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Abstract

The estimation of information value will be a key issue for upcoming
intelligent information systems, that not only provide information on
request but deal with time-dependently varying information needs. Due
to its subjective nature, information value cannot be computed and each
individual has a different perception of what exactly is relevant to him.

However, we propose a concept of information value and a computa-
tional model for its estimation. Our model is based upon the observation
that information concerning the future can easily be divided into rel-
evant and irrelevant information as long as the future is deterministic
and well known.

We use a network representation of uncertain quantities to model
the uncertainty of the future. Information value is introduced as the
likelihood of reaching a situation in the future where the information is
relevant. The approach is demonstrated for the modelling of individual
travel planning.
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1 Introduction

The term Intelligent Information System has been widely used to refer to infor-
mation systems, that exhibit intelligent or user-friendly behaviour. However,
intelligence can be understood in many different ways. Our concern is the
timing of information flow. The following categories of information systems
can be distinguished with respect to this aspect:
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Conventional Information Systems Conventional information systems
typically provide information, that is already available at the moment
of request. Thus, requests are posed when the value of information is
sufficient to the user and will be answered by the system as soon as
possible. The user is responsible for regulating the information flow.

Alerting Systems Recently, alerting mechanisms and formalisms have been
introduced to enable information systems to actively deliver new infor-
mation to those users that will consider such information to be of high
value. A general overview of alerting systems is given in [HF99].

Proactive Information Systems While the notion of proactive information
systems is not established yet, it can be thought of as a more complex
form of an alerting system, where the information value and its dynamics
will be observed and can be used to find the optimal point in time for
information delivery.

Intuitively, we judge an information to be right in time, if it is useful for some
task at hand. If information is not right in time, it can be irrelevant (wrong
content), too late or too early (wrong time). One of the major reasons for
information to be too early is due to plan changes. If scheduled tasks of the
future are replaced due to plan changes, early information may turn out to
have wrong content in the end.

We are well aware, that the goal of providing information right in time is
complex and has been tackled by the artificial intelligence community for more
than two decades. Therefore, we spezialize our research question to a very
specific partial problem that has received few attention and may serve as a
brick in building an intelligent digital world.
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Figure 1: Information for planning

Figure 1 sketches the basic idea of our notion of information value. We regard
information for planning and assume that the supply of additional information
results in additional plan alternatives (or decisions). Decision support is clearly
an issue but will not considered here.



The information value of additional information is to be used in the decision
about information supply and should cover the following intuitive aspects,
whose evalution we try to achieve.

Information Applicability as being a measure for the applicability of the
information. (Question: Is it possible to apply the information?)

Information Goal-Orientation as being a measure for the benefit of infor-
mation application with respect to a given objective. (Question: Is the
application of the information useful?)

Regarding figure 1 again, information applicability translates into the likeli-
hood of the decision to occur and information goal-orientation translates into
the likelihood of achieving the goal after information application.

The rest of the proposal will focus on a computational model for the main-
tenance and analysis of temporal uncertainty in plans. Even though our ap-
proach applies generally to plan-related information, our ideas presented here
are concretized for the modelling of individual travel planning.

The paper is structured as follows. In section 2 a terminology is introduced.
Based on that, we present our preliminary ideas on

e the relevant temporal and structural aspects to be modeled,

e the network representation for dynamic update of temporal uncertainty
and

e the application of the model

in section 3. Section 4 gives a short overview on other approaches to the
modeling an application of information value. Finally (section 5), we present
a sketch of further research plans.

2 Definitions

2.1 Modeling of Processes

From a human modelers perspective, processes may be described in a num-
ber of application-oriented concepts such as departure from ... , arrival at

and riding train no. ... . A variety of abstract representations of such
concepts and their temporal relationships have been developed in many differ-
ent research communities such as (object-oriented) modeling (comp. cf. State
Charts [Har87]), simulation (comp. [Fis73]) or artificial intelligence (comp.
[HHP93] for an overview).

We will base our model upon the notion of events. An event is a occurence of
something at some point in time and space. An event does not have a duration.
Events are not restricted to state changes. That is, an event may serve as an



anchor in time and space and it is well possible that no state change is involved
with the occurence of an event, even though this seems to be counterintuitive.

Movement is modelled as a sequence of event’s such as arrival, departure or
entering a vehicle. Every movement is associated to a physical object of inter-
est.

Adopted from the abovementioned research areas, we will use the following
temporal concepts throughout this article.

Event An event is a primitive without duration. It is used to model real-world
actions or events, that do not consume time or where time consumption
is not relevant. In a model of movement, events may be used to represent
departure, arrival or enter vehicle resp. leave vehicle.

Location in time and space An event can be located in time and space by
mapping it to an point in time and to a place.

Epoch An epoch represents the interval between two events. Thus, an epoch
has a duration. Epochs are not located in time and space. Concepts like
movement or waiting adhere to epochs between events.

Location in time and space An event can be located in time and space by
mapping it to an point in time and to a place.

Process A process is a collection of events that are possibly ordered and
located or constrained in time and space.

Movement Movement is a special process, consisting of events located in
time and space and bound to a specific object.

Plan A plan is a specification of a future process.

2.2 Uncertain Quantities

Plans are never certain or completely specified. This is partly due to the
uncertain nature of human plans and partly due to the unpredictable nature
of external events. The following types of uncertain quantities seem to be
relevant.

Uncertainty of occurence will be used for the modeling of alternatives. In
plans, different possible movements are represented by a tree structure
(left-linear next-relation). Uncertainty of occurence reflects the likelihood
of an event to occur. Subsequent events have the same likelihood of
occurence unless alternatives (branching) or uncertain dependence is to

be modelled.



Uncertainty in timing reflects the timing of an event or, alternatively, a du-
ration. We distinguish bounds, discrete distributions and density func-
tions for timings and durations. However, bounds will not be modelled
explicitly. Instead, we assume equal distribution over the temporal in-
terval given by bounds.

Clearly, there is a number of relationships between uncertainty in timing and
uncertainty of occurence, especially when more than one physical object of
interest is involved into a plan. This will be discussed in section 3.2.

3 Our Approach

Both the basic idea and methodology of our work is sketched in figure 2.
We want to use expert knowledge on uncertainty in plans in order to derive
knowledge on information value. Intelligence is brought to our approach by
an appropriate computational model.

Expert - Derived
knowledge knowledge

Intelligence Uncertainty in Information
plans value

Generation of
intelligence

CompUtatlonal Network — SPECific uncertain
model representation guantities

Figure 2: Intelligence through computation

In the sequel, we

1. model the plans of our application domain with a graph notation,

2. represent knowledge on wuncertainty in plans in a network representa-
tion, expressing also the computational relationships between uncertain
quantities and

3. develop a metric for the indication of information value.

3.1 Graph Notation

For the representation of plans and their interaction, a graph notation will be
employed. Events are represented by nodes and their temporal or causal order
is represented by arcs. An example is given in Figure 3.

Events are uniquely identified by their name, incorporating also the place of
occurrence. The point of time at which an event occurs is not shown and
regarded as a uncertain quantity. However, an event is optionally labelled
with time bounds to constrain the desired range of time.
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Figure 3: Event structure

Constraints on the relative temporal distance between two events are written
as durations in square brackets.

Alternatives are labelled with a constant quantity in [0, 1], representing the
likelihood of that path. The sum of the likelihood of all paths emerging from
a single event cannot exceed one. Alternatives can meet again at a later point
in time, as depicted.

A basic reason for the failure of plans is due to failure of synchronisation. Here,
synchronisation is the information process leading to synchronous events, i.e.
events of different physical objects with similar temporal and spatial location.
Synchronous events of different physical objects do represent physical meeting
of objects like individuals or vehicles.

There are different types of synchronisation according to the interaction of the
participating objects. So far, we want to distinguish

Balanced synchronisation Here, further processing (resp. action in case of
individuals) of both participants strongly depends on whether or not the
physical meeting occurs. Therefore, the process of synchronisation is a
balanced negotiation. An example is the situation of two people dating
for dinner.

Unbalanced synchronisation Here, further processing of one of the partic-
ipants does not depend on whether or not the physical meeting occurs.
Therefore, the process of synchronisation is based upon a unidirectional
information flow from the undependent participant to the dependent par-
ticipant. An example is the situation of an individual that plans to catch
a train.

Only the case of unbalanced synchronisation will be considered here and is
sketched in Figure 4. Synchronization is provisionally visualized by connecting
synchronous events of different objects, namely train and individual, by thick
vertical arrows that depict start and end of dependent movement. Departure
and arrival times of the train are given in square brackets.

3.2 Computational Network Model

So far, we introduced a graph notation for the study of uncertain movement.
Now, we want to introduce a computational network model for the relation-
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Figure 4: Synchronisation event

ships between uncertain (temporal) quantities. The notation of the network
model has been inspired by influence diagrams (comp. cf. [Sha87]).

We distinguish the following types of nodes:

Time nodes (7') represent a uncertain timing 7.
Likelihood nodes (L) represent a Likelihood L.

Event nodes (7, L) represent an uncertain timing 7" together with a likeli-
hood (of occurence) L for a specific event. While more than one node
may describe a single real-world event representing the fact of alternat-
ing path’s leading to the same real-world event, the total sum of the
likelihood on all path’s is always less than or equal to one for a single
real-world event.

Duration nodes (L) represent a uncertain duration D for given or known
temporal distance between events.

A number of operations have been identified to be useful for the modeling of
individual travel plans and will be presented in the sequel.

Figure 5 depicts the operations for the movement of a single physical object.

They are discussed from left to right.
) (A
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Departure earliest
Berlin departure

departure Take car

Waiting Time scheduled Departure Arrival
Berlin departure Stuttgart (car)

Figure 5: Propagation rules for a single physical object

Sum takes a duration node and an event node, resulting in another event
node, whose uncertain timing is the sum of the uncertain timing and



the duration on the input nodes and whose likelihood is copied from the
input nodes. As an example, Sum can be used to calculate departure
time from arrival time and waiting time, assuming that waiting time is
independent from arrival time.

Schedule takes an event node and an timing node, resulting in another event
node, whose uncertain timing is constrained to be after the uncertain
timing given by the timing node. As an example, Schedule can be used
to calculate the actual departure time of a train from the earliest possible
departure event and a scheduled departure time.

Weighting takes an event node and a likelihood node resulting in an event
node whose likelihood is the product of the likelihoods of the input nodes
and whose uncertain timing is copied from the respective input node.
Weighting is used to incorporate the likelihood of an alternative or a
synchronisaton to occur into the dependent plan.

Merging takes two event nodes representing the same real-world event and
results into one event node for both. While the path likelihood is simply
added, the joint uncertain timing provides a combined picture of the
point in time the event occurs. Typically, Merging is used when a real-
world event (for instance Arrival in Stuttgart) can be reached on two
alternative paths.

Figure 6 depicts two basic operations for the unbalanced synchronisation of
several physical objects.

Arrival Missed train
(passenger) (passenger)

&
GG

Departure Caught train
(train) (passenger)

Figure 6: Propagation rules for synchronisation

Caught is a decision on a ordered pair of event nodes resulting in another
event node, whose dependent uncertain timing is the uncertain timing
of the second event (here: train) for the case that the first one is earlier
(here: passenger caught train) and whose dependent likelihood is the
product of the likelihood of the first one and the likelihood of the first
one to be earlier than the second one.

Missed is a decision on a ordered pair of event nodes resulting in another
event node, whose dependent uncertain timing is the uncertain timing
of the first event (here: passenger) for the case that the second one is



earlier (here: passenger missed train) and whose dependent likelihood is
the product of the likelihood of the first one and the likelihood of the
second one to be earlier than the first one.

For the scheduled departure of trains, the transformation of the graph notation
into a network representation of uncertain quantities is given in Figure 7 for the
example of a train arriving to and departing from Berlin. Farliest departure
in Berlin is introduced as an additional quantity that could not be seen in the
graph notation. The Departure in Berlin is a result of Scheduled departure in
Berlin and FEarliest departure in Berlin.
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duration in Berlin in Berlin
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Figure 7: Network representation of scheduled movement

As another example, the transformation of an individual entering a train is
depicted in Figure 8. In the case of catching, the uncertain timing of the
train departure leads to a uncertain timing of the individual. For the case of
missing the train, the uncertain timing of the individuals arrival in Berlin is
propagated and can be used as an input for alternative plans.
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Waiting Enter Train Waiting/Prepare Departure Berlin Departure in Train
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Figure 8: Network representation of unbalanced synchronisation

Other situations are transformed in a similar way. Thus, from our graph no-
tation we receive a computational network model for the analysis of uncertain
temporal quantities.

3.3 Application

The proposed model can be used for the evaluation of information value as
being introduced in section 1. In order to demonstrate this, we employ



e An objective function, represented by a basic influence diagram (figure 9)
representing the benefit of our plan with respect to the goal of arriving
at the destination prior to a given deadline. The benefit is the likelihood
of arrival at the destination with arrival time being less or equal to the
deadline.

obj.func.

arrival at benefit

destination

deadline

Figure 9: Network representation of objective function

e An information item, represented as a transformation of the original
plan as it provides further alternatives. This representation in itself is
a complicated task, since it involves a decision theoretic analysis of the
decision to be taken by the individual in order to optimize the objective
function. However, since our focus here is not the decision support of
the individual, we assume this transformation to be given.

Using our network representation, the benefit of a plan can be computed and
updated as the values of some input nodes evolve. For a given information
item the benefit of the original plan can be compared to the benefit of the
plan being transformed with respect to the additional information item. The
ratio of the benefit with information versus the benefit without information is
a good indicator for information value. The indicator covers aspects of

information goal-orientation directly by it’s definition.

information applicability implicitly, since any transformation needs to ap-
ply the new information item in order to result in an improvement versus
the case without new information.

The following szenario illustrates the effects of real-world events to our infor-
mation value indicator.

A business man uses a taxi and is on the way to the railway station.
He plans to catch a suburb train in order to get to some town for
a presentation. There is also a superfast train going to the same
destination, but it will leave earlier than the suburb train. The
business man is late for the superfast train, but he will reach the
suburb train in time. Suddenly, the tazi get’s stuck in a jam (signal
— likelihood to catch the train is falling). Some minutes later, the
superfast train gets delayed. The delay causes the superfast train to



information
benefit value

1_ indicator
____ alternative plan information on
. : (superfast train) 2] [ superfast train
. original plan
\ ! (suburb train) 11
-------- |
taxigets  superfast train t taxigets  superfast train t
stuck injam  gets delayed stuck in jam  gets delayed
(a) benefit (b) information value indicator

Figure 10: Time-dependent information value

be scheduled 15 minutes after the suburb train but will still reach the
business mans destination in time. (signal — likelihood to catch the
superfast train is raising). This causes our intelligent information
system to notice, that the indicator value for the information on
the superfast train is raising with respect to the original plan of the
business man. Therefore, information about the superfast train is
supplied to the user.

The evolution of benefit for both the original plan and the plan alternative is
depicted in figure 10(a) while the evolution of the information value indicator
is depicted in figure 10(b).

4 Related Work

The presented approach for a computational model for information value can
be viewed as a foundation for a decision support model for the timing of
information flow.

Information value has been recognized as an important research topic in deci-
sion theory. Laux [Lau91] defines information value in the context of a decision
model, i.e. information value is the expected economic gain from additional in-
formation in the decision model. In this approach, the result of the information
request (the information content) is not known a priori when the information
value is to be computed. Grass and Zilberstein [GZ97] present a system for
value-driven information gathering (VDIG) that strives for the best possible
information gathering strategy at any moment in time, considering replanning
of information gathering as an option. Papadimitriou and Yannakakis [PY91]
investigate the information value in distributed systems from a computer sci-
ence perspective.

In our approach, we implicitly employ a decision model for the plan transfor-
mation caused by additional information. However, our concern is the dynamic
change of temporal uncertainty, causing information value on alternatives to



raise or fall. We do not employ the decision model itself in order to decide
upon the value of information.

5 QOutlook

The approach of modelling information value based upon a network repre-
sentation of uncertainty in movement plans may develop into a fundamental
concept in intelligent information services. Proof of concept, however, is still
missing. Within my PhD-thesis, I intend to investigate the concept of infor-
mation value as a time-dependent measure, study stochastic processes as a
computational model for the investigation of information value and extend the
approach to further application examples.
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