
spatial sematic entropy gain. The measure of Lin, on the contrary, appears to be rather
scaling-resistant, since it creates virtually the same results under γ = 1 and γ = 3, as
shown in figure 5.2e, 5.2f, 5.3e, and 5.3f. This is caused by the fact that Lin bases similarity
on the information content of the types. The entropy is itself defined as expected value of
the information content. Hence, any scaling of the information content does not change
its expected value (and entropy) in relation to the expected value of the information
content in the original ontology. The slight differences of the outcomes result only from
the applied degree normalization.

These figures represent only a small excerpt of the evaluated configurations, as they
only cover the unscaled measures without degree-normalization and the scaled measures
with degree-normalization. The results of the other combinations are appended for
comparison in figure A.1, page 130, and figure A.2, page 131.
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Subject Cluster Predicate Cluster Object Cluster
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(a) Haase-Siebers-Harmelen,
α=0.2, β=0.6, γ=1.0, degree-normalization=off
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(b) Haase-Siebers-Harmelen,
α=0.8, β=0.6, γ=1.0, degree-normalization=on
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(c) Leacock-Chodorow,
γ=1.0, degree-normalization=off
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(d) Leacock-Chodorow,
γ=32.0, degree-normalization=on
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(e) Lin,
γ=1.0, degree-normalization=off
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(f) Lin,
γ=3.0, degree-normalization=on

Figure 5.2: Measure Spatial Sematic Entropy
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(a) Haase-Siebers-Harmelen,
α=0.2, β=0.6, γ=1.0, degree-normalization=off
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(b) Haase-Siebers-Harmelen,
α=0.8, β=0.6, γ=1.0, degree-normalization=on
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(c) Leacock-Chodorow,
γ=1.0, degree-normalization=off
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(d) Leacock-Chodorow,
γ=32.0, degree-normalization=on
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(e) Lin,
γ=1.0, degree-normalization=off
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Figure 5.3: Measure Spatial Sematic Entropy Gain
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The entropy evaluations were also conducted under all possible combinations of
ontologies and networks. The outcomes are shown in figure A.3, page 132 to
figure A.10, page 139. They are comparable to those shown in figure 5.2 and 5.3, yet
the final gain of semantic order is generally the higher, the larger the cluster is. This
effect results from the fact that a larger number of nodes allows each of them to become
thematically more specific.

5.1.4 Local Similarity Gain

The local similarity gain is a second indicator for clustering quality. It states the average
similarity of co-located triples, relative to the ontology immanent average triple similarity.

Definition 5.6 (Local Similarity Gain) The local similarity gain ςκ of a cluster and a cluster
indicator κ ∈ K is the triple-count-weighted local similarity ςn κ of all cluster nodes n ∈ N ,
relative to the overall triple count and the ontology-immanent average triple similarity ςΘ κ.

ςκ =

∑
n∈N

ςn κ · Ωn κ

ςΘ κ · |Θ|

The local similarity ςn κ of n is defined in section 3.12 (Cluster Maintenance), page 64.

Figure 5.4 shows the progression of local similarity gains in the test scenarios.
Again, the unscaled distance-based measures have rather little effect. The scaled
Leacock-Chodorow outperforms the scaled Haase-Siebers-Harmelen as it creates a local
similarity which is about ten times higher than in the un-clustered ontology. Also in this
evaluation, the information-theoretic Lin states virtually the same results, independent
of the applied scaling. The results of the additional configuration combinations are
appended for comparison in figure A.11, page 140.

Intermediate Conclusions The evaluation results of the spatial sematic entropy gain
and the local similarity gain show how the approached strategies increase the semantic
order in the cluster and create thematically specialized nodes. They also point out the
influence of the selected measure and how measure scaling can be used to increase the
clustering quality.

5.1.5 Semantic Neighborhoods

The node local similarity can be generalized to calculate the similarity between arbitrarily
nodes. The formation of semantic neighborhoods within the space is analyzed grouping
the average pairwise node similarity by network distance.

Definition 5.7 (Node Similarity) The node similarity ςni,n j κ of two cluster nodes ni,n j ∈ N
and a cluster indicator κ ∈ K is average pairwise similarity of their triples.
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(a) Haase-Siebers-Harmelen,
α=0.2, β=0.6, γ=1.0, degree-normalization=off

τ in min

ςκ

b

b

b

b

b b

b b b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b

b

b b

b

b
b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b

b

b

b

b b

b

b

b

b b b

b

b

b

b

b b b b

b

b b b

b b b b b b

b b b

b
b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b b

b

b b b

b

b

b

b

b
b

b
b b b b b b b b b b b b b b b b b b b b b

0

2

4

6

8

10

0 1 2 3 4 5

(b) Haase-Siebers-Harmelen,
α=0.8, β=0.6, γ=1.0, degree-normalization=on
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(c) Leacock-Chodorow,
γ=1.0, degree-normalization=off
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(d) Leacock-Chodorow,
γ=32.0, degree-normalization=on
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(e) Lin,
γ=1.0, degree-normalization=off
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(f) Lin,
γ=3.0, degree-normalization=on

Figure 5.4: Measure local similarity gain, Additional Measure Configurations
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ςni,n j κ =

∑
ti∈ Ωni κ

∑
t j∈ Ω

nj κ
Ωni κ

ti
· Ω

n j κ
t j
· sim(ti, t j)

| Ωni κ| · | Ωn j κ|

Hence, the node local similarity ςn κ is a special case of the general node similarity:

ςn κ = ςn,n κ

Definition 5.8 (Spatial Similarity) The spatial similarity ρκ of a cluster index κ ∈ K is a
vector stating the average node similarity, grouped by network distance, where ρκ d designates
the average node similarity at distance d. It is normalized by the average ontology immanent
similarity.

ρκ d =
∑

n∈N
∑

ni∈N
dist(n ,ni)=d

Ωni κ · ςni,n κ

|Θ|

Thus, the cluster local similarity gain ςκ becomes a special case of spatial similarity:

ςκ = ρκ 0

The spatial similarities that occur at the end of the test scenarios are displayed in
figure 5.6. Unlike in the entropy evaluation, here the random triple insertion is replaced
by the regular insertion, where the values for φd and φp are assigned at the beginning and
the maintenance process is activated as well. Additionally, an intermediate configuration
is evaluated for each measure. For comparison, the spatial similarity after a random
triple insertion is given in figure 5.5. There, the values at all distances are close to 1.
It indicates that the average similarity between nodes is the same at any distance (no
semantic neighborhoods). They are also as similar as the triples of un-clustered ontology.

d

X

0 1 2 3
0

0.2

0.4

0.6

0.8

1.0

Figure 5.5: Initial Spatial Similarity

In case the triples are inserted and maintained semantically, the formation of semantic
neighborhoods can be observed. Figure 5.6 shows that under all configurations, the
highest similarity between nodes occurs at zero distance and then tends to decrease
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Figure 5.6: Measure Spatial Similarity
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with network distance (except from the object cluster, which is discussed in the next
section). Yet, the extent of the effect differs, depending on the selected measure and its
configuration.

The predicate cluster shows the most stable results. It contains only few resources
which are rather dissimilar. As a result, predicate resources can be distributed one
property per node, regardless of the similarity measure configuration. On the contrary,
the spatial similarity of the object cluster stays quite flat, which indicates rather unspecific
and fuzzy neighborhoods. This is caused by the fact, that the relative majority of object
resources (1324 of 2875) are strings (labels and comments). Thus, the concentration of
strings is very high on each node, as is their local similarity. Since the maintenance process
prefers unsuitable resources, the redistribution probability for strings is very low on all
nodes. Consequently, the formation of semantic neighborhoods is limited. Yet, this
outcome is not totally problematic. It shows that in case many similar resources are
added, they do not necessarily concentrate on a single node, which would have to process
all request alone (over-clustering), but distribute over the entire network. The most
significant formation of semantic neighborhoods can be observed in the subject cluster in
all scenarios.

Comparing the configurations of each measure, their influence on the distinctiveness
of neighborhoods becomes evident. The results suggest that measure scaling can be used
as an immanent facility to adjust the clustering and to prevent anti-over-clustering. This
eliminates the need for separate anti-over-clustering strategies like in SwarmLinda.

Intermediate Conclusions The spatial similarity evaluation confirms that the ap-
proached strategies are capable of congregating similar concepts and form semantic
neighborhoods to a certain degree. It shows how measure scaling can be used to
influence the formation of these neighborhoods and furthermore exposes the influence of
the original resource distribution on the formation process.

5.1.6 S-Box Clustering

The tests conducted so far had the S-Box clustering deactivated, meaning that all ants
make use of a global perspective of the ontology. This is comparable to a fully replicated
S-Box-Level with pre-calculated similarities on all nodes. The advantage is clearly, that
these calculations can be re-used by all ants, which saves processor time and increases
performance. As discussed in section 3.2.2 (T-Box Clustering), page 41, this approach
might not be applicable in a real system, since the S-Box-Level could contain many triples
and should be distributed as well. This section evaluates the effects of S-Box clustering
on performance and the spatial sematic entropy gain.

There are two different S-Box clustering approaches implemented in this thesis. In the
first one - Full Clustering - at each step all ants merge their own S-Boxes with those of the
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current node and all present ants. Then they re-calculate the similarities and proceed.
Anticipating the evaluation results, this strategy induces a lot of calculation time, since
similarity calculations require the determination of the ontological distance of all types
as well as their LCS and MIS.

The second approach - Experimental - is supposed to be a compromise, where the S-Box
is still fully distributed, but the costly similarity calculations are not run at every transition
by every ant, but instead on the nodes at regular intervals. The results are then re-used
by all present ants. The disadvantage of this strategy is that similarities are calculated
only for the node-local subset of the S-Box-Level, which could be completely unrelated
to the resources of passing ants.

The evaluation of these strategies is conducted by a comparative observation of the
spatial sematic entropy gain. The results are shown in figure 5.7. There, the configuration
is in all cases the same as in the entropy evaluation, with a random triple insertion
phase which is followed by a maintenance phase using one of the clustering strategies.
Since the calculation-intensive Full Clustering allows only the usage of a maximum of
50 ants on the test system, this maximum is used in all cases. The Full Clustering is
also configured with a higher pheromone decay rate of 0.9 and a higher time-to-live
of 150 seconds as an adjustment to the additional calculation time. The tests where
performed with Leacock-Chodorow (γ=32) as a distance-based measure and Lin (δ=1)
as an information-theoretic measure. Again, they were repeated five times with the
experimental standard deviation displayed in the figures.

The results of Leacock-Chodorow and Lin do not significantly differ, event though, in
case of Lin, the similarity calculations depend not only on the set of present types, but also
on the current triple distribution. The more resources of a specific kind are aggregated,
the less specific these type become locally. This results in a lower information content and
a lower Lin-similarity towards the other types. Apparently, this effect is not significant
enough compared to the impacts of the general S-Box clustering strategy.

Comparing the strategies, the evaluations indicate that the final outcome is similar
in all cases. The Full Replication strategy generally creates the fastest entropy decay,
while the Full Clustering strategy takes the longest time for semantic redistribution. The
performance of the Experimental approach is much closer to the Full Replication, although
the S-Box is clustered in the same way as in Full Clustering approach. Its outcome is also
identical to the other strategies, which is surprising, since it occurs despite the ants’
general lower level of information. This can be explained by the correlation, that a node,
the S-Box of which is not related to a passing ant’s requirements, also does not host any
matching triples. In that case, the similarity of 0 which is stated for the ant’s primary
resource, repels the ant. Yet, the very same result would have occurred, if the ant had
merged its S-Box before, recalculated the similarities and used them to inspect the local
triple distribution. In other words, the more relevant the resources of a node are, the more
suitable are also its S-Box and pre-calculated similarities.
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(a) Full Replication
Leacock-Chodorow, γ=32, degree-normalization
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(c) Full Clustering
Leacock-Chodorow, γ=32, degree-normalization
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Lin, δ=1

τ in min

Hsp

b b

b

b

b

b b

b b

b b

b b b

b

b

b

b b

b

b b b b

b

b

b b b

b b b

b

b b b b b

b

b

b b

b b

b

b

b b b b

b b b b b b b b b b b
b
b
b
b

b
b b
b b b

b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b

b

b

b

b

b

b

b

b

b

b b b

b

b b

b

b

b

b

b

b

b b b

b b

b b

b

b b

b b

b

b b

b

b b

b b

b

b b

b

b

b

b

b b b b b b b b b b b b b b b
b
b b
b b b b b b b b b b

b b b b
b b b b b

b b b b b b b b b b b b b b b b
b b b b b b b

b b b b b b b b b b b b b b b b b b b b b
b b b b

b b b b b b b b b b b b b b b b b b b b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b

b b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b b

b b

b

b

b b b b b

b b b b b b b b b b b b b b b b
b b
b

b
b
b
b
b
b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b

0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25

(e) Experimental
Leacock-Chodorow, γ=32, degree-normalization
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Lin, δ=1

Figure 5.7: S-Box clustering strategies
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Chapter 5. Evaluation 5.1. Clustering Evaluation

Considering these observations, it can be recommended to prefer the Experimental
approach to the Full Clustering in a real system. Also, due to its efficiency, the
Full Replication might be a good strategy, in case the following assumptions are fulfilled.

• The number of S-Box triples is very small compared to the number of A-Box triples.

• The rate of S-Box operations is rather low compared to A-Box operations.

• The used ontologies are interlinked.

In this respect, it would be worth to conduct statistical evaluations on common
Triple Spaces to find out, if these assumptions are fulfilled in general, in which case
the Full Replication strategy could be used as default.

Intermediate Conclusions The conducted evaluations confirm that S-Box clustering is
possible. The self-organizing aspects of the system ensure that the outcomes are similar
to a fully replicated schema, yet they may take a longer time. A fair compromise between
scalability and performance is to run similarity calculations for the local S-Box subset on
the cluster nodes and to share these results with the passing ants.

5.1.7 Additional Configuration Options

The additional options evaluated in the next sections are expected to have similar impacts
under all measures, ontologies and networks. Therefore, most of them were conducted
using Leacock-Chodorow with γ=32, exemplarily. Besides the actual investigated
parameter, these tests are same as those used in the entropy evaluation.

Minimum Similarity Bound

Since all node-local resources below the level minimum similarity bound × average
local similarity are considered unsuitable, this option has a significant effect on the
maintenance process and the evolving entropy gain. Figure 5.8 displays the results
for the minimum similarity bounds of 0.2, 0.8 and 1.1.

In case of a very low minimum similarity bound, the entropy stays rather high (a).
This is caused by the set of redistributed triples becoming very small, while the majority
of triples stays fixed. On the other hand, if the bound is very high, the set of volatile
triples becomes large and the entropy again maintains at a high level (c). In this case, this
is not caused by the triples being to stationary, but by the steady redistribution of triples
with an already high local similarity. These effects are comparable with the separation
process of a substance mixture into distinct products. If the temperature of the mixture
is too low (e.g. it is frozen), the separation process stops and the entropy stays high. If
the temperature is too high, the particles are constantly re-mixed and the entropy, though
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Figure 5.8: Minimum Similarity Bound Evaluation

larger fluctuations may occur, stays high as well. In the experiments, the optimal cluster
temperature was found at a minimum similarity bound around 0.8 (c).

Time-To-Live

Quite similar to the minimum similarity is the influence of the ant time-to-live, yet the
effect is not as significant. As shown in figure 5.9, if the lifespan is too short to travel
long distance, the clustering takes longer (a). If the lifespan is larger than necessary, the
ants may search slightly longer, but the clustering result is similar (c). In the specific test
setup, a fair configuration appeared around 15 seconds (b).
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Figure 5.9: Time-To-Live Evaluation

Maximum Ant Count

The influence of that option is rather predictable. The more ants are used in the cluster, the
faster the triples are processed and the faster the results occur, as it is shown in figure 5.10.
The actual limit is of course depending on the technical environment used.
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Figure 5.10: Maximum Ant Count Evaluation

Pheromone Decay Rate

The pheromone decay rate surprisingly has very little effect on the entropy progression
(figure 5.11). In fact, this rate merely defines the level, at which pheromones stabilize
with the given number of active ants and the configured time-to-live. Since the ants select
their paths by a relative comparisons of scents, the actual average pheromone level in the
system is not relevant. Yet, the pheromone decay rate defines the cluster response time,
since it controls the evaporation of outdated trails.
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Figure 5.11: Pheromone Decay Rate Evaluation

Intermediate Conclusions The evaluation of the additional cluster options shows how
their tuning can influence the clustering outcomes. It especially points out the importance
of the minimum similarity bound in the maintenance process. Although the influence
of the additional options is considered to be similar in other networks and for other
ontologies, their optimal values depend on the actual hardware, the ontological content,
the network size, and the miscellaneous cluster configuration. If, for instance, many
ants are used, the pheromones can decay faster and if the ontology homogeneity is high,
the average similarity scale should be higher as well. Therefore, further research on the
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possibility to adjust these values dynamically and adaptively is suggested. Some possible
approaches to achieve this are outlined in section 6.2 (Future Work).

5.2 Retrieval Evaluation

5.2.1 Cluster Processes and Semantic Trail Quality

The basic requirement for a good clustering is that distributed data can be quickly located.
In the approaches of this thesis, IN-, RD- and OUT-Ants conduct these searches by
following the semantic trails formed by previously spread pheromones. Apparently, it is
crucial that these trails do in fact lead to the desired resources to prevent the ants from
straying through the space. This issue is evaluated in this section.

In order to quantify the quality of the trail system, the linear correlation between the
scents of neighboring nodes and their actual triple distribution is investigated. If this
correlation is high, following the scents through the network will most likely lead to the
indicated resources. Otherwise, the scent-indicated directions are barely related to the
present resources, in which case the ants are might perform random walks as well.

Since both, the scent-lists and the triple distributions, map type-resources to numeric
values, the linear relationship between their contents can be calculated using the definition
of Bravais and Pearson for the statistical correlation coefficient rxy between two random
variables X and Y with n given single value pairs (x1, y1), . . . , (xn, yn).

rxy =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2 ·

n∑
i=1

(yi − ȳ)2

Definition 5.9 (Node Triple-Scent Correlation) The triple-scent correlation rn κ of a node
n ∈ N and a cluster indicator κ ∈ K is the average correlation between the scent-lists of all
neighbors of n and the triple distribution of n. The single correlations are weighted by the total
amount of scent.

rn κ =

∑
ni∈ Nn

| scn,ni κ| · rni,n κ

∑
ni∈ Nn

| scn,ni κ|

rni,n κ =

∑
t∈T

( tdn κ
t − tdn κ

t )( scni,n κ
t − scni,n κ

t )√ ∑
t∈T

( tdn κ
t − tdn κ

t )2 · ∑
t∈T

( scni,n κ
t − scni,n κ

t )2
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Network network1 Pheromone Decay Rate 0.667
Ontology ontology03 Minimum Pheromone Level 0.9
Measure Leacock-Chodorow Minimum Similarity Bound 0.8
γ 4 Maximum Ant Count 100
Degree normalization off Return Strategy Shortest Path
S-Box Clustering off Time-To-Live 15 sec
Ant Learning off φd 0.9

φp 0.9

Table 5.2: Settings for Cluster Triple-Scent Correlation Evaluations

Definition 5.10 (Cluster Triple-Scent Correlation) The cluster triple-scent correlation rκ

for a cluster index κ ∈ K is the average triple-scent correlation rn κ of all nodes n ∈ N .

rκ =
1
|N|

∑
n∈N

rn κ

To investigate the influence of the different cluster activities independently, the
semantic trail evaluation is divided into 5 phases. Phase 2-5 run 10 minutes each with a
continuous recording of the cluster triple-scent correlation every 30 seconds.

Phase 1 inserts the triples without any additional processes running. At the end of this
phase, the cluster triple-scent correlation is recorded as initial value.

Phase 2 starts the maintenance process.

Phase 3 stops the maintenance process and starts the template generation with the
return strategy Taken Path.

Phase 4 runs the template generation with the return strategy Shortest Path.

Phase 5 investigates the combination of maintenance and template generation at a
process balance rate of 0.67.

As the tendentious influence of the maintenance and template generation process is
supposed to be independent of the actual measures, network or ontology, one exemplary
test scenario is used for evaluation (see table 5.2 for configuration). The average results
after 5 iterations and their standard deviation are displayed in figure 5.12.

Since OUT-Ants place their scents directly at the drop node, its neighbors, and the
path they used, the correlation between the scents and triple distributions is very high
at the end of the insertion phase. After that, the maintenance process assigns unsuitable
resources to OUT-Ants for relocation. As a result, the correlation of scents and triples
decreases, since these ants spread pheromones only for transient triples, while the original
trails are unmaintained and evaporate. In the worst case, the maintenance process creates
a low entropy, but leaves no qualified information about the locations of stable triples.
Figure 5.12 shows how the correlation actually decreases close to zero in this phase.

To compensate this immanent decrease of scent quality, the cluster can generate
random templates in times of no external activities to keep the sematic trails trained
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Subject Cluster Predicate Cluster Object Cluster
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Figure 5.12: Cluster Triple-Scent Correlation

(template generation process). This process is activated in the third phase. As displayed
in figure 5.12, the template generation is capable of restoring the triple-scent correlation
to a fair degree. The correlation raises even more, when the experimental return strategy
Shortest Path is used in phase 4, since the ants only mark the optimal path between the
request node and the retrieved match.

Finally, phase 5 investigates the mixture of the two processes. The process balance
of 0.67 (2 template ants for each relocating ant) appeared to be a fair compromise on the
test system as the triple-scent correlation stays high and there is an appropriate capacity
left for triple relocation to create a low spatial sematic entropy.

5.2.2 Search Path Evaluation

The final evaluation conducted investigates the average search path length of tem-
plate ants. It utilizes the template generation, as it already creates continuous random
requests. The recording of the results, presented in figure 5.13, started after a 5 min
maintenance time. To evaluate the improvement of retrieval performance caused by the
semantic trails, φp was set to 0 during the first 10 minutes to simulate a random walk
and then reset to 0.9, so that the ants primarily use the scents for triple tracking. Since a
request is fulfilled, when the first ant successfully returns, only the path lengths of these
first ants were monitored, ignoring any subsequent results. In the figure, the average
search path length is given relative to total number of nodes.

As the results in figure 5.13a show, when using a random walk, the ants have to
cover approximately one third of the network to find their match. This is already an
improvement to the regular expected coverage of 0.5 for random searches and is due to
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Figure 5.13: Average Template Search Path Length

the retrieval parallelization. Shown in the second phase, the usage of the sematic trails
improves the retrieval performance even more, as the average network coverage drops
to approximately one fifth.

When using a larger network for the same ontology, the average network coverage
is reduced even more, as displayed in figure 5.13b. This is caused by the fact that in a
larger network the nodes become more specific, and so do the trails. Of course, this does
not imply that the retrieval quality can be scaled arbitrarily by using larger networks,
as the coverage of one sixth of a larger network, for instance, may still take longer than
traversing one fifth of a small network.

Intermediate Conclusions The scent and retrieval evaluations prove that following the
implemented self-energizing semantic trails significantly increases retrieval performance.
Moreover, this performance generally decreases less worse with network size than
random walks. The evaluations furthermore suggest to sustaining the adaptiveness
of the cluster by establishing a continuous training facility, which compensates for triple
relocation and the evaporation of scents.
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Chapter 6

Conclusions and Future Work

This chapter provides the final conclusions of this thesis. It recapitulates its accom-
plishments, summarizes the made observations, and addresses existing limitations.
Furthermore, this chapter includes an outline of possible improvements and suggestions
for future work.

6.1 Conclusions

6.1.1 Accomplishments

In this thesis, a variety of approaches for semantic triple clustering and retrieval
in distributed RDF-Spaces was introduced, implemented, and evaluated. Using the
NetLogo simulator framework, a de-centralized, scalable and adaptive cluster network
was created, which is maintained by a swarm of virtual ants.

It was demonstrated how these ants are capable of dynamically clustering triples by
the semantic similarity of their resources. Therefore, they were provided with basic skills
of transitive type inference and similarity determination, using common distance- and
information-theoretic similarity measures. In the space, these ants operate completely
autonomous and independent, making strictly local decisions only.

Additionally, a form of loosely coupled communication between these agents was
established by adapting the natural pheromone-based stimulus of ants, to create a system
of sematic trails. Similar to real ant colonies, these trails improve the efficiency of resource
locating and are themselves amplified depending on the success rate of the routed ants.

Regarding the internal structures of ontologies, the necessity to distinguished between
the different levels of abstraction in RDF was discussed and two separate approaches
for clustering the A-Box- and T-Box-level were provided. In the latter, the T-Box was
limited to the similarity-relevant type hierarchy definitions only (S-Box). By a comparative
evaluation, three different strategies for S-Box clustering were analyzed, which range from
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a complete replication to a complete distribution with similarity calculations conducted
by the ants or at the nodes.

In order to quantify the clustering and retrieval quality, appropriate indicators were
introduced, such as the spatial sematic entropy gain and the spatial similarity distribution,
which investigate the sematic distribution of triples, as well as the cluster triple-scent cor-
relation and the average search path length, which allow a measure-independent retrieval
evaluation. Since the approaches of this thesis are mostly experimental, different
configuration options are provided and their influences on quality and performance
were evaluated.

6.1.2 Observations

The conducted evaluations investigated how the quality of clustering and retrieval is
influenced by the selected measure, the chosen clustering strategy, and the system
configuration. Moreover, these tests also indicated the impacts of external parameters,
such as the used ontology or the network size. Especially the distributions of subject-,
predicate- and object-resources in the un-clustered ontology determine the primary
clusterability of the triples. If these resources are very heterogenous, the amount of
achievable additional order is higher than in case of resource homogeneity. The second
major external influence is the network size. A large network allows more specific nodes
and likewise creates more specific trails. Yet, the possible search space becomes larger
as well, which, at a certain point, can significantly decrease retrieval performance. So
far, there is no strategy established to determine the optimal network size depending on
the triple count and entropy. As it is also not certain, if these two parameters are even
sufficient enough, further research in this area is suggested for future works.

The most important cluster configuration is the similarity measure. There, only the
information-theoretic measure of Lin creates an appropriate clustering quality without
further modifications. On the contrary, the original similarity stated by the distance-based
measures of Haase-Siebers-Harmelen and Leacock-Chodorow is too high, which results in
a rather homogenous perception of resources and a low clusterability. The disadvantage
of Lin is, nonetheless, that its similarity depends on both, the S-Box and the A-Box
content, while Haase-Siebers-Harmelen and Leacock-Chodorow depend on the S-Box
only. As the A-Box content may change rapidly, Lin consequently requires more frequent
re-calculations.

To compensate for the high resource similarity of the distance-based measures,
degree normalization and measure scaling were used to create results comparable to
Lin. They additionally allow to configure the distinctiveness of the semantic areas.
Considering all evaluation results, the usage of Leacock-Chodorow can be generally
recommended, as it is based on the S-Box only, creates a fair semantic triple distribution,
and is easy to configure. For specialized ontologies with a low average degree,
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Haase-Siebers-Harmelen is recommended, since the influence of concept height and
distance be adjusted independently using its scaling variables α and β.

The S-Box clustering strategy is another crucial clustering factor. Besides the
Full Clustering strategy, in which the ants conduct all similarity calculations themselves,
the Experimental strategy, which shifts this issue to the nodes, was implemented and
compared. As discussed in section 5.1.6 (S-Box Clustering), the Full Clustering induces
a lot of calculations, many of which are redundant. The Experimental approach instead
establishes an S-Box clustering, which is both scalable and efficient.

The most important factor for retrieval quality is the appropriateness of the
semantic trail system. While triples and resources are constantly redistributed by the
maintenance process to ensure adaptiveness and to decrease the spatial sematic entropy,
it is necessary to keep the trails up-to-date and to sustain the retrieval responsiveness.
In this respect, the conducted evaluations verify the importance of a continuous cluster
training facility, to prevent the trails from vanishing and misleading. The trail formation
itself is configurable by the return strategy. There, the strategy of simply returning the
taken path (without loops) proved to already create a high correlation between trails
and resources, due to its self-energizing character. Yet, the results can still be improved
if the optimal (shortest) return path is used. This strategy is not yet implemented in a
distributed way, yet a suggestion of a possible realization is contained in section 6.2.3.

The tendentious influence of the additional options such as time-to-live, maxi-
mum ant count, and process balance rate have been illustrated in the evaluation as well.
Since they are basically system-dependent, no general recommendation can be given for
these values. Instead, in a real system, they must be adjusted properly, depending on
the actual hardware capacity. The minimum similarity bound has the most significant
impact on the redistribution process. Regarding the clustering of a relative majority of
similar resources, it is suggested to replace this bound with a dynamic adjustment in
future works, which is discussed in section 6.2.1.

6.1.3 Limitations

Naturally, the presented approaches are not free of limitations and insufficiencies. The
most obvious of them is the lack of triple updates, which are not provided because they
are not part of the originally proposed LINDA primitives. Fortunately, updates can be
implemented easily as a modification of IN-Ants that, instead of removing a locked triple,
simply modify its values.

For the same reasons, the distributed cluster also does not support a sophisticated query
language like SPARQL. However, implementing such is not as straightforward because
quantifiers such as All must cover the whole space and cannot be distributed. Since
other quantifiers like Any or Exists could be evaluated without a full network traversal,
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additional research on the possibility of distributed and concurrent query evaluations for
Triple Spaces is recommended.

At last, the capacity of the simulator is limited itself. Using network of 50 nodes, means
to simulate the processor and memory power of 50 machines, which is at about the limit
of the test system. In order to evaluate extremely large networks and ontologies, the
migration to a real distributed system and a capable hardware environment is suggested.
The first step in that direction has already been undertaken, when the decision was made
to implement true agent concurrency.

6.2 Future Work

6.2.1 Maintenance Improvements

In this work, the set of redistributable resources is defined by all resources with a local
similarity that is below a certain level (minimum similarity bound) of the average local
similarity. This is already a dynamic approach, as this level raises the more similar
resources are aggregated. In case there is a relative majority of similar resources in the
ontology, this may result in a situation, where there is a high concentration of these
resources on every node in the cluster. Due to their high concentration, the chance of
relocation is little for these resources. Thus, they in fact do annex the nodes, which
prevents other kinds of resources to congregate at a spot of their own.

To solve this problem, it must be ensured that there is a certain possibility of relocation
for every resource, even if it appears to be properly located already (local optimum).
Unfortunately, while experimenting with such strategies, the cluster entropy raised in
all cases. As described earlier, this is comparable with a temperature that is too high to
separate a mixture into distinct products, as all particles are constantly mixed again and
again.

Therefore, it is suggested to evolve an adaption of the simulated annealing strategy. In
such an approach, the redistribution could start with a high similarity bound, which is
then constantly lowered until the cluster freezes. Anytime new triples are added, they
would heat up the cluster again until it once more cools down and all triples are resettled.
This approach would have two major advantages. The first one is that in a hot cluster,
the probability of resource relocation would be higher than zero for all present triples.
This allows to leave a local optimum so that, for instance, a high concentration of similar
resources at two different nodes could evolve into an even higher concentration of the
same resources on a single node. The second advantage is that by cooling down, the cluster
entropy would not remain at a high level, but decrease while the upper similarity bound
drops and fewer and fewer mobile resources exist. At the end, the cluster maintenance
could even stop completely, saving processor time and data traffic, until again triples are
added or removed.
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6.2.2 Correlation-Based Decisions

In the proposed strategies, probabilistic decisions, like the drop decision or the path
selection, are based on the concentration of a given resource within a distribution of
resources (triple distribution or scent-list). This concentration is calculated by applying
similarity-weights to the given entries and summarizing them. As it is required that such
a concentration (and the derived probability) is between 0 and 1, the similarity weights
are normalized to sum up to 1 as well. This causes the similarity of a resources towards
its own direct type to be less than 1, since there must always be some similarity left to
rank the other types. Hence, in case a resource is compared to a distribution with only
resources of exactly the same type, the stated concentration is lower than 1, as there exist
no entries for other types and the applied similarity weights are lost. This effect becomes
less significant when the similarity between types decreases fast, but it still exists and
prevents resources to be placed at a completely suitable node with a probability of 1
(probability randomization not considered).

This problem can possibly be solved with a complete different approach for
concentration calculation. Instead of using discrete entries for distributions - like adding
an amount of pheromones for the direct parent types of a resource - the continuous
similarity distribution of that type could be added instead. To match a resource against
such a distribution, the correlation would be calculated and projected from [−1, . . . , 1]
to [0, . . . , 1]. As a result, when matching a resource against a completely suitable
distribution, a correlation of 1 would occur and the probability of dropping the triple
or of choosing that node would be 1 as well.

This approach was discussed in the early stages of this thesis, yet it was rejected for
the time being because of two reasons. First, the projection of the correlation is not
straightforward. Since a negative correlation would suggest to reject the node, it should
not be projected to a probability of [0, . . . , 0.5]. Secondly, the correlation could be less
useful in the case of mixed resources, since it is expected to rapidly decrease to zero. So,
in order to create a base for comparison, the similarity weight approach was implemented.
Yet, in future works, the correlation-based approach might be investigated as well.

6.2.3 Distributed Shortest Path

As discussed earlier, using the return strategy Shortest Path creates a higher cluster triple-
scent correlation and a better clustering quality, compared to the Taken Path strategy. The
Shortest Path strategy was implemented by using NetLogo internals to determine the
shortest path between two nodes from a global perspective. A distributed version could
implemented in a possible bachelor or master thesis by adapting the ACO approach. In
an additional cluster layer, a new kind of ants could maintain a system of node scents to
indicate and maintain the shortest route between any two cluster locations. The sematic
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ants could then follow these scents to return to their requestor and update the semantic
trails along their way.

6.2.4 Further Suggestions

As the final suggestions for future works, certain enhancements of the triple clustering
and retrieval are proposed. While so far, support for typed templates is provided, the
system could easily be extended to process multiple triple requests as well. Furthermore,
templates could be extended with similarity ranges so that resources within a certain
semantic distance could be retrieved. In such a scenario, precision and recall could be
applied as common quality indicators.

Secondly, improvements in the field of similarity determination are also possible.
In the current implementation, similarity is defined by the ontological distance or the
information content. In future works, it could be extended by a facility that considers
arbitrary RDF properties which express inter-type relatedness. Such an extended
conception would allow to cluster resources not only by similarity, but also under certain
aspects, for instance, to congregate books of the same author, lectures who teach at the same
institute, or resource elements of the same container.

At last, and concluding this thesis, research on the issue of micro-reasoning in a
distributed ontology is suggested, to find out if small additional reasoning capabilities
of ants or nodes can improve semantic clustering and retrieval by inferring additional
statements and resource relationships.
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Figure A.1: Measure Spatial Sematic Entropies, Additional Measure Configurations
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Appendix A. Further Evaluation Results
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Figure A.2: Measure Spatial Sematic Entropy Gain, Additional Measure Configurations
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Appendix A. Further Evaluation Results
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(b) Haase-Siebers-Harmelen,
α=0.8, β=0.6, γ=1.0, degree-normalization=on
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(e) Lin,
γ=1.0, degree-normalization=off
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γ=3.0, degree-normalization=on

Figure A.3: Measure Spatial Sematic Entropy Gain, Network 1, Ontology 1
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Appendix A. Further Evaluation Results
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Figure A.4: Measure Spatial Sematic Entropy Gain, Network 2, Ontology 1
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Appendix A. Further Evaluation Results
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(d) Leacock-Chodorow,
γ=32.0, degree-normalization=on
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(e) Lin,
γ=1.0, degree-normalization=off
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γ=3.0, degree-normalization=on

Figure A.5: Measure Spatial Sematic Entropy Gain, Network 3, Ontology 1
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Appendix A. Further Evaluation Results
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γ=32.0, degree-normalization=on
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γ=1.0, degree-normalization=off
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Figure A.6: Measure Spatial Sematic Entropy Gain, Network 1, Ontology 2
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Appendix A. Further Evaluation Results
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(b) Haase-Siebers-Harmelen,
α=0.8, β=0.6, γ=1.0, degree-normalization=on
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γ=1.0, degree-normalization=off
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Figure A.7: Measure Spatial Sematic Entropy Gain, Network 2, Ontology 2
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Appendix A. Further Evaluation Results
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(a) Haase-Siebers-Harmelen,
α=0.2, β=0.6, γ=1.0, degree-normalization=off
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Appendix A. Further Evaluation Results
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Appendix A. Further Evaluation Results
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α=0.2, β=0.6, γ=1.0, degree-normalization=off
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(b) Haase-Siebers-Harmelen,
α=0.8, β=0.6, γ=1.0, degree-normalization=on
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(c) Leacock-Chodorow,
γ=1.0, degree-normalization=off
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(d) Leacock-Chodorow,
γ=32.0, degree-normalization=on
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(e) Lin,
γ=1.0, degree-normalization=off
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(f) Lin,
γ=3.0, degree-normalization=on

Figure A.10: Measure Spatial Sematic Entropy Gain, Network 3, Ontology 3
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(a) Haase-Siebers-Harmelen,
α=0.2, β=0.6, γ=1.0, degree-normalization=on
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(b) Haase-Siebers-Harmelen,
α=0.8, β=0.6, γ=1.0, degree-normalization=off
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(d) Leacock-Chodorow,
γ=32.0, degree-normalization=off
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γ=3.0, degree-normalization=off

Figure A.11: Measure Local similarity gain
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Netlogo Copyright Information

© Copyright 1999-2008 by Uri Wilensky. All rights reserved.

The NetLogo software, models and documentation are distributed free of charge for use by

the public to explore and construct models. Permission to copy or modify the NetLogo software,

models and documentation for educational and research purposes only and without fee is hereby

granted, provided that this copyright notice and the original author’s name appears on all copies

and supporting documentation. For any other uses of this software, in original or modified form,

including but not limited to distribution in whole or in part, specific prior permission must be

obtained from Uri Wilensky. The software, models and documentation shall not be used, rewritten,

or adapted as the basis of a commercial software or hardware product without first obtaining

appropriate licenses from Uri Wilensky. We make no representations about the suitability of this

software for any purpose. It is provided "as is" without express or implied warranty.

To reference this software in academic publications, please use: Wilensky, U. (1999). NetLogo.

http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-Based

Modeling, Northwestern University, Evanston, IL.

The project gratefully acknowledges the support of the National Science Foundation (REPP

and ROLE Programs) - grant numbers REC 9814682 and REC 0126227.

MersenneTwisterFast

© Copyright 2003 by Sean Luke. Portions copyright (c) 1993 by Michael Lecuyer. All rights

reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met: Redistributions of source code must retain the

above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary

form must reproduce the above copyright notice, this list of conditions and the following disclaimer

in the documentation and/or other materials provided with the distribution. Neither the name of

the copyright owners, their employers, nor the names of its contributors may be used to endorse

or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNERS OR CON-

TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

http://ccl.northwestern.edu/netlogo/
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ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Colt

© Copyright 1999 CERN - European Organization for Nuclear Research. Permission to use,

copy, modify, distribute and sell this software and its documentation for any purpose is hereby

granted without fee, provided that the above copyright notice appear in all copies and that both

that copyright notice and this permission notice appear in supporting documentation. CERN

makes no representations about the suitability of this software for any purpose. It is provided "as

is" without expressed or implied warranty.

MRJ Adapter

© Copyright (c) 2003-2005 Steve Roy sroy@roydesign.net). The library is covered by the Artistic

License, http://homepage.mac.com/sroy/artisticlicense.html. MRJ Adapter is available

from http://homepage.mac.com/sroy/mrjadapter/.

Quaqua

© Copyright (c) 2003-2005 Werner Randelshofer, http://www.randelshofer.ch, werner.

randelshofer@bluewin.ch, All Rights Reserved. The library is covered by the GNU LGPL

(Lesser General Public License). The text of that license is included in the "docs" folder which

accompanies the NetLogo download, and is also available from http://www.gnu.org/copyleft/

lesser.html.

JHotDraw

© Copyright (c) 1996, 1997 by IFA Informatik and Erich Gamma. The library is covered by the

GNU LGPL (Lesser General Public License). The text of that license is included in the "docs"

folder which accompanies the NetLogo download, and is also available from http://www.gnu.

org/copyleft/lesser.html.

MovieEncoder

This software is Copyright 2003 by Sean Luke. Portions Copyright 2003 by Gabriel Catalin Balan,

Liviu Panait, Sean Paus, and Dan Kuebrich. All Rights Reserved.

Developed in Conjunction with the George Mason University Center for Social Complexity

By using the source code, binary code files, or related data included in this distribution, you

agree to the following terms of usage for this software distribution. All but a few source code files

sroy@roydesign.net
http://homepage.mac.com/sroy/artisticlicense.html
http://homepage.mac.com/sroy/mrjadapter/
http://www.randelshofer.ch
werner.randelshofer@bluewin.ch
werner.randelshofer@bluewin.ch
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.html
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in this distribution fall under this license; the exceptions contain open source licenses embedded

in the source code files themselves. In this license the Authors means the Copyright Holders

listed above, and the license itself is Copyright 2003 by Sean Luke.

The Authors hereby grant you a world-wide, royalty-free, non-exclusive license, subject to third

party intellectual property claims:

to use, reproduce, modify, display, perform, sublicense and distribute all or any portion of the

source code or binary form of this software or related data with or without modifications, or as

part of a larger work; and under patents now or hereafter owned or controlled by the Authors, to

make, have made, use and sell ("Utilize") all or any portion of the source code or binary form of

this software or related data, but solely to the extent that any such patent is reasonably necessary

to enable you to Utilize all or any portion of the source code or binary form of this software or

related data, and not to any greater extent that may be necessary to Utilize further modifications

or combinations.

In return you agree to the following conditions:

If you redistribute all or any portion of the source code of this software or related data, it must

retain the above copyright notice and this license and disclaimer. If you redistribute all or any

portion of this code in binary form, you must include the above copyright notice and this license

and disclaimer in the documentation and/or other materials provided with the distribution, and

must indicate the use of this software in a prominent, publically accessible location of the larger

work. You must not use the Authors’s names to endorse or promote products derived from this

software without the specific prior written permission of the Authors.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL

THE AUTHORS OR COPYRIGHT HOLDERS, NOR THEIR EMPLOYERS, NOR GEORGE

MASON UNIVERSITY, BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT

OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

JpegImagesToMovie

© Copyright (c) 1999-2001 Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, modify and

redistribute this software in source and binary code form, provided that i) this copyright notice

and license appear on all copies of the software; and ii) Licensee does not utilize the software in

a manner which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR

IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
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WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LI-

ABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING

OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS

LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,

INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER

CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF

OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of aircraft, air traffic, aircraft

navigation or aircraft communications; or in the design, construction, operation or maintenance

of any nuclear facility. Licensee represents and warrants that it will not use or redistribute the

Software for such purposes.

JOGL

© Copyright (c) 2003-2006 Sun Microsystems, Inc. All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

- Redistribution of source code must retain the above copyright notice, this list of conditions

and the following disclaimer.

- Redistribution in binary form must reproduce the above copyright notice, this list of conditions

and the following disclaimer in the documentation and/or other materials provided with the

distribution.

Neither the name of Sun Microsystems, Inc. or the names of contributors may be used to

endorse or promote products derived from this software without specific prior written permission.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR

IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED

WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE HEREBY EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND ITS

LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A

RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES.

IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY LOST REVENUE,

PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL

OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF

LIABILITY, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS SOFTWARE, EVEN

IF SUN HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You acknowledge that this software is not designed or intended for use in the design,

construction, operation or maintenance of any nuclear facility.
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Matrix3D

© Copyright (c) 1994-1996 Sun Microsystems, Inc. All Rights Reserved.

Sun grants you ("Licensee") a non-exclusive, royalty free, license to use, modify and

redistribute this software in source and binary code form, provided that i) this copyright notice

and license appear on all copies of the software; and ii) Licensee does not utilize the software in

a manner which is disparaging to Sun.

This software is provided "AS IS," without a warranty of any kind. ALL EXPRESS OR

IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED

WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-

INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE LI-

ABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING

OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS

LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,

INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER

CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF

OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES.

This software is not designed or intended for use in on-line control of aircraft, air traffic, aircraft

navigation or aircraft communications; or in the design, construction, operation or maintenance

of any nuclear facility. Licensee represents and warrants that it will not use or redistribute the

Software for such purposes.

ASM

© Copyright (c) 2000-2005 INRIA, France Telecom. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions

and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials provided with

the distribution.

3. Neither the name of the copyright holders nor the names of its contributors may be used to

endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS

"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED

TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CON-
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TRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,

OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER

IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Log4J, Collects15, Google Collections

© Copyright 1999-2008 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file

except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License

is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

either express or implied. See the License for the specific language governing permissions and

limitations under the License.

Jena Copyright Information

© Copyright 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Hewlett-Packard Develop-

ment Company, LP

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met: Redistributions of source code must retain the

above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary

form must reproduce the above copyright notice, this list of conditions and the following disclaimer

in the documentation and/or other materials provided with the distribution. The name of the author

may not be used to endorse or promote products derived from this software without specific prior

written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ”AS IS” AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLI-

http://www.apache.org/licenses/LICENSE-2.0
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GENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

SimMetrics

Published under the GNU General Public License http://www.gnu.org/licenses/gpl.html.

JAMA

This software is a cooperative product of The MathWorks and the National Institute of Standards

and Technology (NIST) which has been released to the public domain. Neither The MathWorks

nor NIST assumes any responsibility whatsoever for its use by other parties, and makes no

guarantees, expressed or implied, about its quality, reliability, or any other characteristic.

http://www.gnu.org/licenses/gpl.html
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